JP2018132070A - Torque control mechanism and damper device using the same - Google Patents

Torque control mechanism and damper device using the same Download PDF

Info

Publication number
JP2018132070A
JP2018132070A JP2017023881A JP2017023881A JP2018132070A JP 2018132070 A JP2018132070 A JP 2018132070A JP 2017023881 A JP2017023881 A JP 2017023881A JP 2017023881 A JP2017023881 A JP 2017023881A JP 2018132070 A JP2018132070 A JP 2018132070A
Authority
JP
Japan
Prior art keywords
elastic body
rotating body
torque
elastic
control mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023881A
Other languages
Japanese (ja)
Other versions
JP6525018B2 (en
Inventor
英滋 土屋
Eiji Tsuchiya
英滋 土屋
祥宏 水野
Sachihiro Mizuno
祥宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017023881A priority Critical patent/JP6525018B2/en
Priority to US15/882,170 priority patent/US10598250B2/en
Publication of JP2018132070A publication Critical patent/JP2018132070A/en
Application granted granted Critical
Publication of JP6525018B2 publication Critical patent/JP6525018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To control peak torque or torque characteristic for a rotor, without using a complicated method.SOLUTION: A torque control mechanism includes a rotor 10, and a first elastic body 18a and a second elastic body 18b configured to impart elastic force to the rotor 10, wherein torque imparted to the rotor 10 from each of the first elastic body 18a and second elastic body 18b with rotation of the rotor 10 changes periodically, here, a phase of torque imparted to the rotor 10 from at least one of the first elastic body 18a and second elastic body 18b changes, thereby making a characteristic of the whole torque imparted to the rotor 10 variable.SELECTED DRAWING: Figure 1

Description

本発明は、トルク制御機構及びそれを用いたダンパー装置に関する。   The present invention relates to a torque control mechanism and a damper device using the same.

車両等において出力及び回転数が大きくなると、クランクシャフトに対して捩り振動や曲げ振動が増大する。そこで、クランクシャフトの軸端にラバーダンパーを設けて捩り振動や曲げ振動を抑制する技術が採用されている。   When the output and the rotational speed are increased in a vehicle or the like, torsional vibration and bending vibration increase with respect to the crankshaft. Therefore, a technique is adopted in which a rubber damper is provided at the shaft end of the crankshaft to suppress torsional vibration and bending vibration.

例えば、ダンパーディスクの外周部にラバーを介して円環状の慣性体を配置し、設定回転数にて慣性体とダンパーディスクとに一斉にばねを接続するばね端固着手段を備えた可変ばね定数型回転軸振動ダンパーが開示されている(特許文献1)。   For example, a variable spring constant type equipped with a spring end fixing means in which an annular inertial body is disposed on the outer periphery of a damper disk via a rubber, and a spring is connected to the inertial body and the damper disk at a set rotational speed all at once. A rotary shaft vibration damper is disclosed (Patent Document 1).

特開平3−140653号公報JP-A-3-140653

ところで、従来の可変ばね定数式のダンパーでは、ばね自体の固定位置や与圧によって捩りダンパーの剛性の全体を変化させる。したがって、剛性を可変にできる範囲が限定され、構造が複雑化したり、剛性を可変にするタイミングが制約されたりするという問題がある。また、ばねに大きな力が加わった場合のトルクを制限するために、ばねと直列に摩擦材を設ける必要がある。   By the way, in the conventional variable spring constant type damper, the rigidity of the torsional damper is entirely changed by the fixing position of the spring itself and the applied pressure. Therefore, there is a problem that the range in which the rigidity can be varied is limited, the structure is complicated, and the timing for varying the rigidity is restricted. Further, in order to limit the torque when a large force is applied to the spring, it is necessary to provide a friction material in series with the spring.

本発明の1つの態様は、回転体と、前記回転体に弾性力を与える複数の弾性構造と、を備え、前記回転体の回転に伴って前記弾性構造の各々から前記回転体に与えられるトルクが周期的に変化し、前記弾性構造の少なくとも1つから前記回転体に与えられるトルクの位相を変化させることで前記回転体に与えられる全体のトルク特性を可変としたことを特徴とするトルク制御機構である。   One aspect of the present invention includes a rotating body and a plurality of elastic structures that apply elastic force to the rotating body, and torque that is applied to the rotating body from each of the elastic structures as the rotating body rotates. The torque control is characterized in that the torque characteristic applied to the rotating body is variable by changing the phase of the torque applied to the rotating body from at least one of the elastic structures. Mechanism.

ここで、前記弾性構造の少なくとも1つから前記回転体に与えられるトルクの位相を変化させることで前記弾性構造の残りから前記回転体に与えられるトルクを打ち消し合うことで前記回転体に与えられる全体のトルクをゼロにすることを可能としたことが好適である。   Here, by changing the phase of the torque applied to the rotating body from at least one of the elastic structures, the torque applied to the rotating body is canceled by canceling out the torque applied to the rotating body from the rest of the elastic structure. It is preferable to make it possible to reduce the torque to zero.

また、前記回転体は、クランク軸を備え、前記弾性構造は、前記クランク軸に接続された弾性体であることが好適である。   Preferably, the rotating body includes a crankshaft, and the elastic structure is an elastic body connected to the crankshaft.

また、前記回転体は、磁石を備え、前記弾性構造は、前記回転体に備えられた前記磁石との間で磁力を発生させる磁石を備えることが好適である。   In addition, it is preferable that the rotating body includes a magnet, and the elastic structure includes a magnet that generates a magnetic force with the magnet included in the rotating body.

また、前記回転体は、カムを備え、前記弾性構造は、前記カムの回転軸の回転角に応じて変化する弾性力を前記カムに与える弾性体を備えることが好適である。   Further, it is preferable that the rotating body includes a cam, and the elastic structure includes an elastic body that gives the cam an elastic force that changes in accordance with a rotation angle of a rotating shaft of the cam.

本発明の別の態様は、上記トルク制御機構を備え、前記回転体に対する制振性を高めるときには、前記回転体に与えられる全体のトルクを減少させ、前記回転体から出力するトルクを高めるときには、前記回転体に与えられる全体のトルクを増加させることを特徴とするダンパー装置である。   Another aspect of the present invention includes the torque control mechanism described above, and when increasing the damping performance for the rotating body, when reducing the overall torque applied to the rotating body and increasing the torque output from the rotating body, The damper device is characterized in that an overall torque applied to the rotating body is increased.

本発明によれば、複雑な方法を用いることなく、回転体に対するピークトルクやトルク特性を制御することを可能とする。   According to the present invention, it is possible to control peak torque and torque characteristics for a rotating body without using a complicated method.

