JP2017052659A - Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric - Google Patents

Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric Download PDF

Info

Publication number
JP2017052659A
JP2017052659A JP2015175989A JP2015175989A JP2017052659A JP 2017052659 A JP2017052659 A JP 2017052659A JP 2015175989 A JP2015175989 A JP 2015175989A JP 2015175989 A JP2015175989 A JP 2015175989A JP 2017052659 A JP2017052659 A JP 2017052659A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide aggregate
aggregate
battery electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175989A
Other languages
Japanese (ja)
Inventor
慎一 大越
Shinichi Ogoshi
慎一 大越
裕子 所
Yuko Tokoro
裕子 所
義総 奈須
Tomomichi NASU
義総 奈須
飛鳥 生井
Asuka Ikui
飛鳥 生井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2015175989A priority Critical patent/JP2017052659A/en
Priority to PCT/JP2016/076049 priority patent/WO2017043449A1/en
Publication of JP2017052659A publication Critical patent/JP2017052659A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a titanium oxide aggregate made of TiOhaving an unprecedented novel particulate structure, a manufacturing method of the titanium oxide aggregate, a titanium oxide powder, and a titanium oxide compact, and further propose a catalyst for battery electrodes using the titanium oxide aggregate made of TiOhaving an unprecedented novel particulate structure, a conductor for battery electrodes, and microwave/millimeter wave dielectrics.SOLUTION: In the present invention, by sintering a precursor powder made of nano-size TiOparticles under a hydrogen atmosphere, a titanium oxide aggregate 1 made of TiOis manufactured. Thereby, according to the present invention, a plurality of crystallites to be primary particles are joined together to form a particulate secondary particle 3, and the plurality of secondary particles 3 are further aggregated to manufacture the titanium oxide aggregate 1 of a porous structure with its body surface formed irregularly. Thus, according to the present invention, the titanium oxide aggregate 1 made of TiOhaving an unprecedented novel particulate structure can be provided.SELECTED DRAWING: Figure 1

Description

本発明は、酸化チタン凝集体、酸化チタン凝集体の製造方法、酸化チタン粉末体、酸化チタン成形体、電池電極用触媒、電池電極用導電材及びマイクロ波・ミリ波用誘電体に関する。   The present invention relates to a titanium oxide aggregate, a method for producing a titanium oxide aggregate, a titanium oxide powder body, a titanium oxide molded body, a battery electrode catalyst, a battery electrode conductive material, and a microwave / millimeter wave dielectric.

例えばTi3+を含む酸化物(以下、これを単に酸化チタンと呼ぶ)の代表であるTi2O3は、種々の興味深い物性を有する相転移材料であり、例えば金属―絶縁体転移や、常磁性―反強磁性転移が起こることが知られている。また、Ti2O3は、赤外線吸収や、熱電効果、磁気電気(ME)効果等も知られており、加えて、近年、磁気抵抗(MR)効果も見出されている。このような、様々な物性は、バルク体(〜μmサイズ)でのみ研究されており(例えば、非特許文献1参照)、そのメカニズムは未だ不明な部分も多い。 For example, Ti 2 O 3, which is representative of an oxide containing Ti 3+ (hereinafter simply referred to as titanium oxide), is a phase transition material having various interesting physical properties, such as metal-insulator transition, It is known that a magnetic-antiferromagnetic transition occurs. Ti 2 O 3 is also known for infrared absorption, thermoelectric effect, magnetoelectric (ME) effect, etc. In addition, in recent years, magnetoresistance (MR) effect has also been found. Such various physical properties have been studied only in a bulk body (˜μm size) (see, for example, Non-Patent Document 1), and the mechanism is still unclear.

Hitoshi SATO, et al., JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, May 15, 2006, Vol.75, No.5, 053702Hitoshi SATO, et al., JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, May 15, 2006, Vol.75, No.5, 053702

このような酸化チタンの従来における合成方法は、真空中において、約1600[℃]で焼成したり、約700[℃]でTiO2を炭素還元したり、約1000[℃]でTiO2,H2,TiCl4を焼成することでバルク体として合成されてきた。また、近年、酸化チタンとしては、Ti2O3やTi3O5の他に、Ti4O7についても注目されており、今後、Ti4O7でなる酸化チタンを種々の技術分野に適用することも考えられる。そのため、近年では、種々の技術分野に適用し易い新たな粒子構造でなるTi4O7の開発も望まれている。 Conventional methods for synthesizing such a titanium oxide include baking in vacuum at about 1600 [° C.], carbon reduction of TiO 2 at about 700 [° C.], and TiO 2 , H at about 1000 [° C.]. 2 , TiCl 4 has been synthesized as a bulk material by firing. In recent years, Ti 4 O 7 has attracted attention in addition to Ti 2 O 3 and Ti 3 O 5 as titanium oxide. In the future, titanium oxide composed of Ti 4 O 7 will be applied to various technical fields. It is also possible to do. Therefore, in recent years, development of Ti 4 O 7 having a new particle structure that can be easily applied to various technical fields is also desired.

そこで、本発明は以上の点を考慮してなされたもので、従来にない新規な粒子構造を有したTi4O7からなる酸化チタン凝集体、酸化チタン凝集体の製造方法、酸化チタン粉末体、及び酸化チタン成形体を提案することを目的とし、さらに、この酸化チタン凝集体を用いた電池電極用触媒、電池電極用導電材、及びマイクロ波・ミリ波用誘電体を提案することを目的とする。 Therefore, the present invention has been made in consideration of the above points, a titanium oxide aggregate composed of Ti 4 O 7 having a novel particle structure that has not been conventionally, a method for producing a titanium oxide aggregate, a titanium oxide powder body , And a titanium oxide molded body, and further, a battery electrode catalyst, a battery electrode conductive material, and a microwave / millimeter wave dielectric using the titanium oxide aggregate. And

かかる課題を解決するため本発明による酸化チタン凝集体は、Ti4O7でなる粒体からなり、前記粒体は、1次粒子となる複数の結晶子が結合して粒子状の2次粒子を形成し、複数の前記2次粒子が凝集して粒体表面が凹凸状に形成された多孔質構造であることを特徴とする。 In order to solve such a problem, the titanium oxide aggregate according to the present invention is composed of particles made of Ti 4 O 7 , and the particles are formed by combining a plurality of crystallites serving as primary particles to form particulate secondary particles And having a porous structure in which a plurality of the secondary particles are aggregated to form irregular surfaces on the surface of the particles.

また、本発明による酸化チタン凝集体の製造方法は、ナノサイズのTiO2粒子からなる前駆体粉末を水素雰囲気下で焼成し、粒体表面が凹凸状に形成されたTi4O7からなる酸化チタン凝集体を製造する焼成工程を備えることを特徴とする。 Further, the method for producing a titanium oxide aggregate according to the present invention includes a precursor powder composed of nano-sized TiO 2 particles fired in a hydrogen atmosphere, and an oxidation composed of Ti 4 O 7 in which the particle surface is formed in an uneven shape. It comprises a firing step for producing a titanium aggregate.

