JP2018133190A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2018133190A
JP2018133190A JP2017025843A JP2017025843A JP2018133190A JP 2018133190 A JP2018133190 A JP 2018133190A JP 2017025843 A JP2017025843 A JP 2017025843A JP 2017025843 A JP2017025843 A JP 2017025843A JP 2018133190 A JP2018133190 A JP 2018133190A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017025843A
Other languages
Japanese (ja)
Other versions
JP6770687B2 (en
Inventor
鈴木 健太郎
Kentaro Suzuki
健太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017025843A priority Critical patent/JP6770687B2/en
Publication of JP2018133190A publication Critical patent/JP2018133190A/en
Application granted granted Critical
Publication of JP6770687B2 publication Critical patent/JP6770687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which can achieve high-level good balance between output characteristics at a low temperature in a low state-of-charge condition and the capability of suppressing the rise in temperature in the state of being overcharged.SOLUTION: A lithium ion secondary battery herein disclosed comprises: a laminate arranged by laminating positive and negative electrodes and separators as an electrode body; and a nonaqueous electrolyte. The positive electrode has a positive electrode active material layer including a positive electrode active material. The positive electrode active material includes lithium (Li), and a metal element (M) other than lithium. The ratio (Li/M) of the lithium element to the metal element other than lithium included in the positive electrode active material of the positive electrode of an interior layer portion of the laminate is larger than the ratio (Li/M) of the lithium element to the metal element other than lithium included in the positive electrode active material of the positive electrode of an exterior layer portion of the laminate.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。リチウムイオン二次電池は、特に、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます普及していくことが期待されている。   Lithium ion secondary batteries are lighter and have a higher energy density than existing batteries, and have recently been used as so-called portable power sources for vehicles and personal computers and power sources for driving vehicles. Lithium-ion secondary batteries are expected to become increasingly popular as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Yes.

リチウムイオン二次電池は、その普及に伴い、さらなる高性能化が求められており、高性能化のために様々な開発が行なわれている。例えば、特許文献1では、リチウムイオン二次電池の正極に用いられる正極活物質に、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物を用いることが開示されている。そして、特許文献1には、好ましい電池特性を得るために、当該リチウム含有化合物において、リチウム元素と全遷移金属元素とのモル比(リチウム元素/全遷移金属元素)を1.05より大きくし、かつ1.25より小さくすることが記載されている。   Lithium ion secondary batteries are required to have higher performance with the spread of the lithium ion secondary batteries, and various developments have been made for higher performance. For example, Patent Document 1 discloses that a lithium-containing compound containing a lithium element and one or more transition metal elements is used as a positive electrode active material used for a positive electrode of a lithium ion secondary battery. And in patent document 1, in order to obtain a favorable battery characteristic, in the said lithium containing compound, the molar ratio (lithium element / total transition metal element) of a lithium element and all the transition metal elements was made larger than 1.05, And it is described to make it smaller than 1.25.

特開2013−037774号公報JP 2013-037774 A

リチウムイオン二次電池に過充電が起きた際には、急激な温度上昇が起こり得るものであり、この過充電時の温度上昇は、高度に抑制されていることが望まれている。また、出力の出にくい低温かつ低充電時という環境下であっても、リチウムイオン二次電池の出力が高いことが望まれている。
本発明者が鋭意検討した結果、特許文献1に記載のように、リチウム元素と全遷移金属元素とのモル比(リチウム元素/全遷移金属元素)が大きい正極活物質をリチウムイオン二次電池に用いた場合には、過充電時の温度上昇は抑制できるものの、低温かつ低充電時における出力が低く、一方、リチウム元素と全遷移金属元素とのモル比(リチウム元素/全遷移金属元素)が小さい正極活物質をリチウムイオン二次電池に用いた場合には、低温かつ低充電時における出力が高くなるものの、過充電時の温度上昇の抑制の程度が小さいことを見出した。また、過充電時の温度上昇を抑制するために、リチウムイオン二次電池の電極体の内部に熱容量の大きい部材を配置する方法も考えられるが、このような方法では、低温かつ低充電時における出力が低いことを見出した。
When an overcharge occurs in a lithium ion secondary battery, a rapid temperature rise can occur, and it is desired that the temperature rise during the overcharge is highly suppressed. In addition, it is desired that the output of the lithium ion secondary battery be high even in a low temperature and low charge environment where output is difficult to output.
As a result of intensive studies by the present inventor, as described in Patent Document 1, a positive electrode active material having a large molar ratio of lithium element to all transition metal elements (lithium element / all transition metal elements) is used as a lithium ion secondary battery. When used, the temperature rise during overcharge can be suppressed, but the output at low temperature and low charge is low, while the molar ratio of lithium element to all transition metal elements (lithium element / total transition metal element) is It has been found that when a small positive electrode active material is used for a lithium ion secondary battery, the output at low temperature and low charge is high, but the degree of suppression of temperature rise at overcharge is small. Moreover, in order to suppress the temperature rise at the time of overcharge, a method of arranging a member having a large heat capacity inside the electrode body of the lithium ion secondary battery can be considered. I found that the output was low.

そこで本発明の目的は、低温かつ低充電時における出力特性と過充電時の温度上昇抑制性とがバランスよく高いリチウムイオン二次電池を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion secondary battery having a good balance between output characteristics at low temperature and low charge and temperature rise suppression during overcharge.

