JP2018131370A - Lower-order titanium oxide and method for producing the same - Google Patents

Lower-order titanium oxide and method for producing the same Download PDF

Info

Publication number
JP2018131370A
JP2018131370A JP2017028466A JP2017028466A JP2018131370A JP 2018131370 A JP2018131370 A JP 2018131370A JP 2017028466 A JP2017028466 A JP 2017028466A JP 2017028466 A JP2017028466 A JP 2017028466A JP 2018131370 A JP2018131370 A JP 2018131370A
Authority
JP
Japan
Prior art keywords
titanium oxide
low
order titanium
order
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017028466A
Other languages
Japanese (ja)
Other versions
JP6892280B2 (en
Inventor
勝也 澤田
Katsuya Sawada
勝也 澤田
俊和 宮島
Toshikazu Miyajima
俊和 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63248781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018131370(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2017028466A priority Critical patent/JP6892280B2/en
Publication of JP2018131370A publication Critical patent/JP2018131370A/en
Application granted granted Critical
Publication of JP6892280B2 publication Critical patent/JP6892280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lower-order titanium oxide having a high specific surface and excellent conductivity, and a method of producing the same.SOLUTION: According to the invention, a mixture of titanium dioxide and an organic compound as a carbon source is fired under an inert gas atmosphere, to produce a lower-order titanium oxide with a specific surface by BET method of 10-1000 m/g and a powder resistivity of 10.0 Ω cm or less. There is also provided a method for producing the same.SELECTED DRAWING: Figure 1

Description

本発明は、低次酸化チタン及びその製造方法に関し、特にBET法による比表面積が10〜1000m/gであり、そして粉体抵抗率が10.0Ω・cm以下である高い比表面積と優れた導電性を有する低次酸化チタン及びその製造方法に関する。 The present invention relates to a low-order titanium oxide and a method for producing the same, and in particular, has a high specific surface area and an excellent specific surface area of 10 to 1000 m 2 / g by a BET method and a powder resistivity of 10.0 Ω · cm or less. The present invention relates to conductive low-order titanium oxide and a method for producing the same.

特開2016−81584号公報(特許文献1)、特開2012−148920号公報(特許文献2)及び特開2016−193816号公報(特許文献3)などに記載されているように、TiやTiなど一般式:Ti2n−1(2≦n≦10)で表されるマグネリ相を有する低次酸化チタンは優れた導電性を有することが知られている。 As described in JP-A-2016-81584 (Patent Document 1), JP-A-2012-148920 (Patent Document 2), JP-A-2006-193816 (Patent Document 3), and the like, Ti 4 O It is known that low-order titanium oxide having a magnetic phase represented by a general formula: Ti n O 2n-1 (2 ≦ n ≦ 10) such as 7 and Ti 5 O 9 has excellent conductivity.

また、低次酸化チタンを工業的に製造するための代表的な方法としては、(a)二酸化チタン粉体(TiO粉体)を水素気流中で高温焼成する水素還元法、(b)二酸化チタン粉体をアンモニア(+水素)気流中で高温焼成するアンモニア還元法、(c)金属チタン粉体と二酸化チタン粉体を均一に混合した後、還元雰囲気で高温焼成する金属チタン粉体との均一化反応法、(d)二酸化チタンを水素化ホウ素ナトリウムなどの水素化物と共に還元焼成する方法などの製造方法が知られている。 In addition, representative methods for industrially producing low-order titanium oxide include (a) a hydrogen reduction method in which titanium dioxide powder (TiO 2 powder) is calcined at high temperature in a hydrogen stream, and (b) dioxide dioxide. Ammonia reduction method in which titanium powder is calcined at high temperature in an ammonia (+ hydrogen) stream, and (c) metal titanium powder and titanium dioxide powder are uniformly mixed and then calcined at high temperature in a reducing atmosphere. Production methods such as a homogenization reaction method and (d) a method of reducing and firing titanium dioxide together with a hydride such as sodium borohydride are known.

一方、低次酸化チタンを燃料電池やキャパシタなどの電極として用いる場合、高い反応効率を得るためには低次酸化チタンが高い比表面積を有していることが好ましい。ところが、特許文献1〜3に記載されている製造方法や上記(a)〜(d)の一般的な製造方法を用いて高い比表面積を有する低次酸化チタンを得ようとすると、粒子同士の接点が増加してその接触抵抗が増大してしまい、その結果低次酸化チタンを利用した電極の導電性が低下し、期待した特性を得ることができないという問題があった。   On the other hand, when low-order titanium oxide is used as an electrode for a fuel cell or a capacitor, it is preferable that the low-order titanium oxide has a high specific surface area in order to obtain high reaction efficiency. However, when trying to obtain low-order titanium oxide having a high specific surface area using the production methods described in Patent Documents 1 to 3 and the general production methods (a) to (d) above, There is a problem that the contact resistance increases and the contact resistance increases, and as a result, the conductivity of the electrode using low-order titanium oxide is lowered, and the expected characteristics cannot be obtained.