また、本発明による酸化チタン粉末体は、粉末状でなり、請求項1〜4のいずれか1項に記載の酸化チタン凝集体が含まれることを特徴とする。   In addition, the titanium oxide powder according to the present invention is in a powder form, and includes the titanium oxide aggregate according to any one of claims 1 to 4.

また、本発明による酸化チタン成形体は、請求項1〜4のいずれか1項に記載の酸化チタン凝集体を含んだ酸化チタン粉末体が固化したことを特徴とする。   The titanium oxide molded body according to the present invention is characterized in that the titanium oxide powder body containing the titanium oxide aggregate according to any one of claims 1 to 4 is solidified.

また、本発明による電池電極用触媒は、電池内の電極に設けられる電池電極用触媒であって、請求項1〜4のいずれか1項に記載の酸化チタン凝集体に貴金属が担持されていることを特徴とする。   The battery electrode catalyst according to the present invention is a battery electrode catalyst provided on an electrode in a battery, wherein the noble metal is supported on the titanium oxide aggregate according to any one of claims 1 to 4. It is characterized by that.

また、本発明による電池電極用導電材は、電池の正極又は負極に含まれる電池電極用導電材であって、請求項1〜4のいずれか1項に記載の酸化チタン凝集体からなることを特徴とする。   Further, the battery electrode conductive material according to the present invention is a battery electrode conductive material contained in a positive electrode or a negative electrode of a battery, and comprises the titanium oxide aggregate according to any one of claims 1 to 4. Features.

また、本発明によるマイクロ波・ミリ波用誘電体は、マイクロ波・ミリ波用電波吸収体に設けられるマイクロ波・ミリ波用誘電体であって、請求項1〜4のいずれか1項に記載の酸化チタン凝集体からなることを特徴とする。   Further, the microwave / millimeter-wave dielectric according to the present invention is a microwave / millimeter-wave dielectric provided in a microwave / millimeter-wave electromagnetic wave absorber, according to any one of claims 1 to 4. It consists of the described titanium oxide aggregate.

本発明によれば、従来にない新規な粒子構造を有したTi4O7からなる酸化チタン凝集体、酸化チタン凝集体の製造方法、酸化チタン粉末体、及び酸化チタン成形体を提供できる。また、従来にない新規な粒子構造を有したTi4O7からなる酸化チタン凝集体を用いた電池電極用触媒、電池電極用導電材、及びマイクロ波・ミリ波用誘電体を提供できる。 According to the present invention, the titanium oxide aggregate consisting of Ti 4 O 7 having a novel particle structure unprecedented method for producing titanium oxide aggregates, titanium oxide powder material, and titanium oxide molded bodies can be provided. In addition, it is possible to provide a battery electrode catalyst, a battery electrode conductive material, and a microwave / millimeter wave dielectric using a titanium oxide aggregate composed of Ti 4 O 7 having a novel particle structure that has not been conventionally obtained.

本発明による酸化チタン凝集体の構成を示すSEM画像(1)である。It is a SEM image (1) which shows the structure of the titanium oxide aggregate by this invention. 本発明による酸化チタン凝集体の構成を示すSEM画像(2)である。It is a SEM image (2) which shows the structure of the titanium oxide aggregate by this invention. 図3Aは、焼成前の前駆体粉末を示す写真であり、図3Bは、焼成後に得られた酸化チタン粉末体を示す写真である。FIG. 3A is a photograph showing a precursor powder before firing, and FIG. 3B is a photograph showing a titanium oxide powder body obtained after firing. 焼成後に得られた酸化チタン粉末体のXRDパターンの解析結果を示すグラフである。It is a graph which shows the analysis result of the XRD pattern of the titanium oxide powder body obtained after baking. ボールミル法によって粉砕した酸化チタン粉末体のXRDパターンの解析結果を示すグラフである。It is a graph which shows the analysis result of the XRD pattern of the titanium oxide powder ground by the ball mill method. 焼結後の酸化チタン粉末体の誘電率を示す表である。It is a table | surface which shows the dielectric constant of the titanium oxide powder body after sintering.

以下図面に基づいて本発明の実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)酸化チタン凝集体の構成
図1及び図2において、1は本発明の酸化チタン凝集体を示し、この酸化チタン凝集体1は、Ti4O7でなる粒体2からなり、粒体表面が凹凸状に形成された多孔質構造からなる。実際上、酸化チタン凝集体1は、後述する焼成工程を経て得られた粒体2の粒径が、1000[nm]以下(以下、ナノサイズと呼ぶ)に形成されており、1次粒子となる複数の結晶子が結合して粒子状の2次粒子3を形成している。酸化チタン凝集体1となる粒体2は、複数の2次粒子3が凝集して1つの塊となって粒子状に形成されている。
(1) Configuration of Titanium Oxide Aggregate In FIGS. 1 and 2, 1 represents the titanium oxide aggregate of the present invention, and this titanium oxide aggregate 1 is composed of granules 2 made of Ti 4 O 7. It consists of a porous structure whose surface is uneven. In practice, the titanium oxide aggregate 1 is formed so that the particle size of the granule 2 obtained through the firing step described below is 1000 [nm] or less (hereinafter referred to as nano-size), and the primary particles and A plurality of crystallites are combined to form particulate secondary particles 3. The granule 2 that becomes the titanium oxide aggregate 1 is formed into particles by agglomerating a plurality of secondary particles 3 into one lump.

この場合、粒体2の粒体表面には、球状、半球状、半楕円状、球冠状、又は液滴状で不規則な形状や大きさでなる複数の2次粒子3が緻密に形成されており、フレーク状の凹凸形状、又はサンゴ礁状の凹凸形状が形成されている。因みに、酸化チタン凝集体1は、製造過程において焼成されていることから、粒子表面の2次粒子3に鋭角な角部がなく、滑らかな曲線状の表面を有した複数の2次粒子3で構成されている。   In this case, a plurality of secondary particles 3 having an irregular shape or size in a spherical shape, a semispherical shape, a semi-elliptical shape, a spherical crown shape, or a droplet shape are densely formed on the particle surface of the particle body 2. A flake-like uneven shape or a coral reef-like uneven shape is formed. Incidentally, since the titanium oxide aggregate 1 is baked in the manufacturing process, the secondary particles 3 on the particle surface have no sharp corners, and are a plurality of secondary particles 3 having a smooth curved surface. It is configured.

