JP2018132274A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2018132274A
JP2018132274A JP2017027896A JP2017027896A JP2018132274A JP 2018132274 A JP2018132274 A JP 2018132274A JP 2017027896 A JP2017027896 A JP 2017027896A JP 2017027896 A JP2017027896 A JP 2017027896A JP 2018132274 A JP2018132274 A JP 2018132274A
Authority
JP
Japan
Prior art keywords
water
air
path
mist nozzle
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027896A
Other languages
Japanese (ja)
Other versions
JP6887128B2 (en
Inventor
航太 木村
Kota Kimura
航太 木村
小川 修
Osamu Ogawa
修 小川
康之 桑木
Yasuyuki Kuwaki
康之 桑木
松井 大
Masaru Matsui
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017027896A priority Critical patent/JP6887128B2/en
Publication of JP2018132274A publication Critical patent/JP2018132274A/en
Application granted granted Critical
Publication of JP6887128B2 publication Critical patent/JP6887128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten evaporation time of jetted mist.SOLUTION: A cooling device includes: a binary fluid mist nozzle 6; a water path 8 in which water flows toward the binary fluid mist nozzle 6; an air path 7 in which compressed air having a higher temperature than that of the water flowing toward the binary fluid mist nozzle 6 flows; and a heat exchange section 2 for exchanging heat between the water flowing in the water path 8 and the compressed air having a higher temperature than that of the water and flowing in the air path 7. Thus, since heat exchange is performed between the compressed air having a higher temperature than that of the water and the water in the heat exchange section 2, a temperature of mist jetting out from the binary fluid mist nozzle 6 is raised, so as to shorten evaporation time of the jetting mist.SELECTED DRAWING: Figure 1

Description

本発明は、二流体ミストノズルを備えた冷却装置に関する。   The present invention relates to a cooling device including a two-fluid mist nozzle.

従来、この種の冷却装置は、水を空気によって微細化する二流体ミストノズルを用いてミストを発生させ、そのミストの気化熱冷却を利用して空間を冷却する。   Conventionally, this type of cooling device generates a mist using a two-fluid mist nozzle that refines water with air and cools the space by using vaporization heat cooling of the mist.

二流体ミストノズルとして、ノズルの内部で水を微細化する内部混合式(例えば特許文献1)と、ノズルの外部で水を微細化する外部混合式(例えば特許文献2)とが知られている。これらは何れも空気の噴流によって水を粉砕して微細化する。   As a two-fluid mist nozzle, an internal mixing type that refines water inside the nozzle (for example, Patent Document 1) and an external mixing type that refines water outside the nozzle (for example, Patent Document 2) are known. . All of them are pulverized by air jets to make them finer.

図3に、特許文献1に記載の内部混合式の二流体ミストノズルの概略を示す。図3に示すように、内部混合式の二流体ミストノズルは、水を供給する水供給経路101と、空気を供給する空気供給経路102と、水供給経路101から供給された水と空気供給経路102から供給された空気とを混合する気液混合部103と、気液混合部103で微細化された水と空気を噴出する噴霧孔104と、を備える。   FIG. 3 shows an outline of an internal mixing type two-fluid mist nozzle described in Patent Document 1. As shown in FIG. 3, the internal mixing type two-fluid mist nozzle includes a water supply path 101 for supplying water, an air supply path 102 for supplying air, and water and air supply paths supplied from the water supply path 101. The gas-liquid mixing part 103 which mixes the air supplied from 102, and the spray hole 104 which ejects the water refined | miniaturized by the gas-liquid mixing part 103 and air are provided.