ここに開示されるリチウムイオン二次電池は、電極体として正極と負極とセパレータとが積層されている積層体と、非水電解質と、を備える。前記正極は、正極活物質を含有する正極活物質層を備える。前記正極活物質は、リチウム(Li)と、リチウム以外の金属元素(M)とを含有する。前記積層体の内層部の前記正極の正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)が、前記積層体の外層部の前記正極の正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)よりも大きい。
このような構成によれば、過充電時の温度上昇の抑制効果の高い、リチウム以外の金属元素に対するリチウム元素の比の大きい正極活物質を、熱のこもり易い電極体(積層体)の内層部の正極に含有させることができ、また低温かつ低充電時での出力特性に優れる、リチウム以外の金属元素に対するリチウム元素の比の小さい正極活物質を電極体(積層体)の外層部の正極に含有させることができる。したがって、これにより低温かつ低充電時における出力特性と過充電時の温度上昇抑制性とがバランスよく高いリチウムイオン二次電池を提供することができる。
The lithium ion secondary battery disclosed herein includes a laminated body in which a positive electrode, a negative electrode, and a separator are laminated as an electrode body, and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material layer containing a positive electrode active material. The positive electrode active material contains lithium (Li) and a metal element (M) other than lithium. Lithium element ratio (Li / M) to metal elements other than lithium contained in the positive electrode active material of the positive electrode in the inner layer portion of the laminate is lithium contained in the positive electrode active material of the positive electrode in the outer layer portion of the laminate. It is larger than the ratio of lithium element to other metal elements (Li / M).
According to such a configuration, the positive electrode active material having a high ratio of lithium element to metal element other than lithium, which has a high effect of suppressing temperature rise during overcharge, is formed in the inner layer portion of the electrode body (laminated body) that is easily trapped. A positive electrode active material having a low ratio of lithium element to metal elements other than lithium, which is excellent in output characteristics at low temperature and low charge, can be contained in the positive electrode of the outer layer portion of the electrode body (laminate). It can be included. Therefore, it is possible to provide a lithium ion secondary battery with a high balance between output characteristics at low temperature and low charge and temperature rise suppression during overcharge.

本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の電極体(積層型電極体)の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrode body (laminated electrode body) of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の変形例の電極体(捲回電極体)の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrode body (winding electrode body) of the modification of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の変形例の捲回電極体の捲回軸に垂直な方向の断面を模式的に示す図である。It is a figure which shows typically the cross section of the direction perpendicular | vertical to the winding axis | shaft of the winding electrode body of the modification of the lithium ion secondary battery which concerns on one Embodiment of this invention. 電極体の内層部および外層部共にLi/M比が1.05である正極活物質を用いたリチウムイオン二次電池(X)と、電極体の内層部および外層部共にLi/M比が1.20である正極活物質を用いたリチウムイオン二次電池(Y)について、意図的に過充電を起こさせた場合の、リチウムイオン二次電池の温度の経時変化について示すグラフである。Lithium ion secondary battery (X) using a positive electrode active material having an Li / M ratio of 1.05 for both the inner layer portion and the outer layer portion of the electrode body, and a Li / M ratio of 1 for both the inner layer portion and the outer layer portion of the electrode body It is a graph which shows about the time-dependent change of the temperature of a lithium ion secondary battery at the time of making it overcharge intentionally about the lithium ion secondary battery (Y) using the positive electrode active material which is .20. 電極体の内層部および外層部共に電極体の内層部および外層部共にLi/M比が1.05である正極活物質を用いているリチウムイオン二次電池(A)と、電極体の内層部にLi/M比が1.15の正極活物質を用い、電極体の外層部にLi/M比が1.05の正極活物質を用いたリチウムイオン二次電池(B)と、電極体の内層部にLi/M比が1.20の正極活物質を用い、電極体の外層部にLi/M比が1.05の正極活物質を用いたリチウムイオン二次電池(C)について、意図的に過充電を起こさせた場合の、リチウムイオン二次電池の温度の経時変化について示すグラフである。A lithium ion secondary battery (A) using a positive electrode active material having a Li / M ratio of 1.05 for both the inner layer portion and the outer layer portion of the electrode body in both the inner layer portion and the outer layer portion of the electrode body, and the inner layer portion of the electrode body A lithium-ion secondary battery (B) using a positive electrode active material having a Li / M ratio of 1.15 and a positive electrode active material having a Li / M ratio of 1.05 for the outer layer of the electrode body; Intended for a lithium ion secondary battery (C) using a positive electrode active material having an Li / M ratio of 1.20 for an inner layer portion and a positive electrode active material having a Li / M ratio of 1.05 for an outer layer portion of an electrode body. 5 is a graph showing a change with time in the temperature of a lithium ion secondary battery when overcharge is caused in an automatic manner. 電極体の内層部および外層部共に電極体の内層部および外層部共にLi/M比が1.05である正極活物質を用いたリチウムイオン二次電池(1)と、電極体の内層部の正極活物質のLi/M比を、電極体の外層部の正極活物質のLi/M比よりも大きくしたリチウムイオン二次電池(2)と、電極体の中心部に過充電時の温度上昇の抑制の程度が高くなるように熱容量の大きい部材を配置したリチウムイオン二次電池(3)について、低温かつ低充電時での出力を示すグラフである。A lithium ion secondary battery (1) using a positive electrode active material having a Li / M ratio of 1.05 for both the inner layer portion and the outer layer portion of the electrode body for both the inner layer portion and the outer layer portion of the electrode body, and the inner layer portion of the electrode body Lithium ion secondary battery (2) in which the Li / M ratio of the positive electrode active material is larger than the Li / M ratio of the positive electrode active material in the outer layer part of the electrode body, and the temperature rise during overcharge at the center part of the electrode body It is a graph which shows the output at the time of low temperature and low charge about the lithium ion secondary battery (3) which has arrange | positioned the member with a large heat capacity so that the grade of suppression may become high.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けないリチウムイオン二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, a general configuration and manufacturing process of a lithium ion secondary battery that does not characterize the present invention) are as follows. Therefore, it can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor.
Hereinafter, the present invention will be described in detail by taking a flat rectangular lithium ion secondary battery as an example, but the present invention is not intended to be limited to those described in the embodiment.

