JP2018132209A - Dissolved gas-containing ice maker - Google Patents

Dissolved gas-containing ice maker Download PDF

Info

Publication number
JP2018132209A
JP2018132209A JP2017024155A JP2017024155A JP2018132209A JP 2018132209 A JP2018132209 A JP 2018132209A JP 2017024155 A JP2017024155 A JP 2017024155A JP 2017024155 A JP2017024155 A JP 2017024155A JP 2018132209 A JP2018132209 A JP 2018132209A
Authority
JP
Japan
Prior art keywords
ice making
gas
ice
dissolved gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017024155A
Other languages
Japanese (ja)
Inventor
足立 昌弘
Masahiro Adachi
昌弘 足立
平野 悟
Satoru Hirano
悟 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2017024155A priority Critical patent/JP2018132209A/en
Publication of JP2018132209A publication Critical patent/JP2018132209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase concentration of dissolved gas in dissolved gas-containing ices, in a dissolved gas-containing ice maker.SOLUTION: A dissolved gas-containing ice maker includes: a dissolved gas-containing water supply unit configured to cause a fine bubble generator to bubble predetermined gas to raw water to generate dissolved gas-containing water, and then supply dissolved gas-containing water; and an ice-making machine having a plurality of ice-making plates, and configured to freeze the dissolved gas-containing water with heat exchange between dissolved gas-containing water flowing to the outside of each ice-making plate and refrigerant flowing to the inside of each ice-making plate. The refrigerant flows into the ice-making plates in a liquid-phase state, part of the refrigerant is evaporated inside the ice-making plates, and thereby the refrigerant flows out from the ice-making plates in a gas-liquid mixed state.SELECTED DRAWING: Figure 1

Description

本発明は、所定のガスを溶存させた水を凍結させて溶存ガス含有氷を製造する装置に関し、詳しくは、所定のガスを高濃度で含む溶存ガス含有氷を製造する装置に関する。   The present invention relates to an apparatus for producing dissolved gas-containing ice by freezing water in which a predetermined gas is dissolved. Specifically, the present invention relates to an apparatus for producing dissolved gas-containing ice containing a predetermined gas at a high concentration.

従来において、溶存ガス含有氷を製造する技術としては、水素を含有する氷を製造する技術や、窒素を含有する氷を製造する技術(例えば下記特許文献1)やオゾンを含有する氷を製造する技術(例えば下記特許文献2)が知られている。各種の従来の技術では、所定のガスを原水にバブリングして溶存ガス含有水を生成し、当該溶存ガス含有水を製氷板の表面で凍らせることによって、溶存ガス含有氷を製造している。製氷板の冷却において、製氷板の内部に形成される冷媒通路に液相の冷媒を供給して製氷板との熱交換により気相となった冷媒を回収する冷却態様や、冷媒通路に液相の冷媒を供給して製氷板との熱交換により昇温した液相の冷媒を回収する冷却態様が採用されている。このような冷却態様であれば、製氷板と熱交換した後の単一相(気相又は液相)の冷媒を所定の温度の液相の冷媒に戻せばよいために、冷却媒体を循環させる機構が簡素化できる。   Conventionally, as technology for producing ice containing dissolved gas, technology for producing ice containing hydrogen, technology for producing ice containing nitrogen (for example, Patent Document 1 below), and ice containing ozone are produced. A technique (for example, Patent Document 2 below) is known. In various conventional technologies, dissolved gas-containing ice is produced by bubbling a predetermined gas to raw water to generate dissolved gas-containing water, and freezing the dissolved gas-containing water on the surface of an ice making plate. In cooling an ice making plate, a cooling mode in which a liquid phase refrigerant is supplied to a refrigerant passage formed inside the ice making plate and the refrigerant that has become a gas phase by heat exchange with the ice making plate is recovered, or a liquid phase is provided in the refrigerant passage. A cooling mode is adopted in which a liquid phase refrigerant whose temperature has been raised by heat exchange with the ice making plate is recovered. In such a cooling mode, the cooling medium is circulated in order to return the single-phase (gas phase or liquid phase) refrigerant after heat exchange with the ice making plate to the liquid refrigerant at a predetermined temperature. The mechanism can be simplified.

特開2012−163312号公報JP 2012-163212 A 特開2007−170714号公報JP 2007-170714 A

従来の溶存ガス含有氷の製造において、冷媒の循環を簡素な構成で実現できるものの、製氷板と冷媒との熱交換の効率が低いために製氷速度が遅くなり、その結果、溶存させたガスが製氷過程で抜け出し易くなっており、溶存ガス含有氷に含有するガスの濃度に関して更なる改良の余地があった。   In the production of conventional dissolved gas-containing ice, although the circulation of the refrigerant can be realized with a simple configuration, the efficiency of heat exchange between the ice making plate and the refrigerant is low, so the ice making speed is slowed. It was easy to escape during the ice making process, and there was room for further improvement regarding the concentration of gas contained in the dissolved gas-containing ice.

そこで、本発明においては、高い濃度で所望のガスを含有する溶存ガス含有氷を製造できる装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an apparatus capable of producing dissolved gas-containing ice containing a desired gas at a high concentration.

上記の課題を解決するために、本発明に係る溶存ガス含有氷製造装置は、
所定のガスをファインバブル発生器により原水にバブリングして溶存ガス含有水を生成し、当該溶存ガス含有水を供給する溶存ガス含有水供給部と、
複数の製氷板を有し、当該各製氷板の外側に流される前記溶存ガス含有水と当該各製氷板の内側に流される冷媒との熱交換により、前記溶存ガス含有水を凍結させる製氷機と、
を備える溶存ガス含有氷製造装置であって、
前記冷媒は、前記製氷板に液相の状態で流入し、当該製氷板の内部において一部が気化することで当該製氷板から気液混合状態で流出する、
ことを特徴としている。
In order to solve the above problems, the dissolved gas-containing ice production apparatus according to the present invention is:
A predetermined gas is bubbled into raw water by a fine bubble generator to generate dissolved gas-containing water, and a dissolved gas-containing water supply unit that supplies the dissolved gas-containing water;
An ice making machine having a plurality of ice making plates and freezing the dissolved gas containing water by heat exchange between the dissolved gas containing water flowing outside the ice making plates and a refrigerant flowing inside the ice making plates; ,
A dissolved gas-containing ice production apparatus comprising:
The refrigerant flows into the ice making plate in a liquid state, and partly evaporates inside the ice making plate to flow out from the ice making plate in a gas-liquid mixed state.
It is characterized by that.

本発明に係る溶存ガス含有氷製造装置であれば、冷媒の一部のみが製氷板との熱交換により気化するように構成されているために、製氷板の内部における冷媒の進行経路上のいずれの場所においても、液相の冷媒と接触できると共に冷媒の気化が発生することとなり、製氷板と冷媒との熱交換を効率よく行うことができる。これによって、従来のように冷媒の全部が製氷板との熱交換で気化する場合や冷媒が製氷板との熱交換では気化しない場合に比べて高速で製氷でき、その結果、製氷過程で所定のガスが抜け出すことを抑制できる。したがって、所定のガスを高い濃度で含む溶存ガス含有氷を高い生産効率で製造できることとなる。   In the dissolved gas-containing ice production device according to the present invention, since only a part of the refrigerant is configured to be vaporized by heat exchange with the ice making plate, any of the refrigerant on the path of the refrigerant inside the ice making plate can be obtained. Even in this place, the liquid phase refrigerant can be contacted and vaporization of the refrigerant occurs, so that the heat exchange between the ice making plate and the refrigerant can be performed efficiently. As a result, ice can be made at a higher speed compared to the case where all of the refrigerant is vaporized by heat exchange with the ice making plate as in the conventional case or when the refrigerant is not vaporized by heat exchange with the ice making plate. The escape of gas can be suppressed. Therefore, dissolved gas-containing ice containing a predetermined gas at a high concentration can be manufactured with high production efficiency.

実施形態1に係るハーベスト型製氷装置の構造を模式的に表す概念図The conceptual diagram which represents typically the structure of the harvest type ice making apparatus which concerns on Embodiment 1. FIG. ハーベスト型製氷装置の構造の他の一例を模式的に表す概念図Conceptual diagram schematically showing another example of the structure of the harvest type ice making device 実施形態2に係るハーベスト型製氷装置の構造を模式的に表す概念図The conceptual diagram which represents typically the structure of the harvest type ice making apparatus which concerns on Embodiment 2. FIG.

本発明に係る溶存ガス含有氷製造装置について説明する。なお、溶存ガス含有氷製造装置の概念的な構成について説明した後に、具体的な構成について説明する。   The dissolved gas-containing ice manufacturing apparatus according to the present invention will be described. In addition, after demonstrating the conceptual structure of the dissolved gas containing ice manufacturing apparatus, a specific structure is demonstrated.

本発明に係る溶存ガス含有氷製造装置は、
所定のガスをファインバブル発生器により原水にバブリングして溶存ガス含有水を生成し、当該溶存ガス含有水を供給する溶存ガス含有水供給部と、
複数の製氷板を有し、当該各製氷板の外側に流される前記溶存ガス含有水と当該各製氷板の内側に流される冷媒との熱交換により、前記溶存ガス含有水を凍結させる製氷機と、
を備える溶存ガス含有氷製造装置であって、
前記冷媒は、前記製氷板に液相の状態で流入し、当該製氷板の内部において一部が気化することで当該製氷板から気液混合状態で流出する、
ことであることを特徴(以下において「特徴構成A」と称す)としている。
The dissolved gas-containing ice production apparatus according to the present invention is
A predetermined gas is bubbled into raw water by a fine bubble generator to generate dissolved gas-containing water, and a dissolved gas-containing water supply unit that supplies the dissolved gas-containing water;
An ice making machine having a plurality of ice making plates and freezing the dissolved gas containing water by heat exchange between the dissolved gas containing water flowing outside the ice making plates and a refrigerant flowing inside the ice making plates; ,
A dissolved gas-containing ice production apparatus comprising:
The refrigerant flows into the ice making plate in a liquid state, and partly evaporates inside the ice making plate to flow out from the ice making plate in a gas-liquid mixed state.
This is a feature (hereinafter referred to as “feature configuration A”).