図4に、特許文献2に記載の外部混合式の二流体ミストノズルの概略を示す。図4に示すように、外部混合式の二流体ミストノズルは、水を供給する水供給経路201と、空気を供給する空気供給経路202と、水供給経路201から供給された水を噴出する水噴出孔203と、空気供給経路202から供給された空気を噴出する空気噴出孔204と、ノズル外部に設けられおり噴出した水を噴出した空気で粉砕する気液混合部205と、を備える。   FIG. 4 shows an outline of an external mixing type two-fluid mist nozzle described in Patent Document 2. As shown in FIG. 4, the external mixing type two-fluid mist nozzle includes a water supply path 201 that supplies water, an air supply path 202 that supplies air, and water that ejects water supplied from the water supply path 201. An ejection hole 203, an air ejection hole 204 that ejects air supplied from the air supply path 202, and a gas-liquid mixing unit 205 that is provided outside the nozzle and pulverizes the ejected water with the ejected air.

また、二流体ミストノズルには、高圧の空気と水を供給する必要がある。そのために、例えば図5に示すように、コンプレッサとポンプを使用して高圧の空気と水を供給する。図5は、ミストを噴霧する二流体ミストノズル306と、二流体ミストノズル306に液体を供給するための液体供給経路305と、二流体ミストノズル306に空気を供給するための空気供給経路304と、高圧の液体を生成するための液体ポンプ303と、高圧の空気を生成するためのコンプレッサ302と、液体ポンプ303に液体を供給するための液体タンク301とから構成されている噴霧システムの例である。   Further, it is necessary to supply high-pressure air and water to the two-fluid mist nozzle. For this purpose, as shown in FIG. 5, for example, a compressor and a pump are used to supply high-pressure air and water. FIG. 5 shows a two-fluid mist nozzle 306 for spraying mist, a liquid supply path 305 for supplying liquid to the two-fluid mist nozzle 306, and an air supply path 304 for supplying air to the two-fluid mist nozzle 306. In the example of the spray system, which is composed of a liquid pump 303 for generating high-pressure liquid, a compressor 302 for generating high-pressure air, and a liquid tank 301 for supplying liquid to the liquid pump 303 is there.

特開2000−107651号公報JP 2000-107651 A 特開2001−137747号公報JP 2001-137747 A

しかしながら、上記の従来技術の場合、外部環境の空気の温度よりも低い温度の水が二流体ミストノズルに供給され、この水が噴霧孔から噴霧されるため、ミストが短時間で蒸発しないという課題がある。この場合、ミストが蒸発する前に路面に落下してしまう傾向にあり、よって、ミストによる気化熱冷却の効果が低くなってしまう。   However, in the case of the above-described conventional technology, water having a temperature lower than the temperature of the air in the external environment is supplied to the two-fluid mist nozzle, and this water is sprayed from the spray holes, so that the mist does not evaporate in a short time. There is. In this case, the mist tends to fall on the road surface before evaporating, and thus the effect of vaporization heat cooling by the mist is reduced.

本発明は、上記課題を解決するものであり、噴出したミストの蒸発時間が短い冷却装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a cooling device with a short evaporation time of ejected mist.

従来の課題を解決するために、本発明の冷却装置は、二流体ミストノズルと、前記二流体ミストノズルに向かう水が流れる水経路と、前記二流体ミストノズルに向かう前記水よりも高温な圧縮空気が流れる空気経路と、前記水経路を流れる水と前記空気経路を流れる高温な圧縮空気との間で熱交換を行う熱交換部と、を備える。   In order to solve the conventional problems, the cooling device of the present invention includes a two-fluid mist nozzle, a water path through which water flows toward the two-fluid mist nozzle, and a compression at a higher temperature than the water toward the two-fluid mist nozzle. An air path through which air flows, and a heat exchange unit that performs heat exchange between water flowing through the water path and high-temperature compressed air flowing through the air path.

本発明の構成によれば、熱交換部において、高温圧縮空気と水との間で熱交換が行われるので、二流体ミストノズルから噴出するミストの温度が上昇する。よって、噴出するミストの蒸発時間が短くなる。   According to the configuration of the present invention, since heat exchange is performed between the high-temperature compressed air and water in the heat exchange unit, the temperature of the mist ejected from the two-fluid mist nozzle rises. Therefore, the evaporation time of the ejected mist is shortened.