図1に示すリチウムイオン二次電池100は、扁平形状の電極体20Aと非水電解質(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型のリチウムイオン二次電池100である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解質を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。   A lithium ion secondary battery 100 shown in FIG. 1 is constructed by accommodating a flat electrode body 20A and a nonaqueous electrolyte (not shown) in a flat rectangular battery case (that is, an exterior container) 30. This is a sealed lithium ion secondary battery 100. The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection, and a thin safety valve 36 set so as to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Yes. In addition, the battery case 30 is provided with an inlet (not shown) for injecting a nonaqueous electrolyte. The positive terminal 42 is electrically connected to the positive current collector 42a. The negative electrode terminal 44 is electrically connected to the negative electrode current collector plate 44a. As the material of the battery case 30, for example, a light metal material having good thermal conductivity such as aluminum is used.

非水電解質は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。
非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
The non-aqueous electrolyte can be the same as that of a conventional lithium ion secondary battery, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used.
As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Examples thereof include monofluoromethyl difluoromethyl carbonate (F-DMC) and trifluorodimethyl carbonate (TFDMC). Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.
As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 (preferably LiPF 6 ) can be suitably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.

なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。   In addition, the non-aqueous electrolyte is, for example, a gas generating agent such as biphenyl (BP) or cyclohexylbenzene (CHB); Various additives such as a film forming agent such as vinylene carbonate (VC); a dispersant; a thickener may be included.

電極体20Aは、図2に示すように、複数の正極シート50Aと、複数の負極シート60Aとが、セパレータ70Aをその間に介在させながら積層された積層体である。即ち、本実施形態において電極体20Aは、積層型電極体である。なお、図2では、積層構造の一部の記載を省略しており、図2は、正極シート50A、負極シート60A、およびセパレータ70Aの実際の積層数を表すものではない。正極シート50A、負極シート60A、およびセパレータ70Aの積層数は、従来のリチウムイオン二次電池に用いられる積層型電極体の積層数と同様であってよい。   As shown in FIG. 2, the electrode body 20A is a laminated body in which a plurality of positive electrode sheets 50A and a plurality of negative electrode sheets 60A are laminated with a separator 70A interposed therebetween. That is, in this embodiment, the electrode body 20A is a stacked electrode body. In FIG. 2, the description of a part of the laminated structure is omitted, and FIG. 2 does not represent the actual number of laminated layers of the positive electrode sheet 50A, the negative electrode sheet 60A, and the separator 70A. The number of laminations of the positive electrode sheet 50A, the negative electrode sheet 60A, and the separator 70A may be the same as the number of laminations of the laminated electrode body used in the conventional lithium ion secondary battery.

正極シート50Aは、シート状の正極集電体52Aの片面または両面(ここでは両面)に、正極活物質を含有する正極活物質層54Aが形成された構成を有する。負極シート60Aは、シート状の負極集電体62Aの片面または両面(ここでは両面)に、負極活物質を含有する負極活物質層64Aが形成された構成を有する。図1の左右方向(リチウムイオン二次電池100の通常の使用状態における底面および上面の長手方向に平行な方向)において、電極体20Aの一方の端部には、正極活物質層非形成部分52Aa(即ち、正極活物質層54Aが形成されずに正極集電体52Aが露出した部分)が、他方の端部には、負極活物質層非形成部分62Aa(即ち、負極活物質層64Aが形成されずに負極集電体62Aが露出した部分)が形成されており、正極活物質層非形成部分52Aaおよび負極活物質層非形成部分62Aaには、それぞれ正極集電板42aおよび負極集電板44aが接合されている。   The positive electrode sheet 50A has a configuration in which a positive electrode active material layer 54A containing a positive electrode active material is formed on one or both surfaces (here, both surfaces) of a sheet-like positive electrode current collector 52A. The negative electrode sheet 60A has a configuration in which a negative electrode active material layer 64A containing a negative electrode active material is formed on one or both surfaces (here, both surfaces) of a sheet-like negative electrode current collector 62A. In the left-right direction in FIG. 1 (the direction parallel to the longitudinal direction of the bottom surface and the top surface in the normal use state of the lithium ion secondary battery 100), the positive electrode active material layer non-formed portion 52Aa is formed at one end of the electrode body 20A. (That is, the portion where the positive electrode current collector 52A is exposed without forming the positive electrode active material layer 54A), and the negative electrode active material layer non-formation portion 62Aa (that is, the negative electrode active material layer 64A is formed at the other end) The portion where the negative electrode current collector 62A is exposed is formed), and the positive electrode active material layer non-formed portion 52Aa and the negative electrode active material layer non-formed portion 62Aa are respectively formed in the positive electrode current collector plate 42a and the negative electrode current collector plate. 44a is joined.