また、粒体2は、大きさ、形状、及び形成位置が不規則な2次粒子3が粒体表面に緻密に凝集していることから、凸状に形成された2次粒子3に加えて、内部が凹凸状に入り組んだ不規則な大きさの凹みも形成されている。   In addition, since the secondary particles 3 having irregular sizes, shapes, and formation positions are densely aggregated on the surface of the granules, the granules 2 are added to the secondary particles 3 formed in a convex shape. Irregularly sized recesses are also formed in which the inside is uneven.

ここで、2次粒子3を形成する1次粒子となる結晶子は、Ti4O7の結晶子であり、平均粒径が26±23[nm]であってナノ構造を有する。なお、このような結晶子の大きさについては、図1及び図2のSEM画像で示した酸化チタン凝集体1のTEM画像によって確認されている。ここで、結晶子の平均粒径とは、TEM画像に現れた結晶方位の変化を目視で確認し、結晶方位が変化していない領域を1つの結晶子と見なし、ランダムに選択して測定した複数の結晶子の大きさの平均値を意味する。 Here, the crystallites that are the primary particles forming the secondary particles 3 are Ti 4 O 7 crystallites having an average particle diameter of 26 ± 23 [nm] and a nanostructure. Note that the size of the crystallite is confirmed by the TEM image of the titanium oxide aggregate 1 shown in the SEM images of FIGS. 1 and 2. Here, the average grain size of the crystallites was measured by visually checking the change in crystal orientation that appeared in the TEM image, considering the region where the crystal orientation did not change as one crystallite, and selecting it randomly. It means the average value of the size of a plurality of crystallites.

そして、このような構成を有する酸化チタン凝集体1は、後述する粉砕工程を経ることで所定の粒径にも調整することができる。すなわち、図1及び図2に示す酸化チタン凝集体1は、使用用途に応じて粉砕され、粒体2の粒径が500[nm]以下、好ましは10〜100[nm]に形成され得る。ここで、このような酸化チタン凝集体1は、後述する「(2)酸化チタン凝集体の製造方法」にて説明する製造方法により製造され、粒子状の酸化チタン凝集体1が集まり粉末状となった酸化チタン粉末体として得ることができる。   The titanium oxide aggregate 1 having such a configuration can be adjusted to a predetermined particle size through a pulverization step described later. That is, the titanium oxide aggregate 1 shown in FIGS. 1 and 2 can be pulverized according to the intended use, and the particle size of the granules 2 can be formed to 500 [nm] or less, preferably 10 to 100 [nm]. . Here, such a titanium oxide aggregate 1 is produced by the production method described in “(2) Method for producing titanium oxide aggregate”, which will be described later. The obtained titanium oxide powder can be obtained.

酸化チタン粉末体は、酸化チタン凝集体1が95%以上含まれていることが好ましく、圧縮や固化材(例えばポリビニルアルコール)等によって所定形状に固化することで酸化チタン成形体を形成できる。Ti4O7の物質固有の電気伝導度は103〜104 [S cm-1]と非常に高いことが知られており、Ti4O7からなる本発明の酸化チタン凝集体は、電池内の電極に設けられる電池電極用触媒や、電池の正極又は負極に含まれる電池電極用導電材として用いることができる。 The titanium oxide powder body preferably contains 95% or more of the titanium oxide aggregate 1 and can be formed into a predetermined shape by compression or solidification with a solidifying material (for example, polyvinyl alcohol). It is known that the intrinsic electrical conductivity of Ti 4 O 7 is 10 3 to 10 4 [S cm −1 ], and the titanium oxide aggregate of Ti 4 O 7 according to the present invention is a battery. It can be used as a battery electrode catalyst provided in the inner electrode or a battery electrode conductive material contained in the positive electrode or negative electrode of the battery.

また、この酸化チタン成形体は、周波数75[GHz]以上において誘電率が20以上であり、かつ誘電正接が0.10以上である。より具体的には周波数75〜90[GHz]において誘電率が23〜33であり、かつ誘電正接が0.15〜0.19となり得る。   The titanium oxide molded body has a dielectric constant of 20 or more at a frequency of 75 [GHz] or more and a dielectric loss tangent of 0.10 or more. More specifically, the dielectric constant can be 23 to 33 and the dielectric loss tangent can be 0.15 to 0.19 at a frequency of 75 to 90 [GHz].

(2)酸化チタン凝集体の製造方法
次に、このような酸化チタン凝集体1の製造方法について以下説明する。ここでは、ナノサイズのTiO2粒子からなる前駆体粉末を所定量用意する。この場合、例えば前駆体粉末を構成するTiO2粒子としては、アナターゼ型やルチル型を用いることができ、粒径が500[nm]以下であることが好ましい。
(2) Method for Producing Titanium Oxide Aggregate Next, a method for producing such a titanium oxide aggregate 1 will be described below. Here, a predetermined amount of precursor powder made of nano-sized TiO 2 particles is prepared. In this case, for example, as the TiO 2 particles constituting the precursor powder, an anatase type or a rutile type can be used, and the particle size is preferably 500 [nm] or less.

次いで、これらTiO2粒子からなる前駆体粉末を、0.05〜0.5[L/min]、好ましくは、0.3±0.2[L/min]の水素雰囲気下で焼成する。この焼成工程では、900〜1200[℃]、好ましくは1000〜1200[℃]の温度で焼成することが望ましい。また所定の焼成温度を保持する時間は、0〜10時間、好ましくは5±2時間であることが望ましい。 Next, the precursor powder composed of these TiO 2 particles is fired in a hydrogen atmosphere of 0.05 to 0.5 [L / min], preferably 0.3 ± 0.2 [L / min]. In this firing step, firing is preferably performed at a temperature of 900 to 1200 [° C.], preferably 1000 to 1200 [° C.]. The time for maintaining the predetermined firing temperature is 0 to 10 hours, preferably 5 ± 2 hours.

そして、このような焼成工程を経ることで、TiO2粒子の還元反応によって、Ti3+を含んだ酸化物であるTi4O7(Ti3+Ti4+O7)からなる酸化チタン凝集体1を製造できる。なお、焼成工程では、TiO2粒子からなる前駆体粉末に対して焼成処理を行うことで、黒色粉末状でなる酸化チタン粉末体が得られ、この酸化チタン粉末体に本発明の酸化チタン凝集体1が含有されている。 Through such a firing step, a titanium oxide aggregate made of Ti 4 O 7 (Ti 3+ Ti 4+ O 7 ), which is an oxide containing Ti 3+, is obtained by a reduction reaction of TiO 2 particles. 1 can be manufactured. In the firing process, a titanium oxide powder body in the form of a black powder is obtained by firing the precursor powder composed of TiO 2 particles, and the titanium oxide aggregate of the present invention is obtained on the titanium oxide powder body. 1 is contained.