特開2016−81584号公報Japanese Patent Laying-Open No. 2006-81584 特開2012−148920号公報JP2012-148920A 特開2016−193816号公報JP, 2006-193816, A

そこで、本発明は、導電性を低下させることなく高い比表面積を有する低次酸化チタン及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the low order titanium oxide which has a high specific surface area, and its manufacturing method, without reducing electroconductivity.

本発明者らは、二酸化チタン(TiO)を出発原料として低次酸化チタンを得るための製造方法について鋭意研究を重ねた結果、二酸化チタンを特定の有機化合物と混合し不活性ガス雰囲気下で焼成すれば、得られる低次酸化チタンのモルフォロジー制御(形状制御)を行うことができることを見出し、本発明を完成するに至った。 As a result of intensive research on a production method for obtaining low-order titanium oxide using titanium dioxide (TiO 2 ) as a starting material, the present inventors have mixed titanium dioxide with a specific organic compound and in an inert gas atmosphere. It has been found that the morphology control (shape control) of the obtained low-order titanium oxide can be performed by firing, and the present invention has been completed.

具体的には、本発明によれば、二酸化チタン(TiO)と有機化合物との混合物を窒素やアルゴン等の不活性ガス雰囲気下にて焼成することにより、高い比表面積と優れた導電性を有する低次酸化チタンを製造する方法が提供される。本発明の製造方法では、不活性ガス以外に水素等の還元ガス、または不活性ガスと還元ガスとの混合ガスなどの使用も可能であるが、必ずしも水素等の還元ガスや触媒を使用する必要はなく、経済性や安全面を考慮すれば窒素ガスを使用することが好ましい。 Specifically, according to the present invention, by firing a mixture of titanium dioxide (TiO 2 ) and an organic compound in an inert gas atmosphere such as nitrogen or argon, a high specific surface area and excellent conductivity are obtained. A method for producing low order titanium oxide is provided. In the production method of the present invention, it is possible to use a reducing gas such as hydrogen or a mixed gas of an inert gas and a reducing gas in addition to the inert gas, but it is necessary to use a reducing gas such as hydrogen or a catalyst. However, it is preferable to use nitrogen gas in consideration of economy and safety.

本発明の製造方法により得られる低次酸化チタンは、BET法による比表面積が10〜1000m/gであり、そして粉体抵抗率が10.0Ω・cm以下であり、より好ましくはBET法による比表面積が10〜500m/gであり、そして粉体抵抗率が1.0Ω・cm以下であるという特徴を有している。また、その形態は、平均の一次粒子径が約100nm以下であり球形に近い形状を有している。 The low-order titanium oxide obtained by the production method of the present invention has a specific surface area by the BET method of 10 to 1000 m 2 / g and a powder resistivity of 10.0 Ω · cm or less, more preferably by the BET method. The specific surface area is 10 to 500 m 2 / g, and the powder resistivity is 1.0 Ω · cm or less. Moreover, the form has a shape close | similar to a spherical shape with an average primary particle diameter of about 100 nm or less.

得られた低次酸化チタンは、一般式:Ti2n−1(2≦n≦10)で表されるものであり、高い比表面積と優れた導電性を得るためには、低次酸化チタン中にTiが70重量%以上、より好ましくは90重量%以上含まれていることが望ましい。 The obtained low-order titanium oxide is represented by the general formula: Ti n O 2n-1 (2 ≦ n ≦ 10). In order to obtain a high specific surface area and excellent conductivity, low-order oxidation is performed. It is desirable that Ti 4 O 7 is contained in titanium in an amount of 70% by weight or more, more preferably 90% by weight or more.

本発明の製造方法において、上述したような高い比表面積と優れた導電性を有する低次酸化チタンを得るためには、出発原料である二酸化チタンの還元、および焼成時の粒子成長抑制の両効果を発現させる添加剤が必要である。   In the production method of the present invention, in order to obtain low-order titanium oxide having a high specific surface area and excellent conductivity as described above, both effects of reduction of titanium dioxide as a starting material and suppression of particle growth during firing are obtained. It is necessary to have an additive that causes

低次酸化チタンの製造で使用される二酸化チタンは、アナタース型、ルチル型、ブルッカイト型、無定形などがあり、低温焼成による粒子成長抑制効果を考慮すると無定形であることが好ましい。   Titanium dioxide used in the production of low-order titanium oxide includes anatase type, rutile type, brookite type, and amorphous, and is preferably amorphous in consideration of the effect of suppressing particle growth by low-temperature firing.

添加剤としては、カーボン粉体や水素化カルシウムのような材料の適用例があるが、粒子成長抑制の観点では二酸化チタン表面に均一に添加剤が混合されていることが好ましく、その添加剤として水溶性あるいは焼成時にガス化するような有機化合物が挙げられる。   As additives, there are application examples of materials such as carbon powder and calcium hydride, but from the viewpoint of suppressing particle growth, it is preferable that the additive is uniformly mixed on the surface of titanium dioxide. Organic compounds that are water-soluble or gasify upon firing can be mentioned.