本発明の実施の形態におけるトルク制御機構の構成を示す図面である。It is drawing which shows the structure of the torque control mechanism in embodiment of this invention. 本発明の実施の形態におけるトルク制御機構の構成を示す図面である。It is drawing which shows the structure of the torque control mechanism in embodiment of this invention. 本発明の実施の形態におけるトルク制御機構によって回転体に与えられる弾性力を示す図である。It is a figure which shows the elastic force given to a rotary body by the torque control mechanism in embodiment of this invention. 本発明の実施の形態におけるトルク制御機構によって回転体に与えられるトルクを示す図である。It is a figure which shows the torque provided to a rotary body by the torque control mechanism in embodiment of this invention. 本発明の実施の形態におけるトルク制御機構によって回転体に与えられる弾性力を示す図である。It is a figure which shows the elastic force given to a rotary body by the torque control mechanism in embodiment of this invention. 本発明の実施の形態におけるトルク制御機構によって回転体に与えられるトルクを示す図である。It is a figure which shows the torque provided to a rotary body by the torque control mechanism in embodiment of this invention. 本発明の変形例1におけるトルク制御機構の構成を示す分解組立図である。It is a disassembled assembly figure which shows the structure of the torque control mechanism in the modification 1 of this invention. 本発明の変形例1におけるトルク制御機構の構成を示す図面である。It is drawing which shows the structure of the torque control mechanism in the modification 1 of this invention. 本発明の変形例1におけるトルク制御機構によって回転体に与えられるトルクを示す図である。It is a figure which shows the torque provided to a rotary body by the torque control mechanism in the modification 1 of this invention. 本発明の変形例1におけるトルク制御機構によって回転体に与えられるトルクを示す図である。It is a figure which shows the torque provided to a rotary body by the torque control mechanism in the modification 1 of this invention. 本発明の変形例2におけるトルク制御機構の構成を示す図面である。It is drawing which shows the structure of the torque control mechanism in the modification 2 of this invention. 本発明のトルク制御機構を用いたダンパー装置の構成を示す図である。It is a figure which shows the structure of the damper apparatus using the torque control mechanism of this invention.

[基本構成]
本発明の実施の形態におけるトルク制御機構100は、図1(a)〜(c)に示すように、回転体10、ケース12、保持部14(第1保持部14a,第2保持部14b)、弾性体保持部16(第1弾性体保持部16a,第2弾性体保持部16b)、弾性体18(第1弾性体18a,第2弾性体18b)を含んで構成される。トルク制御機構100は、回転体10の回転に伴って回転体10にトルクを与える機構である。
[Basic configuration]
As shown in FIGS. 1A to 1C, the torque control mechanism 100 according to the embodiment of the present invention includes a rotating body 10, a case 12, and a holding portion 14 (first holding portion 14a and second holding portion 14b). The elastic body holding part 16 (first elastic body holding part 16a, second elastic body holding part 16b) and the elastic body 18 (first elastic body 18a, second elastic body 18b) are configured. The torque control mechanism 100 is a mechanism that applies torque to the rotating body 10 as the rotating body 10 rotates.

図1(a)は、トルク制御機構100の断面側面図を示す。図1(b)は、トルク制御機構100をA方向からみた正面図を示す。図1(c)は、トルク制御機構100をB方向からみた背面図を示す。なお、図面が煩雑になるのを防ぐため、図1(b)では第2弾性体18bを省略し、図1(c)では第1弾性体18aを省略して図示している。   FIG. 1A shows a sectional side view of the torque control mechanism 100. FIG. 1B shows a front view of the torque control mechanism 100 as viewed from the A direction. FIG. 1C is a rear view of the torque control mechanism 100 as viewed from the B direction. In order to prevent the drawing from becoming complicated, the second elastic body 18b is omitted in FIG. 1B, and the first elastic body 18a is omitted in FIG. 1C.

回転体10は、回転軸Mを回転中心として回転する回転体である。回転体10は、図1(a)に示すように、回転軸Mからはずれた軸を結ぶクランク部10aと当該軸と180°ずれた軸を結ぶクランク部10bとを有するクランク構造を備えている。回転体10は、機械的な強度を有する金属等で形成することができる。   The rotating body 10 is a rotating body that rotates about the rotation axis M as a rotation center. As shown in FIG. 1A, the rotating body 10 includes a crank structure having a crank portion 10a connecting a shaft deviated from the rotation axis M and a crank portion 10b connecting a shaft deviated by 180 ° from the shaft. . The rotating body 10 can be formed of a metal having mechanical strength.

ケース12は、回転軸Mを中心とし、回転体10、保持部14、弾性体保持部16及び弾性体18を内部に収納する円筒状の部材である。ケース12は、機械的な強度を有する金属等で形成することができる。   The case 12 is a cylindrical member that houses the rotating body 10, the holding portion 14, the elastic body holding portion 16, and the elastic body 18 inside the rotation axis M. The case 12 can be formed of a metal having mechanical strength.

弾性体保持部16は、第1弾性体保持部16a及び第2弾性体保持部16bを含んで構成され、弾性体18の一端が固定される部材である。第1弾性体保持部16a及び第2弾性体保持部16bは、回転軸Mを中心とし、ケース12の内径よりも小さな外径を有する円筒状の部材とすることができる。第1弾性体保持部16aの内面には第1弾性体18aの一端が固定される。第2弾性体保持部16bの内面には第2弾性体18bの一端が固定される。第1弾性体保持部16aと第2弾性体保持部16bは、回転軸Mに沿って並べて配置される。第1弾性体保持部16a及び第2弾性体保持部16bは、機械的な強度を有する金属等で形成することができる。   The elastic body holding part 16 includes a first elastic body holding part 16a and a second elastic body holding part 16b, and is a member to which one end of the elastic body 18 is fixed. The first elastic body holding portion 16 a and the second elastic body holding portion 16 b can be cylindrical members having an outer diameter smaller than the inner diameter of the case 12 with the rotation axis M as the center. One end of the first elastic body 18a is fixed to the inner surface of the first elastic body holding portion 16a. One end of the second elastic body 18b is fixed to the inner surface of the second elastic body holding portion 16b. The first elastic body holding part 16a and the second elastic body holding part 16b are arranged side by side along the rotation axis M. The 1st elastic body holding | maintenance part 16a and the 2nd elastic body holding | maintenance part 16b can be formed with the metal etc. which have mechanical strength.

保持部14は、第1保持部14a及び第2保持部14bを含んで構成される。第1保持部14aは、第1弾性体保持部16aをケース12に対して回転しないように保持する部材である。第2保持部14bは、第2弾性体保持部16bをケース12に対して回転しないように保持する部材である。ただし、第1保持部14aと第2保持部14bは、第1弾性体保持部16aと第2弾性体保持部16bとが回転軸Mを中心として相対的に回転可能なようにケース12に保持する手段とする。例えば、第1保持部14aは第1弾性体保持部16aをケース12に完全に固定する接着剤等とし、第2保持部14bは第2弾性体保持部16bをケース12に対して相対的に回転可能かつ固定可能なラッチ機構等とすればよい。   The holding unit 14 includes a first holding unit 14a and a second holding unit 14b. The first holding portion 14 a is a member that holds the first elastic body holding portion 16 a so as not to rotate with respect to the case 12. The second holding portion 14 b is a member that holds the second elastic body holding portion 16 b so as not to rotate with respect to the case 12. However, the first holding portion 14a and the second holding portion 14b are held in the case 12 so that the first elastic body holding portion 16a and the second elastic body holding portion 16b can be relatively rotated about the rotation axis M. It is a means to do. For example, the first holding portion 14 a is an adhesive or the like that completely fixes the first elastic body holding portion 16 a to the case 12, and the second holding portion 14 b has the second elastic body holding portion 16 b relatively to the case 12. A latch mechanism that can be rotated and fixed may be used.