上記において、「所定のガス」としては、特定の機能を有するガス、例えば、活性酸素の働きを抑制する作用を有する水素、生命を維持する作用を有する酸素、抗菌作用を有するオゾン、酸化を抑制する作用を有する窒素が挙げられる。   In the above, “predetermined gas” refers to a gas having a specific function, for example, hydrogen having an action of suppressing the action of active oxygen, oxygen having an action of maintaining life, ozone having an antibacterial action, and suppressing oxidation. Nitrogen having the action of

また、「ファインバブル発生器」とは、球相当直径が100μm以下の気泡を生成する機器である。なお、「ファインバブル」には、球相当直径が1〜100μmの気泡である「マイクロバブル」や球相当直径が1μm以下の気泡である「ウルトラファインバブル」を含意する。また、水に所定のガスを溶存させて溶存ガス含有水を生成する方法としては、マイクロナノバブル製法等の公知のいかなる技術を採用してもよい。   The “fine bubble generator” is a device that generates bubbles having a sphere equivalent diameter of 100 μm or less. “Fine bubble” implies “micro bubble” which is a bubble having a sphere equivalent diameter of 1 to 100 μm and “ultra fine bubble” which is a bubble having a sphere equivalent diameter of 1 μm or less. In addition, as a method for generating a dissolved gas-containing water by dissolving a predetermined gas in water, any known technique such as a micro-nano bubble manufacturing method may be employed.

また、上記において、「原水」とは、水を主成分とする液体を意味し、「原水」としては、単なる水に限らず、水に所定の物質が溶解していたり混合していたりしているものも含意する。   In the above, “raw water” means a liquid mainly composed of water, and “raw water” is not limited to mere water, and a predetermined substance is dissolved or mixed in water. Implications are also implied.

上記の特徴構成Aを有する溶存ガス含有氷製造装置であれば、冷媒の一部のみが製氷板との熱交換により気化するように構成されているために、冷媒の進行経路上のいずれの場所においても、製氷板と液相の冷媒とが接触できて冷媒の気化が発生することとなり、従来のように冷媒の全部が製氷板との熱交換で気化する場合や冷媒が製氷板との熱交換では気化しない場合に比べて、製氷板と冷媒との熱交換を効率よく行うことができる。これによって、製氷に要する時間を短縮でき、その結果、製氷過程で溶存ガスが抜け出すことを抑制できる。したがって、最大溶存濃度に近い高濃度を維持した溶存ガス含有氷を高い生産効率で製造できることとなる。   In the dissolved gas-containing ice production apparatus having the above-described characteristic configuration A, since only part of the refrigerant is configured to be vaporized by heat exchange with the ice making plate, any location on the refrigerant travel path In this case, the ice making plate and the liquid phase refrigerant can come into contact with each other, and the vaporization of the refrigerant occurs, and when the entire refrigerant evaporates due to heat exchange with the ice making plate as in the past, or when the refrigerant heats up with the ice making plate. Heat exchange between the ice making plate and the refrigerant can be performed more efficiently than in the case where vaporization is not performed in the exchange. Thereby, the time required for ice making can be shortened, and as a result, it is possible to suppress the escape of dissolved gas during the ice making process. Therefore, dissolved gas-containing ice that maintains a high concentration close to the maximum dissolved concentration can be produced with high production efficiency.

また、原水に所定のガスを溶存させるに際してファインバブル発生器によるバブリング法を適用しているために、溶存ガス含有氷に、原水に溶存する水素ガスに加えて、所定のガスのファインバブルを閉じ込めることもできる。更に、従来のように冷媒を循環させる場合に比べて、製氷に要する時間を短縮できるために、製氷過程で抜け出すファインバブルの量も抑制でき、所定のガスをファインバブルの状態でも多量に含む溶存ガス含有氷を製造できることとなる。特に、ウルトラファインバブルによるバブリング法を適用すれば、ウルトラファインバブルには、ほとんど浮上せず、水中に比較的長時間、安定して存在する性質があるため、さらに多量のバブルを含ませることができる。   In addition, since a bubbling method using a fine bubble generator is applied when dissolving a predetermined gas in the raw water, the fine bubbles of the predetermined gas are confined in the dissolved gas-containing ice in addition to the hydrogen gas dissolved in the raw water. You can also. Furthermore, since the time required for ice making can be shortened compared to the case where the refrigerant is circulated as in the conventional case, the amount of fine bubbles that escape during the ice making process can be suppressed, and a predetermined gas can be dissolved in a large amount even in the fine bubble state. Gas-containing ice can be produced. In particular, if the bubbling method using ultra fine bubbles is applied, ultra fine bubbles have the property that they hardly float and exist stably in water for a relatively long time. it can.

また、上述のように、冷媒の進行経路上のいずれの場所においても、製氷板と液相の冷媒とが接触できて冷媒の気化が発生することとなるために、従来のように冷媒を循環させる場合に比べて、製氷板における温度分布の均一性を向上させることもできる。これによって、製氷板の全面における製氷速度の均一性が向上し、溶存ガス含有氷における所定のガスの濃度の均一性が向上することともなる。   In addition, as described above, the ice-making plate and the liquid-phase refrigerant can come into contact with each other at any location on the refrigerant travel path, and the refrigerant is vaporized. Compared with the case of making it, the uniformity of the temperature distribution in an ice-making board can also be improved. As a result, the uniformity of the ice making speed on the entire surface of the ice making plate is improved, and the uniformity of the concentration of a predetermined gas in the dissolved gas-containing ice is also improved.

また、上述のように製氷板と冷媒との熱交換が効率よく行えることによって、製氷の際に採用できる冷媒の温度を溶存ガス含有水の凝固点に近い温度となるように高く設定したり、溶存ガス含有水を製氷する際に採用できる冷媒の流量を少なく設定したりすることもでき、冷媒の循環に係るエネルギー効率も高めることができる。   In addition, since the heat exchange between the ice making plate and the refrigerant can be performed efficiently as described above, the temperature of the refrigerant that can be adopted during ice making is set high so as to be close to the freezing point of the water containing the dissolved gas. The flow rate of the refrigerant that can be adopted when making the gas-containing water is reduced, and the energy efficiency related to the circulation of the refrigerant can be increased.

上記の特徴構成Aを有する溶存ガス含有氷製造装置において、
前記製氷機は、
前記製氷板から流出した前記気液混合状態の冷媒が案内され、当該冷媒を気相と液相とに分離する気液分離部と、
前記気液分離部における気相の冷媒を圧縮機及び凝縮器を経て液相に変化させ、当該液相となった冷媒を前記気液分離部に戻す液化部と、
前記気液分離部における液相の冷媒をポンプにより前記製氷板に供給する冷媒供給部と、
を含む、
構成(以下において「特徴構成B」と称す)であることが好ましい。
In the dissolved gas-containing ice production apparatus having the characteristic configuration A described above,
The ice making machine
A gas-liquid separation unit that guides the refrigerant in the gas-liquid mixed state flowing out of the ice making plate and separates the refrigerant into a gas phase and a liquid phase;
A gas phase refrigerant in the gas-liquid separation unit is changed to a liquid phase through a compressor and a condenser, and a liquefaction unit that returns the liquid phase refrigerant to the gas-liquid separation unit;
A refrigerant supply unit for supplying liquid-phase refrigerant in the gas-liquid separation unit to the ice making plate by a pump;
including,
A configuration (hereinafter referred to as “characteristic configuration B”) is preferable.

上記の特徴構成Bを有する溶存ガス含有氷製造装置であれば、製氷板を通過した冷媒が気液混合状態であっても、一旦、当該冷媒を気相と液相とに分離することによって、気相の冷媒のみを圧縮機及び凝縮器を通して所望の温度の液相の冷媒に戻すことができる。これによって、冷媒を循環させる構成を大幅に複雑化することなく、冷媒を好適に循環させることができる。また、液相の冷媒が圧縮機に案内されてしまうことを好適に抑制できる。   If the dissolved gas-containing ice production apparatus having the above-described characteristic configuration B, even if the refrigerant that has passed through the ice making plate is in a gas-liquid mixed state, once the refrigerant is separated into a gas phase and a liquid phase, Only the gas phase refrigerant can be returned to the liquid refrigerant at the desired temperature through the compressor and condenser. Thus, the refrigerant can be circulated suitably without greatly complicating the configuration for circulating the refrigerant. Moreover, it can suppress suitably that a liquid phase refrigerant | coolant will be guided to a compressor.

上記の特徴構成A〜Bを有する溶存ガス含有氷製造装置において、
前記製氷機は、
前記製氷板に前記気液分離部から供給される場合より高温である冷媒を供給し、前記溶存ガス含有水が前記製氷板で凍結してなる溶存ガス含有氷を前記製氷板から離脱させる高温冷媒供給部と、
前記製氷板から離脱した前記溶存ガス含有氷、及び、前記溶存ガス含有水であって前記製氷板で凍結しなかった又は前記溶存ガス含有氷が溶解してなる溶融水を受ける貯留部と、
前記貯留部における前記溶融水を前記原水として戻す帰還部と、
を含む、
構成(以下において「特徴構成C」と称す)であることが好ましい。
In the dissolved gas-containing ice production apparatus having the above-described characteristic configurations A to B,
The ice making machine
A high-temperature refrigerant that supplies a refrigerant having a higher temperature than that supplied from the gas-liquid separation unit to the ice making plate, and causes the dissolved gas-containing ice formed by freezing the dissolved gas-containing water on the ice making plate to be separated from the ice making plate. A supply section;
The dissolved gas-containing ice separated from the ice making plate, and the reservoir that receives the dissolved water that is the dissolved gas-containing water and has not been frozen on the ice making plate or the dissolved gas-containing ice is melted,
A return section for returning the molten water in the storage section as the raw water;
including,
A configuration (hereinafter referred to as “characteristic configuration C”) is preferable.