二酸化チタンと混合する有機化合物としては、水溶性高分子や単糖類、少糖類、多糖類を用いることができ、例えば、単糖類としてはグルコース、フルクトース、ガラクトース、少糖類としてはスクロース、マルトース、ラクトースなど、多糖類としてはデンプン、水溶性高分子としてはポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロースなどを使用することができる。   As an organic compound mixed with titanium dioxide, water-soluble polymers, monosaccharides, oligosaccharides, and polysaccharides can be used. For example, monosaccharides include glucose, fructose, galactose, and oligosaccharides include sucrose, maltose, and lactose. For example, starch can be used as the polysaccharide, and polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose, and the like can be used as the water-soluble polymer.

また、本発明の製造方法では、得られる低次酸化チタンの焼結を抑制しモルフォロジー制御(形状制御)を向上させる必要があることから、900〜1200℃の温度で焼成することが好ましい。   Moreover, in the manufacturing method of this invention, since it is necessary to suppress sintering of the low order titanium oxide obtained and to improve morphology control (shape control), it is preferable to bake at the temperature of 900-1200 degreeC.

上述のように、本発明の製造方法で得られる低次酸化チタンは高い比表面積と優れた導電性を有しているため、燃料電池やキャパシタなどの蓄電デバイス用の電極として使用するのに適している。   As described above, since the low-order titanium oxide obtained by the production method of the present invention has a high specific surface area and excellent conductivity, it is suitable for use as an electrode for power storage devices such as fuel cells and capacitors. ing.

本発明の低次酸化チタンは、BET法による比表面積が10〜1000m/gであり、そして粉体抵抗率が10.0Ω・cm以下であり、より好ましくはBET法による比表面積が10〜500m/gであり、そして粉体抵抗率が1.0Ω・cm以下であるという極めて高い比表面積と優れた導電性を有している。 The low-order titanium oxide of the present invention has a specific surface area by the BET method of 10 to 1000 m 2 / g and a powder resistivity of 10.0 Ω · cm or less, more preferably a specific surface area by the BET method of 10 to 10 It has an extremely high specific surface area and excellent electrical conductivity of 500 m 2 / g and a powder resistivity of 1.0 Ω · cm or less.

また、本発明の低次酸化チタンは、二酸化チタン(TiO)とカーボン源としての有機化合物との混合物を不活性ガス雰囲気下にて焼成するというモルフォロジー制御性(形状制御性)に極めて優れた製造方法により提供され、また安全で経済的でもある。 Moreover, the low-order titanium oxide of the present invention is extremely excellent in morphology controllability (shape controllability) in which a mixture of titanium dioxide (TiO 2 ) and an organic compound as a carbon source is fired in an inert gas atmosphere. It is provided by the manufacturing method and is also safe and economical.

本発明の実施例1の低次酸化チタンのX線回折(XRD)パターン図である。It is a X-ray-diffraction (XRD) pattern figure of the low order titanium oxide of Example 1 of this invention. 比較例1の低次酸化チタンのX線回折(XRD)パターン図である。3 is an X-ray diffraction (XRD) pattern diagram of low-order titanium oxide of Comparative Example 1. FIG. 本発明の実施例1の低次酸化チタンのSEM写真(×10k)である。It is a SEM photograph (x10k) of the low order titanium oxide of Example 1 of the present invention. 本発明の実施例1の低次酸化チタンのSEM写真(×100k)である。It is a SEM photograph (x100k) of the low order titanium oxide of Example 1 of this invention. 比較例1の低次酸化チタンのSEM写真(×10k)である。3 is a SEM photograph (× 10 k) of low-order titanium oxide of Comparative Example 1.

以下、高い比表面積と優れた導電性を有する本発明の低次酸化チタン、低次酸化チタンを用いた電極及び蓄電デバイス、低次酸化チタンの製造方法について、具体例を交えながら詳細に説明する。なお、本発明は以下に示される実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Hereinafter, the low-order titanium oxide of the present invention having a high specific surface area and excellent conductivity, an electrode and an electricity storage device using the low-order titanium oxide, and a method for producing the low-order titanium oxide will be described in detail with specific examples. . The present invention is not limited to the embodiments shown below, and various modifications can be made without departing from the technical idea of the present invention.