弾性体18は、第1弾性体18a及び第2弾性体18bを含んで構成される。第1弾性体18a及び第2弾性体18bは、弾性力を発生させる部材であり、特に限定されるものではないが、例えばスプリング、ゴム等とすることができる。第1弾性体18aの一端は第1弾性体保持部16aの内面に固定され、他端は回転体10のクランク部10aに固定される。第2弾性体18bの一端は第2弾性体保持部16bの内面に固定され、他端は回転体10のクランク部10bに固定される。   The elastic body 18 includes a first elastic body 18a and a second elastic body 18b. The first elastic body 18a and the second elastic body 18b are members that generate elastic force, and are not particularly limited, but may be, for example, a spring, rubber, or the like. One end of the first elastic body 18a is fixed to the inner surface of the first elastic body holding portion 16a, and the other end is fixed to the crank portion 10a of the rotating body 10. One end of the second elastic body 18b is fixed to the inner surface of the second elastic body holding portion 16b, and the other end is fixed to the crank portion 10b of the rotating body 10.

本実施の形態では、第1弾性体18aと第2弾性体18bは同じ弾性特性を有するものとする。ただし、これに限定されるものではなく、トルク制御機構100によって回転体10に与えようとするトルク特性に応じて第1弾性体18a及び第2弾性体18bの弾性特性は適宜設定すればよい。   In the present embodiment, it is assumed that the first elastic body 18a and the second elastic body 18b have the same elastic characteristics. However, the present invention is not limited to this, and the elastic characteristics of the first elastic body 18a and the second elastic body 18b may be appropriately set according to the torque characteristics to be applied to the rotating body 10 by the torque control mechanism 100.

このように、本実施の形態のトルク制御機構100では、第1弾性体保持部16aと第1弾性体18aの組からなる弾性構造、及び、第2弾性体保持部16bと第2弾性体18bの組からなる弾性構造を備える。すなわち、回転体10に対して弾性力を与える2組の弾性構造を備える。   As described above, in the torque control mechanism 100 of the present embodiment, the elastic structure including the first elastic body holding portion 16a and the first elastic body 18a, and the second elastic body holding portion 16b and the second elastic body 18b. The elastic structure which consists of a group is provided. In other words, two sets of elastic structures that apply elastic force to the rotating body 10 are provided.

トルク制御機構100では、第2保持部14bにより第2弾性体保持部16bをケース12に対して回転可能な状態とし、第2弾性体保持部16bをケース12に対して回転させることができる。第2保持部14bがラッチ機構である場合、ラッチを開放することによって第2弾性体保持部16bがケース12に対して回転可能な状態とすることができる。例えば、図2(a)〜(c)に示すように、図1の状態に対して第2弾性体保持部16bを180°回転させた状態にすることができる。   In the torque control mechanism 100, the second elastic body holding portion 16b can be rotated with respect to the case 12 by the second holding portion 14b, and the second elastic body holding portion 16b can be rotated with respect to the case 12. When the second holding portion 14b is a latch mechanism, the second elastic body holding portion 16b can be rotated with respect to the case 12 by releasing the latch. For example, as shown in FIGS. 2A to 2C, the second elastic body holding portion 16b can be rotated 180 ° with respect to the state shown in FIG.

図1の状態では、図3の実線に示すように、第1弾性体18aによって回転体10に弾性力が周期的に与えられる。また、図3の破線に示すように、第2弾性体18bによって回転体10に弾性力が周期的に与えられる。第1弾性体18aによって回転体10に与えられる弾性力と第2弾性体18bによって回転体10に与えられる弾性力は180°(半周期)だけ位相がずれた状態となる。   In the state of FIG. 1, as shown by the solid line in FIG. 3, an elastic force is periodically applied to the rotating body 10 by the first elastic body 18a. Further, as shown by a broken line in FIG. 3, an elastic force is periodically applied to the rotating body 10 by the second elastic body 18b. The elastic force applied to the rotating body 10 by the first elastic body 18a and the elastic force applied to the rotating body 10 by the second elastic body 18b are out of phase by 180 ° (half cycle).

回転体10が回転した場合、図4に示すように、第1弾性体18a及び第2弾性体18bのそれぞれから回転体10に対してトルクが与えられる。図4では、第1弾性体18aによって回転体10に与えられるトルクを細実線で示し、第2弾性体18bによって回転体10に与えられるトルクを細破線で示している。したがって、第1弾性体18aと第2弾性体18bとによって回転体10に与えられる合成トルクは太実線で示されるようになる。   When the rotating body 10 rotates, torque is applied to the rotating body 10 from each of the first elastic body 18a and the second elastic body 18b as shown in FIG. In FIG. 4, the torque applied to the rotating body 10 by the first elastic body 18a is indicated by a thin solid line, and the torque applied to the rotating body 10 by the second elastic body 18b is indicated by a thin broken line. Accordingly, the combined torque applied to the rotating body 10 by the first elastic body 18a and the second elastic body 18b is indicated by a thick solid line.

これに対して、図2の状態は、図5に示すように、第1弾性体18aによって回転体10に与えられる弾性力と第2弾性体18bによって回転体10に与えられる弾性力は位相が揃った状態である。   On the other hand, as shown in FIG. 5, the state of FIG. 2 has a phase difference between the elastic force applied to the rotating body 10 by the first elastic body 18a and the elastic force applied to the rotating body 10 by the second elastic body 18b. It is in an aligned state.

回転体10が回転した場合、図6に示すように、第1弾性体18a及び第2弾性体18bのそれぞれから回転体10に対してトルクが与えられる。図4では、第1弾性体18a及び第2弾性体18bによって回転体10に与えられるトルクを細実線で示している。したがって、第1弾性体18aと第2弾性体18bとによって回転体10に与えられる合成トルクは太実線で示されるようになる。   When the rotating body 10 rotates, torque is applied to the rotating body 10 from each of the first elastic body 18a and the second elastic body 18b as shown in FIG. In FIG. 4, the torque applied to the rotating body 10 by the first elastic body 18a and the second elastic body 18b is indicated by a thin solid line. Accordingly, the combined torque applied to the rotating body 10 by the first elastic body 18a and the second elastic body 18b is indicated by a thick solid line.

このように、本実施の形態におけるトルク制御機構100では、第2弾性体保持部16bと第2弾性体18bとからなる弾性構造から回転体10に与えられるトルクの位相を変化させることで回転体10に与えられる合成トルクを可変とすることができる。   As described above, in the torque control mechanism 100 according to the present embodiment, the rotating body is changed by changing the phase of the torque applied to the rotating body 10 from the elastic structure including the second elastic body holding portion 16b and the second elastic body 18b. 10 can be made variable.

すなわち、回転体10の回転に対してトルクが正負に反転するような弾性構造を複数設け、少なくとも1つの弾性構造から回転体10に与えられる位相を可変とすることによって、複雑な方法を用いることなく、回転体10に対するピークトルクやトルク特性を制御することが可能となる。   That is, a complicated method is used by providing a plurality of elastic structures whose torques are reversed positively and negatively with respect to the rotation of the rotating body 10 and making the phase given to the rotating body 10 from at least one elastic structure variable. In addition, it is possible to control the peak torque and torque characteristics for the rotating body 10.