因みに、焼成工程における水素雰囲気、温度及び時間については、Ti4O7からなる酸化チタン凝集体1を少なくとも約95%以上含有した酸化チタン粉末体を作製する場合、水素雰囲気が0.05[L/min]以上、焼成時の温度が1000〜1200[℃]、焼成時間が3時間以上であればよい。 Incidentally, regarding the hydrogen atmosphere, temperature and time in the firing step, when producing a titanium oxide powder body containing at least about 95% of titanium oxide aggregate 1 made of Ti 4 O 7 , the hydrogen atmosphere is 0.05 [L / min. As described above, the firing temperature may be 1000 to 1200 [° C.] and the firing time may be 3 hours or more.

次いで、この焼成工程で得られた酸化チタン凝集体1よりも粒径を小さくさせたナノ微粒子状の酸化チタン凝集体を製造する場合には、上述した焼成工程で得られた酸化チタン凝集体1を粉砕する粉砕工程を行う。粉砕工程は、例えばボールミル法や、ロッドミル法、圧搾粉砕による粉砕法等その他種々の粉砕処理により、焼成工程で得られた酸化チタン凝集体1を粉砕してゆくことで、所望の粒径でなる酸化チタン凝集体を得られる。   Next, when producing a nanoparticulate titanium oxide aggregate having a particle size smaller than that of the titanium oxide aggregate 1 obtained in this firing step, the titanium oxide aggregate 1 obtained in the above-described firing step is used. A pulverization step is performed to pulverize. The pulverization step has a desired particle size by pulverizing the titanium oxide aggregate 1 obtained in the firing step by various other pulverization processes such as a ball mill method, a rod mill method, and a pulverization method by pressing pulverization. A titanium oxide aggregate can be obtained.

例えば、ボールミル法では、焼成工程で得られた酸化チタン凝集体からなる酸化チタン粉末体と、複数の硬質ボールと、水とを粉砕機の容器に入れ、当該容器を回転させることにより、酸化チタン凝集体を硬質ボールによって粉砕してゆき、所望の粒径でなる酸化チタン凝集体を製造できる。このような粉砕工程を行うことで、酸化チタン凝集体の使用形態に応じて、当該酸化チタン凝集体1を最適な粒径に形成できる。   For example, in the ball mill method, a titanium oxide powder body made of a titanium oxide aggregate obtained in a firing step, a plurality of hard balls, and water are placed in a container of a pulverizer, and the container is rotated to thereby form titanium oxide. The aggregate can be pulverized with a hard ball to produce a titanium oxide aggregate having a desired particle size. By performing such a pulverization step, the titanium oxide aggregate 1 can be formed to an optimum particle size according to the usage form of the titanium oxide aggregate.

因みに、上述した焼成工程で得られた酸化チタン粉末体や、粉砕工程を経て得られた酸化チタン粉末体は、所定形状の成形機等に充填して圧縮させたり、或いは、例えばポリビニルアルコール等の固化剤を添加させることで固化し得、所定形状でなる酸化チタン成形体を製造できる。   Incidentally, the titanium oxide powder body obtained in the above-mentioned firing step and the titanium oxide powder body obtained through the pulverization step are filled in a molding machine of a predetermined shape and compressed, or, for example, polyvinyl alcohol or the like It can be solidified by adding a solidifying agent, and a titanium oxide molded body having a predetermined shape can be produced.

(3)検証試験
次に、上述した製造方法に従って実際に酸化チタン凝集体を製造し、各種検証試験を行った。この場合、図3Aに示すように、例えば粒径が約7[nm]でなるアナターゼ型のTiO2粒子からなる粉末体を、前駆体粉末6として約2.9[g]用意した。次いで、0.3[L/min]の水素雰囲気下、1000[℃]で約5時間、前駆体粉末6を焼成したところ、図3Bに示すような黒色の粉末体10を約2.3[g]得た。
(3) Verification test Next, the titanium oxide aggregate was actually manufactured according to the manufacturing method described above, and various verification tests were performed. In this case, as shown in FIG. 3A, for example, about 2.9 [g] of a powder body made of anatase-type TiO 2 particles having a particle diameter of about 7 [nm] was prepared. Next, when the precursor powder 6 was fired at 1000 [° C.] for about 5 hours under a hydrogen atmosphere of 0.3 [L / min], about 2.3 [g] of a black powder body 10 as shown in FIG. 3B was obtained. .

そして、この粉末体10のXRD(X線回析)パターンを解析したところ、図4に示すような解析結果を得た。図4では、横軸に回析角を示し、縦軸に回析X線強度を示している。また、図4では、実測値を+で示し、計測値を実線aで示し、誤差を実線bで示し、バックグラウンド強度(bkg)を実線cで示している。図4に示すXRDパターンでは、複数のピークが表れており、これらピークから、粉末体10内にTi4O7が生成されていることが確認できた。なお、この粉末体10内には、Ti4O7が98.6(6)%生成され、Ti3O5が1.4(5)%生成されていた。 And when the XRD (X-ray diffraction) pattern of this powder body 10 was analyzed, the analysis result as shown in FIG. 4 was obtained. In FIG. 4, the horizontal axis indicates the diffraction angle, and the vertical axis indicates the diffraction X-ray intensity. In FIG. 4, the actual measurement value is indicated by +, the measurement value is indicated by a solid line a, the error is indicated by a solid line b, and the background intensity (bkg) is indicated by a solid line c. In the XRD pattern shown in FIG. 4, a plurality of peaks appeared, and it was confirmed from these peaks that Ti 4 O 7 was generated in the powder body 10. In the powder body 10, 98.6 (6)% Ti 4 O 7 was produced and 1.4 (5)% Ti 3 O 5 was produced.

また、粉末体10をSEM画像で確認したところ、図1及び図2に示すような粒子状の酸化チタン凝集体1が確認できた。このことから、得られた粉末体10は、酸化チタン凝集体1が集まった酸化チタン粉末体であることが確認できた。次に、酸化チタン粉末体に含まれる酸化チタン凝集体1をSEM画像で確認してゆき、酸化チタン凝集体1の粒径を目視で測定したところ、粒径は100〜1000[nm]であることが確認でき、ランダムに選択した測定数500個の酸化チタン凝集体1の平均粒径が451±191[nm]であることが確認できた。   Moreover, when the powder body 10 was confirmed by the SEM image, the particulate titanium oxide aggregate 1 as shown in FIG.1 and FIG.2 has been confirmed. From this, it was confirmed that the obtained powder body 10 was a titanium oxide powder body in which the titanium oxide aggregates 1 were collected. Next, the titanium oxide aggregate 1 contained in the titanium oxide powder was confirmed with an SEM image, and when the particle size of the titanium oxide aggregate 1 was measured visually, the particle size was 100 to 1000 [nm]. It was confirmed that the average particle size of the 500 selected titanium oxide aggregates 1 randomly selected was 451 ± 191 [nm].