正極シート50Aを構成する正極集電体52Aとしては、例えばアルミニウム箔等が挙げられる。
正極活物質層54Aに含まれる正極活物質は、リチウム(Li)とリチウム以外の金属元素(M)とを含有する。正極活物質は、例えば、一般式:LiMOで表される化合物である(xは好ましくは1≦x<1.25を満たす)。Mは、例えば、Mn,Co,Ni,Al,Fe,Mg,Ti,Cu,Zn,Ga,In,Sn,La,Ta,Ce等からなる群より選ばれる一種または二種以上の金属(特に遷移金属)である。また、正極活物質は、P,Si,F等の非金属元素をさらに含んでいてもよい。正極活物質の具体例としては、LiNi1/3Co1/3Mn1/3(1≦x<1.25)、LiNiO(1≦x<1.25)、LiCoO(1≦x<1.25)、LiFeO(1≦x<1.25)、LiMn(1≦x<1.25)等が挙げられる。
正極活物質層54Aは、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
Examples of the positive electrode current collector 52A constituting the positive electrode sheet 50A include an aluminum foil.
The positive electrode active material included in the positive electrode active material layer 54A contains lithium (Li) and a metal element (M) other than lithium. The positive electrode active material is, for example, a compound represented by the general formula: Li x MO 2 (x preferably satisfies 1 ≦ x <1.25). M is, for example, one or more metals selected from the group consisting of Mn, Co, Ni, Al, Fe, Mg, Ti, Cu, Zn, Ga, In, Sn, La, Ta, Ce, etc. Transition metal). The positive electrode active material may further contain a nonmetallic element such as P, Si, or F. Specific examples of the positive electrode active material include Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 (1 ≦ x <1.25), Li x NiO 2 (1 ≦ x <1.25), Li x CoO 2 (1 ≦ x <1.25), Li x FeO 2 (1 ≦ x <1.25), Li x Mn 2 O 4 (1 ≦ x <1.25) and the like.
The positive electrode active material layer 54A may include components other than the active material, such as a conductive material and a binder. As the conductive material, for example, carbon black such as acetylene black (AB) and other (eg, graphite) carbon materials can be suitably used. As the binder, for example, polyvinylidene fluoride (PVDF) can be used.

負極シート60Aを構成する負極集電体62Aとしては、例えば銅箔等が挙げられる。負極活物質層64Aに含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64Aは、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   Examples of the negative electrode current collector 62A constituting the negative electrode sheet 60A include copper foil. As the negative electrode active material contained in the negative electrode active material layer 64A, for example, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode active material layer 64A can include components other than the active material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR) can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

セパレータ70Aとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70Aの表面には、耐熱層(HRL)が設けられていてもよい。   Examples of the separator 70A include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat resistant layer (HRL) may be provided on the surface of the separator 70A.

本実施形態において、電極体20Aを構成する積層体は、内層部22Aの正極シート50Aの正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(以下、「Li/M比」とも呼ぶことがある)が、当該積層体の外層部24Aの正極シート50Aの正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)よりも大きい。
具体的に例えば、内層部22Aとして、積層体の積層方向の中央部であって全層数(正極シート50A、負極シート60A、セパレータシート70Aの総枚数)のうちの15%以上30%以下の層数(枚数)に該当する部分において、正極シート50Aの正極活物質のLi/M比を、1.15超1.25未満(特に1.18以上1.22以下)にする。そして、外層部24Aとして、残りの部分の正極シート50Aの正極活物質のLi/M比を、1.0以上1.15以下(特に1.0以上1.10以下)にする。
その一例として、内層部22Aとして、積層体の積層方向の中央部であって全層数のうちの20%の層数に該当する部分において、正極シート50Aの正極活物質のLi/M比を、1.20にする。そして、外層部24Aとして、残りの部分、すなわち積層体の積層方向の各側端部であって全層数のうちの40%の層数に該当する部分のそれぞれにおいて、正極シート50Aの正極活物質のLi/M比を、1.05にする。
In the present embodiment, the laminate constituting the electrode body 20A is a ratio of a lithium element to a metal element other than lithium contained in the positive electrode active material of the positive electrode sheet 50A of the inner layer portion 22A (hereinafter also referred to as “Li / M ratio”). However, the ratio of the lithium element to the metal element other than lithium contained in the positive electrode active material of the positive electrode sheet 50A of the outer layer portion 24A of the laminate (Li / M) is larger.
Specifically, for example, as the inner layer portion 22A, the central portion in the stacking direction of the stacked body and 15% to 30% of the total number of layers (total number of the positive electrode sheet 50A, the negative electrode sheet 60A, and the separator sheet 70A) In the portion corresponding to the number of layers (number of sheets), the Li / M ratio of the positive electrode active material of the positive electrode sheet 50A is set to be more than 1.15 and less than 1.25 (particularly 1.18 to 1.22). Then, as the outer layer portion 24A, the Li / M ratio of the positive electrode active material of the remaining positive electrode sheet 50A is set to 1.0 or more and 1.15 or less (particularly 1.0 or more and 1.10 or less).
As an example, the inner layer portion 22A has a Li / M ratio of the positive electrode active material of the positive electrode sheet 50A in the central portion in the stacking direction of the stacked body and corresponding to 20% of the total number of layers. , 1.20. Then, as the outer layer portion 24A, in each of the remaining portions, that is, each side end portion in the stacking direction of the stacked body and corresponding to 40% of the total number of layers, the positive electrode active of the positive electrode sheet 50A. The Li / M ratio of the material is 1.05.