本発明によれば、ミストの蒸発時間が短くなり、路面に落下する前に完全に蒸発させることができる。よって、温度低下量を大きくすることができる。また、冷却効果をすばやく得ることができる。   According to the present invention, the evaporation time of mist is shortened and can be completely evaporated before falling on the road surface. Therefore, the amount of temperature decrease can be increased. Moreover, the cooling effect can be obtained quickly.

本実施の形態に係る冷却装置の構成例を示す図The figure which shows the structural example of the cooling device which concerns on this Embodiment 本実施の形態に係る湿り空気線図の例を示す図The figure which shows the example of the humid air line figure which concerns on this Embodiment 内部混合式の二流体ミストノズルの断面図Cross section of internal mixing type two-fluid mist nozzle 外部混合式の二流体ミストノズルの断面図Cross section of externally mixed two-fluid mist nozzle コンプレッサとポンプを使用して高圧の空気と水を供給する噴霧システムの図Illustration of a spray system that supplies high pressure air and water using a compressor and pump

第1の発明は、冷却装置が、二流体ミストノズルと、前記二流体ミストノズルに向かう水が流れる水経路と、前記二流体ミストノズルに向かう前記水よりも高温な圧縮空気が流れる空気経路と、前記水経路を流れる水と前記空気経路を流れる前記水よりも高温な圧縮空気との間で熱交換を行う熱交換部とを備えることにある。   In the first invention, the cooling device includes a two-fluid mist nozzle, a water path through which water flows toward the two-fluid mist nozzle, and an air path through which compressed air having a temperature higher than that of the water toward the two-fluid mist nozzle flows. And a heat exchanging unit that exchanges heat between water flowing through the water path and compressed air having a temperature higher than that of the water flowing through the air path.

これにより、熱交換部において、水よりも高温な圧縮空気とその水との間で熱交換が行われるので、二流体ミストノズルから噴出するミストの温度が上昇する。よって、噴出するミストの蒸発時間が短くなる。   Thereby, in a heat exchange part, since heat exchange is performed between the compressed air higher than water and the water, the temperature of the mist ejected from a two-fluid mist nozzle rises. Therefore, the evaporation time of the ejected mist is shortened.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明は限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

[構成]
図1は、実施の形態1に係る冷却装置の構成例を示す。
[Constitution]
FIG. 1 shows a configuration example of a cooling device according to the first embodiment.

冷却装置は、二流体ミストノズル6と、水経路8と、空気経路7と、熱交換部2と、コンプレッサ1と、ポンプ3と、第1のバルブ4と、第2のバルブ5、凝縮水回収部9とを備える。   The cooling device includes a two-fluid mist nozzle 6, a water path 8, an air path 7, a heat exchange unit 2, a compressor 1, a pump 3, a first valve 4, a second valve 5, and condensed water. And a collection unit 9.

ポンプ3は、水経路8の上流に設けられており、水経路8に高圧の水を供給する。なお、ポンプ3は、高圧の水を供給するための一例であり、他の方法によって高圧の水が供給されてもよい。水経路8は、最終的に、二流体ミストノズル6に接続されている。   The pump 3 is provided upstream of the water path 8 and supplies high-pressure water to the water path 8. The pump 3 is an example for supplying high-pressure water, and high-pressure water may be supplied by other methods. The water path 8 is finally connected to the two-fluid mist nozzle 6.

コンプレッサ1は、空気経路7の上流に設けられており、空気経路7に、上記の水経路8を流れる水よりも高温な圧縮された空気(以下「高温圧縮空気」という)を供給する。なお、コンプレッサ1は、高温圧縮空気を供給するための一例であり、他の方法によって高温圧縮空気が供給されてもよい。空気経路7は、最終的に、二流体ミストノズル6に接続されている。   The compressor 1 is provided upstream of the air path 7 and supplies the air path 7 with compressed air (hereinafter referred to as “hot compressed air”) that is hotter than the water flowing through the water path 8. The compressor 1 is an example for supplying high-temperature compressed air, and the high-temperature compressed air may be supplied by other methods. The air path 7 is finally connected to the two-fluid mist nozzle 6.