次に、この酸化チタン粉末体をボールミル法によって粉砕した。具体的には、200[mL]の水と、191.01[g]のZrO2ボール群(φ2[mm])と、1000.5[mg]の酸化チタン粉末体(試料)とを300[mL]の容器に入れ、粉砕機によって当該容器を回転数70[rpm]で3日間回転させ続けて、容器内で酸化チタン粉末体を粉砕した。 Next, this titanium oxide powder was pulverized by a ball mill method. Specifically, 200 [mL] water, 191.01 [g] ZrO 2 balls (φ2 [mm]), 1000.5 [mg] titanium oxide powder (sample) in a 300 [mL] container The container was continuously rotated at a rotational speed of 70 [rpm] for 3 days by a pulverizer, and the titanium oxide powder was pulverized in the container.

次いで、ボールミル終了後、容器内の溶液をシャーレに移し、60[℃]で乾燥させて、残存物をサンプルとして回収した。このようにして得られたサンプルのXRDパターンを解析したところ、図5に示すような解析結果を得た。図5では、横軸に回析角を示し、縦軸に回析X線強度を示している。また、図5では、実測値を実線dで示し、計測値を実線eで示し、誤差を実線fで示し、バックグラウンド強度(bkg)を実線gで示している。図5に示すXRDパターンでは、現れたピークから、サンプルがTi4O7でなる酸化チタン粉末体であることが図4と同様に確認できた。但し、図5では、図4に比べて、幅が広く緩やかなピークとなることが確認できた。このことから粉砕後の酸化チタン凝集体では、結晶サイズが小さくなり、結晶に歪が生じたことが確認できた。なお、ボールミル後のサンプルは、Ti4O7が99(7)%となり、Ti3O5が1(5)%となっていた。 Next, after completion of the ball mill, the solution in the container was transferred to a petri dish and dried at 60 [° C.], and the residue was collected as a sample. When the XRD pattern of the sample thus obtained was analyzed, an analysis result as shown in FIG. 5 was obtained. In FIG. 5, the horizontal axis represents the diffraction angle, and the vertical axis represents the diffraction X-ray intensity. In FIG. 5, the actual measurement value is indicated by a solid line d, the measurement value is indicated by a solid line e, the error is indicated by a solid line f, and the background intensity (bkg) is indicated by a solid line g. In the XRD pattern shown in FIG. 5, it was confirmed from the peak that appeared that the sample was a titanium oxide powder body made of Ti 4 O 7 as in FIG. 4. However, in FIG. 5, it was confirmed that the peak was wider and gentler than that in FIG. From this, it was confirmed that in the titanium oxide aggregate after pulverization, the crystal size was reduced and the crystal was distorted. In the sample after ball milling, Ti 4 O 7 was 99 (7)% and Ti 3 O 5 was 1 (5)%.

次に、粉砕後の酸化チタン粉末体に含まれる酸化チタン凝集体をSEM画像で確認してゆき、酸化チタン凝集体の粒径を目視で測定したところ、粒径は50〜500[nm]であることが確認でき、ランダムに選択した測定数500個の酸化チタン凝集体の平均粒径が185±70[nm]であることが確認できた。このことから、ボールミル法によって酸化チタン凝集体の粒径が確実に小さくなることが確認できた。   Next, the titanium oxide aggregates contained in the pulverized titanium oxide powder were confirmed by SEM images, and the particle size of the titanium oxide aggregates was measured visually. The particle size was 50 to 500 [nm]. It was confirmed that the average particle diameter of the 500 selected titanium oxide aggregates selected at random was 185 ± 70 [nm]. From this, it was confirmed that the particle diameter of the titanium oxide aggregate was reliably reduced by the ball mill method.

次に、上述した焼成工程により得られた粉末状の酸化チタン凝集体(以下、フレーク状Ti4O7とも呼ぶ)を固化した酸化チタン成形体について、周波数75〜90[GHz]における誘電率及び誘電正接についてそれぞれ調べたところ、図6に示すような結果が得られた。ここでは、フレーク状Ti4O7からなる酸化チタン成形体の誘電率実部ε’と誘電率虚部ε”とを自由空間法により測定し、各周波数における誘電率|ε|及び誘電正接tanδを、図6に示す式を基に算出した。図6の結果から、本発明によるフレーク状Ti4O7は、周波数75〜90[GHz]において誘電率が20以上となり、誘電正接が0.10以上となることが確認できた。このことから、本発明によるフレーク状Ti4O7は、マイクロ波・ミリ波用電波吸収体に配合されるマイクロ波・ミリ波用誘電体として使用できることが確認できた。 Next, regarding the titanium oxide molded body obtained by solidifying the powdered titanium oxide aggregate (hereinafter also referred to as flake-like Ti 4 O 7 ) obtained by the above-described firing step, the dielectric constant at a frequency of 75 to 90 [GHz] and When the dielectric loss tangents were examined, the results shown in FIG. 6 were obtained. Here, the real part ε ′ and the imaginary part ε ″ of the dielectric constant of a titanium oxide molded body made of flaky Ti 4 O 7 are measured by the free space method, and the dielectric constant | ε | and the dielectric loss tangent tanδ at each frequency are measured. 6 was calculated based on the formula shown in Fig. 6. From the results shown in Fig. 6, the flaky Ti 4 O 7 according to the present invention had a dielectric constant of 20 or more at a frequency of 75 to 90 [GHz] and a dielectric loss tangent of 0.10 or more. From this, it can be confirmed that the flaky Ti 4 O 7 according to the present invention can be used as a dielectric for microwaves and millimeter waves to be blended with a microwave and millimeter wave absorber. It was.

(4)電池電極用触媒及び電池電極用導電材
本発明による酸化チタン凝集体1は、酸化チタン成形体としたとき、電気を通すことができることから、従来、燃料電池で電池電極用触媒として用いられているカーボンの代替として使用することができる。実際上、このような電池電極用触媒は、酸化チタン凝集体1の粒体表面に、白金、白金合金、又はパラジウム等の貴金属を担持させた構成となり得る。
(4) Battery Electrode Catalyst and Battery Electrode Conductive Material The titanium oxide aggregate 1 according to the present invention can conduct electricity when it is formed into a titanium oxide molded body, so that it has been conventionally used as a battery electrode catalyst in a fuel cell. It can be used as an alternative to carbon. In practice, such a battery electrode catalyst may have a configuration in which a noble metal such as platinum, a platinum alloy, or palladium is supported on the surface of the titanium oxide aggregate 1.