A.低次酸化チタンの製造方法:
実施例1
水4500gが入った容器中に無定形の二酸化チタン(TiO)500gを撹拌しながら投入し、10wt%二酸化チタンスラリーを調整した。水2350gが入った容器の中にポリビニルアルコール(PVA)150gを撹拌させながら投入後、90℃の温度で1時間保持後、冷却することで6wt%ポリビニルアルコール水溶液を調整した。10wt%二酸化チタンスラリー500gに6wt%ポリビニルアルコール水溶液250gを撹拌しながら混合し、二酸化チタン−PVA混合スラリーを調整した。その混合スラリーを噴霧式乾燥機(MDL−50B,藤崎電機社製)で乾燥し、低次酸化チタンの前駆体を得た。得られた前駆体20gをアルミナ製ルツボへ投入後、前駆体が入ったアルミナルツボをタンマン管式雰囲気焼成炉(NLT−2035D−SP モトヤマ製)の中へ入れ、窒素雰囲気下、焼成条件1000℃×3時間の条件で焼成することにより実施例1の低次酸化チタンを得た。
A. Production method of low-order titanium oxide:
Example 1
Into a container containing 4500 g of water, 500 g of amorphous titanium dioxide (TiO 2 ) was added while stirring to prepare a 10 wt% titanium dioxide slurry. Into a container containing 2350 g of water, 150 g of polyvinyl alcohol (PVA) was added while stirring, then held at 90 ° C. for 1 hour, and then cooled to prepare a 6 wt% polyvinyl alcohol aqueous solution. 250 g of a 6 wt% polyvinyl alcohol aqueous solution was mixed with 500 g of 10 wt% titanium dioxide slurry while stirring to prepare a titanium dioxide-PVA mixed slurry. The mixed slurry was dried with a spray dryer (MDL-50B, manufactured by Fujisaki Electric Co., Ltd.) to obtain a precursor of low-order titanium oxide. After 20 g of the obtained precursor was put into an alumina crucible, the alumina crucible containing the precursor was placed in a Tamman tube atmosphere firing furnace (NLT-2035D-SP made by Motoyama), and the firing condition was 1000 ° C. in a nitrogen atmosphere. The low-order titanium oxide of Example 1 was obtained by baking under conditions of × 3 hours.

実施例2
10wt%二酸化チタンスラリーと混合する6wt%ポリビニルアルコール水溶液の添加量を250gから340gに変更した以外は実施例1と同様の操作を行い、実施例2の低次酸化チタンを得た。
Example 2
The same operation as in Example 1 was performed except that the addition amount of the 6 wt% polyvinyl alcohol aqueous solution mixed with the 10 wt% titanium dioxide slurry was changed from 250 g to 340 g, and the low-order titanium oxide of Example 2 was obtained.

実施例3
10wt%二酸化チタンスラリーと混合する6wt%ポリビニルアルコール水溶液の添加量を250gから420gに変更した以外は実施例1と同様の操作を行い、実施例3の低次酸化チタンを得た。
Example 3
The same operation as in Example 1 was performed except that the addition amount of the 6 wt% polyvinyl alcohol aqueous solution mixed with the 10 wt% titanium dioxide slurry was changed from 250 g to 420 g, and the low-order titanium oxide of Example 3 was obtained.

実施例4
10wt%二酸化チタンスラリーと混合する6wt%ポリビニルアルコール水溶液の添加量を250gから700gに変更した以外は実施例1と同様の操作を行い、実施例4の低次酸化チタンを得た。
Example 4
The same operation as in Example 1 was performed except that the addition amount of the 6 wt% polyvinyl alcohol aqueous solution mixed with the 10 wt% titanium dioxide slurry was changed from 250 g to 700 g, and the low-order titanium oxide of Example 4 was obtained.

実施例5
10wt%二酸化チタンスラリーと混合する6wt%ポリビニルアルコール水溶液の添加量を250gから100gに変更した以外は実施例1と同様の操作を行い、実施例5の低次酸化チタンを得た。
Example 5
The same operation as in Example 1 was performed except that the addition amount of the 6 wt% polyvinyl alcohol aqueous solution mixed with the 10 wt% titanium dioxide slurry was changed from 250 g to 100 g, and the low-order titanium oxide of Example 5 was obtained.

実施例6
焼成温度を950℃に変更した以外は実施例1と同様の操作を行い、実施例6の低次酸化チタンを得た。
Example 6
Except having changed the calcination temperature to 950 degreeC, operation similar to Example 1 was performed and the low order titanium oxide of Example 6 was obtained.

実施例7
焼成温度を1150℃に変更した以外は実施例1と同様の操作を行い、実施例7の低次酸化チタンを得た。
Example 7
Except having changed the calcination temperature to 1150 degreeC, operation similar to Example 1 was performed and the low order titanium oxide of Example 7 was obtained.

実施例8
10wt%二酸化チタンスラリーと混合する6wt%ポリビニルアルコール水溶液の添加量を250gから200gに変更した以外は実施例1と同様の操作を行い、実施例8の低次酸化チタンを得た。
Example 8
The same operation as in Example 1 was performed except that the addition amount of the 6 wt% polyvinyl alcohol aqueous solution mixed with the 10 wt% titanium dioxide slurry was changed from 250 g to 200 g, and the low-order titanium oxide of Example 8 was obtained.

比較例1
二酸化チタン5gをアルミナ製ルツボに入れ、焼成条件1170℃×2時間、窒素90%−水素10%混合雰囲気下で焼成し、比較例1の低次酸化チタンを得た。
Comparative Example 1
5 g of titanium dioxide was placed in an alumina crucible and baked under a firing condition of 1170 ° C. for 2 hours under a mixed atmosphere of 90% nitrogen and 10% hydrogen to obtain low-order titanium oxide of Comparative Example 1.