上記の特徴構成Cを有する溶存ガス含有氷製造装置であれば、貯留部における溶融水は、製氷板を通して低温となった溶存ガス含有水を起源としているために、その温度は、溶存ガス含有水の凝固点に近い低温となっており、当該溶融水が原水に戻された場合に原水の温度も低下することとなる。原水の温度が低ければガスの溶存量は増加するために、溶存ガス含有水を高い濃度で生成することができる。更に、貯留部における溶融水は、溶存ガス含有水を起源としているために、製氷板に供給される際より濃度は低下しているものの、所定のガスが溶存されていたり、ファインバブルの状態で含まれていたりするために、溶存ガス含有水を効率よく生成できることとなる。   If it is the dissolved gas containing ice manufacturing apparatus which has said characteristic structure C, since the molten water in a storage part originates in the dissolved gas containing water which became low temperature through the ice-making board, the temperature is dissolved gas containing water. When the molten water is returned to the raw water, the temperature of the raw water also decreases. Since the dissolved amount of gas increases if the temperature of the raw water is low, the dissolved gas-containing water can be generated at a high concentration. Furthermore, since the melted water in the reservoir originates from dissolved gas-containing water, the concentration is lower than when it is supplied to the ice making plate, but the prescribed gas is dissolved or in a fine bubble state. Since it is contained, dissolved gas-containing water can be generated efficiently.

上記の特徴構成A〜Cを有する溶存ガス含有氷製造装置において、
前記帰還部において、前記溶融水を前記原水として戻す過程において、当該溶融水と前記製氷板に導入される前の前記溶存ガス含有水とで熱交換させる、
構成(以下において「特徴構成D」と称す)とすることが好ましい。
In the dissolved gas-containing ice production apparatus having the above-described characteristic configurations A to C,
In the returning part, in the process of returning the molten water as the raw water, heat exchange is performed between the molten water and the dissolved gas-containing water before being introduced into the ice making plate.
A configuration (hereinafter referred to as “characteristic configuration D”) is preferable.

上記の特徴構成Dを有する溶存ガス含有氷製造装置であれば、原水として戻される溶融水は、製氷板を通して低温となった溶存ガス含有水を起源としているために、その温度は溶存ガス含有水の凝固点に近い低温となっており、当該溶融水との熱交換によって製氷板に流される溶存ガス含有水の温度を低下させたりその温度の上昇を抑制したりすることができ、製氷に要する時間を更に短縮することができる。これによって、溶存ガス含有氷に含まれるガスの溶存濃度やファインバブルの含有量を増加させることができる。また、溶融水は溶存ガス含有水の凝固点に近い低温になっているが凝固点以下にはならないために、製氷板に流される溶存ガス含有水の温度を自己整合的に凝固以下にならない範囲で低下させることができる。また、原水に戻す過程の凝固点に近い低温の溶融水を援用するために、新たに冷却装置を設ける等によって構造を複雑化することなく、製氷板に流される溶存ガス含有水の温度を好適に調節できる。   In the case of the dissolved gas-containing ice production apparatus having the above-described characteristic configuration D, the molten water returned as the raw water originates from the dissolved gas-containing water that has become low temperature through the ice making plate. The temperature required for ice making can be reduced by suppressing the temperature rise of the dissolved gas-containing water flowing to the ice making plate by heat exchange with the molten water. Can be further shortened. Thereby, the dissolved concentration of the gas contained in the dissolved gas-containing ice and the content of fine bubbles can be increased. In addition, since the melted water is at a low temperature close to the freezing point of the dissolved gas-containing water, it does not fall below the freezing point. Can be made. Also, in order to use low-temperature molten water close to the freezing point in the process of returning to raw water, the temperature of the dissolved gas-containing water that is flowed to the ice making plate is suitably adjusted without complicating the structure by newly providing a cooling device or the like. Can be adjusted.

上記の特徴構成A〜Dを有する溶存ガス含有氷製造装置において、
前記溶存ガス含有水供給部は、1種類の原料から前記所定のガスとしての複数種類のガスを生成すると共に、前記複数種類のガスをファインバブル発生器により個別の前記原水にバブリングして、溶存ガスの種類が異なる複数種類の溶存ガス含有水を生成し、
前記複数の製氷板を前記溶存ガス含有水の種類数に応じて区分けし、区分けされた製氷板ごとに種類の異なる溶存ガス含有水を供給する、
構成(以下において「特徴構成E」と称す)であることが好ましい。
In the dissolved gas-containing ice production apparatus having the above-described characteristic configurations A to D,
The dissolved gas-containing water supply unit generates a plurality of types of gases as the predetermined gas from one type of raw material, and also bubbles the plurality of types of gases into the individual raw water using a fine bubble generator. Generate multiple types of dissolved gas-containing water with different types of gas,
Dividing the plurality of ice making plates according to the number of types of the dissolved gas-containing water, and supplying different types of dissolved gas-containing water for each divided ice making plate,
A configuration (hereinafter referred to as “characteristic configuration E”) is preferable.

上記の特徴構成Eを有する溶存ガス含有氷製造装置であれば、1種類の原料から生成される異なる種類のガスを用いて、種類の異なるガスを溶存させた複数種類の溶存ガス含有水を同時に生成することができる。これによって、最終的に、複数種類の溶存ガス含有氷を同時に製造することができる。   If it is the dissolved gas containing ice manufacturing apparatus which has said characteristic structure E, using the different kind of gas produced | generated from one kind of raw material, the several types of dissolved gas containing water which dissolved different kinds of gas simultaneously Can be generated. Thus, finally, a plurality of types of dissolved gas-containing ice can be simultaneously produced.

なお、各種類の溶存ガス含有水において溶存ガスの種類が一部でも異なっていればよく、例えば、原料から第1種類のガス及び第2種類のガスが生成される場合に、「複数種類の溶存ガス含有水」としては、第1種類のガスを溶存させた溶存ガス含有水と第2ガスを溶存させた溶存ガス含有水との組み合わせのみならず、第1種類の溶存ガス及び第2種類の溶存ガスの一方を溶存させた溶存ガス含有水と、第1種類の溶存ガスと第2種類の溶存ガスの双方を溶存させた溶存ガス含有水との組み合わせの場合等も含意している。   It should be noted that the types of dissolved gas only need to be partially different in each type of dissolved gas-containing water. For example, when the first type gas and the second type gas are generated from the raw material, "Dissolved gas-containing water" includes not only a combination of dissolved gas-containing water in which the first type of gas is dissolved and dissolved gas-containing water in which the second gas is dissolved, but also the first type of dissolved gas and the second type. It also implies the case of a combination of dissolved gas-containing water in which one of the dissolved gases is dissolved and dissolved gas-containing water in which both the first type of dissolved gas and the second type of dissolved gas are dissolved.

上記の特徴構成A〜Eを有する溶存ガス含有氷製造装置において、
前記所定のガスは、水素、酸素、窒素及びオゾンからなる群より選択される少なくとも一種類を含む、
構成(以下において「特徴構成F」と称す)であることが好ましい。
In the dissolved gas-containing ice production apparatus having the above-described characteristic configurations A to E,
The predetermined gas includes at least one selected from the group consisting of hydrogen, oxygen, nitrogen, and ozone.
A configuration (hereinafter referred to as “characteristic configuration F”) is preferable.

上記の特徴構成Fを有する溶存ガス含有氷製造装置であれば、機能性飲料、機能性食品、機能性保冷剤等を製造できる。具体的には、水素を含有する氷であれば、水素が抜けないように水素水を保存することができ、また、酸素やオゾンや窒素を含有する氷であれば、鮮度の劣化を抑制しつつ生鮮食品を保存できる。   If it is the dissolved gas containing ice manufacturing apparatus which has said characteristic structure F, a functional drink, a functional food, a functional cooler, etc. can be manufactured. Specifically, hydrogen containing ice can store hydrogen water so that hydrogen does not escape, and ice containing oxygen, ozone, or nitrogen suppresses deterioration of freshness. Fresh food can be preserved.

上記の特徴構成Eを有する溶存ガス含有氷製造装置において、
前記原料が水であり、前記複数種類のガスが水の電気分解により発生する水素と酸素とである、
構成(以下において「特徴構成G」と称す)であることが好ましい。
In the dissolved gas-containing ice production apparatus having the characteristic configuration E described above,
The raw material is water, and the plurality of types of gases are hydrogen and oxygen generated by electrolysis of water,
A configuration (hereinafter referred to as “characteristic configuration G”) is preferable.

上記の特徴構成Gを有する溶存ガス含有氷製造装置であれば、水から同時に生成される水素と酸素を利用して、水素水及び酸素水を同時に生成することができる。また、原料としての水と原水としての水とを共通化することもできるために、それらを供給する構造の一部を共通化し、溶存ガス含有氷製造装置の構造を原料と原水とを異ならせる場合よりも簡素化できる。   If it is the dissolved gas containing ice manufacturing apparatus which has said characteristic structure G, hydrogen water and oxygen water can be produced | generated simultaneously using the hydrogen and oxygen which are produced | generated simultaneously from water. Moreover, since water as raw material and water as raw water can be made common, a part of the structure for supplying them is made common, and the structure of the dissolved gas-containing ice production device is made different between raw material and raw water. It can be simplified than the case.

以下において、溶存ガス含有氷製造装置の具体的な構成について説明する。   Below, the specific structure of the dissolved gas containing ice manufacturing apparatus is demonstrated.

〔実施形態1〕
図1は、実施形態1に係るハーベスト型製氷装置1の構造を模式的に表す概念図である。ハーベスト型製氷装置1は、図1に示されたように、水源11から供給される水(概念的な構成における「原水」に相当)と水素源12から供給される水素とに基づいて、水に水素を溶存させた水素水13(概念的な構成における「溶存ガス含有水」に相当)を生成して、水素水13を供給する水素水供給部20(概念的な構成における「溶存ガス含有水供給部」に相当)と、水素水供給部20から供給される水素水13を凍結させる製氷部30(概念的な構成における「製氷機」の一部に相当)と、製氷部30と熱交換する冷媒51を循環させる冷媒循環部50(概念的な構成における「製氷機」の一部に相当)とを備えている。
Embodiment 1
FIG. 1 is a conceptual diagram schematically showing the structure of a harvest type ice making device 1 according to the first embodiment. As shown in FIG. 1, the harvest type ice making device 1 is based on water supplied from a water source 11 (corresponding to “raw water” in a conceptual configuration) and hydrogen supplied from a hydrogen source 12. Hydrogen water 13 in which hydrogen is dissolved (corresponding to “dissolved gas-containing water” in the conceptual configuration) is generated and supplied to the hydrogen water supply unit 20 (contains dissolved gas content in the conceptual configuration) A water supply unit ”), an ice making unit 30 for freezing the hydrogen water 13 supplied from the hydrogen water supply unit 20 (corresponding to a part of the“ ice maker ”in the conceptual configuration), an ice making unit 30 and heat A refrigerant circulation unit 50 (which corresponds to a part of an “ice maker” in a conceptual configuration) that circulates the refrigerant 51 to be replaced is provided.