水経路8と空気経路7は、二流体ミストノズル6に到達する途中に、熱交換部2を通るように構成されている。熱交換部2は、水経路8を流れる水と空気経路7を流れる高温圧縮空気との間で熱交換を行うための機構である。   The water path 8 and the air path 7 are configured to pass through the heat exchange unit 2 in the middle of reaching the two-fluid mist nozzle 6. The heat exchanging unit 2 is a mechanism for exchanging heat between water flowing through the water path 8 and high-temperature compressed air flowing through the air path 7.

熱交換部2は、例えば、水経路8の管が空気経路7の管を覆うような二重管構造である。この場合、空気経路7の管を通る高温圧縮空気は、当該管を介して、水経路8の管を通る水と熱交換を行う。そこで、空気経路7の管の素材を、銅やアルミのような、熱伝導率が高いものとしてよい。これにより、効率的な熱交換を行うことができる。また、熱交換部2内において、空気経路7の管の外周面を、フィン等の伝熱面積を増やす構成としてもよい。これにより、さらに効率的な熱交換を行うことができる。   The heat exchanging unit 2 has, for example, a double pipe structure in which the pipe of the water path 8 covers the pipe of the air path 7. In this case, the hot compressed air passing through the pipe of the air path 7 exchanges heat with the water passing through the pipe of the water path 8 through the pipe. Therefore, the material of the tube of the air path 7 may be a material having high thermal conductivity such as copper or aluminum. Thereby, efficient heat exchange can be performed. Moreover, it is good also as a structure which increases the heat transfer area, such as a fin, in the outer peripheral surface of the pipe | tube of the air path 7 in the heat exchange part 2. FIG. Thereby, more efficient heat exchange can be performed.

また、熱交換部2がコンプレッサ1の圧縮機構を冷却できる構成としてもよい。これにより、体積効率が改善され、コンプレッサ1の吐出し流量を増加させることができ、消費電力を低減させることができる。   Further, the heat exchanging unit 2 may be configured to cool the compression mechanism of the compressor 1. Thereby, volumetric efficiency is improved, the discharge flow rate of the compressor 1 can be increased, and power consumption can be reduced.

第1のバルブ4は、空気経路7上の、熱交換部2と二流体ミストノズル6との間に設けられている。第1のバルブ4を調整することにより、空気経路7を流れる空気量を調整することができる。   The first valve 4 is provided between the heat exchange unit 2 and the two-fluid mist nozzle 6 on the air path 7. By adjusting the first valve 4, the amount of air flowing through the air path 7 can be adjusted.

第2のバルブ5は、水経路8上の、熱交換部2とポンプ3との間に設けられている。第2のバルブ5を調整することにより、水経路8を流れる水量を調整することができる。   The second valve 5 is provided between the heat exchange unit 2 and the pump 3 on the water path 8. By adjusting the second valve 5, the amount of water flowing through the water path 8 can be adjusted.

第1及び第2のバルブ4、5を調整することにより、各経路において比較的高密度で流体を流すことができ、よって、流速を低下させて管路圧損を低減させることができる。なお、第1及び第2のバルブ4、5は、設けられなくてもよい。   By adjusting the first and second valves 4 and 5, fluid can be flowed at a relatively high density in each path, so that the flow velocity can be reduced and the pipe pressure loss can be reduced. Note that the first and second valves 4 and 5 may not be provided.