[変形例1]
上記実施の形態では、第1弾性体保持部16aと第1弾性体18aとを含む弾性構造及び第2弾性体保持部16bと第2弾性体18bとを含む弾性構造とを組み合わせた構成としたがこれに限定されるものではない。変形例1におけるトルク制御機構200は、図7及び図8に示すように、回転体20、ケース22、保持部24(第1保持部24a,第2保持部24b)、弾性体保持部26(第1弾性体保持部26a,第2弾性体保持部26b)、磁石28(第1磁石28a,第2磁石28b,第3磁石28c)を含んで構成される。なお、図7は、トルク制御機構200の分解組立図を示す。図8は、トルク制御機構200の外観斜視図を示す。
[Modification 1]
In the said embodiment, it was set as the structure which combined the elastic structure containing the 1st elastic body holding part 16a and the 1st elastic body 18a, and the elastic structure containing the 2nd elastic body holding part 16b and the 2nd elastic body 18b. However, it is not limited to this. As shown in FIGS. 7 and 8, the torque control mechanism 200 in the first modification includes a rotating body 20, a case 22, a holding portion 24 (first holding portion 24a and second holding portion 24b), and an elastic body holding portion 26 ( The first elastic body holding portion 26a and the second elastic body holding portion 26b) and the magnet 28 (the first magnet 28a, the second magnet 28b, and the third magnet 28c) are configured. FIG. 7 shows an exploded view of the torque control mechanism 200. FIG. 8 is an external perspective view of the torque control mechanism 200.

回転体20は、回転軸Mを回転中心として回転する回転体である。回転体20は、円柱形状のロータ20aとその中心に貫通して固定された軸20bとを備える。ロータ20a及び軸20bは、機械的強度を有する材料、特に磁性体によって構成することが好適である。ロータ20aの外周部には、第1磁石28aが配置される。第1磁石28aは、ロータ20aの径方向に向けて交互に極性が入れ替わるようにロータ20aの周囲に等間隔に配置される。本実施の形態では、4つの第1磁石28aが90°置きに極性が交互に入れ替わるように配置された例を示している。   The rotating body 20 is a rotating body that rotates about the rotation axis M as a rotation center. The rotating body 20 includes a columnar rotor 20a and a shaft 20b that penetrates and is fixed to the center of the rotor 20a. The rotor 20a and the shaft 20b are preferably made of a material having mechanical strength, particularly a magnetic material. A first magnet 28a is disposed on the outer periphery of the rotor 20a. The first magnets 28a are arranged at equal intervals around the rotor 20a so that the polarities are alternately switched in the radial direction of the rotor 20a. In the present embodiment, an example is shown in which the four first magnets 28a are arranged so that the polarities are alternately switched every 90 °.

ケース22は、回転軸Mを中心とし、回転体20、保持部24、弾性体保持部26及び磁石28を内部に収納する円筒状の部材である。ケース22は、弾性体保持部26の外径よりも大きな内径を有する略円筒形状の部材とする。ケース22は、機械的な強度を有する金属等で形成することができる。   The case 22 is a cylindrical member that houses the rotating body 20, the holding part 24, the elastic body holding part 26, and the magnet 28 inside with the rotation axis M as the center. The case 22 is a substantially cylindrical member having an inner diameter larger than the outer diameter of the elastic body holding portion 26. The case 22 can be formed of a metal having mechanical strength.

弾性体保持部26は、第1弾性体保持部26a及び第2弾性体保持部26bを含んで構成される。第1弾性体保持部26a及び第2弾性体保持部26bは、第2磁石28b及び第3磁石28cがそれぞれ固定される部材である。第1弾性体保持部26a及び第2弾性体保持部26bは、回転軸Mを中心とし、ケース22の内径よりも小さな外径を有し、ロータ20aの外径より大きい内径を有する円筒状の部材とすることができる。第1弾性体保持部26aと第2弾性体保持部26bは、回転軸Mに沿って並べてケース22内に配置される。第1弾性体保持部26a及び第2弾性体保持部26bは、機械的強度を有する材料、特に磁性体によって構成することが好適である。   The elastic body holding part 26 includes a first elastic body holding part 26a and a second elastic body holding part 26b. The first elastic body holding portion 26a and the second elastic body holding portion 26b are members to which the second magnet 28b and the third magnet 28c are respectively fixed. The first elastic body holding portion 26a and the second elastic body holding portion 26b have a cylindrical shape having an outer diameter smaller than the inner diameter of the case 22 and having an inner diameter larger than the outer diameter of the rotor 20a with the rotation axis M as the center. It can be a member. The first elastic body holding part 26 a and the second elastic body holding part 26 b are arranged in the case 22 along the rotation axis M. The first elastic body holding part 26a and the second elastic body holding part 26b are preferably made of a material having mechanical strength, particularly a magnetic material.

第1弾性体保持部26aの内周面には第2磁石28bが配置される。第2磁石28bは、第1弾性体保持部26aの径方向に向けて交互に極性が入れ替わるように第1弾性体保持部26aの周囲に等間隔に配置される。本実施の形態では、4つの第2磁石28bが90°置きに極性が交互に入れ替わるように配置された例を示している。第2弾性体保持部26bの内周面には第3磁石28cが配置される。第3磁石28cは、第2弾性体保持部26bの径方向に向けて交互に極性が入れ替わるように第2弾性体保持部26bの周囲に等間隔に配置される。本実施の形態では、4つの第3磁石28cが90°置きに極性が交互に入れ替わるように配置された例を示している。   The 2nd magnet 28b is arrange | positioned at the internal peripheral surface of the 1st elastic body holding | maintenance part 26a. The second magnets 28b are arranged at equal intervals around the first elastic body holding portion 26a so that the polarities are alternately switched in the radial direction of the first elastic body holding portion 26a. In the present embodiment, an example is shown in which the four second magnets 28b are arranged so that the polarities are alternately switched every 90 °. A third magnet 28c is disposed on the inner peripheral surface of the second elastic body holding portion 26b. The third magnets 28c are arranged at equal intervals around the second elastic body holding portion 26b so that the polarities are alternately switched in the radial direction of the second elastic body holding portion 26b. In the present embodiment, an example is shown in which the four third magnets 28c are arranged so that the polarities are alternately switched every 90 °.

保持部24は、第1保持部24a及び第2保持部24bを含んで構成される。第1保持部24aは、第1弾性体保持部26aをケース22に対して回転しないように保持する部材である。第2保持部24bは、第2弾性体保持部26bをケース22に対して回転しないように保持する部材である。ただし、第1保持部24aと第2保持部24bは、第1弾性体保持部26aと第2弾性体保持部26bとが回転軸Mを中心として相対的に回転可能なようにケース22に保持する手段とする。例えば、第2保持部24bは第2弾性体保持部26bをケース22に完全に固定する接着剤等とし、第1保持部24aは第1弾性体保持部26aをケース22に対して相対的に回転可能かつ固定可能なラッチ機構等とすればよい。   The holding unit 24 includes a first holding unit 24a and a second holding unit 24b. The first holding portion 24 a is a member that holds the first elastic body holding portion 26 a so as not to rotate with respect to the case 22. The second holding portion 24 b is a member that holds the second elastic body holding portion 26 b so as not to rotate with respect to the case 22. However, the first holding part 24a and the second holding part 24b are held in the case 22 so that the first elastic body holding part 26a and the second elastic body holding part 26b can be relatively rotated about the rotation axis M. It is a means to do. For example, the second holding portion 24b is made of an adhesive or the like that completely fixes the second elastic body holding portion 26b to the case 22, and the first holding portion 24a has the first elastic body holding portion 26a relatively to the case 22. A latch mechanism that can be rotated and fixed may be used.