水源11から供給される水として、真水を利用し、水素源12から供給される水素として、水素ボンベから供給される水素を利用している。   As water supplied from the water source 11, fresh water is used, and as hydrogen supplied from the hydrogen source 12, hydrogen supplied from a hydrogen cylinder is used.

水素水供給部20は、図1に示されたように、水を供給する配管21と、水素を供給する配管22と、ポンプ23(概念的な構成における「ファインバブル発生器」の一部に相当)と、放出器24(概念的な構成における「ファインバブル発生器」の一部に相当)と、貯留槽25とを備えている。配管21と配管22とは水に水素を合流できるようにポンプ23の上流側において接続されており、ポンプ23による吸引によって水と水素とを混合すると共に、放出器24によってポンプ23から放出される水素水に含まれる水素をファインバブル化して、水素を溶存させた水素水13を生成する。なお、このように水素ガスを原水にバブリングするバブリング法を適用した場合には、水素水13には、溶存した水素のみならず、水素をファインバブルの状態で含有させることができる。生成された水素水13は、貯留槽25に貯留される。また、水素水供給部20は、貯留槽25に貯留された水素水を製氷部30に送出するポンプ26と、貯留槽25とを接続する配管27と、ポンプ41と製氷部30とを接続する配管28とを備えており、ポンプ41の動作を制御することによって、製氷部30への水素水13の供給を制御できる。   As shown in FIG. 1, the hydrogen water supply unit 20 includes a pipe 21 for supplying water, a pipe 22 for supplying hydrogen, and a pump 23 (part of a “fine bubble generator” in a conceptual configuration). Equivalent), a discharger 24 (corresponding to a part of the “fine bubble generator” in the conceptual configuration), and a storage tank 25. The pipe 21 and the pipe 22 are connected on the upstream side of the pump 23 so that hydrogen can be merged with water, and water and hydrogen are mixed by suction by the pump 23 and discharged from the pump 23 by the discharger 24. Hydrogen contained in hydrogen water is made into fine bubbles to generate hydrogen water 13 in which hydrogen is dissolved. When the bubbling method of bubbling hydrogen gas into the raw water is applied in this way, the hydrogen water 13 can contain not only dissolved hydrogen but also hydrogen in a fine bubble state. The generated hydrogen water 13 is stored in the storage tank 25. The hydrogen water supply unit 20 connects the pump 26 that sends the hydrogen water stored in the storage tank 25 to the ice making unit 30, the pipe 27 that connects the storage tank 25, the pump 41, and the ice making unit 30. The pipe 28 is provided, and the supply of the hydrogen water 13 to the ice making unit 30 can be controlled by controlling the operation of the pump 41.

更に、水素水供給部20は、貯留槽25内において水素水13から抜け出した水素を、水素水13の生成に再利用するために、配管22に戻す配管29を備えている。   Further, the hydrogen water supply unit 20 includes a pipe 29 that returns the hydrogen that has escaped from the hydrogen water 13 in the storage tank 25 to the pipe 22 in order to reuse the hydrogen water 13 for generation.

製氷部30は、筐体(図示せず)に垂設された複数の製氷板31(図1においては4枚の凝固板を図示)と、水素水供給部20から供給される水素水13を各製氷板31の外側に散布する複数のノズル32とを備えている。ノズル32から散布された水素水13は、製氷板31に沿って流下することとなる。各製氷板31は、熱伝導率の高いアルミニウム合金を押出成形することによって製造され、各製氷板31の内側には垂直方向に延びる複数の冷媒通路33(図1において各製氷板31に1本の通路を図示)が形成されている。各冷媒通路33は、単純な円柱形の空洞ではなく、冷媒通路33の中心側へ突出し垂直方向に延びる多数の凹凸を有する形状の空洞となっており、製氷板31と冷媒通路33を流れる冷媒51との接触面積を増大させている。   The ice making unit 30 includes a plurality of ice making plates 31 (four solidified plates are shown in FIG. 1) suspended from a housing (not shown) and hydrogen water 13 supplied from the hydrogen water supply unit 20. And a plurality of nozzles 32 that are sprayed to the outside of each ice making plate 31. The hydrogen water 13 sprayed from the nozzle 32 flows down along the ice making plate 31. Each ice making plate 31 is manufactured by extruding an aluminum alloy having a high thermal conductivity. Inside each ice making plate 31, a plurality of refrigerant passages 33 (one in each ice making plate 31 in FIG. 1) extend vertically. Are formed). Each refrigerant passage 33 is not a simple cylindrical cavity, but is a cavity having a large number of projections and depressions protruding toward the center of the refrigerant passage 33 and extending in the vertical direction, and the refrigerant flowing through the ice making plate 31 and the refrigerant passage 33. The contact area with 51 is increased.

冷媒循環部50は、冷媒51を液相と気相とに分離して貯蔵するフラッシュタンク52(概念的な構成における「気液分離部」に相当)と、フラッシュタンク52に貯留されている液相の冷媒51を、各製氷板31を通して循環させるためのポンプ53(概念的な構成における「冷媒供給部」に相当)と、フラッシュタンク52から各製氷板31への冷媒51の流れを制御する駆動弁54Aと、各製氷板31からフラッシュタンク52への冷媒51の流れを制御する駆動弁54Bと、それらを接続する各種の配管81〜85とを備えている。また、冷媒循環部50は、フラッシュタンク52に貯留されている気相の冷媒51を断熱圧縮して高温高圧とする圧縮機55(概念的な構成における「液化部」の一部に相当)と、圧縮機55で改質された気相の冷媒51を凝縮する凝縮器56(概念的な構成における「液化部」の一部に相当)と、凝縮器56で改質された気相の冷媒51をフラッシュタンク52に戻す際に断熱膨張させて、低温低圧の気相の冷媒51と低温低圧の液相の冷媒51とに変化させる膨張弁57(概念的な構成における「液化部」の一部に相当)と、それらを接続する各種の配管86〜89を備えている。フラッシュタンク52に貯留されている液相の冷媒51を配管81、配管82及び配管83を通して各製氷板31に供給し、各製氷板31の冷媒通路33を通過した冷媒を配管84及び配管85を通してフラッシュタンク52に帰還させた場合には、製氷板31を水素水13の凝固点以下の所定の温度に維持することができる。   The refrigerant circulation unit 50 includes a flash tank 52 (corresponding to a “gas-liquid separation unit” in a conceptual configuration) that separates and stores the refrigerant 51 into a liquid phase and a gas phase, and a liquid stored in the flash tank 52. A pump 53 (which corresponds to a “refrigerant supply unit” in a conceptual configuration) for circulating the refrigerant 51 of the phase through each ice making plate 31, and the flow of the refrigerant 51 from the flash tank 52 to each ice making plate 31 is controlled. A drive valve 54A, a drive valve 54B for controlling the flow of the refrigerant 51 from each ice making plate 31 to the flash tank 52, and various pipes 81 to 85 for connecting them are provided. The refrigerant circulation unit 50 includes a compressor 55 (corresponding to a part of the “liquefaction unit” in the conceptual configuration) that adiabatically compresses the gas-phase refrigerant 51 stored in the flash tank 52 to high temperature and pressure. , A condenser 56 for condensing the gas-phase refrigerant 51 reformed by the compressor 55 (corresponding to a part of the “liquefaction section” in the conceptual configuration), and a gas-phase refrigerant reformed by the condenser 56 When the 51 is returned to the flash tank 52, it is adiabatically expanded to change into a low-temperature and low-pressure gas-phase refrigerant 51 and a low-temperature and low-pressure liquid-phase refrigerant 51 (one of the “liquefaction section” in the conceptual configuration). And various pipes 86 to 89 for connecting them. The liquid phase refrigerant 51 stored in the flash tank 52 is supplied to each ice making plate 31 through the pipe 81, the pipe 82 and the pipe 83, and the refrigerant passing through the refrigerant passage 33 of each ice making plate 31 is passed through the pipe 84 and the pipe 85. When returning to the flash tank 52, the ice making plate 31 can be maintained at a predetermined temperature below the freezing point of the hydrogen water 13.