凝縮水回収部9は、空気経路7上の、熱交換部と二流体ミストとの間に設けられている。凝縮水回収部9は、熱交換部2で冷却され空気が凝縮水を発生させた場合に、それを回収し、二流体ミストノズル6への凝縮水の浸入を防ぐ。凝縮水回収部9は、例えば、圧力タンクやサイクロンセパレータ等である。なお、凝縮水回収部9は設けられなくてもよい。   The condensed water recovery unit 9 is provided on the air path 7 between the heat exchange unit and the two-fluid mist. When the condensed water recovery unit 9 is cooled by the heat exchange unit 2 and the air generates condensed water, the condensed water recovery unit 9 recovers the condensed water and prevents the condensed fluid from entering the two-fluid mist nozzle 6. The condensed water collection | recovery part 9 is a pressure tank, a cyclone separator, etc., for example. In addition, the condensed water collection | recovery part 9 does not need to be provided.

[動作]
次に、以上のように構成された冷却装置の動作及び作用を、図1及び図2を参照しながら説明する。
[Operation]
Next, the operation and action of the cooling device configured as described above will be described with reference to FIGS. 1 and 2.

コンプレッサ1は、空気を昇圧して、空気経路7に高温圧縮空気を供給する。ポンプ3は、水経路8に高圧の水を供給する。   The compressor 1 pressurizes air and supplies high-temperature compressed air to the air path 7. The pump 3 supplies high-pressure water to the water path 8.

熱交換部2において、空気経路7を流れる高温圧縮空気と水経路8を流れる水とが熱交換を行う。これにより、高温圧縮空気の温度は低くなり、水の温度は高くなる。このように熱交換が行われた空気と水は、二流体ミストノズル6に供給される。   In the heat exchange unit 2, the high-temperature compressed air flowing through the air path 7 and the water flowing through the water path 8 exchange heat. Thereby, the temperature of hot compressed air becomes low and the temperature of water becomes high. The air and water subjected to heat exchange in this way are supplied to the two-fluid mist nozzle 6.

二流体ミストノズル6が、図3のような内部混合式である場合、内部の気液混合部103において、供給された水を、供給された圧縮空気の噴流によって粉砕して微細化する。そして、微細化した水を、圧縮空気と共に噴霧孔104から噴霧する。   When the two-fluid mist nozzle 6 is an internal mixing type as shown in FIG. 3, the supplied water is pulverized and refined by the jet of the supplied compressed air in the gas-liquid mixing unit 103 inside. Then, the refined water is sprayed from the spray hole 104 together with the compressed air.

ここで、気液混合部103内でも、水と圧縮空気との間で熱交換が行われる。しかし、水と圧縮空気とは混合して噴霧孔l04まで流れるため、水と圧縮空気との間の相対速度差は小さい。よって、このときの熱伝達率は小さい。さらに、気液混合部103内で水と圧縮空気が混合してから噴霧孔104に到達するまでの距離は極めて短いため、水と圧縮空気とが熱交換を行う時間も極めて短い。したがって、二流体ミストノズル6内で行われる水と圧縮空気との間の熱交換は、ほとんど影響を及ぼさない。   Here, also in the gas-liquid mixing part 103, heat exchange is performed between water and compressed air. However, since water and compressed air are mixed and flow to the spray hole 104, the relative speed difference between water and compressed air is small. Therefore, the heat transfer coefficient at this time is small. Furthermore, since the distance from mixing of water and compressed air in the gas-liquid mixing unit 103 to reaching the spray hole 104 is extremely short, the time for heat exchange between water and compressed air is also extremely short. Therefore, the heat exchange between the water and the compressed air performed in the two-fluid mist nozzle 6 has little influence.

また、二流体ミストノズル6が、図4のような外部混合式である場合、水と圧縮空気とを別々の経路で噴出するため、水と空気との間で熱交換がほとんど行われない。すなわち、本実施の形態に係る二流体ミストノズル6が内部混合式又は外部混合式の何れであっても、二流体ミストノズル6の内部における水と圧縮空気との間の熱交換は、熱交換部2における熱交換に対してほとんど影響を及ぼさない。   Further, when the two-fluid mist nozzle 6 is an external mixing type as shown in FIG. 4, since water and compressed air are ejected through separate paths, heat exchange is hardly performed between water and air. That is, regardless of whether the two-fluid mist nozzle 6 according to the present embodiment is an internal mixing type or an external mixing type, the heat exchange between water and compressed air inside the two-fluid mist nozzle 6 is a heat exchange. It has little influence on the heat exchange in part 2.