以上のようにして、本実施形態に係るリチウムイオン二次電池100を構成することができる。
次に、本実施形態の変形例について説明する。上記の例では、電極体として積層型電極体を用いているが、本変形例では、電極体として捲回電極体を用いる点が異なる。よって、捲回電極体を用いる以外のリチウムイオン二次電池の構成、および電極体を構成する材料は、上記の例と同様であるため、これらの説明については省略し、捲回電極体についてのみ説明する。
As described above, the lithium ion secondary battery 100 according to the present embodiment can be configured.
Next, a modification of this embodiment will be described. In the above example, a stacked electrode body is used as the electrode body. However, the present modification is different in that a wound electrode body is used as the electrode body. Therefore, since the configuration of the lithium ion secondary battery other than using the wound electrode body and the material constituting the electrode body are the same as those in the above example, these descriptions are omitted, and only the wound electrode body is used. explain.

図3に示すように、本変形例の電極体(捲回電極体)20Bは、長尺状の正極集電体52Bの片面または両面(ここでは両面)に長手方向に沿って正極活物質層54Bが形成された正極シート50Bと、長尺状の負極集電体62Bの片面または両面(ここでは両面)に長手方向に沿って負極活物質層64Bが形成された負極シート60Bとが、2枚の長尺状のセパレータシート70Bを介して重ね合わされて長手方向に捲回された形態を有する。
電極体20Bは、扁平形状を有しており、その扁平部において捲回軸方向(上記長手方向に直交するシート幅方向)に垂直な方向において、正極50Bと負極60Bとが、セパレータ70Bがその間に介在しつつ積層されている(なお、特に、捲回の始点において、正極50Bまたは負極60Bは、2枚連続で重なっていてもよい)。
このようにして電極体20Bは、正極50B層と、負極60B層と、セパレータ70B層を有する積層体を形成している。電極体20Bの捲回軸方向の両端から外方にはみ出すように、正極活物質層非形成部分52Baと負極活物質層非形成部分62Baとが形成されている。
As shown in FIG. 3, the electrode body (rolled electrode body) 20B of the present modification is a positive electrode active material layer along the longitudinal direction on one or both surfaces (here, both surfaces) of a long positive electrode current collector 52B. The positive electrode sheet 50B in which 54B is formed and the negative electrode sheet 60B in which the negative electrode active material layer 64B is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62B are 2 It has a form in which the sheet is overlapped via a long separator sheet 70B and wound in the longitudinal direction.
The electrode body 20B has a flat shape, and in the flat portion, the positive electrode 50B and the negative electrode 60B are disposed between the separator 70B in the direction perpendicular to the winding axis direction (the sheet width direction orthogonal to the longitudinal direction). (In particular, at the starting point of winding, the positive electrode 50B or the negative electrode 60B may overlap two consecutively).
Thus, the electrode body 20B forms a laminate having the positive electrode 50B layer, the negative electrode 60B layer, and the separator 70B layer. A positive electrode active material layer non-formed part 52Ba and a negative electrode active material layer non-formed part 62Ba are formed so as to protrude outward from both ends in the winding axis direction of the electrode body 20B.

本変形例において、図4に示すように、電極体20Bを構成する積層体は、電極体20Bの扁平面および捲回軸に垂直な方向において、内層部22Bおよび外層部24Bを有する(なお、図4では参照の便宜より、正極50B、負極60Bおよびセパレータ70Bを重ね合わせたものを捲回したものを模式的に示しており、正極50B、負極60Bおよびセパレータ70Bを別個に描写したものではなく、また、正極50B、負極60Bおよびセパレータ70Bの実際の積層数を示すものでもない)。そして、内層部22Bの正極シート50Bの正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)が、当該積層体の外層部24Bの正極シート50Bの正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)よりも大きい。
具体的に例えば、内層部22Bとして、積層体の積層方向の中央部であって全層数(正極50B層、負極60B層、セパレータ60B層の総数)のうちの15%以上30%以下の層数に該当する部分において、正極50Bの正極活物質のLi/M比を、1.15超1.25未満(特に1.18以上1.22以下)にする。そして、外層部24Bとして、残りの部分の正極50B層の正極活物質のLi/M比を、1.0以上1.15以下(特に1.0以上1.10以下)にする。
より具体的に例えば、内層部22Bとして、積層体の積層方向の中央部(すなわち内周部)であって全層数のうちの20%の層数に該当する部分において、正極50B層の正極活物質のLi/M比を、1.20にする。そして、外層部24Bとして、残りの部分、すなわち積層体の外周部であって、全層数のうちの80%の層数に該当する部分において、正極50B層の正極活物質のLi/M比を、1.05にする。
In the present modification, as shown in FIG. 4, the stacked body constituting the electrode body 20B has an inner layer portion 22B and an outer layer portion 24B in a direction perpendicular to the flat surface and the winding axis of the electrode body 20B ( For convenience of reference, FIG. 4 schematically shows a roll of a stack of the positive electrode 50B, the negative electrode 60B, and the separator 70B. The positive electrode 50B, the negative electrode 60B, and the separator 70B are not depicted separately. Also, it does not indicate the actual number of stacked layers of the positive electrode 50B, the negative electrode 60B, and the separator 70B). And ratio (Li / M) of the lithium element with respect to metal elements other than lithium contained in the positive electrode active material of the positive electrode sheet 50B of the inner layer part 22B is included in the positive electrode active material of the positive electrode sheet 50B of the outer layer part 24B of the laminate. The ratio of the lithium element to the metal element other than lithium (Li / M) is larger.
Specifically, for example, the inner layer portion 22B is a central portion in the stacking direction of the stacked body and a layer of 15% to 30% of the total number of layers (total number of positive electrode 50B layers, negative electrode 60B layers, separator 60B layers). In the portion corresponding to the number, the Li / M ratio of the positive electrode active material of the positive electrode 50B is set to be more than 1.15 and less than 1.25 (particularly 1.18 or more and 1.22 or less). Then, as the outer layer portion 24B, the Li / M ratio of the positive electrode active material of the remaining positive electrode 50B layer is set to 1.0 or more and 1.15 or less (particularly 1.0 or more and 1.10 or less).
More specifically, for example, as the inner layer portion 22B, the positive portion of the positive electrode 50B layer in the central portion (that is, the inner peripheral portion) in the stacking direction of the stacked body and corresponding to 20% of the total number of layers. The Li / M ratio of the active material is set to 1.20. Then, as the outer layer portion 24B, the remaining portion, that is, the outer peripheral portion of the laminate, and the portion corresponding to 80% of the total number of layers, the Li / M ratio of the positive electrode active material of the positive electrode 50B layer To 1.05.