また、冷媒循環部50は、圧縮機55で改質された気相の冷媒51を各製氷板31の冷媒通路33に案内するための配管91及び配管92(概念的な構成における「高温冷媒循環部」の一部に相当)と、配管91と配管92との間に設けられ、圧縮機56から製氷板31への気相の冷媒の流れを制御する駆動弁58A(概念的な構成における「高温冷媒循環部」の一部に相当)と、各製氷板31からフラッシュタンク52へ気相の冷媒51を案内するための各種の配管93,94,95(概念的な構成における「高温冷媒循環部」の一部に相当)と、各製氷板31からフラッシュタンク52への気相の冷媒の流れを制御する駆動弁59(概念的な構成における「高温冷媒循環部」の一部に相当)と、気相の冷媒をフラッシュタンク52に戻す際に断熱膨張させて低温低圧の気相の冷媒51と低温低圧の液相の冷媒51とに変化させる膨張弁60(概念的な構成における「高温冷媒循環部」の一部に相当)とを備えている。配管91は配管87から分岐するように接続され、配管92は配管84に合流するように接続され、また、配管93は配管83から分岐するように接続されており、各製氷板31の冷媒通路33に流れる冷媒51を各種の駆動弁54A、54B、58A、58Bの制御によって変化させることができる。圧縮機56から放出される気相の冷媒51を配管91、配管92及び配管84を通して製氷板31に供給し、製氷板31の冷媒通路33を通過した冷媒51を配管83、配管93、配管94及び配管95を通してフラッシュタンク52に帰還させた場合には、各製氷板31を水の凝固点を超える所定の温度に上昇させることができる。なお、冷媒循環部50は、各製氷板31の表面に成長した水素氷の厚みを測定する厚み測定器(図示せず)を備えている。   The refrigerant circulation unit 50 also includes a pipe 91 and a pipe 92 for guiding the gas-phase refrigerant 51 reformed by the compressor 55 to the refrigerant passage 33 of each ice making plate 31 (“high-temperature refrigerant circulation in a conceptual configuration”). ) And a drive valve 58A (a conceptual configuration “a”) that controls the flow of the refrigerant in the gas phase from the compressor 56 to the ice making plate 31. Corresponding to a part of the “high-temperature refrigerant circulation section”) and various pipes 93, 94, 95 for guiding the gas-phase refrigerant 51 from each ice-making plate 31 to the flash tank 52 (the “high-temperature refrigerant circulation” in the conceptual configuration). And a drive valve 59 for controlling the flow of the gas-phase refrigerant from each ice-making plate 31 to the flash tank 52 (corresponding to a part of the “high-temperature refrigerant circulation part” in the conceptual configuration). And return the gas-phase refrigerant to the flash tank 52. And an expansion valve 60 (corresponding to a part of the “high-temperature refrigerant circulation section” in the conceptual configuration) that is changed into a low-temperature and low-pressure gas-phase refrigerant 51 and a low-temperature and low-pressure liquid-phase refrigerant 51. ing. The pipe 91 is connected so as to branch from the pipe 87, the pipe 92 is connected so as to merge with the pipe 84, and the pipe 93 is connected so as to branch from the pipe 83, and the refrigerant path of each ice making plate 31. The refrigerant 51 flowing to 33 can be changed by controlling the various drive valves 54A, 54B, 58A, 58B. The gas phase refrigerant 51 discharged from the compressor 56 is supplied to the ice making plate 31 through the pipe 91, the pipe 92, and the pipe 84, and the refrigerant 51 that has passed through the refrigerant passage 33 of the ice making plate 31 is supplied to the pipe 83, the pipe 93, and the pipe 94. In the case of returning to the flash tank 52 through the pipe 95, each ice making plate 31 can be raised to a predetermined temperature exceeding the freezing point of water. The refrigerant circulation unit 50 includes a thickness measuring device (not shown) that measures the thickness of hydrogen ice grown on the surface of each ice making plate 31.

また、ハーベスト型製氷装置1は、更に、複数の製氷板31の下方に設けられ、製氷板31から離脱した水素氷を受容して一時的に貯留する貯留槽61(概念的な構成における「貯留部」に相当)を備えている。なお、貯留槽61に貯留された水素氷は、所定のタイミングで保管場所(図示せず)へ移動させられることとなる。   Further, the harvest type ice making device 1 is further provided below the plurality of ice making plates 31 and receives the hydrogen ice separated from the ice making plate 31 and temporarily stores it (“storage” in the conceptual configuration). Part)). The hydrogen ice stored in the storage tank 61 is moved to a storage location (not shown) at a predetermined timing.

貯留槽61には、水素氷のみならず、水素水13を起源とする液体(概念的な構成における「溶融水」に相当)も貯留されることとなる。これは、製氷モードでの動作時であってもノズル32から散布された水素水13の一部が凍ることなく貯留槽61に滴下したり、脱氷モードでの動作時に水素氷の一部が融解して貯留槽61に滴下したり、また、貯留槽61内で水素氷の一部が融解したりするためである。   In the storage tank 61, not only hydrogen ice but also a liquid originating from the hydrogen water 13 (corresponding to “molten water” in a conceptual configuration) is stored. This is because a part of the hydrogen water 13 sprayed from the nozzle 32 is dripped into the storage tank 61 without being frozen even when operating in the ice making mode, or a part of the hydrogen ice is operating during the operation in the deicing mode. This is because it melts and drops into the storage tank 61, or a part of the hydrogen ice melts in the storage tank 61.

また、ハーベスト型製氷装置1は、貯留槽61に貯留されている液体を、水素水13を生成するための水として再利用するために、水を供給する配管21に戻す水循環部70(概念的な構成における「帰還部」に相当)を備えており、具体的には、貯留槽61に貯留されている液体を移送するポンプ71と、ポンプ71と貯留槽61とを接続する配管72と、ポンプ71と配管21とを接続する配管73とを備えている。   In addition, the harvest type ice making device 1 has a water circulation unit 70 (conceptual) that returns the liquid stored in the storage tank 61 to the pipe 21 that supplies water in order to reuse the liquid as water for generating the hydrogen water 13. Specifically, a pump 71 that transfers the liquid stored in the storage tank 61, a pipe 72 that connects the pump 71 and the storage tank 61, and A pipe 73 connecting the pump 71 and the pipe 21 is provided.

ここで、ハーベスト型製氷装置1の動作について説明する。ハーベスト型製氷装置1は、製氷板31を水素水13の凝固点以下の温度に下降させ、ノズル32から散布される水素水13を凍らせて水素氷を成長させる製氷モードと、製氷板31を水素水13の凝固点以上の温度に上昇させ、水素氷の一部を融解して水素氷を製氷板31の表面から離脱させる脱氷モードとを繰り返すことによって、水素氷を製造する。以下において、製氷モードでの動作と脱氷モードでの動作を順次に説明する。なお、製氷モード及び脱氷モードに関わらず、水素水13は、水素水供給部20において常時生成され、また、製氷部30においてノズル32を通して常時散布される。   Here, the operation of the harvest type ice making device 1 will be described. The harvest type ice making device 1 lowers the ice making plate 31 to a temperature below the freezing point of the hydrogen water 13, freezes the hydrogen water 13 sprayed from the nozzles 32, and grows ice with ice, and the ice making plate 31 with the hydrogen. The temperature of the water 13 is raised to a temperature equal to or higher than the freezing point, and hydrogen ice is produced by repeating a deicing mode in which a part of the hydrogen ice is melted and the hydrogen ice is separated from the surface of the ice making plate 31. Hereinafter, the operation in the ice making mode and the operation in the deicing mode will be sequentially described. Regardless of the ice making mode and the deicing mode, the hydrogen water 13 is always generated in the hydrogen water supply unit 20 and is always sprayed through the nozzle 32 in the ice making unit 30.

(製氷モード)
各製氷板31の製氷モードにおいて、駆動弁54A及び駆動弁54Bは開状態となり、一方、駆動弁58A及び駆動弁58Bは閉状態となっており、フラッシュタンク52に貯留された液相の冷媒51が製氷板31の冷媒通路33に流入する。フラッシュタンク52から放出される冷媒51の温度は約−5℃であるために、製氷板31は実質的に冷媒51の温度と同一の温度である約−5℃にまで冷却されることとなる。冷媒51は冷媒通路33において下方側(重力方向の下方側)から上方側(重力方向の上方側)へと流れ、冷媒51の一部のみが冷媒通路33の途中で気化するように設定されており、冷媒通路33を通過した冷媒51は液相と気相とが混合された気液混合状態となる。このように設定されていることによって、冷媒通路33の上方部位においても製氷板31と液体の冷媒51とが接触でき、冷媒通路33の実質的に全壁面で好適な熱交換が可能となる。
(Ice making mode)
In the ice making mode of each ice making plate 31, the drive valve 54 </ b> A and the drive valve 54 </ b> B are in the open state, while the drive valve 58 </ b> A and the drive valve 58 </ b> B are in the closed state, and the liquid-phase refrigerant 51 stored in the flash tank 52. Flows into the refrigerant passage 33 of the ice making plate 31. Since the temperature of the refrigerant 51 discharged from the flash tank 52 is about −5 ° C., the ice making plate 31 is cooled to about −5 ° C. which is substantially the same temperature as the temperature of the refrigerant 51. . The refrigerant 51 is set to flow from the lower side (lower side in the direction of gravity) to the upper side (upper side in the direction of gravity) in the refrigerant passage 33, and only a part of the refrigerant 51 is vaporized in the middle of the refrigerant passage 33. Thus, the refrigerant 51 that has passed through the refrigerant passage 33 is in a gas-liquid mixed state in which the liquid phase and the gas phase are mixed. By being set in this way, the ice making plate 31 and the liquid refrigerant 51 can be in contact with each other even in the upper part of the refrigerant passage 33, and suitable heat exchange can be performed on substantially the entire wall surface of the refrigerant passage 33.

なお、ハーベスト型製氷装置1とは異なり、冷媒通路33において通過する液体の冷媒を全て気化させる構成であれば、冷媒通路33の上方部分で好適な熱交換ができないために、冷媒51の温度を約−25℃まで下げる必要が生じて冷媒51を循環させるためのエネルギー効率が低下し、また、製氷板31における温度分布(特に冷媒の進行方向に沿う温度分布)の均一性も低下する。   Unlike the harvest-type ice making device 1, if the liquid refrigerant that passes through the refrigerant passage 33 is completely vaporized, heat cannot be exchanged appropriately in the upper portion of the refrigerant passage 33, so the temperature of the refrigerant 51 is reduced. It is necessary to lower the temperature to about −25 ° C., the energy efficiency for circulating the refrigerant 51 is reduced, and the uniformity of the temperature distribution in the ice making plate 31 (particularly the temperature distribution along the traveling direction of the refrigerant) is also reduced.

冷媒通路33を通過した気液混合状態の冷媒51は、フラッシュタンク52へ戻され、液相の冷媒51と気相の冷媒51とに分離される。気相の冷媒51は、圧縮機55、凝縮器56及び膨張弁57を経て、約−5℃の液相の冷媒51へと戻され、繰り返し製氷板31へ向けて送出されることとなる。   The gas-liquid mixed refrigerant 51 that has passed through the refrigerant passage 33 is returned to the flash tank 52 and separated into a liquid-phase refrigerant 51 and a gas-phase refrigerant 51. The gas phase refrigerant 51 passes through the compressor 55, the condenser 56 and the expansion valve 57, is returned to the liquid phase refrigerant 51 at about −5 ° C., and is repeatedly sent toward the ice making plate 31.