次に、図2の湿り空気線図の例を参照しながら、本実施の形態に係る冷却装置の動作をさらに説明する。   Next, the operation of the cooling device according to the present embodiment will be further described with reference to the example of the wet air diagram of FIG.

図2において、点25は、二流体ミストノズル6から噴出された空気が混合される前の外部空気(以下「混合前空気」という)の状態を示す。   In FIG. 2, a point 25 indicates a state of external air (hereinafter referred to as “pre-mixing air”) before the air ejected from the two-fluid mist nozzle 6 is mixed.

点23は、混合前空気に、従来技術に係る二流体ミストノズル6から噴出された空気が混合された後の空気の状態を示す。   Point 23 shows the state of the air after the air ejected from the two-fluid mist nozzle 6 according to the prior art is mixed with the air before mixing.

点21は、混合前空気に、本実施の形態に係る二流体ミストノズル6から噴出された空気が混合された後の空気の状態を示す。   The point 21 shows the state of the air after the air jetted from the two-fluid mist nozzle 6 according to the present embodiment is mixed with the pre-mixing air.

本実施の形態に係る点21は、従来技術に係る点23よりも、乾球温度が低くなっている。なぜなら、本実施の形態では、二流体ミストノズル6から噴出される圧縮空気の熱量が、熱交換部2において水に奪われているからである。   The point 21 according to this embodiment has a lower dry bulb temperature than the point 23 according to the prior art. This is because in the present embodiment, the heat quantity of the compressed air ejected from the two-fluid mist nozzle 6 is taken away by water in the heat exchange unit 2.

点21及び点23が示す混合空気にミストが噴出されて当該ミストが蒸発すると、点21及び点23の状態は、それぞれ、エンタルピー線26及び27上を飽和水蒸気線Hに近づく方向に変化し、最終的に、エンタルピー線26、27と飽和水蒸気線Hとの交点の状態22、24となる。   When mist is ejected to the mixed air indicated by the points 21 and 23 and the mist evaporates, the states of the points 21 and 23 change in a direction approaching the saturated water vapor line H on the enthalpy lines 26 and 27, respectively. Eventually, the states 22 and 24 of the intersections between the enthalpy lines 26 and 27 and the saturated water vapor line H are obtained.

図2に示すように、本実施の形態に係るミスト蒸発後の混合空気の状態22における乾球温度Tは、従来技術に係るミスト蒸発後の混合空気の状態24における乾球温度T’よりも低くなる。このように、本実施の形態によれば、混合前空気の温度を基準とした場合の、ミストの気化熱冷却による冷却量を増加させることができる。   As shown in FIG. 2, the dry bulb temperature T in the mixed air state 22 after mist evaporation according to the present embodiment is higher than the dry bulb temperature T ′ in the mixed air state 24 after mist evaporation according to the prior art. Lower. Thus, according to the present embodiment, it is possible to increase the amount of cooling by evaporative cooling of the mist when the temperature of the pre-mixing air is used as a reference.

また、ノズルから噴出されたミストは、熱交換部2において高温圧縮空気から熱を受け取って混合前空気よりも高い温度となっているため、蒸発しやすい状態となっている。   Moreover, since the mist ejected from the nozzle receives heat from the high-temperature compressed air in the heat exchanging unit 2 and has a higher temperature than the pre-mixing air, it is in a state of being easily evaporated.