比較例2
二酸化チタン5gと金属チタン1g混合した粉末をキャリアガスであるアルゴンガスでプラズマトーチへ搬送し、アルゴン雰囲気下約4MHz、約80kVAの高周波電圧を印加した条件で高周波熱プラズマ処理し、比較例2の低次酸化チタンを得た。
Comparative Example 2
A powder obtained by mixing 5 g of titanium dioxide and 1 g of metal titanium is conveyed to a plasma torch with an argon gas as a carrier gas, and subjected to a high-frequency thermal plasma treatment in a condition where a high-frequency voltage of about 4 MHz and about 80 kVA is applied in an argon atmosphere. Low-order titanium oxide was obtained.

比較例3
比較例2の低次酸化チタン2gと導電性カーボンであるアセチレンブラック0.08gを自転・公転ミキサー(あわとり練太郎(登録商標)AR−100,シンキー社製)で20分混合し、比較例3の低次酸化チタンとアセチレンブラック混合粉末を得た。
Comparative Example 3
Comparative Example 2 2 g of low-order titanium oxide and 0.08 g of acetylene black, which is a conductive carbon, were mixed for 20 minutes with a rotating / revolving mixer (Awatori Nerita (registered trademark) AR-100, manufactured by Sinky Corporation). 3 low-order titanium oxide and acetylene black mixed powder was obtained.

B.粉体物性測定:
[X線回折分析]
X線回折分析は、実施例及び比較例で得た粉末状のサンプルを加圧成型した後、X線回折装置(X’Pert PRO,スペクトリス社製)により、CuKα線を用いて印加電圧45kV,印加電流40mAの条件で測定を行った。また、Tiの純度は、X線回折分析により得られたデータをリートベルト解析(解析ソフト名:X’Pert High Score Plus)による結晶構造解析を行うことにより決定した。
B. Powder physical property measurement:
[X-ray diffraction analysis]
X-ray diffraction analysis was performed by pressure-molding the powdered samples obtained in Examples and Comparative Examples, and then using an X-ray diffractometer (X'Pert PRO, manufactured by Spectris Co., Ltd.) with an applied voltage of 45 kV using CuKα rays. Measurement was performed under an applied current of 40 mA. The purity of Ti 4 O 7 was determined by performing crystal structure analysis on the data obtained by X-ray diffraction analysis by Rietveld analysis (analysis software name: X′Pert High Score Plus).

[比表面積]
BET法を使用し、Macsorb HM−1208(マウンテック社製)で測定を行った。
[Specific surface area]
Measurement was performed with Macsorb HM-1208 (Mounttech) using the BET method.

[粉体抵抗率測定]
粉体抵抗測定システムMCP−PD−51(三菱アナリティカル社製)を用い測定を行った。測定方法は、粉体専用プローブ(4探針、リング電極)を具備した容器にサンプルを投入後、10kNの圧力をかけた時の粉体抵抗と厚みを測定し、下記の式で粉体抵抗率を算出した。
・粉体抵抗率(Ω・cm)=抵抗(Ω)×厚み(cm)×抵抗率補正係数(RCF)
[Measurement of powder resistivity]
Measurement was performed using a powder resistance measurement system MCP-PD-51 (manufactured by Mitsubishi Analytical). The measurement method is to measure the powder resistance and thickness when a pressure of 10 kN is applied after putting the sample into a container equipped with a powder dedicated probe (4 probes, ring electrode). The rate was calculated.
・ Powder resistivity (Ω · cm) = resistance (Ω) × thickness (cm) × resistivity correction coefficient (RCF)

[カーボン量測定]
サンプルを秤量し容器に入れ、有機元素分析装置(MACRO CORDER JM1000CN,ジェイ・サイエンス・ラボ社製)で測定を行った。
[Measurement of carbon content]
The sample was weighed and placed in a container, and measurement was performed with an organic element analyzer (MACRO CORDER JM1000CN, manufactured by J Science Laboratories).

[一次粒子径]
1次粒子径は、SEM(走査型電子顕微鏡)から100個の一次粒子についてその粒子径を計測し、計測値を算術平均し算出した。
[Primary particle size]
The primary particle size was calculated by measuring the particle size of 100 primary particles from an SEM (scanning electron microscope) and arithmetically averaging the measured values.

図1には、本発明の低次酸化チタンの代表的な例として、実施例1で得られた低次酸化チタンのX線回折パターンが示されており、図2には、比較例の低次酸化チタンの代表的な例として、比較例1で得られた低次酸化チタンのX線回折パターンが示されている。   FIG. 1 shows an X-ray diffraction pattern of the low-order titanium oxide obtained in Example 1 as a typical example of the low-order titanium oxide of the present invention, and FIG. As a typical example of titanium suboxide, the X-ray diffraction pattern of the low-order titanium oxide obtained in Comparative Example 1 is shown.

また、図3,4には、本発明の低次酸化チタンの代表的な例として、実施例1で得られた低次酸化チタンのSEM写真(×10k,×100k)が示されており、図5には、比較例の低次酸化チタンの代表的な例として、比較例1で得られた低次酸化チタンのSEM写真(×10k)が示されている。   Moreover, in FIG.3, 4, the SEM photograph (x10k, x100k) of the low order titanium oxide obtained in Example 1 as a typical example of the low order titanium oxide of this invention is shown, FIG. 5 shows an SEM photograph (× 10 k) of the low-order titanium oxide obtained in Comparative Example 1 as a representative example of the low-order titanium oxide of the comparative example.