本実施の形態では、第2磁石28bと第3磁石28cはそれぞれ同じ磁力を有するものとする。ただし、これに限定されるものではなく、トルク制御機構200によって回転体20に与えようとするトルク特性に応じて第2磁石28bと第3磁石28cの磁力は適宜設定すればよい。   In the present embodiment, it is assumed that the second magnet 28b and the third magnet 28c have the same magnetic force. However, the present invention is not limited to this, and the magnetic force of the second magnet 28b and the third magnet 28c may be appropriately set according to the torque characteristics to be applied to the rotating body 20 by the torque control mechanism 200.

このように、本実施の形態のトルク制御機構200では、回転体20の外周に配置された第1磁石28aと第1弾性体保持部26aの内周に配置された第2磁石28bの組からなる弾性構造、及び、回転体20の外周に配置された第1磁石28aと第2弾性体保持部26bの内周に配置された第3磁石28cの組からなる弾性構造を備える。すなわち、回転体20が回転する際に回転体20に対して弾性力を与える2組の弾性構造を備える。   As described above, in the torque control mechanism 200 of the present embodiment, the first magnet 28a disposed on the outer periphery of the rotating body 20 and the second magnet 28b disposed on the inner periphery of the first elastic body holding portion 26a. And an elastic structure composed of a set of a first magnet 28a disposed on the outer periphery of the rotating body 20 and a third magnet 28c disposed on the inner periphery of the second elastic body holding portion 26b. In other words, two sets of elastic structures are provided that give elastic force to the rotating body 20 when the rotating body 20 rotates.

トルク制御機構200では、第1保持部24aにより第1弾性体保持部26aをケース22に対して回転可能な状態とし、第1弾性体保持部26aをケース22に対して回転させることができる。第1保持部24aがラッチ機構である場合、ラッチを開放することによって第1弾性体保持部26aがケース22に対して回転可能な状態とすることができる。   In the torque control mechanism 200, the first elastic body holding part 26a can be rotated with respect to the case 22 by the first holding part 24a, and the first elastic body holding part 26a can be rotated with respect to the case 22. When the first holding part 24a is a latch mechanism, the first elastic body holding part 26a can be rotated with respect to the case 22 by releasing the latch.

例えば、図9(a)及び図9(b)に示すように、第1弾性体保持部26aに保持された第2磁石28bとロータ20aに保持された第1磁石28aとの位置関係が第2弾性体保持部26bに保持された第3磁石28cとロータ20aに保持された第1磁石28aとの位置関係と逆位相(180°位相差)となるようにすることができる。また、図10(a)及び図10(b)に示すように、第1弾性体保持部26aに保持された第2磁石28bとロータ20aに保持された第1磁石28aとの位置関係が第2弾性体保持部26bに保持された第3磁石28cとロータ20aに保持された第1磁石28aとの位置関係と同位相(0位相差)となるようにすることができる。   For example, as shown in FIGS. 9A and 9B, the positional relationship between the second magnet 28b held by the first elastic body holding portion 26a and the first magnet 28a held by the rotor 20a is first. 2 The phase relationship between the third magnet 28c held by the elastic body holding portion 26b and the first magnet 28a held by the rotor 20a can be opposite in phase (180 ° phase difference). Further, as shown in FIGS. 10A and 10B, the positional relationship between the second magnet 28b held by the first elastic body holding portion 26a and the first magnet 28a held by the rotor 20a is first. The phase relationship between the third magnet 28c held by the second elastic body holding part 26b and the first magnet 28a held by the rotor 20a can be the same phase (0 phase difference).

図9の逆位相(180°位相差)の状態では、図9(c)の細実線に示すように、第1弾性体保持部26aに保持された第2磁石28bとロータ20aに保持された第1磁石28aとの間の磁力によって回転体20にトルクが周期的に与えられる。また、図9(c)の細破線に示すように、第2弾性体保持部26bに保持された第3磁石28cとロータ20aに保持された第1磁石28aとの間の磁力によって回転体20にトルクが周期的に与えられる。これらのトルクは互いに打ち消し合い、図9(c)の太実線に示すように、回転体20に与えられるトルクはゼロとなる。   In the state of the reverse phase (180 ° phase difference) in FIG. 9, the second magnet 28b held by the first elastic body holding part 26a and the rotor 20a are held by the thin solid line in FIG. 9C. Torque is periodically applied to the rotating body 20 by the magnetic force between the first magnet 28a. Further, as shown by a thin broken line in FIG. 9C, the rotating body 20 is generated by the magnetic force between the third magnet 28c held by the second elastic body holding portion 26b and the first magnet 28a held by the rotor 20a. Torque is periodically applied. These torques cancel each other, and the torque applied to the rotating body 20 becomes zero as shown by the thick solid line in FIG.

これに対して、図10の同位相(0位相差)の状態では、図10(c)の細実線に示すように、第1弾性体保持部26aに保持された第2磁石28bとロータ20aに保持された第1磁石28aとの間の磁力によって回転体20にトルクが周期的に与えられる。また、第2弾性体保持部26bに保持された第3磁石28cとロータ20aに保持された第1磁石28aとの間の磁力によって回転体20に与えられるトルクも同位相となる。したがって、図10(c)の太実線に示すように、回転体20に与えられる合成トルクは第1弾性体保持部26aと第2弾性体保持部26bとから回転体20に与えられるトルクを加算した値となる。   On the other hand, in the state of the same phase (0 phase difference) in FIG. 10, as shown by a thin solid line in FIG. 10C, the second magnet 28b held by the first elastic body holding portion 26a and the rotor 20a. Torque is periodically applied to the rotating body 20 by the magnetic force between the first magnet 28a and the first magnet 28a. Further, the torque applied to the rotating body 20 by the magnetic force between the third magnet 28c held by the second elastic body holding portion 26b and the first magnet 28a held by the rotor 20a also has the same phase. Therefore, as shown by the thick solid line in FIG. 10C, the combined torque applied to the rotating body 20 is the sum of the torque applied to the rotating body 20 from the first elastic body holding portion 26a and the second elastic body holding portion 26b. It becomes the value.

このように、本実施の形態におけるトルク制御機構200では、第1弾性体保持部26a及び第2磁石28bからなる弾性構造から回転体20に与えられるトルクの位相を変化させることで回転体20に与えられる合成トルクを可変とすることができる。   As described above, in the torque control mechanism 200 according to the present embodiment, the rotating body 20 is changed by changing the phase of the torque applied to the rotating body 20 from the elastic structure including the first elastic body holding portion 26a and the second magnet 28b. The applied composite torque can be made variable.