図5は、捲回電極体の内層部(内周部)および外層部(外周部)共に、Li/M比が1.05である正極活物質を用いたリチウムイオン二次電池(X)と、捲回電極体の内層部(内周部)および外層部(外周部)共に、Li/M比が1.20である正極活物質を用いたリチウムイオン二次電池(Y)について、意図的に過充電を起こさせた場合の、リチウムイオン二次電池の温度の経時変化について示すグラフである。図5に示されるように、電極体の内層部および外層部共にLi/M比が1.05である正極活物質を用いたリチウムイオン二次電池では、急激な温度上昇が見られるが、電極体の内層部および外層部共にLi/M比が1.20である正極活物質を用いたリチウムイオン二次電池では、温度上昇が抑制されている。   FIG. 5 shows a lithium ion secondary battery (X) using a positive electrode active material having a Li / M ratio of 1.05 for both the inner layer portion (inner peripheral portion) and outer layer portion (outer peripheral portion) of the wound electrode body. The lithium ion secondary battery (Y) using a positive electrode active material having a Li / M ratio of 1.20 for both the inner layer portion (inner peripheral portion) and the outer layer portion (outer peripheral portion) of the wound electrode body is intentionally 2 is a graph showing a change over time in the temperature of a lithium ion secondary battery when overcharge is caused in the battery. As shown in FIG. 5, in the lithium ion secondary battery using the positive electrode active material in which the Li / M ratio is 1.05 in both the inner layer portion and the outer layer portion of the electrode body, a rapid temperature rise is observed. In the lithium ion secondary battery using the positive electrode active material in which the Li / M ratio is 1.20 in both the inner layer portion and the outer layer portion of the body, the temperature rise is suppressed.

図6は、捲回電極体の内層部(内周部)の正極および外層部(外周部)の正極共にLi/M比が1.05である正極活物質を用いているリチウムイオン二次電池(A)と、捲回電極体の内層部(層数は、全層数の20%にあたる層数とした)の正極にLi/M比が1.15の正極活物質を用い、捲回電極体の外層部(層数は、全層数の80%にあたる層数とした)の正極にLi/M比が1.05の正極活物質を用いたリチウムイオン二次電池(B)と、捲回電極体の内層部(層数は、全層数の20%にあたる層数とした)の正極にLi/M比が1.20の正極活物質を用い、捲回電極体の外層部(層数は、全層数の80%にあたる層数とした)の正極にLi/M比が1.05の正極活物質を用いたリチウムイオン二次電池(C)について、意図的に過充電を起こさせた場合の、リチウムイオン二次電池の温度の経時変化について示すグラフである。図6に示されるように、電極体(積層体)の内層部の正極活物質のLi/M比を、電極体(積層体)の外層部の正極活物質のLi/M比よりも大きくしていくと、過充電時の温度上昇の抑制の程度が高くなることがわかる。   FIG. 6 shows a lithium ion secondary battery using a positive electrode active material having a Li / M ratio of 1.05 for both the positive electrode of the inner layer portion (inner peripheral portion) and the positive electrode of the outer layer portion (outer peripheral portion) of the wound electrode body. A positive electrode active material having a Li / M ratio of 1.15 is used for the positive electrode of (A) and the inner layer portion (the number of layers is 20% of the total number of layers) of the wound electrode body. A lithium ion secondary battery (B) using a positive electrode active material having a Li / M ratio of 1.05 for the positive electrode of the outer layer portion (the number of layers is 80% of the total number of layers); A positive electrode active material having a Li / M ratio of 1.20 was used for the positive electrode of the inner layer portion (the number of layers was 20% of the total number of layers) of the rotating electrode body, and the outer layer portion (layers) of the wound electrode body was The number is the number of layers corresponding to 80% of the total number of layers), and the lithium ion secondary battery (C) using a positive electrode active material having a Li / M ratio of 1.05 is used for the positive electrode. When the manner to cause overcharging is a graph showing the change with time of the temperature of the lithium ion secondary battery. As shown in FIG. 6, the Li / M ratio of the positive electrode active material in the inner layer portion of the electrode body (laminate) is made larger than the Li / M ratio of the positive electrode active material in the outer layer portion of the electrode body (laminate). It can be seen that the degree of suppression of temperature rise during overcharge increases.