また、電池電極用触媒として用いる酸化チタン凝集体1の粒径は10〜100[nm]であることが好ましく、粉砕工程等により当該粒径に形成することで、燃料電池の電池電極用触媒に使用されている従来のカーボンの代替として使用できる。   The particle size of the titanium oxide aggregate 1 used as the battery electrode catalyst is preferably 10 to 100 [nm]. By forming the particle size by a pulverization process or the like, the titanium oxide aggregate 1 can be used as a battery electrode catalyst for a fuel cell. It can be used as an alternative to the conventional carbon used.

また、本発明の酸化チタン凝集体1は、電池電極用触媒として用いる他に、リチウムイオン電池等の二次電池に使用する正極又は負極に配合させる電池電極用導電材としても用いることができる。この場合、正極又は負極には、本発明の酸化チタン凝集体1が電池電極用導電材として、活物質とともに含まれる。   In addition to being used as a battery electrode catalyst, the titanium oxide aggregate 1 of the present invention can also be used as a battery electrode conductive material to be blended with a positive electrode or a negative electrode used in a secondary battery such as a lithium ion battery. In this case, the positive electrode or the negative electrode contains the titanium oxide aggregate 1 of the present invention as a battery electrode conductive material together with an active material.

(5)マイクロ波・ミリ波用誘電体
本発明による酸化チタン凝集体1は、酸化チタン成形体としたとき、周波数75〜90[GHz]において誘電率が20以上となり、誘電正接が0.10以上であることから、周波数75〜90[GHz]で使用されるマイクロ波・ミリ波用電波吸収体に設けられるマイクロ波・ミリ波用誘電体として用いることができる。この場合、マイクロ波・ミリ波用電波吸収体には、酸化チタン凝集体1からなるマイクロ波・ミリ波用誘電体が基板表面に層状に形成され得る。
(5) Microwave / millimeter-wave dielectric When the titanium oxide aggregate 1 according to the present invention is a titanium oxide molded body, the dielectric constant is 20 or more at a frequency of 75 to 90 [GHz], and the dielectric loss tangent is 0.10 or more. Therefore, it can be used as a microwave / millimeter wave dielectric provided in a microwave / millimeter wave electromagnetic wave absorber used at a frequency of 75 to 90 [GHz]. In this case, in the microwave / millimeter wave radio wave absorber, the microwave / millimeter wave dielectric made of the titanium oxide aggregate 1 may be formed in a layered manner on the substrate surface.

(6)作用及び効果
以上の構成において、本発明では、ナノサイズのTiO2粒子からなる前駆体粉末を水素雰囲気下で焼成することにより、Ti4O7からなる酸化チタン凝集体1を製造した。これにより本発明では、1次粒子となる複数の結晶子が結合した粒子状の2次粒子3が形成され、さらに複数の2次粒子3が凝集して粒体表面が凹凸状に形成された多孔質構造でなる酸化チタン凝集体1を製造できる。かくして、本発明では、従来にない新規な粒子構造を有したTi4O7からなる酸化チタン凝集体1を提供できる。
(6) Action and Effect In the above configuration, in the present invention, the titanium oxide aggregate 1 made of Ti 4 O 7 was produced by firing the precursor powder made of nano-sized TiO 2 particles in a hydrogen atmosphere. . Thereby, in the present invention, the particulate secondary particles 3 in which a plurality of crystallites serving as primary particles are combined are formed, and the plurality of secondary particles 3 are aggregated to form an irregular surface on the particle surface. A titanium oxide aggregate 1 having a porous structure can be produced. Thus, according to the present invention, it is possible to provide a titanium oxide aggregate 1 made of Ti 4 O 7 having a novel particle structure that has not existed before.

また、この酸化チタン凝集体1は、2次粒子3を形成する結晶子の平均粒径が26±23[nm]であり、2次粒子3が凝集した粒体の粒径が1000[nm]以下のナノ微粒子状に形成できることから、加工手法や使用形態も広がり、新たな技術分野への適用も可能なTi4O7を提供できる。 Further, this titanium oxide aggregate 1 has an average particle size of 26 ± 23 [nm] of crystallites forming the secondary particles 3, and a particle size of the aggregates of the secondary particles 3 of 1000 [nm]. Since it can be formed into the following nanoparticulate form, Ti 4 O 7 that can be applied to new technical fields can be provided by expanding processing methods and forms of use.

さらに、この酸化チタン凝集体1は、電気を通すことから、従来、燃料電池で電池電極用触媒として用いられているカーボンの代替としても使用することができる。   Furthermore, since this titanium oxide aggregate 1 conducts electricity, it can be used as an alternative to carbon conventionally used as a battery electrode catalyst in fuel cells.

さらに、この酸化チタン凝集体1は、周波数75〜90[GHz]における誘電率が20以上であり、誘電正接が0.10以上であることから、マイクロ波・ミリ波用電波吸収体に設けられるマイクロ波・ミリ波用誘電体としても用いることができる。   Furthermore, since this titanium oxide aggregate 1 has a dielectric constant of 20 or more at a frequency of 75 to 90 [GHz] and a dielectric loss tangent of 0.10 or more, the microwave provided in the microwave / millimeter wave electromagnetic wave absorber is provided. -It can also be used as a millimeter wave dielectric.

なお、本発明は前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。上述した実施の形態においては、酸化チタン凝集体1に貴金属を担持させた電池電極用触媒として、例えば燃料電池に用いる電池電極用触媒について述べたが、本発明はこれに限らず、酸化チタン凝集体1に貴金属を担持させた電池電極用触媒を、種々の電池の電池電極用触媒に適用してもよい。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible within the range of the summary of this invention. In the above-described embodiment, the battery electrode catalyst used in, for example, a fuel cell is described as the battery electrode catalyst in which the noble metal is supported on the titanium oxide aggregate 1. However, the present invention is not limited thereto, and the titanium oxide aggregate is not limited thereto. The battery electrode catalyst in which the aggregate 1 supports a noble metal may be applied to battery electrode catalysts for various batteries.

また、上述した実施の形態においては、酸化チタン凝集体1からなる電池電極用導電材として、例えばリチウムイオン電池の正極又は負極に含まれる電池電極用導電材について述べたが、本発明はこれに限らず、酸化チタン凝集体1からなる電池電極用導電材を、1次電池や2次電池等その他種々の電池に適用しても良い。   In the above-described embodiment, the battery electrode conductive material included in the positive electrode or the negative electrode of the lithium ion battery, for example, has been described as the battery electrode conductive material comprising the titanium oxide aggregate 1. However, the present invention is not limited thereto. However, the battery electrode conductive material made of the titanium oxide aggregate 1 may be applied to various other batteries such as a primary battery and a secondary battery.