製氷板31においては、ノズル32から散布される水素水13を製氷板31の表面で凍結させ、水素氷が所定の厚さとなるまで成長させる。水素氷の厚さは、適宜、厚み測定器によって監視されており、厚み測定器が所定の厚さであることを検知した場合に、製氷モードから脱氷モードへの切り替えが自動的に行われる。具体的には、駆動弁54A及び駆動弁54Bが開状態から閉状態へと変更され、一方、駆動弁58A及び駆動弁58Bが閉状態から開状態へと変更される。   In the ice making plate 31, the hydrogen water 13 sprayed from the nozzle 32 is frozen on the surface of the ice making plate 31, and the hydrogen ice is grown until it reaches a predetermined thickness. The thickness of the hydrogen ice is appropriately monitored by a thickness measuring device, and when it is detected that the thickness measuring device has a predetermined thickness, switching from the ice making mode to the deicing mode is automatically performed. . Specifically, the drive valve 54A and the drive valve 54B are changed from the open state to the closed state, while the drive valve 58A and the drive valve 58B are changed from the closed state to the open state.

(脱氷モード)
各製氷板31の脱氷モードにおいて、駆動弁58A及び駆動弁58Bは開状態であり、一方、駆動弁54A及び駆動弁54Bは閉状態であるために、凝縮機55から放出された高温高圧の気相の冷媒が製氷板31の冷媒通路33に流入する。これによって、製氷板31が暖められ、製氷板31の表面近傍における水素氷が融解し、水素氷が自重によって貯留槽61へと落下する。各製氷板31の表面近傍における水素氷を融解するためには、各製氷板31の温度を0度以上としなければならないが、製氷モードにおける製氷板31の温度が約−5℃であるために、5℃程度だけ温度を上昇させればよく、脱氷モードに切り替えてから水素氷を落下させるまでの時間が短時間となる。
(Deicing mode)
In the deicing mode of each ice making plate 31, the drive valve 58A and the drive valve 58B are in the open state, while the drive valve 54A and the drive valve 54B are in the closed state, so that the high-temperature and high-pressure discharged from the condenser 55 is high. The gas phase refrigerant flows into the refrigerant passage 33 of the ice making plate 31. As a result, the ice making plate 31 is warmed, the hydrogen ice in the vicinity of the surface of the ice making plate 31 is melted, and the hydrogen ice falls into the storage tank 61 by its own weight. In order to melt hydrogen ice in the vicinity of the surface of each ice making plate 31, the temperature of each ice making plate 31 must be 0 ° C. or more. However, since the temperature of the ice making plate 31 in the ice making mode is about −5 ° C. The temperature may be increased by about 5 ° C., and the time from when switching to the deicing mode to when dropping the hydrogen ice is short.

なお、上述のように、ハーベスト型製氷装置1とは異なり、冷媒通路33において通過する冷媒51を全て気化させる構成であれば、製氷モードでの製氷板の最低温度が約−25℃であるために、水素氷を落下させるためには、製氷板31の温度を25度も上昇させなければならず、脱氷モードに切り替えてから水素氷を落下させるまでの時間が大幅に長くなる。   Note that, as described above, unlike the harvest type ice making device 1, the minimum temperature of the ice making plate in the ice making mode is about −25 ° C. if all the refrigerant 51 passing through the refrigerant passage 33 is vaporized. In addition, in order to drop the hydrogen ice, the temperature of the ice making plate 31 must be raised by 25 degrees, and the time from when the ice ice mode is switched to when the ice ice is dropped is significantly increased.

脱氷モードにおいても、厚み測定器は、水素氷の厚みを監視しており、水素氷の落下によってその厚みが「0」となったことを検知した場合に、脱氷モードから製氷モードへの切り替えが自動的に行われる。具体的には、駆動弁58A及び駆動弁58Bが開状態から閉状態へと変更され、一方、駆動弁54A及び駆動弁54Bが閉状態から開状態へと変更される。   Even in the deicing mode, the thickness measuring device monitors the thickness of the hydrogen ice, and when detecting that the thickness becomes “0” due to the falling of the hydrogen ice, the thickness measuring device switches from the deicing mode to the ice making mode. Switching is done automatically. Specifically, the drive valve 58A and the drive valve 58B are changed from the open state to the closed state, while the drive valve 54A and the drive valve 54B are changed from the closed state to the open state.

上記においては、1つの製氷板31に対する製氷モードと脱氷モードの切り替えについて説明したが、すべての製氷板31が同時に切り替えられるのではなく、一部の製氷板31(本形態では1つの製氷板31)のみが脱氷モードとなるように制御されており、脱氷モードとなる製氷板31を順次に変更している。これは、フラッシュタンク52における気相の冷媒51と液相の冷媒51とのバランスを好適に維持するためである。   In the above description, the switching between the ice making mode and the deicing mode for one ice making plate 31 has been described. However, not all ice making plates 31 are switched at the same time, but some ice making plates 31 (in this embodiment, one ice making plate is used). Only 31) is controlled to be in the deicing mode, and the ice making plate 31 that is in the deicing mode is sequentially changed. This is because the balance between the gas-phase refrigerant 51 and the liquid-phase refrigerant 51 in the flash tank 52 is preferably maintained.

ハーベスト型製氷装置1であれば、冷媒51の一部のみが製氷板31との熱交換により気化するように構成されているために、冷媒通路33上のいずれの部位においても、製氷板31と液相の冷媒51とが接触できて液相の冷媒51の気化が発生することとなり、ハーベスト型製氷装置1とは異なり冷媒の全部が製氷板との熱交換で気化する場合や冷媒が製氷板との熱交換では気化しない場合に比べて、製氷板31と冷媒51との熱交換を効率よく行うことができる。これによって、製氷に要する時間を短縮でき、その結果、製氷過程で溶存ガスが抜け出すことを抑制できる。したがって、最大溶存濃度に近い高濃度を維持した溶存ガス含有氷を高い生産効率で製造できることとなる。   In the harvest type ice making device 1, since only a part of the refrigerant 51 is vaporized by heat exchange with the ice making plate 31, the ice making plate 31 and any part on the refrigerant passage 33 The liquid-phase refrigerant 51 can come into contact with the liquid-phase refrigerant 51 and vaporization of the liquid-phase refrigerant 51 occurs, and unlike the harvest-type ice making device 1, all of the refrigerant is vaporized by heat exchange with the ice-making plate, or the refrigerant is the ice-making plate. Heat exchange between the ice making plate 31 and the refrigerant 51 can be performed more efficiently than in the case where vaporization is not performed in the heat exchange with. Thereby, the time required for ice making can be shortened, and as a result, it is possible to suppress the escape of dissolved gas during the ice making process. Therefore, dissolved gas-containing ice that maintains a high concentration close to the maximum dissolved concentration can be produced with high production efficiency.

また、水に水素を溶存させるに際してバブリング法を適用しているために、水素氷に、溶存する水素ガスに加えて、水素ガスのファインバブルを閉じ込めることもできる。更に、ハーベスト型製氷装置1とは異なる態様で冷媒51を循環させる場合に比べて、製氷に要する時間を短縮できるために、製氷過程で抜け出す水素ガスのファインバブルの量も抑制でき、水素ガスをファインバブルの状態でも多量に含む溶存ガス含有氷を製造できることとなる。   In addition, since the bubbling method is applied when hydrogen is dissolved in water, fine bubbles of hydrogen gas can be confined in hydrogen ice in addition to dissolved hydrogen gas. Furthermore, since the time required for ice making can be shortened compared with the case where the refrigerant 51 is circulated in a mode different from the harvest type ice making device 1, the amount of fine bubbles of hydrogen gas that escapes during the ice making process can be suppressed, and the hydrogen gas can be reduced. Even in a fine bubble state, dissolved gas-containing ice containing a large amount can be produced.

また、冷媒通路33上のいずれの部位においても、製氷板31と液相の冷媒51とが接触でき、冷媒51の気化が発生することとなるために、ハーベスト型製氷装置1とは異なる態様で冷媒51を循環させる場合に比べて、製氷板31における温度分布の均一性を向上させることもできる。これによって、製氷板31の全面における製氷速度の均一性が向上し、水素氷における溶存濃度やファインバブルの含有率の均一性が向上することともなる。   Further, in any part on the refrigerant passage 33, the ice making plate 31 and the liquid phase refrigerant 51 can come into contact with each other and vaporization of the refrigerant 51 occurs. Therefore, the ice making plate 31 is different from the harvest type ice making device 1. Compared with the case where the refrigerant 51 is circulated, the uniformity of the temperature distribution in the ice making plate 31 can be improved. As a result, the uniformity of the ice making speed on the entire surface of the ice making plate 31 is improved, and the uniformity of the dissolved concentration and fine bubble content in the hydrogen ice is also improved.

また、上述のように製氷板31と冷媒51との熱交換が効率よく行えることによって、製氷の際に採用できる冷媒51の温度を水素水の凝固点に近い温度となるように高く設定したり、溶存ガス含有水を製氷する際に採用できる冷媒の流量を少なく設定したりすることもでき、冷媒51の循環に係るエネルギー効率も高めることができる。   In addition, as described above, the heat exchange between the ice making plate 31 and the refrigerant 51 can be performed efficiently, so that the temperature of the refrigerant 51 that can be adopted during ice making is set high so as to be close to the freezing point of hydrogen water, The flow rate of the refrigerant that can be adopted when making the dissolved gas-containing water is made small, and the energy efficiency related to the circulation of the refrigerant 51 can be increased.