実施例1〜8の低次酸化チタンおよび比較例1〜3の低次酸化チタンのX線回折分析を行った結果、得られたピークパターンより、いずれもTiに帰属することが確認された。また、実施例6ではTiの低次酸化チタンの他にTiやTi11の低次酸化チタンが生成されており、実施例7ではTiの低次酸化チタンが生成されていることが確認された。 As a result of X-ray diffraction analysis of the low-order titanium oxides of Examples 1 to 8 and the low-order titanium oxides of Comparative Examples 1 to 3, it was confirmed that all belong to Ti 4 O 7 from the obtained peak patterns. It was done. In Example 6, in addition to Ti 4 O 7 low-order titanium oxide, Ti 5 O 9 and Ti 6 O 11 low-order titanium oxide are produced. In Example 7, Ti 3 O 5 low-order titanium oxide is produced. It was confirmed that titanium was produced.

また、実施例1の低次酸化チタンのSEM写真と比較例1の低次酸化チタンのSEM写真とを比較すると、比較例1の低次酸化チタンは表面が滑らかな不規則形状をしているのに対して、実施例1の低次酸化チタンは表面に無数の凹凸を有する不規則形状をしている。このため、実施例1の低次酸化チタンは、比較例1の低次酸化チタンに対して極めて高い比表面積を有していることが確認される。   Further, comparing the SEM photograph of the low-order titanium oxide of Example 1 and the SEM photograph of the low-order titanium oxide of Comparative Example 1, the low-order titanium oxide of Comparative Example 1 has an irregular shape with a smooth surface. In contrast, the low-order titanium oxide of Example 1 has an irregular shape having numerous irregularities on the surface. For this reason, it is confirmed that the low-order titanium oxide of Example 1 has a very high specific surface area with respect to the low-order titanium oxide of Comparative Example 1.

実施例1〜8の低次酸化チタン−カーボン複合体および比較例1〜3の低次酸化チタンの比表面積と粉体抵抗率の測定結果を表1に示す。   Table 1 shows the measurement results of the specific surface area and powder resistivity of the low-order titanium oxide-carbon composites of Examples 1 to 8 and the low-order titanium oxides of Comparative Examples 1 to 3.

比較例1と比較例2の結果より、比表面積と粉体抵抗率はトレードオフの関係となっており、各々の特性を両立することが困難であることが確認された。また、比較例3では、比較例2に導電性カーボンであるアセチレンブラックを混合し粉体抵抗率の低減効果を確認したが、無添加の比較例2よりも粉体抵抗率が低減したが、実施例1〜8に示した粉体抵抗率までには至らなかった。ところが、実施例1〜8で得られた低次酸化チタンの場合、高い比表面積を有するにも拘らず粉体抵抗率の上昇が抑制されており、従来の製造方法では達成し得なかった高い比表面積と低い粉体抵抗率を両立させることが可能であることが判った。   From the results of Comparative Example 1 and Comparative Example 2, it was confirmed that the specific surface area and the powder resistivity had a trade-off relationship, and it was difficult to achieve both properties. In Comparative Example 3, acetylene black, which is conductive carbon, was mixed with Comparative Example 2 to confirm the effect of reducing powder resistivity, but the powder resistivity was reduced as compared with Comparative Example 2 without addition. It did not reach the powder resistivity shown in Examples 1-8. However, in the case of the low-order titanium oxide obtained in Examples 1 to 8, the increase in the powder resistivity is suppressed despite having a high specific surface area, which is high that cannot be achieved by the conventional manufacturing method. It was found that it is possible to achieve both a specific surface area and a low powder resistivity.

C.蓄電デバイス評価(キャパシタ評価)
実施例9
実施例1の低次酸化チタン80wt%、アセチレンブラック(電気化学工業社製)10wt%、バインダーとしてポリフッ化ビニリデン(クレハ社製)10wt%と適量のN−メチルピロリドン(キシダ化学社製)を加え、混練機で十分に混練してスラリーを作製した。そのスラリーをアルミニウム箔にドクターブレードで塗布、乾燥して評価用電極を得た。
評価用電極と対極との間に、ポリプロピレン製セパレーターを介して電極を構成し、コイン型の電池容器に入れた後、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が容量比で1:2に混合されている混合溶媒中に電解質である1MのLiPFを溶解させた電解液を注入後、電池容器を封口することで、実施例9のキャパシタ評価用電池を作製した。
C. Storage device evaluation (capacitor evaluation)
Example 9
80 wt% of low-order titanium oxide of Example 1, 10 wt% of acetylene black (manufactured by Denki Kagaku Kogyo), 10 wt% of polyvinylidene fluoride (manufactured by Kureha) and an appropriate amount of N-methylpyrrolidone (manufactured by Kishida Chemical) were added. The slurry was sufficiently kneaded with a kneader. The slurry was applied to an aluminum foil with a doctor blade and dried to obtain an electrode for evaluation.
An electrode is formed between the evaluation electrode and the counter electrode via a polypropylene separator and placed in a coin-type battery container, and then ethylene carbonate (EC) and dimethyl carbonate (DMC) are in a capacity ratio of 1: 2. After injecting an electrolytic solution in which 1M LiPF 6 as an electrolyte was dissolved in the mixed solvent, the battery container was sealed to produce a capacitor evaluation battery of Example 9.