図7は、捲回電極体の内層部(内周部)および外層部(外周部)共にLi/M比が1.05である正極活物質を用いているリチウムイオン二次電池(1)と、上記リチウムイオン二次電池(B)のように、捲回電極体の内層部の正極活物質のLi/M比を、捲回電極体の外層部の正極活物質のLi/M比よりも大きくしたリチウムイオン二次電池(2)と、捲回電極体の中心部に過充電時の温度上昇の抑制の程度が高くなるように熱容量の大きい部材を配置したリチウムイオン二次電池(3)について、低温かつ低充電時での出力を示すグラフである。グラフでは、捲回電極体の内層部および外層部共にLi/M比が1.05である正極活物質を用いているリチウムイオン二次電池(1)の低温かつ低充電時での出力を1として、他のリチウムイオン二次電池(2)および(3)の出力を相対比で示してある。なお、本発明者の検討によれば、用いる正極活物質のLi/M比が小さい方が、リチウムイオン二次電池の、低温かつ低充電時での出力は大きくなるという傾向がある。図7において、リチウムイオン二次電池(1)と(2)との比較より、電極体(積層体)の内層部の正極活物質のLi/M比を、電極体(積層体)の外層部の正極活物質のLi/M比よりも大きくしても、低温かつ低充電時での出力は大きく損なわれていないことがわかる。また、過充電時の温度上昇の抑制の程度が高くなるように、電極体の中心部に熱容量の大きい部材を配置する方法がある。しかしながら、リチウムイオン二次電池(2)と(3)との比較より、電極体(積層体)の内層部の正極活物質のLi/M比を、電極体(積層体)の外層部の正極活物質のLi/M比よりも大きくする方法によっても、過充電時の温度上昇の抑制を抑制することができ、さらに、電極体の中心部に過充電時の温度上昇の抑制の程度が高くなるように熱容量の大きい部材を配置する方法よりも、出力特性で上回ることがわかる。   FIG. 7 shows a lithium ion secondary battery (1) using a positive electrode active material having a Li / M ratio of 1.05 for both the inner layer portion (inner peripheral portion) and outer layer portion (outer peripheral portion) of the wound electrode body. As in the lithium ion secondary battery (B), the Li / M ratio of the positive electrode active material in the inner layer portion of the wound electrode body is set to be higher than the Li / M ratio of the positive electrode active material in the outer layer portion of the wound electrode body. A large lithium ion secondary battery (2) and a lithium ion secondary battery (3) in which a member having a large heat capacity is arranged at the center of the wound electrode body so as to increase the degree of suppression of temperature rise during overcharging. Is a graph showing the output at low temperature and low charge. In the graph, the output at low temperature and low charge of the lithium ion secondary battery (1) using the positive electrode active material in which the Li / M ratio is 1.05 in both the inner layer portion and the outer layer portion of the wound electrode body is 1 As shown, the outputs of the other lithium ion secondary batteries (2) and (3) are shown as relative ratios. According to the study by the present inventor, the smaller the Li / M ratio of the positive electrode active material used, the higher the output of the lithium ion secondary battery at low temperature and low charge. In FIG. 7, by comparing the lithium ion secondary batteries (1) and (2), the Li / M ratio of the positive electrode active material in the inner layer portion of the electrode body (laminated body) is determined as the outer layer portion of the electrode body (laminated body). It can be seen that even when the Li / M ratio of the positive electrode active material is made larger, the output at low temperature and low charge is not greatly impaired. In addition, there is a method in which a member having a large heat capacity is arranged at the center of the electrode body so that the degree of suppression of temperature rise during overcharging is increased. However, the comparison between the lithium ion secondary batteries (2) and (3) shows that the Li / M ratio of the positive electrode active material in the inner layer part of the electrode body (laminated body) is the positive electrode in the outer layer part of the electrode body (laminated body). Even by a method of making the ratio larger than the Li / M ratio of the active material, it is possible to suppress the temperature rise during overcharge, and the degree of suppression of the temperature rise during overcharge is high at the center of the electrode body. It can be seen that the output characteristics are superior to the method of disposing a member having a large heat capacity.

以上のように、本実施形態に係るリチウムイオン二次電池100では、過充電時の温度上昇の抑制効果の高いLi/M比の大きい正極活物質を、熱のこもり易い電極体(積層体)20A,20Bの内層部22A,22Bの正極50A,50Bに含有させており、また低温かつ低充電時での出力特性に優れるLi/M比の小さい正極活物質を電極体(積層体)20A,20Bの外層部24A,24Bの正極50A,50Bに含有させている。したがって、本実施形態に係るリチウムイオン二次電池100によれば、低温かつ低充電時における出力特性と過充電時の温度上昇抑制性能とがバランスよく高いリチウムイオン二次電池を提供することができる。   As described above, in the lithium ion secondary battery 100 according to the present embodiment, a positive electrode active material having a high Li / M ratio that has a high effect of suppressing a temperature rise during overcharge is easily deposited in an electrode body (laminated body). A positive electrode active material having a small Li / M ratio, which is included in the positive electrodes 50A and 50B of the inner layer portions 22A and 22B of 20A and 20B, and is excellent in output characteristics at low temperature and low charge, is formed into an electrode body (laminated body) 20A, The outer layers 24A and 24B of the 20B are included in the positive electrodes 50A and 50B. Therefore, according to the lithium ion secondary battery 100 according to the present embodiment, it is possible to provide a lithium ion secondary battery with high balance between output characteristics at low temperature and low charge and temperature rise suppression performance at overcharge. .