なお、トルク制御機構200では、位相を180°ずらすことでトルクを完全に打ち消し合うことができる。すなわち、0〜180°の位相範囲におけるトルクをT0−180とし、180°〜360°の位相範囲におけるトルクをT180−360とした場合に数式(1)の関係を満たす。
(数1)
0−180=−T180−360 ・・・(1)
The torque control mechanism 200 can completely cancel the torque by shifting the phase by 180 °. That is, when the torque in the phase range of 0 to 180 ° is T 0-180 and the torque in the phase range of 180 ° to 360 ° is T 180-360 , the relationship of Expression (1) is satisfied.
(Equation 1)
T 0-180 = -T 180-360 (1)

トルク制御機構200のように、数式(1)を満たす構成とすることによって、より広い範囲でトルクを変化させることができ、トルクを発生させる必要がない場合にはトルクをゼロにするゼロトルク制御が可能となる。   As in the torque control mechanism 200, the torque satisfying the formula (1) can be changed so that the torque can be changed in a wider range, and when it is not necessary to generate the torque, zero torque control that makes the torque zero is performed. It becomes possible.

[変形例2]
なお、数式(1)を満たす別の構成としては、図11(a)及び図11(b)に示すように、カムを用いたトルク制御機構300が挙げられる。トルク制御機構300は、回転体30、ケース32、保持部34(第1保持部34a,第2保持部34b)、弾性体保持部36(第1弾性体保持部36a,第2弾性体保持部36b)、弾性体38(第1弾性体38a,第2弾性体38b)を含んで構成される。
[Modification 2]
In addition, as another structure which satisfy | fills numerical formula (1), as shown to Fig.11 (a) and FIG.11 (b), the torque control mechanism 300 using a cam is mentioned. The torque control mechanism 300 includes a rotating body 30, a case 32, a holding part 34 (first holding part 34a and second holding part 34b), and an elastic body holding part 36 (first elastic body holding part 36a and second elastic body holding part). 36b) and an elastic body 38 (first elastic body 38a, second elastic body 38b).

回転体30は、軸にカム30a,30bが設けられた構成とされる。回転体30は、機械的強度を有する材料によって構成することが好適である。   The rotating body 30 has a configuration in which cams 30a and 30b are provided on a shaft. The rotating body 30 is preferably made of a material having mechanical strength.

ケース32は、回転体30、保持部34、弾性体保持部36及び弾性体38を内部に収納する円筒状の部材である。ケース32は、弾性体保持部36の外径よりも大きな内径を有する略円筒形状の部材とする。ケース32は、機械的な強度を有する金属等で形成することができる。   The case 32 is a cylindrical member that houses the rotating body 30, the holding part 34, the elastic body holding part 36, and the elastic body 38. The case 32 is a substantially cylindrical member having an inner diameter larger than the outer diameter of the elastic body holding portion 36. The case 32 can be formed of a metal having mechanical strength.

弾性体保持部36は、第1弾性体保持部36a及び第2弾性体保持部36bを含んで構成される。第1弾性体保持部36a及び第2弾性体保持部36bは、第1弾性体38a及び第2弾性体38bがそれぞれ固定される部材である。第1弾性体保持部36a及び第2弾性体保持部36bは、ケース22の内径よりも小さな外径を有する円筒状の部材とすることができる。第1弾性体保持部36aと第2弾性体保持部36bは、回転軸に沿って並べてケース32内に配置される。第1弾性体保持部36a及び第2弾性体保持部36bは、機械的強度を有する材料、特に磁性体によって構成することが好適である。   The elastic body holding part 36 includes a first elastic body holding part 36a and a second elastic body holding part 36b. The first elastic body holding part 36a and the second elastic body holding part 36b are members to which the first elastic body 38a and the second elastic body 38b are respectively fixed. The first elastic body holding part 36 a and the second elastic body holding part 36 b can be cylindrical members having an outer diameter smaller than the inner diameter of the case 22. The first elastic body holding part 36a and the second elastic body holding part 36b are arranged in the case 32 along the rotation axis. The first elastic body holding part 36a and the second elastic body holding part 36b are preferably composed of a material having mechanical strength, particularly a magnetic material.

保持部34は、第1保持部34a及び第2保持部34bを含んで構成される。第1保持部34aは、第1弾性体保持部36aをケース32に対して回転しないように保持する部材である。第2保持部34bは、第2弾性体保持部36bをケース32に対して回転しないように保持する部材である。ただし、第1保持部34aと第2保持部34bは、第1弾性体保持部36aと第2弾性体保持部36bとが回転軸を中心として相対的に回転可能なようにケース32に保持する手段とする。例えば、第2保持部34bは第2弾性体保持部36bをケース32に完全に固定する接着剤等とし、第1保持部34aは第1弾性体保持部36aをケース32に対して相対的に回転可能かつ固定可能なラッチ機構等とすればよい。   The holding unit 34 includes a first holding unit 34a and a second holding unit 34b. The first holding portion 34 a is a member that holds the first elastic body holding portion 36 a so as not to rotate with respect to the case 32. The second holding portion 34 b is a member that holds the second elastic body holding portion 36 b so as not to rotate with respect to the case 32. However, the first holding part 34a and the second holding part 34b are held in the case 32 so that the first elastic body holding part 36a and the second elastic body holding part 36b are relatively rotatable around the rotation axis. Means. For example, the second holding portion 34 b is an adhesive or the like that completely fixes the second elastic body holding portion 36 b to the case 32, and the first holding portion 34 a has the first elastic body holding portion 36 a relatively to the case 32. A latch mechanism that can be rotated and fixed may be used.

弾性体38は、第1弾性体38a及び第2弾性体38bを含んで構成される。第1弾性体38a及び第2弾性体38bは、弾性力を発生させる部材とベアリングを組み合わせた構成とされる。弾性力を発生させる部材は、特に限定されるものではないが、例えばスプリング、ゴム等とすることができる。第1弾性体38aの弾性体の一端は第1弾性体保持部36aの内面に固定され、他端はベアリングに固定される。ベアリングは、回転体30のカム30aの外周面を押してカム30aに弾性力を与えるように配置される。第2弾性体38bの弾性体の一端は第2弾性体保持部36bの内面に固定され、他端はベアリングに固定される。ベアリングは、回転体30のカム30bの外周面を押してカム30bに弾性力を与えるように配置される。   The elastic body 38 includes a first elastic body 38a and a second elastic body 38b. The 1st elastic body 38a and the 2nd elastic body 38b are set as the structure which combined the member and bearing which generate | occur | produce an elastic force. The member that generates the elastic force is not particularly limited, and may be, for example, a spring or rubber. One end of the elastic body of the first elastic body 38a is fixed to the inner surface of the first elastic body holding portion 36a, and the other end is fixed to the bearing. The bearing is disposed so as to apply an elastic force to the cam 30a by pushing the outer peripheral surface of the cam 30a of the rotating body 30. One end of the elastic body of the second elastic body 38b is fixed to the inner surface of the second elastic body holding portion 36b, and the other end is fixed to the bearing. The bearing is disposed so as to apply an elastic force to the cam 30b by pushing the outer peripheral surface of the cam 30b of the rotating body 30.

トルク制御機構300では、回転体30の外周に配置されたカム30aと第1弾性体保持部36aの内周に配置された第1弾性体38aからなる弾性構造、及び、回転体30の外周に配置されたカム30bと第2弾性体保持部36bの内周に配置された第2弾性体38bの組からなる弾性構造を備える。すなわち、回転体30が回転する際に回転体30に対して弾性力を与える2組の弾性構造を備える。   In the torque control mechanism 300, an elastic structure including a cam 30a disposed on the outer periphery of the rotating body 30 and a first elastic body 38a disposed on the inner periphery of the first elastic body holding portion 36a, and an outer periphery of the rotating body 30 are provided. An elastic structure including a set of a cam 30b and a second elastic body 38b disposed on the inner periphery of the second elastic body holding portion 36b is provided. In other words, two sets of elastic structures are provided that give elastic force to the rotating body 30 when the rotating body 30 rotates.