また、ハーベスト型製氷装置1であれば、製氷板31を通過した冷媒51が気液混合状態であっても、この気液混合状態の冷媒を気相と液相とに分離することによって、気相の冷媒51のみを圧縮機及び凝縮器を通して所望の温度の液相の冷媒51に戻すことができる。これによって、冷媒51を循環させる構成を複雑化することなく、冷媒51を製氷板31に好適に循環させることができる。また、液相の冷媒51が圧縮機55に案内されてしまうことを好適に防止できる。   In the case of the harvest type ice making device 1, even if the refrigerant 51 that has passed through the ice making plate 31 is in a gas-liquid mixed state, the gas-liquid mixed state refrigerant is separated into a gas phase and a liquid phase, thereby Only the phase refrigerant 51 can be returned to the liquid refrigerant 51 at the desired temperature through the compressor and condenser. Accordingly, the refrigerant 51 can be suitably circulated through the ice making plate 31 without complicating the configuration for circulating the refrigerant 51. Further, the liquid phase refrigerant 51 can be suitably prevented from being guided to the compressor 55.

また、ハーベスト型製氷装置1であれば、貯留部61に貯留される液体は、製氷板31を経由した水素水を起源としているために、その温度は水素水の凝固点に近い低温となっており、当該液体が水素水を生成するための水として再利用された場合には、水素ガスをバブリングする際の水の温度が低下することとなる。これによって、水素ガスをバブリングする際の水の温度が低ければ、水素の溶存量は増加するために、溶存ガス含有水を高い濃度で生成することができる。更に、貯留部61に貯留される液体は、水素水を起源としているために、製氷板31に供給される際より濃度は低下していたとしても、水素ガスが溶存されていたりファインバブルの状態で含まれていたりするために、水素水を効率よく生成できることとなる。   Further, in the case of the harvest type ice making device 1, the liquid stored in the storage unit 61 originates from the hydrogen water that has passed through the ice making plate 31, so that the temperature is close to the freezing point of the hydrogen water. When the liquid is reused as water for generating hydrogen water, the temperature of the water when bubbling hydrogen gas is lowered. Thus, if the temperature of water when bubbling hydrogen gas is low, the dissolved amount of hydrogen increases, so that dissolved gas-containing water can be generated at a high concentration. Furthermore, since the liquid stored in the storage unit 61 originates from hydrogen water, even if the concentration is lower than when supplied to the ice making plate 31, the hydrogen gas is dissolved or in a fine bubble state. Therefore, hydrogen water can be generated efficiently.

更に、貯留槽61に貯留されることとなる液体を循環させる際に、当該水を用いて配管43内の水素水13の温度を低下させれば、更に水素ガスの溶存濃度やファインバブルの含有率の高い水素氷を生成できる。   Further, when the liquid to be stored in the storage tank 61 is circulated, if the temperature of the hydrogen water 13 in the pipe 43 is lowered using the water, the dissolved concentration of hydrogen gas or the inclusion of fine bubbles is further increased. High rate hydrogen ice can be produced.

ここで、図2を参照して、貯留槽61に貯留されることとなる液体を循環させる際に、当該液体を用いて配管28内の水素水13の温度を低下させる構成について説明する。ハーベスト型製氷製造装置2は、図2に示されたように、貯留槽61に貯留された液体を配管21に戻す前に一時的に貯留する貯留槽74を設け、配管43の少なくとも一部を貯留槽74に貯留された水に浸漬する構成である。なお、貯留槽74に貯留された液体は、ポンプ75によって、配管75を通して配管21に戻される。   Here, with reference to FIG. 2, when circulating the liquid which will be stored in the storage tank 61, the structure which reduces the temperature of the hydrogen water 13 in the piping 28 using the said liquid is demonstrated. As shown in FIG. 2, the harvest type ice making device 2 is provided with a storage tank 74 for temporarily storing the liquid stored in the storage tank 61 before returning it to the pipe 21, and at least a part of the pipe 43 is provided. In this configuration, the water is stored in the storage tank 74. The liquid stored in the storage tank 74 is returned to the pipe 21 through the pipe 75 by the pump 75.

ハーベスト型製氷装置2であれば、貯留部61に貯留される液体は、製氷板31を経由した水素水13を起源としているために、その温度は水素水13の凝固点に近い低温となっており、水素水13を生成するための水として当該液体を再利用する過程で当該液体と製氷板31に供給される前の水素水13と熱交換させた場合には、熱交換によって製氷板31に散布される水素水13の温度を低下させることができ、製氷に要する時間を更に短縮することができる。これによって、水素氷に含まれるガスの溶存濃度やファインバブルの含有量を増加させることができる。また、当該液体は水素水13の凝固点に近い低温になっているが凝固点以下にはならないために、製氷板31に流される水素水13の温度を自己整合的に凝固以下にならない範囲で低下させることができ、新たに冷却装置を設ける等によって構造を複雑化することなく、製氷板31に流される水素水13の温度を好適に調節できる。   In the case of the harvest type ice making device 2, since the liquid stored in the storage unit 61 originates from the hydrogen water 13 that has passed through the ice making plate 31, the temperature thereof is close to the freezing point of the hydrogen water 13. When heat is exchanged between the liquid and the hydrogen water 13 before being supplied to the ice making plate 31 in the process of reusing the liquid as water for generating the hydrogen water 13, the ice making plate 31 is subjected to heat exchange. The temperature of the sprayed hydrogen water 13 can be lowered, and the time required for ice making can be further shortened. Thereby, the dissolved concentration of the gas contained in the hydrogen ice and the content of fine bubbles can be increased. Further, since the liquid is at a low temperature close to the freezing point of the hydrogen water 13 but does not fall below the freezing point, the temperature of the hydrogen water 13 flowing through the ice making plate 31 is lowered in a range that does not fall below the freezing in a self-aligned manner. Therefore, the temperature of the hydrogen water 13 flowing through the ice making plate 31 can be suitably adjusted without complicating the structure by newly providing a cooling device or the like.

上記においては、貯留部61から移送された液体を貯留槽74に貯留し、貯留槽74に配管43の一部を浸漬することによって、当該液体と水素水13との熱交換を行ったが、他の態様で当該液体と水素水13との熱交換を行う構成であってもよい。   In the above, the liquid transferred from the storage unit 61 is stored in the storage tank 74, and by immersing a part of the pipe 43 in the storage tank 74, heat exchange between the liquid and the hydrogen water 13 is performed. The structure which performs heat exchange with the said liquid and the hydrogen water 13 in another aspect may be sufficient.

〔実施形態2〕
実施形態2に係るハーベスト型製氷装置3は、水素からなるファインバブルを含有する水素氷と、酸素からなるファインバブルを含有する酸素氷とを同時に製造できるものである。以下においては、上記のハーベスト型製氷装置1との相違部分についてのみ詳細に説明する。なお、上記の水素氷製造装置1と実質的に同一の構成については同一の参照符号を付すこととする。
[Embodiment 2]
The harvest type ice making device 3 according to the second embodiment can simultaneously produce hydrogen ice containing fine bubbles made of hydrogen and oxygen ice containing fine bubbles made of oxygen. Below, only a different part from said harvest type ice making apparatus 1 is demonstrated in detail. It should be noted that substantially the same configuration as the above-described hydrogen ice production apparatus 1 is denoted by the same reference numeral.

ハーベスト型製氷装置3は、図3に示されたように、更に、水を電気分解することによって水素と酸素とを生成する電解槽12’を更に備えている。また、水素水供給部20と同様の構成の酸素水供給部20’を更に備えている。酸素水供給部20’は、水を供給する配管21’と、酸素を供給する配管22’と、ポンプ23’と、放出器24’と、貯留槽25’とを備えている。また、貯留槽61と同様に、酸素氷を貯留する貯留槽61’を備えている。   As shown in FIG. 3, the harvest type ice making device 3 further includes an electrolytic cell 12 ′ that generates hydrogen and oxygen by electrolyzing water. Further, an oxygen water supply unit 20 ′ having the same configuration as that of the hydrogen water supply unit 20 is further provided. The oxygen water supply unit 20 ′ includes a pipe 21 ′ for supplying water, a pipe 22 ′ for supplying oxygen, a pump 23 ′, a discharger 24 ′, and a storage tank 25 ′. Further, similarly to the storage tank 61, a storage tank 61 'for storing oxygen ice is provided.

水素水供給部20で生成された水素水13は、複数の製氷板31の一部(図3においては左側の2枚)に散布され、酸素水供給部20’で生成された酸素水は、複数の製氷板31の一部(図3においては右側の2枚)に散布され、水素氷と酸素氷とを同時に生成する。水素水13の凝固点と酸素水13’の凝固点とは、実質的に同一であるために、各製氷板31の温度調節については、上記の実施形態1及び実施形態2と同様にして共通化させている。   The hydrogen water 13 generated by the hydrogen water supply unit 20 is dispersed on a part of the plurality of ice making plates 31 (two on the left side in FIG. 3), and the oxygen water generated by the oxygen water supply unit 20 ′ is Sprinkled on a part of the plurality of ice making plates 31 (two on the right side in FIG. 3), hydrogen ice and oxygen ice are generated simultaneously. Since the freezing point of the hydrogen water 13 and the freezing point of the oxygen water 13 ′ are substantially the same, the temperature adjustment of each ice making plate 31 is made common in the same manner as in the first and second embodiments. ing.

ハーベスト型製氷装置3であれば、水の電気分解によって同時に生成される水素と酸素との双方を無駄にすることなく、水素氷と酸素氷を製造できる。また、各製氷板31の温度調節を共通化できるために、装置構成を簡素化できる。   The harvest type ice making device 3 can produce hydrogen ice and oxygen ice without wasting both hydrogen and oxygen generated simultaneously by electrolysis of water. Moreover, since the temperature control of each ice making plate 31 can be made common, the apparatus configuration can be simplified.

上記においては、水の電気分解により生成される水素と酸素とを個別に含む氷を製造したが、水の電気分解により生成される水素を含む水素氷と、水素と同時に生成される酸素をオゾン化処理して生成されるオゾンを含むオゾン氷を同時に製造する構成とすることもできる。   In the above, ice containing hydrogen and oxygen separately produced by electrolysis of water was produced. However, hydrogen ice containing hydrogen produced by electrolysis of water and oxygen produced simultaneously with hydrogen were converted into ozone. It can also be set as the structure which manufactures simultaneously the ozone ice containing the ozone produced | generated by a chemical conversion process.