したがって、二流体ミストノズル6から噴出されたミストが蒸発するまでの時間が短くなり、ミストが路面に落下し終える前に蒸発するようになり、冷却効果が増大する。   Therefore, the time until the mist ejected from the two-fluid mist nozzle 6 evaporates is shortened, evaporates before the mist finishes falling on the road surface, and the cooling effect increases.

例えば、夏場において、混合前空気の乾球温度が35度、ポンプ3が供給する水の温度が25度の場合、次のように動作する。   For example, in summer, when the dry bulb temperature of the pre-mixing air is 35 degrees and the temperature of the water supplied by the pump 3 is 25 degrees, the operation is as follows.

ポンプ3から供給される水は25度であるが、熱交換部において高温圧縮空気から熱量を奪い、混合前空気の乾球温度35度よりも高い水温となる。すなわち、二流体ミストノズル6には、35度よりも高い温度の水が供給される。したがって、二流体ミストノズル6から噴出されるミストは、短時間で蒸発する。よって、ミストが蒸発せずに路面に落下する傾向にある従来技術と比較して、本実施の形態では、ミストの気化熱冷却による温度低下量が増加する。   Although the water supplied from the pump 3 is 25 degrees, the heat exchange part takes heat from the high-temperature compressed air, resulting in a water temperature higher than the dry bulb temperature of the pre-mixing air of 35 degrees. That is, water having a temperature higher than 35 degrees is supplied to the two-fluid mist nozzle 6. Therefore, the mist ejected from the two-fluid mist nozzle 6 evaporates in a short time. Therefore, compared with the prior art in which mist tends to fall on the road surface without evaporating, in this embodiment, the amount of temperature decrease due to vaporization heat cooling of the mist increases.

コンプレッサ1から供給される高温圧縮空気は100度を越えているが、熱交換部2において水に熱量を奪われて40度以下となる。すなわち、二流体ミストノズル6には、40度以下の圧縮空気が供給される。したがって、二流体ミストノズル6から噴出される圧縮空気は、混合前空気の乾球温度をほとんど上昇させない。よって、高温な圧縮空気を噴出する従来技術と比較して、本実施の形態における温度低下量はさらに増加する。   Although the high temperature compressed air supplied from the compressor 1 exceeds 100 degrees, the amount of heat is deprived by the water in the heat exchanging section 2 and becomes 40 degrees or less. In other words, the two-fluid mist nozzle 6 is supplied with compressed air of 40 degrees or less. Therefore, the compressed air ejected from the two-fluid mist nozzle 6 hardly raises the dry bulb temperature of the air before mixing. Therefore, compared with the prior art which ejects hot compressed air, the amount of temperature drop in the present embodiment further increases.

以上、本発明の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明は、霧を屋外空間に噴き出して屋外空間を冷却する冷却装置に用いるのに好適である。   The present invention is suitable for use in a cooling device that cools an outdoor space by spraying fog into the outdoor space.

1 コンプレッサ
2 熱交換部
3 ポンプ
4 第1のバルブ
5 第2のバルブ
6 二流体ミストノズル
7 空気経路
8 水経路
9 凝縮水回収装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchange part 3 Pump 4 1st valve 5 2nd valve 6 Two-fluid mist nozzle 7 Air path 8 Water path 9 Condensate recovery apparatus

Claims (3)