1 酸化チタン凝集体
2 粒体
3 2次粒子
6 前駆体粉末
10 粉末体(酸化チタン粉末体)
1 Titanium oxide aggregate
2 particles
3 Secondary particles
6 Precursor powder
10 Powder (Titanium oxide powder)

Claims (13)

Ti4O7でなる粒体からなり、
前記粒体は、
1次粒子となる複数の結晶子が結合して粒子状の2次粒子を形成し、複数の前記2次粒子が凝集して粒体表面が凹凸状に形成された多孔質構造である
ことを特徴とする酸化チタン凝集体。
It consists of grains made of Ti 4 O 7 ,
The granules are
It has a porous structure in which a plurality of crystallites as primary particles are combined to form particulate secondary particles, and the plurality of secondary particles are aggregated to form a particle surface with irregularities. Titanium oxide aggregate characterized.
前記結晶子の平均粒径が26±23[nm]である
ことを特徴とする請求項1に記載の酸化チタン凝集体。
2. The titanium oxide aggregate according to claim 1, wherein an average particle diameter of the crystallite is 26 ± 23 [nm].
前記粒体の粒径が10〜100[nm]である
ことを特徴とする請求項1に記載の酸化チタン凝集体。
2. The titanium oxide aggregate according to claim 1, wherein the particle has a particle size of 10 to 100 [nm].
前記粒体表面は、球状、半球状、半楕円状、球冠状、又は液滴状の前記2次粒子が突出して凹凸状に形成されている
ことを特徴とする請求項1〜3のいずれか1項に記載の酸化チタン凝集体。
4. The surface of the granule is formed in a concavo-convex shape by projecting the spherical, hemispherical, semi-elliptical, spherical crown, or droplet-shaped secondary particles. 2. The titanium oxide aggregate according to item 1.
ナノサイズのTiO2粒子からなる前駆体粉末を水素雰囲気下で焼成し、粒体表面が凹凸状に形成されたTi4O7からなる酸化チタン凝集体を製造する焼成工程を備える
ことを特徴とする酸化チタン凝集体の製造方法。
It comprises a firing step of firing a precursor powder composed of nano-sized TiO 2 particles in a hydrogen atmosphere and producing a titanium oxide aggregate composed of Ti 4 O 7 having a grain surface formed in an uneven shape. A method for producing a titanium oxide aggregate.
前記焼成工程は、0.05〜0.5[L/min]の水素雰囲気下で、900〜1200[℃]で焼成する
ことを特徴とする請求項5に記載の酸化チタン凝集体の製造方法。
6. The method for producing a titanium oxide aggregate according to claim 5, wherein the firing step comprises firing at 900 to 1200 [° C.] in a hydrogen atmosphere of 0.05 to 0.5 [L / min].
前記焼成工程の後に、前記酸化チタン凝集体を粉砕して所定の粒径に調整された酸化チタン凝集体を製造する粉砕工程を備える
ことを特徴とする請求項5又は6に記載の酸化チタン凝集体の製造方法。
7. The titanium oxide aggregate according to claim 5 or 6, further comprising a pulverization step of manufacturing the titanium oxide aggregate adjusted to a predetermined particle size by pulverizing the titanium oxide aggregate after the firing step. A manufacturing method of the aggregate.
粉末状でなり、請求項1〜4のいずれか1項に記載の酸化チタン凝集体が含まれる
ことを特徴とする酸化チタン粉末体。
5. A titanium oxide powder body, which is in a powder form and contains the titanium oxide aggregate according to any one of claims 1 to 4.
請求項1〜4のいずれか1項に記載の酸化チタン凝集体を含んだ酸化チタン粉末体が固化した
ことを特徴とする酸化チタン成形体。
5. A titanium oxide molded body, wherein the titanium oxide powder body containing the titanium oxide aggregate according to any one of claims 1 to 4 is solidified.
周波数75〜90[GHz]における誘電率が20以上であり、誘電正接が0.10以上である
ことを特徴とする請求項9に記載の酸化チタン成形体。
10. The titanium oxide molded article according to claim 9, wherein a dielectric constant at a frequency of 75 to 90 [GHz] is 20 or more and a dielectric loss tangent is 0.10 or more.
電池内の電極に設けられる電池電極用触媒であって、
請求項1〜4のいずれか1項に記載の酸化チタン凝集体に貴金属が担持されている
ことを特徴とする電池電極用触媒。
A battery electrode catalyst provided on an electrode in a battery,
5. A battery electrode catalyst, wherein a noble metal is supported on the titanium oxide aggregate according to any one of claims 1 to 4.
電池の正極又は負極に含まれる電池電極用導電材であって、
請求項1〜4のいずれか1項に記載の酸化チタン凝集体からなる
ことを特徴とする電池電極用導電材。
A battery electrode conductive material included in a positive electrode or a negative electrode of a battery,
A conductive material for battery electrodes, comprising the titanium oxide aggregate according to any one of claims 1 to 4.
マイクロ波・ミリ波用電波吸収体に設けられるマイクロ波・ミリ波用誘電体であって、
請求項1〜4のいずれか1項に記載の酸化チタン凝集体からなる
ことを特徴とするマイクロ波・ミリ波用誘電体。
A microwave / millimeter-wave dielectric provided in a microwave / millimeter-wave absorber,
A dielectric for microwaves and millimeter waves, comprising the titanium oxide aggregate according to any one of claims 1 to 4.
JP2015175989A 2015-09-07 2015-09-07 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric Pending JP2017052659A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015175989A JP2017052659A (en) 2015-09-07 2015-09-07 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric
PCT/JP2016/076049 WO2017043449A1 (en) 2015-09-07 2016-09-05 Titanium oxide agglomerate, method for producing titanium oxide agglomerate, titanium oxide powder, titanium oxide molded body, battery electrode catalyst, battery electrode conductive material, and microwave and millimeter wave dieletric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175989A JP2017052659A (en) 2015-09-07 2015-09-07 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric

Publications (1)

Publication Number Publication Date
JP2017052659A true JP2017052659A (en) 2017-03-16

Family

ID=58240773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175989A Pending JP2017052659A (en) 2015-09-07 2015-09-07 Titanium oxide aggregate, manufacturing method of titanium oxide aggregate, titanium oxide powder, titanium oxide compact, catalyst for battery electrode, conductor for battery electrode and microwave/millimeter wave dielectric

Country Status (2)