また、第1保持部34aにより第1弾性体保持部36aをケース32に対して回転可能な状態とし、第1弾性体保持部36aをケース32に対して回転させることができる。第1保持部34aがラッチ機構である場合、ラッチを開放することによって第1弾性体保持部36aがケース32に対して回転可能な状態とすることができる。これにより、回転体30のカム30aと第1弾性体38aとの関係を変化させることができ、第1弾性体38aから回転体30に周期的に与えられるトルクの位相を変えることができる。   Further, the first elastic body holding part 36 a can be rotated with respect to the case 32 by the first holding part 34 a, and the first elastic body holding part 36 a can be rotated with respect to the case 32. When the first holding part 34a is a latch mechanism, the first elastic body holding part 36a can be rotated with respect to the case 32 by releasing the latch. Thereby, the relationship between the cam 30a of the rotating body 30 and the first elastic body 38a can be changed, and the phase of the torque periodically applied from the first elastic body 38a to the rotating body 30 can be changed.

このように、トルク制御機構300でも、第1弾性体保持部36a及び第1弾性体38aからなる弾性構造から回転体30に与えられるトルクの位相を変化させることで回転体30に与えられる合成トルクを可変とすることができる。   As described above, even in the torque control mechanism 300, the combined torque applied to the rotating body 30 by changing the phase of the torque applied to the rotating body 30 from the elastic structure including the first elastic body holding portion 36a and the first elastic body 38a. Can be made variable.

また、カム30aとカム30bの形状を適宜選択することによって、上記数式(1)を満たすことができる。例えば、図11(a)及び図11(b)に示すように、トルクが正弦波のように数式(1)を満たす形状とすればよい。これにより、より広い範囲でトルクを変化させることができ、トルクを発生させる必要がない場合にはトルクをゼロにするゼロトルク制御が可能となる。   Further, the above formula (1) can be satisfied by appropriately selecting the shapes of the cam 30a and the cam 30b. For example, as shown in FIGS. 11 (a) and 11 (b), the torque may be a shape that satisfies the formula (1) like a sine wave. As a result, the torque can be changed over a wider range, and zero torque control can be performed to make the torque zero when there is no need to generate torque.

[ダンパー装置への適用]
上記トルク制御機構100〜300は、回転体に対するトルクを制御するトルク制御機構として機能する。そこで、ケース12,22,32を別の回転軸に接続できる構成とすることによって回転体に対するダンパー装置として機能させることができる。
[Application to damper device]
The torque control mechanisms 100 to 300 function as a torque control mechanism that controls torque with respect to the rotating body. Therefore, the cases 12, 22, and 32 can be connected to different rotating shafts to function as a damper device for the rotating body.

図12は、トルク制御機構100をダンパー装置400に適用した例を示す。ダンパー装置400は、トルク制御機構100のケース12に回転軸Mを回転中心とする回転軸40を接続し、クラッチ44を介して出力軸42を接続した構成を備える。   FIG. 12 shows an example in which the torque control mechanism 100 is applied to the damper device 400. The damper device 400 has a configuration in which the rotary shaft 40 having the rotary shaft M as the rotation center is connected to the case 12 of the torque control mechanism 100 and the output shaft 42 is connected via the clutch 44.

このような構成にすれば、ケース12を介して回転体10とケース12との間の位相に伴った伝達トルクが発生する。したがって、回転軸40と出力軸42とをクラッチ44にて接続することによって、ケース12を介して回転体10の回転を出力軸42へ伝達することができる。   With such a configuration, a transmission torque accompanying the phase between the rotating body 10 and the case 12 is generated via the case 12. Therefore, the rotation of the rotating body 10 can be transmitted to the output shaft 42 via the case 12 by connecting the rotating shaft 40 and the output shaft 42 with the clutch 44.

このとき、トルク制御機構100をねじりダンパーとして利用することができる。回転体10に対する制振性を高めるときには、トルク制御機構100によって回転体10に与えられる全体のトルクを減少させるように制御し、回転体10から出力するトルクを高めるときには、回転体10に与えられる全体のトルクを増加させる制御を行えばよい。   At this time, the torque control mechanism 100 can be used as a torsional damper. When increasing the damping performance for the rotating body 10, the torque control mechanism 100 is controlled so as to reduce the total torque applied to the rotating body 10, and when increasing the torque output from the rotating body 10, it is applied to the rotating body 10. Control for increasing the overall torque may be performed.

なお、トルク制御機構100に代えて、トルク制御機構200,300を適用しても同様に捩りダンパー装置を構成することができる。   It should be noted that the torsional damper device can be similarly configured even when the torque control mechanisms 200 and 300 are applied instead of the torque control mechanism 100.

一般的な捩りダンパーの場合、ばね剛性が単調増加かつ線形であるので、複数のばねを配置して位相を変化させたとしても回転体に与えられる総トルクは変化しない。これに対して、トルク制御機構100,200,300を適用してダンパー装置を構成した場合、位相を変化させることによって回転体に与えられる総トルクを変えることができる。したがって、制振性能を重視する場合には回転体に与えられる総トルクを減少させるように制御し、回転応答性能を重視する場合には回転体に与えられる総トルクを増加させるように制御すればよい。   In the case of a general torsional damper, since the spring rigidity is monotonously increased and linear, even if a plurality of springs are arranged to change the phase, the total torque applied to the rotating body does not change. On the other hand, when the damper device is configured by applying the torque control mechanisms 100, 200, and 300, the total torque applied to the rotating body can be changed by changing the phase. Therefore, if the damping performance is important, control is performed to decrease the total torque applied to the rotating body, and if the rotational response performance is important, control is performed to increase the total torque applied to the rotating body. Good.

また、所定の回転角度(位相)にてトルクのピークを有するので、トルクリミッタとして使用することができる。このとき、従来の捩りダンパーのように別体の摩擦クラッチ等を用いる必要がない。   Further, since it has a torque peak at a predetermined rotation angle (phase), it can be used as a torque limiter. At this time, it is not necessary to use a separate friction clutch or the like unlike the conventional torsional damper.