測定条件は電圧を1.0〜2.5V、電流密度を0.1C、1Cと変更した条件で充放電を行い、測定を行った。電池評価は下記の式を用いて放電率を算出し、効果の確認を行った。
・放電率(%)=(1C放電容量/0.1C放電容量)×100
Measurement conditions were measured by charging and discharging under the condition that the voltage was changed to 1.0 to 2.5 V and the current density was changed to 0.1 C and 1 C. Battery evaluation calculated the discharge rate using the following formula, and confirmed the effect.
Discharge rate (%) = (1 C discharge capacity / 0.1 C discharge capacity) × 100

比較例4
実施例1の低次酸化チタンを比較例1の低次酸化チタンへ変更した以外は実施例9と同様の操作を行い、比較例4のキャパシタ評価用電池を作製し、評価を行った。
Comparative Example 4
The same operation as in Example 9 was performed except that the low-order titanium oxide of Example 1 was changed to the low-order titanium oxide of Comparative Example 1, and a capacitor evaluation battery of Comparative Example 4 was produced and evaluated.

実施例9と比較例4のキャパシタ評価用電池の測定結果を表2に示す。   Table 2 shows the measurement results of the capacitor evaluation batteries of Example 9 and Comparative Example 4.

実施例9と比較例4のキャパシタ評価用電池の測定結果より、実施例9のキャパシタ評価用電池の方は大幅な放電率の向上を示す結果となった。このことから、本発明で得られた低次酸化チタンは、キャパシタのみならず、燃料電池やリチウム電池等の蓄電デバイスへの適用可能であることが示唆される。

From the measurement results of the capacitor evaluation batteries of Example 9 and Comparative Example 4, the capacitor evaluation battery of Example 9 showed a significant improvement in discharge rate. This suggests that the low-order titanium oxide obtained in the present invention can be applied not only to capacitors but also to power storage devices such as fuel cells and lithium batteries.

実施例1〜8の低次酸化チタンおよび比較例1〜3の低次酸化チタンの比表面積と粉体抵抗率の測定結果を表1に示す。 Table 1 shows the measurement results of specific surface area and powder resistivity of low-order titanium oxides of Examples 1 to 8 and low-order titanium oxides of Comparative Examples 1 to 3.

Claims (7)

BET法による比表面積が10〜1000m/gであり、そして粉体抵抗率が10.0Ω・cm以下であることを特徴とする低次酸化チタン。 A low-order titanium oxide having a specific surface area by BET method of 10 to 1000 m 2 / g and a powder resistivity of 10.0 Ω · cm or less. 低次酸化チタンは、一般式:Ti2n−1(2≦n≦10)で表されることを特徴とする請求項1に記載の低次酸化チタン。 The low-order titanium oxide according to claim 1, wherein the low-order titanium oxide is represented by a general formula: Ti n O 2n-1 (2 ≦ n ≦ 10). Tiが70重量%以上含まれていることを特徴とする請求項1又は2に記載の低次酸化チタン。 The low-order titanium oxide according to claim 1 or 2, wherein Ti 4 O 7 is contained in an amount of 70% by weight or more. カーボン量が0〜10重量%であることを特徴とする請求項1ないし3のいずれか1項に記載の低次酸化チタン。   The low-order titanium oxide according to any one of claims 1 to 3, wherein the amount of carbon is 0 to 10% by weight. 請求項1ないし4のいずれか1項に記載の低次酸化チタンを使用した電極。   An electrode using the low-order titanium oxide according to any one of claims 1 to 4. 請求項5記載の電極を備えた蓄電デバイス。   An electricity storage device comprising the electrode according to claim 5. 二酸化チタンとカーボン源としての有機化合物との混合物を不活性ガス雰囲気下にて焼成することにより、請求項1ないし4のいずれか1項に記載の低次酸化チタンを製造する方法。


The method for producing low-order titanium oxide according to any one of claims 1 to 4, wherein a mixture of titanium dioxide and an organic compound as a carbon source is baked in an inert gas atmosphere.