以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium ion secondary battery 100 configured as described above can be used for various applications. Suitable applications include driving power sources mounted on vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). The lithium ion secondary battery 100 can also be used in the form of a battery pack typically formed by connecting a plurality of lithium ion secondary batteries 100 in series and / or in parallel.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20A,20B 電極体
22A,22B 内層部
24A,24B 外層部
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50A,50B 正極シート(正極)
52A,52B 正極集電体
52Aa、52Ba 正極活物質層非形成部分
54A,54B 正極活物質層
60A,60B 負極シート(負極)
62A,62B 負極集電体
62Aa,62Ba 負極活物質層非形成部分
64A,64B 負極活物質層
70A,70B セパレータシート(セパレータ)
100 リチウムイオン二次電池
20A, 20B Electrode bodies 22A, 22B Inner layer portions 24A, 24B Outer layer portion 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plates 50A, 50B Positive electrode sheet (positive electrode)
52A, 52B Positive electrode current collectors 52Aa, 52Ba Positive electrode active material layer non-formed portions 54A, 54B Positive electrode active material layers 60A, 60B Negative electrode sheet (negative electrode)
62A, 62B Negative electrode current collectors 62Aa, 62Ba Negative electrode active material layer non-formed portions 64A, 64B Negative electrode active material layers 70A, 70B Separator sheets (separators)
100 Lithium ion secondary battery

Claims (1)

電極体として正極と負極とセパレータとが積層されている積層体と、
非水電解質と、
を備えるリチウムイオン二次電池であって、
前記正極は、正極活物質を含有する正極活物質層を備え、
前記正極活物質は、リチウム(Li)と、リチウム以外の金属元素(M)とを含有し、
前記積層体の内層部の前記正極の正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)が、前記積層体の外層部の前記正極の正極活物質に含まれるリチウム以外の金属元素に対するリチウム元素の比(Li/M)よりも大きいことを特徴とする、
リチウムイオン二次電池。
A laminate in which a positive electrode, a negative electrode, and a separator are laminated as an electrode body;
A non-aqueous electrolyte,
A lithium ion secondary battery comprising:
The positive electrode includes a positive electrode active material layer containing a positive electrode active material,
The positive electrode active material contains lithium (Li) and a metal element (M) other than lithium,
Lithium element ratio (Li / M) to metal elements other than lithium contained in the positive electrode active material of the positive electrode in the inner layer portion of the laminate is lithium contained in the positive electrode active material of the positive electrode in the outer layer portion of the laminate. It is characterized by being larger than the ratio of lithium element to other metal elements (Li / M),
Lithium ion secondary battery.
JP2017025843A 2017-02-15 2017-02-15 Lithium ion secondary battery Active JP6770687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017025843A JP6770687B2 (en) 2017-02-15 2017-02-15 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017025843A JP6770687B2 (en) 2017-02-15 2017-02-15 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018133190A true JP2018133190A (en) 2018-08-23
JP6770687B2 JP6770687B2 (en) 2020-10-21

Family

ID=63247539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025843A Active JP6770687B2 (en) 2017-02-15 2017-02-15 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6770687B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250898A (en) * 1998-03-03 1999-09-17 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2007213866A (en) * 2006-02-07 2007-08-23 Nissan Motor Co Ltd Battery active material and secondary battery
JP2011138729A (en) * 2010-01-04 2011-07-14 Hitachi Ltd Nonaqueous secondary battery
JP2015095329A (en) * 2013-11-11 2015-05-18 日産自動車株式会社 Lithium ion secondary battery
JP2016524795A (en) * 2013-07-31 2016-08-18 エルジー・ケム・リミテッド Electrode including different electrode material layers and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250898A (en) * 1998-03-03 1999-09-17 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2007213866A (en) * 2006-02-07 2007-08-23 Nissan Motor Co Ltd Battery active material and secondary battery
JP2011138729A (en) * 2010-01-04 2011-07-14 Hitachi Ltd Nonaqueous secondary battery
JP2016524795A (en) * 2013-07-31 2016-08-18 エルジー・ケム・リミテッド Electrode including different electrode material layers and lithium secondary battery
JP2015095329A (en) * 2013-11-11 2015-05-18 日産自動車株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP6770687B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
KR101671106B1 (en) Non aqueous electrolyte secondary battery
JP5994977B2 (en) Secondary battery
JP6479984B2 (en) Non-aqueous electrolyte battery and battery pack
JP2013201077A (en) Nonaqueous electrolytic secondary battery
KR101959127B1 (en) Lithium ion secondary battery
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP2019121542A (en) Nonaqueous electrolyte secondary battery and manufacturing method of nonaqueous electrolyte secondary battery
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
JP2013206724A (en) Nonaqueous electrolyte secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
US20180097234A1 (en) Lithium ion secondary battery
JP2020080255A (en) Non-aqueous electrolyte secondary battery
JP7311304B2 (en) power storage device
JP7071699B2 (en) Non-aqueous electrolyte secondary battery
JP6770687B2 (en) Lithium ion secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP6963731B2 (en) Lithium ion secondary battery
JP2017021989A (en) Nonaqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP2019036554A (en) Non-aqueous electrolyte secondary battery
JP2020080221A (en) Positive electrode of lithium ion secondary battery
JP2020174003A (en) Non-aqueous electrolyte secondary battery
JP2020077492A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R151 Written notification of patent or utility model registration

Ref document number: 6770687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151