また、上記においては水の電気分解によって発生する水素と酸素とを用いる場合について説明したが、電気分解に限らず、同一の材料から実質的に同時に生成される物質を用いる構成とすることもできる。   In the above description, the case where hydrogen and oxygen generated by electrolysis of water are used has been described. However, the present invention is not limited to electrolysis, and may be configured to use substances generated substantially simultaneously from the same material. .

保冷剤、機能性飲料、機能性食品等の製造に利用可能である。   It can be used for the production of a cryogen, a functional beverage, a functional food and the like.

1,2,3:ハーベスト型製氷装置
11:水源
12:水素源
12’:電解槽
13:水素水
20:水素水供給部
20’:酸素水供給部
23:ポンプ
24:放出器
25:貯留槽
26:ポンプ
30:製氷部
31:製氷板
32:ノズル
33:冷媒通路
50:冷媒循環部
51:冷媒
52:フラッシュタンク
53:ポンプ
54A,54B:駆動弁
55:圧縮機
56:凝縮器
57:膨張弁
58A,58B:駆動弁
59:膨張弁
61,61’:貯留槽
71:ポンプ
74:貯留槽
1, 2, 3: Harvest type ice making device 11: Water source 12: Hydrogen source 12 ′: Electrolysis tank 13: Hydrogen water 20: Hydrogen water supply unit 20 ′: Oxygen water supply unit 23: Pump 24: Ejector 25: Reservoir 26: Pump 30: Ice making part 31: Ice making plate 32: Nozzle 33: Refrigerant passage 50: Refrigerant circulation part 51: Refrigerant 52: Flash tank 53: Pump 54A, 54B: Drive valve 55: Compressor 56: Condenser 57: Expansion Valves 58A and 58B: Drive valve 59: Expansion valves 61 and 61 ': Storage tank 71: Pump 74: Storage tank

Claims (7)

所定のガスをファインバブル発生器により原水にバブリングして溶存ガス含有水を生成し、当該溶存ガス含有水を供給する溶存ガス含有水供給部と、
複数の製氷板を有し、当該各製氷板の外側に流される前記溶存ガス含有水と当該各製氷板の内側に流される冷媒との熱交換により、前記溶存ガス含有水を凍結させる製氷機と、
を備える溶存ガス含有氷製造装置であって、
前記冷媒は、前記製氷板に液相の状態で流入し、当該製氷板の内部において一部が気化することで当該製氷板から気液混合状態で流出する、
ことを特徴とする溶存ガス含有氷製造装置。
A predetermined gas is bubbled into raw water by a fine bubble generator to generate dissolved gas-containing water, and a dissolved gas-containing water supply unit that supplies the dissolved gas-containing water;
An ice making machine having a plurality of ice making plates and freezing the dissolved gas containing water by heat exchange between the dissolved gas containing water flowing outside the ice making plates and a refrigerant flowing inside the ice making plates; ,
A dissolved gas-containing ice production apparatus comprising:
The refrigerant flows into the ice making plate in a liquid state, and partly evaporates inside the ice making plate to flow out from the ice making plate in a gas-liquid mixed state.
An apparatus for producing ice containing dissolved gas.
前記製氷機は、
前記製氷板から流出した前記気液混合状態の冷媒が案内され、当該冷媒を気相と液相とに分離する気液分離部と、
前記気液分離部における気相の冷媒を圧縮機及び凝縮器を経て液相に変化させ、当該液相となった冷媒を前記気液分離部に戻す液化部と、
前記気液分離部における液相の冷媒をポンプにより前記製氷板に供給する冷媒供給部と、
を含む、
請求項1に記載の溶存ガス含有氷製造装置。
The ice making machine
A gas-liquid separation unit that guides the refrigerant in the gas-liquid mixed state flowing out of the ice making plate and separates the refrigerant into a gas phase and a liquid phase;
A gas phase refrigerant in the gas-liquid separation unit is changed to a liquid phase through a compressor and a condenser, and a liquefaction unit that returns the liquid phase refrigerant to the gas-liquid separation unit;
A refrigerant supply unit for supplying liquid-phase refrigerant in the gas-liquid separation unit to the ice making plate by a pump;
including,
The dissolved gas-containing ice manufacturing apparatus according to claim 1.
前記製氷機は、
前記製氷板に前記気液分離部から供給される場合より高温である冷媒を供給し、前記溶存ガス含有水が前記製氷板で凍結してなる溶存ガス含有氷を前記製氷板から離脱させる高温冷媒供給部と、
前記製氷板から離脱した前記溶存ガス含有氷、及び、前記溶存ガス含有水であって前記製氷板で凍結しなかった又は前記溶存ガス含有氷が溶解してなる溶融水を受ける貯留部と、
前記貯留部における前記溶融水を前記原水として戻す帰還部と、
を含む、
請求項1又は2に記載の溶存ガス含有氷製造装置。
The ice making machine
A high-temperature refrigerant that supplies a refrigerant having a higher temperature than that supplied from the gas-liquid separation unit to the ice making plate, and causes the dissolved gas-containing ice formed by freezing the dissolved gas-containing water on the ice making plate to be separated from the ice making plate. A supply section;
The dissolved gas-containing ice separated from the ice making plate, and the reservoir that receives the dissolved water that is the dissolved gas-containing water and has not been frozen on the ice making plate or the dissolved gas-containing ice is melted,
A return section for returning the molten water in the storage section as the raw water;
including,
The dissolved gas containing ice manufacturing apparatus of Claim 1 or 2.
前記帰還部において、前記溶融水を前記原水として戻す過程において、当該溶融水と前記製氷板に放出される前の前記溶存ガス含有水とで熱交換させる、
請求項3に記載の溶存ガス含有氷製造装置。
In the returning part, in the process of returning the molten water as the raw water, heat exchange is performed between the molten water and the dissolved gas-containing water before being released to the ice making plate.
The dissolved gas-containing ice manufacturing apparatus according to claim 3.
前記溶存ガス含有水供給部は、1種類の原料から前記所定のガスとしての複数種類のガスを生成すると共に、前記複数種類のガスをファインバブル発生器により個別の前記原水にバブリングして、溶存ガスの種類が異なる複数種類の溶存ガス含有水を生成し、
前記複数の製氷板を前記溶存ガス含有水の種類数に応じて区分けし、区分けされた製氷板ごとに種類の異なる溶存ガス含有水を供給する、
請求項1〜4のいずれか一項に記載の溶存ガス含有氷製造装置。
The dissolved gas-containing water supply unit generates a plurality of types of gases as the predetermined gas from one type of raw material, and also bubbles the plurality of types of gases into the individual raw water using a fine bubble generator. Generate multiple types of dissolved gas-containing water with different types of gas,
Dividing the plurality of ice making plates according to the number of types of the dissolved gas-containing water, and supplying different types of dissolved gas-containing water for each divided ice making plate,
The dissolved gas containing ice manufacturing apparatus as described in any one of Claims 1-4.
前記所定のガスは、水素、酸素、窒素及びオゾンからなる群より選択される少なくとも一種類を含む、
請求項1〜5のいずれか一項に記載の溶存ガス含有氷製造装置。
The predetermined gas includes at least one selected from the group consisting of hydrogen, oxygen, nitrogen, and ozone.
The dissolved gas containing ice manufacturing apparatus as described in any one of Claims 1-5.
前記原料が水であり、前記複数種類のガスが水の電気分解により発生する水素と酸素とである、
請求項5に記載の溶存ガス含有氷製造装置。
The raw material is water, and the plurality of types of gases are hydrogen and oxygen generated by electrolysis of water,
The dissolved gas-containing ice manufacturing apparatus according to claim 5.
JP2017024155A 2017-02-13 2017-02-13 Dissolved gas-containing ice maker Pending JP2018132209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024155A JP2018132209A (en) 2017-02-13 2017-02-13 Dissolved gas-containing ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024155A JP2018132209A (en) 2017-02-13 2017-02-13 Dissolved gas-containing ice maker

Publications (1)

Publication Number Publication Date
JP2018132209A true JP2018132209A (en) 2018-08-23

Family

ID=63249578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024155A Pending JP2018132209A (en) 2017-02-13 2017-02-13 Dissolved gas-containing ice maker

Country Status (1)

Country Link
JP (1) JP2018132209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153587A (en) * 2019-03-20 2020-09-24 株式会社MARS Company ice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153587A (en) * 2019-03-20 2020-09-24 株式会社MARS Company ice

Similar Documents

Publication Publication Date Title
JP6128452B1 (en) Quick freezing method and quick freezing apparatus
JP6738642B2 (en) System that combines gas supply equipment and cooling equipment
WO2004080892A1 (en) Process for producing slush nitrogen and apparatus therefor
JP2012240901A (en) Production method for ozone-containing hydrate and device therefor, and ozone-containing hydrate
JP2018132209A (en) Dissolved gas-containing ice maker
JPWO2006114887A1 (en) Method and apparatus for producing slush fluid
JP2018132293A (en) Manufacturing device and manufacturing method of slurry ice
JPH11351773A (en) Method and system for producing hydrate
JP2001010989A (en) Device for producing methane hydrate and method for producing the same
JPWO2005075352A1 (en) Method for producing slush nitrogen and apparatus for producing the same
JP6236614B2 (en) Nitrogen-substituted ice cube production system and production method
JP2001010985A (en) Device for producing natural gas hydrate and method for producing the same
JP2005061720A (en) Salt-containing ice manufacturing device
JP2008134042A (en) Automatic ice machine
JP5127537B2 (en) Liquid cooling apparatus and method for gas hydrate manufacturing apparatus
JP2018071835A (en) Ice machine
JP2017078530A (en) Method for manufacturing ice from seawater
JPH03140767A (en) Ice heat accumulator
JP2020085425A (en) Cooling system
CN106560666A (en) Heat Storage System And Heat Storage Method
WO2024080285A1 (en) Liquefied gas vaporizer
CN220352253U (en) System for water electrolysis hydrogen production cooling technology
KR102000498B1 (en) Water purifier having ice-maker
JP2724201B2 (en) Direct contact ice storage method and equipment
JPH0297845A (en) Ice making method and ice heat accumulator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181019