Country Link
JP (1) JP2017052659A (en)
WO (1) WO2017043449A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383154A (en) * 2018-04-03 2018-08-10 陕西师范大学 A kind of hollow mesoporous Ti with bigger serface4O7The preparation method of@C nano balls
JP2018131370A (en) * 2017-02-17 2018-08-23 テイカ株式会社 Lower-order titanium oxide and method for producing the same
WO2022092137A1 (en) * 2020-10-27 2022-05-05 パナソニック株式会社 Electromagnetic wave absorbing sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994684B2 (en) * 2017-04-04 2022-01-14 東京印刷機材トレーディング株式会社 Method for Producing Titanium Dioxide Particles and Titanium Dioxide Particles
JP7216360B2 (en) * 2017-06-30 2023-02-01 国立大学法人 東京大学 radio wave absorber
CN107742730A (en) * 2017-09-08 2018-02-27 西安电子科技大学 Ag/Ti4O7The preparation method of zinc-air battery cathod catalyst
WO2022014402A1 (en) * 2020-07-16 2022-01-20 堺化学工業株式会社 Energy absorption and release material
CN112678867B (en) * 2020-12-25 2022-01-14 苏州锦艺新材料科技股份有限公司 Rutile type titanium dioxide and preparation method and application thereof
CN113423255B (en) * 2021-06-09 2022-09-27 西北工业大学 Core-shell structure Ti 4 O 7 Magnetic metal composite absorbent and preparation method thereof
CN113416070B (en) * 2021-06-10 2022-11-25 大连工业大学 Ti 4 O 7 Method for preparing ceramic electrode
CN115947614A (en) * 2022-06-09 2023-04-11 松山湖材料实验室 Titanium suboxide ceramic electrode, preparation method and application thereof and electrical equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505469A (en) * 1991-02-21 1994-06-23 アトラバーダ・リミテッド Conductive titanium suboxide granules
JP2008150240A (en) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd Titanium oxide and its production method
WO2011065306A1 (en) * 2009-11-26 2011-06-03 国立大学法人東京大学 Microstructure and manufacturing method therefor
CN102208658A (en) * 2011-04-18 2011-10-05 北京工业大学 Method for preparing nanometer Ti4O7 particles
JP2011198606A (en) * 2010-03-19 2011-10-06 Osaka Gas Co Ltd Titanium oxide structure
CN102642867A (en) * 2012-04-24 2012-08-22 四川大学 Method for preparing nanometer Ti4O7 powder
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide
WO2013121801A1 (en) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 Macroporous titanium compound monolith and method for manufacturing same
JP2014058448A (en) * 2013-12-13 2014-04-03 Cerion Technology Inc Fuel additive-containing lattice-engineered cerium dioxide nanoparticles
WO2014188996A1 (en) * 2013-05-23 2014-11-27 東レ株式会社 Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505469A (en) * 1991-02-21 1994-06-23 アトラバーダ・リミテッド Conductive titanium suboxide granules
JP2008150240A (en) * 2006-12-15 2008-07-03 Ishihara Sangyo Kaisha Ltd Titanium oxide and its production method
WO2011065306A1 (en) * 2009-11-26 2011-06-03 国立大学法人東京大学 Microstructure and manufacturing method therefor
JP2011198606A (en) * 2010-03-19 2011-10-06 Osaka Gas Co Ltd Titanium oxide structure
JP2012214348A (en) * 2011-04-01 2012-11-08 National Institute For Materials Science Method for synthesizing reduction type titanium oxide
CN102208658A (en) * 2011-04-18 2011-10-05 北京工业大学 Method for preparing nanometer Ti4O7 particles
WO2013121801A1 (en) * 2012-02-17 2013-08-22 独立行政法人科学技術振興機構 Macroporous titanium compound monolith and method for manufacturing same
CN102642867A (en) * 2012-04-24 2012-08-22 四川大学 Method for preparing nanometer Ti4O7 powder
WO2014188996A1 (en) * 2013-05-23 2014-11-27 東レ株式会社 Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
JP2014058448A (en) * 2013-12-13 2014-04-03 Cerion Technology Inc Fuel additive-containing lattice-engineered cerium dioxide nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNDU, DIPAN ET AL.: "A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries", ENERGY & ENVIRONMENTAL SCIENCE, vol. 8, no. 4, JPN6016041578, 1 April 2015 (2015-04-01), pages 1292 - 1298, XP055369148, ISSN: 0004378933, DOI: 10.1039/C4EE02587C *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131370A (en) * 2017-02-17 2018-08-23 テイカ株式会社 Lower-order titanium oxide and method for producing the same
CN108383154A (en) * 2018-04-03 2018-08-10 陕西师范大学 A kind of hollow mesoporous Ti with bigger serface4O7The preparation method of@C nano balls
WO2022092137A1 (en) * 2020-10-27 2022-05-05 パナソニック株式会社 Electromagnetic wave absorbing sheet

Also Published As

Publication number Publication date
WO2017043449A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2017043449A1 (en) Titanium oxide agglomerate, method for producing titanium oxide agglomerate, titanium oxide powder, titanium oxide molded body, battery electrode catalyst, battery electrode conductive material, and microwave and millimeter wave dieletric
KR101167744B1 (en) Nanocarbon composite structure having ruthenium oxide trapped therein
Jin et al. Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries
Binotto et al. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders
Zhang et al. Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode
KR102150818B1 (en) MXene particle material, slurry, secondary battery, transparent electrode, manufacturing method of MXene particle material
Wu et al. Hierarchical N-doped graphene coated 1D cobalt oxide microrods for robust and fast lithium storage at elevated temperature
JP4773355B2 (en) Niobium oxide and method for producing niobium oxide with reduced oxygen
Xu et al. Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage
JP4984204B2 (en) Indium oxide powder and method for producing the same
Park et al. Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties
JPWO2016035852A1 (en) Lithium metal composite oxide powder
Rong et al. Synthesis of hierarchical hollow nest-like WO3 micro/nanostructures with enhanced visible light-driven photocatalytic activity
JP6688840B2 (en) METHOD FOR PRODUCING METAL COMPOUND PARTICLE, METAL COMPOUND PARTICLE, AND ELECTRODE FOR STORAGE DEVICE HAVING METAL COMPOUND PARTICLE
EP2352701A1 (en) Lithium titanate composite material, preparation method thereof, negative active substance and lithium ion secondary battery containing the same
JP6375331B2 (en) Titanium oxide particles, method for producing titanium oxide particles, electrode for power storage device including titanium oxide particles, power storage device provided with electrode including titanium oxide particles
Li et al. Excellent sodium storage performance of carbon-coated TiO2: Assisted with electrostatic interaction of surfactants
CN114829302B (en) Silicon microparticles and method for producing same
Yan et al. Facile hydrothermal synthesis of urchin‐like NiCo2O4 as advanced electrochemical pseudocapacitor materials
JP6568333B1 (en) Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery
Astuti et al. Enhancement of electrical conductivity of bismuth oxide/activated carbon composite
Kamali et al. Green molten salt modification of cobalt oxide for lithium ion battery anode application
Pawłowska et al. Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance
Dong et al. Rational design of hollow Ti2Nb10O29 nanospheres towards High-Performance pseudocapacitive Lithium-Ion storage
Guo et al. Polyvinylpyrrolidone-modified Bi2O3 and Bi2S3 nanocomposites for improved supercapacitive performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110