JP2017028466A 2017-02-17 2017-02-17 Low-order titanium oxide and its manufacturing method Active JP6892280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028466A JP6892280B2 (en) 2017-02-17 2017-02-17 Low-order titanium oxide and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028466A JP6892280B2 (en) 2017-02-17 2017-02-17 Low-order titanium oxide and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018131370A true JP2018131370A (en) 2018-08-23
JP6892280B2 JP6892280B2 (en) 2021-06-23

Family

ID=63248781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028466A Active JP6892280B2 (en) 2017-02-17 2017-02-17 Low-order titanium oxide and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6892280B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112387A (en) * 2019-05-07 2019-08-09 湖南金富力新能源股份有限公司 A kind of positive electrode and preparation method thereof that Asia titanium-oxide-coated is modified
JP2021095301A (en) * 2019-12-16 2021-06-24 デンカ株式会社 Powder and dispersion of low order titanium oxide
WO2023037953A1 (en) * 2021-09-08 2023-03-16 国立大学法人弘前大学 Electroconductive titanium oxide, metal-supported electroconductive titanium oxide, membrane electrode assembly, solid polymer electrolyte fuel cell, method for producing electroconductive titanium oxide, and method for producing metal-supported electroconductive titanium oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052659A (en) * 2005-08-18 2007-03-01 Fuji Xerox Co Ltd Information processor, association method and program
JP2008150240A (en) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd Titanium oxide and its production method
JP2010536702A (en) * 2007-08-23 2010-12-02 アトラバーダ リミテッド Powder
WO2013121801A1 (en) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 Macroporous titanium compound monolith and method for manufacturing same
JP2016081584A (en) * 2014-10-10 2016-05-16 パナソニックIpマネジメント株式会社 Conductive particle and carrier material comprising the same, and fuel cell device and water electrolytic device
JP2017052659A (en) * 2015-09-07 2017-03-16 国立大学法人 東京大学 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052659A (en) * 2005-08-18 2007-03-01 Fuji Xerox Co Ltd Information processor, association method and program
JP2008150240A (en) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd Titanium oxide and its production method
JP2010536702A (en) * 2007-08-23 2010-12-02 アトラバーダ リミテッド Powder
WO2013121801A1 (en) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 Macroporous titanium compound monolith and method for manufacturing same
JP2016081584A (en) * 2014-10-10 2016-05-16 パナソニックIpマネジメント株式会社 Conductive particle and carrier material comprising the same, and fuel cell device and water electrolytic device
JP2017052659A (en) * 2015-09-07 2017-03-16 国立大学法人 東京大学 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112387A (en) * 2019-05-07 2019-08-09 湖南金富力新能源股份有限公司 A kind of positive electrode and preparation method thereof that Asia titanium-oxide-coated is modified
JP2021095301A (en) * 2019-12-16 2021-06-24 デンカ株式会社 Powder and dispersion of low order titanium oxide
JP7530170B2 (en) 2019-12-16 2024-08-07 デンカ株式会社 Low-order titanium oxide powder and dispersion
WO2023037953A1 (en) * 2021-09-08 2023-03-16 国立大学法人弘前大学 Electroconductive titanium oxide, metal-supported electroconductive titanium oxide, membrane electrode assembly, solid polymer electrolyte fuel cell, method for producing electroconductive titanium oxide, and method for producing metal-supported electroconductive titanium oxide

Also Published As

Publication number Publication date
JP6892280B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
EP2911223B1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
Yuan et al. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance
US9868105B2 (en) Spinel-type lithium titanium oxide/graphene composite and method of preparing the same
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4944974B2 (en) Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device
US20110223491A1 (en) Lithium titanate composite material, preparation method thereof, negative active substance and lithium ion secondary battery containing the same
Zhang et al. TiO 2-B nanowires via topological conversion with enhanced lithium-ion intercalation properties
JP2012079703A (en) Positive electrode active material used for nonaqueous electrolyte secondary battery, and method for producing the same
US11223035B2 (en) Graphene-enabled niobium-based composite metal oxide as an anode active material for a lithium-ion battery
KR101191155B1 (en) Synthesizing method for lithium titanium oxide nanoparticle using supercritical fluids
JP2006221881A (en) Active material for nonaqueous electrolytic solution battery and its manufacturing method, electrode for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery
JP6200529B2 (en) Method for producing negative electrode active material for secondary battery
JP6375331B2 (en) Titanium oxide particles, method for producing titanium oxide particles, electrode for power storage device including titanium oxide particles, power storage device provided with electrode including titanium oxide particles
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
JP6434555B2 (en) Negative electrode active material composite for lithium ion secondary battery and method for producing the same
JP6892280B2 (en) Low-order titanium oxide and its manufacturing method
JP2018199617A (en) Titanium oxide crystal and electrode for electricity storage devices that comprises titanium oxide crystal
JP2017128462A (en) Manufacturing method of titanium niobium oxide, manufacturing method of titanium niobium oxide anode active material using the obtained titanium niobium oxide
JP2016119459A (en) Composite of metal oxide nanoparticle and carbon, method for producing the same, electrode using composite, and electrochemical element
JP6801758B1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP6259433B2 (en) Method for producing negative electrode active material for secondary battery
JP6486518B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
CN107591530B (en) Modification method of lithium titanate negative electrode material
JP2000228193A (en) Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
Huang et al. A uniform few-layered carbon coating derived from self-assembled carboxylate monolayers capable of promoting the rate properties and durability of commercial TiO 2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210527

R150 Certificate of patent or registration of utility model

Ref document number: 6892280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250