二流体ミストノズルと、
前記二流体ミストノズルに向かう水が流れる水経路と、
前記二流体ミストノズルに向かう、前記水よりも高温な圧縮空気が流れる空気経路と、
前記水経路を流れる水と前記空気経路を流れる前記水よりも高温な圧縮空気との間で熱交換を行う熱交換部と、を備える、
冷却装置。
A two-fluid mist nozzle,
A water path through which water flows toward the two-fluid mist nozzle;
An air path through which compressed air higher in temperature than the water flows toward the two-fluid mist nozzle;
A heat exchange unit that exchanges heat between water flowing through the water path and compressed air having a temperature higher than that of the water flowing through the air path,
Cooling system.
前記水よりも高温な圧縮空気は、コンプレッサによって供給される、
請求項1に記載の冷却装置。
Compressed air that is hotter than the water is supplied by a compressor,
The cooling device according to claim 1.
前記空気経路に流れる空気量を調節する第1のバルブと、
前記水経路に流れる水量を調節する第2のバルブと、をさらに備える、
請求項1又は2に記載の冷却装置。
A first valve for adjusting an amount of air flowing through the air path;
A second valve for adjusting the amount of water flowing in the water path,
The cooling device according to claim 1 or 2.
JP2017027896A 2017-02-17 2017-02-17 Cooling system Active JP6887128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027896A JP6887128B2 (en) 2017-02-17 2017-02-17 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027896A JP6887128B2 (en) 2017-02-17 2017-02-17 Cooling system

Publications (2)

Publication Number Publication Date
JP2018132274A true JP2018132274A (en) 2018-08-23
JP6887128B2 JP6887128B2 (en) 2021-06-16

Family

ID=63249570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027896A Active JP6887128B2 (en) 2017-02-17 2017-02-17 Cooling system

Country Status (1)

Country Link
JP (1) JP6887128B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147718U (en) * 1989-05-17 1990-12-14
JPH10205799A (en) * 1997-01-17 1998-08-04 Kubota Corp Ventilating mechanism of heat treatment equipment
US20030111746A1 (en) * 2001-12-13 2003-06-19 Tommy Stutts Portable, evaporative cooling unit having a self-contained water supply
JP2013195015A (en) * 2012-03-21 2013-09-30 Kyb Co Ltd Mist device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147718U (en) * 1989-05-17 1990-12-14
JPH10205799A (en) * 1997-01-17 1998-08-04 Kubota Corp Ventilating mechanism of heat treatment equipment
US20030111746A1 (en) * 2001-12-13 2003-06-19 Tommy Stutts Portable, evaporative cooling unit having a self-contained water supply
JP2013195015A (en) * 2012-03-21 2013-09-30 Kyb Co Ltd Mist device

Also Published As

Publication number Publication date
JP6887128B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US6571569B1 (en) Method and apparatus for high heat flux heat transfer
US7654100B2 (en) Method and apparatus for high heat flux heat transfer
JP6031684B2 (en) Ejector and heat pump device using the same
JP2006275433A (en) Absorption type small cooling and refrigerating device
JP2009047169A (en) Apparatus and method for evaporation cooling of pressurized intake of gas turbine engine
CN108224604A (en) Electrical box cooling system and method and air conditioner
CN102032825A (en) Heat exchange tube for evaporator and evaporator formed by same
CN107894114A (en) A kind of electronic device flash boiling spray circulating cooling system with self-optimizing characteristic
US9540962B2 (en) Power plant air cooled heat exchanger or condenser with pressurized gas entrained cooling liquid mister
CN106848478A (en) For the cooling system and its cooling means of battery
JP2009058181A (en) Absorption type refrigerating apparatus
JP2001221015A (en) Mixed medium power generation system
JP2018132274A (en) Cooling device
CN104266408B (en) A kind of heat pump heat exchanger and apply the heat pump of this heat exchanger
CN106500382B (en) Ejector and heat pump device
JP2016023925A (en) Evaporation air conditioning system
CN207962966U (en) Electrical apparatus box cooling system and air conditioner
CN206556466U (en) The spray humidification cooling device of air cooler
KR20160054652A (en) Hybrid system of steam jet vacuum cooling unit
CN204404594U (en) Water-steam combination sprays vacuum refrigerator
CN204063683U (en) A kind of heat pump heat exchanger and apply the heat pump of this heat exchanger
JP4805100B2 (en) Air compressor cooling system
TWI390166B (en) Digital droplet evaporation cooling method and device thereof
CN101639305A (en) Condenser
KR101559538B1 (en) An absorber for kalina cycle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210427

R151 Written notification of patent or utility model registration

Ref document number: 6887128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151