10 回転体、10a,10b クランク部、12 ケース、14 保持部、14a 第1保持部、14b 第2保持部、16 弾性体保持部、16a 第1弾性体保持部、16b 第2弾性体保持部、18 弾性体、18a 第1弾性体、18b 第2弾性体、20 回転体、20a ロータ、20b 軸、22 ケース、24 保持部、24a 第1保持部、24b 第2保持部、26 弾性体保持部、26a 第1弾性体保持部、26b 第2弾性体保持部、28 磁石、28a 第1磁石、28b 第2磁石、28c 第3磁石、30 回転体、30a,30b カム、32 ケース、34 保持部、34a 第1保持部、34b 第2保持部、36 弾性体保持部、36a 第1弾性体保持部、36b 第2弾性体保持部、38 弾性体、38a 第1弾性体、38b 第2弾性体、40 回転軸、42 出力軸、44 クラッチ、100,200,300 トルク制御機構、400 ダンパー装置。   DESCRIPTION OF SYMBOLS 10 Rotating body, 10a, 10b Crank part, 12 cases, 14 holding part, 14a 1st holding part, 14b 2nd holding part, 16 elastic body holding part, 16a 1st elastic body holding part, 16b 2nd elastic body holding part , 18 elastic body, 18a first elastic body, 18b second elastic body, 20 rotating body, 20a rotor, 20b shaft, 22 case, 24 holding section, 24a first holding section, 24b second holding section, 26 elastic body holding Part, 26a first elastic body holding part, 26b second elastic body holding part, 28 magnet, 28a first magnet, 28b second magnet, 28c third magnet, 30 rotating body, 30a, 30b cam, 32 case, 34 holding Part 34a first holding part 34b second holding part 36 elastic body holding part 36a first elastic body holding part 36b second elastic body holding part 38 elastic body 38a first elasticity , 38b second elastic member, 40 rotation shaft, 42 output shaft, 44 clutch, 100,200,300 torque control mechanism 400 damper device.

Claims (6)

回転体と、前記回転体に弾性力を与える複数の弾性構造と、を備え、
前記回転体の回転に伴って前記弾性構造の各々から前記回転体に与えられるトルクが周期的に変化し、前記弾性構造の少なくとも1つから前記回転体に与えられるトルクの位相を変化させることで前記回転体に与えられる全体のトルク特性を可変としたことを特徴とするトルク制御機構。
A rotating body, and a plurality of elastic structures for applying an elastic force to the rotating body,
The torque applied to the rotating body from each of the elastic structures changes periodically as the rotating body rotates, and the phase of the torque applied to the rotating body from at least one of the elastic structures is changed. A torque control mechanism characterized in that an overall torque characteristic applied to the rotating body is variable.
請求項1に記載のトルク制御機構であって、
前記弾性構造の少なくとも1つから前記回転体に与えられるトルクの位相を変化させることで前記弾性構造の残りから前記回転体に与えられるトルクを打ち消し合うことで前記回転体に与えられる全体のトルクをゼロにすることを可能としたことを特徴とするトルク制御機構。
The torque control mechanism according to claim 1,
By changing the phase of the torque applied to the rotating body from at least one of the elastic structures, the overall torque applied to the rotating body can be reduced by canceling the torque applied to the rotating body from the rest of the elastic structure. A torque control mechanism characterized in that it can be made zero.
請求項1又は2に記載のトルク制御機構であって、
前記回転体は、クランク軸を備え、
前記弾性構造は、前記クランク軸に接続された弾性体であることを特徴とするトルク制御機構。
The torque control mechanism according to claim 1 or 2,
The rotating body includes a crankshaft,
The torque control mechanism, wherein the elastic structure is an elastic body connected to the crankshaft.
請求項1又は2に記載のトルク制御機構であって、
前記回転体は、磁石を備え、
前記弾性構造は、前記回転体に備えられた前記磁石との間で磁力を発生させる磁石を備えることを特徴とするトルク制御機構。
The torque control mechanism according to claim 1 or 2,
The rotating body includes a magnet,
The torque control mechanism according to claim 1, wherein the elastic structure includes a magnet that generates a magnetic force with the magnet provided in the rotating body.
請求項1又は2に記載のトルク制御機構であって、
前記回転体は、カムを備え、
前記弾性構造は、前記カムの回転軸の回転角に応じて変化する弾性力を前記カムに与える弾性体を備えることを特徴とするトルク制御機構。
The torque control mechanism according to claim 1 or 2,
The rotating body includes a cam,
The torque control mechanism according to claim 1, wherein the elastic structure includes an elastic body that gives the cam an elastic force that changes in accordance with a rotation angle of a rotation shaft of the cam.
請求項1〜5のいずれか1項に記載のトルク制御機構を備え、
前記回転体に対する制振性を高めるときには、前記回転体に与えられる全体のトルクを減少させ、
前記回転体から出力するトルクを高めるときには、前記回転体に与えられる全体のトルクを増加させることを特徴とするダンパー装置。
The torque control mechanism according to claim 1 is provided,
When increasing the damping performance for the rotating body, the overall torque applied to the rotating body is reduced,
When the torque output from the rotating body is increased, the overall torque applied to the rotating body is increased.
JP2017023881A 2017-02-13 2017-02-13 Torque control mechanism and damper device using the same Expired - Fee Related JP6525018B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017023881A JP6525018B2 (en) 2017-02-13 2017-02-13 Torque control mechanism and damper device using the same
US15/882,170 US10598250B2 (en) 2017-02-13 2018-01-29 Torque control mechanism, damper device phase adjustment mechanism, and torque control mechanism and torque variation suppressing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023881A JP6525018B2 (en) 2017-02-13 2017-02-13 Torque control mechanism and damper device using the same

Publications (2)

Publication Number Publication Date
JP2018132070A true JP2018132070A (en) 2018-08-23
JP6525018B2 JP6525018B2 (en) 2019-06-05

Family

ID=63248323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023881A Expired - Fee Related JP6525018B2 (en) 2017-02-13 2017-02-13 Torque control mechanism and damper device using the same

Country Status (1)

Country Link
JP (1) JP6525018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124249A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Phase adjustment mechanism and torque controller using the same
WO2023171704A1 (en) * 2022-03-11 2023-09-14 住友重機械工業株式会社 Drive mechanism, and robot arm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124249A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Phase adjustment mechanism and torque controller using the same
WO2023171704A1 (en) * 2022-03-11 2023-09-14 住友重機械工業株式会社 Drive mechanism, and robot arm

Also Published As

Publication number Publication date
JP6525018B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
CN107923482B (en) Torque fluctuation inhibits device, fluid torque-converter and power transmission
KR102265136B1 (en) Double damping flywheel with improved damping means
RU2576650C1 (en) Damper device of torsion oscillations suppression
JP5925387B2 (en) Wave generator and wave gear device
JP6757680B2 (en) Torque fluctuation suppression device, torque converter, and power transmission device
JP6361644B2 (en) Torsional vibration reduction device
WO2018150660A1 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
US10309482B2 (en) Damper for an automobile clutch
JP6653538B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP6809269B2 (en) Phase adjustment mechanism and torque control mechanism using it
JP2018013152A (en) Torque fluctuation suppression device, torque converter, and power transmission device
JP2018132070A (en) Torque control mechanism and damper device using the same
JP2019143720A (en) Torque fluctuation inhibition device, torque converter, and power transmission device
JP2017190820A (en) Torsional vibration reduction device
JP5429119B2 (en) Planetary gear set
KR20170019453A (en) Clutch disk comprising a centrifugal pendulum
JP6656868B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP6327182B2 (en) Torsional vibration reduction device
JP6387870B2 (en) Torsional vibration reduction device
JP6950541B2 (en) Phase adjustment mechanism and torque control device using it
JP6662350B2 (en) Torque fluctuation suppression device
CN109538725A (en) Dynamic damper
JP2019052714A (en) Torque fluctuation control device, torque converter and power transmission device
JP2012235554A (en) Magnetic transmission
JP6682572B2 (en) Torque fluctuation suppression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6525018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees