JP2018128440A - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP2018128440A
JP2018128440A JP2017132618A JP2017132618A JP2018128440A JP 2018128440 A JP2018128440 A JP 2018128440A JP 2017132618 A JP2017132618 A JP 2017132618A JP 2017132618 A JP2017132618 A JP 2017132618A JP 2018128440 A JP2018128440 A JP 2018128440A
Authority
JP
Japan
Prior art keywords
measurement
voltage
positive
negative
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017132618A
Other languages
Japanese (ja)
Other versions
JP6625586B2 (en
Inventor
剛史 岩邊
Tsuyoshi Iwanabe
剛史 岩邊
亮介 有ヶ谷
Ryosuke Arigaya
亮介 有ヶ谷
佳浩 河村
Yoshihiro Kawamura
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to US15/841,955 priority Critical patent/US10330716B2/en
Priority to CN201810123326.1A priority patent/CN108490302B/en
Priority to DE102018201875.8A priority patent/DE102018201875A1/en
Publication of JP2018128440A publication Critical patent/JP2018128440A/en
Application granted granted Critical
Publication of JP6625586B2 publication Critical patent/JP6625586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an increase in cost attributable to switching elements in a ground fault detector.SOLUTION: The ground fault detector comprises: a control unit; a capacitor; a positive side power supply line connected to the positive side of a high voltage battery; a negative side power supply line connected to a negative side; a positive secondary side resistor, with one end grounded to earth and a voltage at the other end measured; a negative secondary side resistor, with one end grounded to earth; a positive side C contact switch for alternatively switching the destination for one end of the capacitor between a route that includes the positive side power supply line and a route that includes the positive secondary side resistor; and a negative side C contact switch for alternatively switching the destination for the other end between a route that includes the negative side power supply line and a route that includes the negative secondary side resistor. The control unit exercises switching control of C contact switching by switching the measurement of a high voltage battery voltage, the measurement of a voltage affected by a positive side insulation resistor, and the measurement of a voltage affected by a negative side insulation resistor between a measurement mode included in a measurement cycle and a measurement mode in which one of the measurements is omitted.SELECTED DRAWING: Figure 1

Description

本発明は、フライングキャパシタを用いた地絡検出装置に関する。   The present invention relates to a ground fault detection apparatus using a flying capacitor.

駆動源としてエンジンと電気モータとを備えるハイブリッド車や、電気自動車のような車両においては、車体上に搭載したバッテリを充電し、バッテリから供給される電気エネルギーを利用して推進力を発生する。一般に、バッテリ関連の電源回路は、200V以上の高電圧を扱う高電圧回路として構成されており、安全性確保ため、バッテリを含む高電圧回路は接地の基準電位点となる車体から電気的に絶縁された非接地構成となっている。   In a vehicle such as a hybrid vehicle including an engine and an electric motor as a drive source, or a vehicle such as an electric vehicle, a battery mounted on the vehicle body is charged, and propulsive force is generated using electric energy supplied from the battery. In general, a battery-related power supply circuit is configured as a high-voltage circuit that handles a high voltage of 200 V or higher. To ensure safety, the high-voltage circuit including the battery is electrically isolated from the vehicle body serving as a ground reference potential point. It is a non-grounded configuration.

非接地の高電圧バッテリを搭載した車両では、高電圧バッテリが設けられた系、具体的には、高電圧バッテリからモータに至るメインの電源系と車体との絶縁状態(地絡)を監視するために地絡検出装置が備えられている。地絡検出装置は、フライングキャパシタと呼ばれるコンデンサを利用した方式が広く用いられている。   In a vehicle equipped with an ungrounded high-voltage battery, a system provided with the high-voltage battery, specifically, an insulation state (ground fault) between the main power supply system from the high-voltage battery to the motor and the vehicle body is monitored. For this purpose, a ground fault detection device is provided. As the ground fault detection device, a method using a capacitor called a flying capacitor is widely used.

図11は、フライングキャパシタ方式の従来の地絡検出装置の回路例を示す図である。本図に示すように地絡検出装置400は、非接地の高電圧バッテリ300と接続し、高電圧バッテリ300が設けられた系の地絡を検出する装置である。ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLpと表し、負極側と接地間の絶縁抵抗をRLnと表すものとする。   FIG. 11 is a diagram illustrating a circuit example of a conventional grounding fault detection apparatus of a flying capacitor system. As shown in the figure, the ground fault detection device 400 is a device that is connected to an ungrounded high voltage battery 300 and detects a ground fault of a system in which the high voltage battery 300 is provided. Here, the insulation resistance between the positive electrode side and the ground of the high-voltage battery 300 is represented as RLp, and the insulation resistance between the negative electrode side and the ground is represented as RLn.

本図に示すように、地絡検出装置400は、フライングキャパシタとして動作する検出用コンデンサC1を備えている。また、計測経路を切り換えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に4つのスイッチング素子S1〜S4を備えている。さらに、検出用コンデンサC1の充電電圧に相当する計測用の電圧をサンプリングするためのスイッチング素子Saを備えている。   As shown in the figure, the ground fault detection apparatus 400 includes a detection capacitor C1 that operates as a flying capacitor. Further, four switching elements S1 to S4 are provided around the detection capacitor C1 in order to switch the measurement path and control charging and discharging of the detection capacitor C1. Further, a switching element Sa for sampling a measurement voltage corresponding to the charging voltage of the detection capacitor C1 is provided.

地絡検出装置400では、絶縁抵抗RLpおよびRLnを把握するために、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返す。いずれの計測期間とも、計測対象の電圧で検出用コンデンサC1を充電してから、検出用コンデンサC1の充電電圧の計測を行なう。そして、次の計測のために検出用コンデンサC1の放電を行なう。   In the ground fault detection device 400, in order to grasp the insulation resistances RLp and RLn, the measurement operation is repeated with one cycle of V0 measurement period → Vc1n measurement period → V0 measurement period → Vc1p measurement period. In any measurement period, after the detection capacitor C1 is charged with the voltage to be measured, the charging voltage of the detection capacitor C1 is measured. Then, the detection capacitor C1 is discharged for the next measurement.

V0計測期間では、高電圧バッテリ300の電圧Vbに相当する電圧を計測する。このため、スイッチング素子S1、S2をオンにし、スイッチング素子S3、S4をオフにして、検出用コンデンサC1を充電する。すなわち、図12(a)に示すように、高電圧バッテリ300、抵抗R1、検出用コンデンサC1が計測経路となる。   In the V0 measurement period, a voltage corresponding to the voltage Vb of the high voltage battery 300 is measured. Therefore, the switching elements S1 and S2 are turned on, the switching elements S3 and S4 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 12A, the high-voltage battery 300, the resistor R1, and the detection capacitor C1 are measurement paths.

検出用コンデンサC1の充電電圧の計測時には、図12(b)に示すように、スイッチング素子S1、S2をオフにし、スイッチング素子S3、S4をオンにするとともに、スイッチング素子Saをオンにして制御装置420でサンプリングを行なう。その後、図12(c)に示すように、スイッチング素子Saをオフにして次の計測のために検出用コンデンサC1の放電を行なう。検出用コンデンサC1の充電電圧の計測時、検出用コンデンサC1の放電時の動作は他の計測期間においても同様である。   At the time of measuring the charging voltage of the detection capacitor C1, as shown in FIG. 12B, the switching elements S1 and S2 are turned off, the switching elements S3 and S4 are turned on, and the switching element Sa is turned on. At 420, sampling is performed. Thereafter, as shown in FIG. 12C, the switching element Sa is turned off, and the detection capacitor C1 is discharged for the next measurement. The operation during the measurement of the charging voltage of the detection capacitor C1 and the discharge of the detection capacitor C1 is the same in other measurement periods.

Vc1n計測期間では、絶縁抵抗RLnの影響を反映した電圧を計測する。このため、スイッチング素子S1、S4をオンにし、スイッチング素子S2、S3をオフにして、検出用コンデンサC1を充電する。すなわち、図13(a)に示すように、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R4、接地、絶縁抵抗RLnが計測経路となる。   In the Vc1n measurement period, a voltage reflecting the influence of the insulation resistance RLn is measured. Therefore, the switching elements S1 and S4 are turned on, the switching elements S2 and S3 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 13A, the high-voltage battery 300, the resistor R1, the detection capacitor C1, the resistor R4, the ground, and the insulation resistance RLn are measurement paths.

Vc1p計測期間では、絶縁抵抗RLpの影響を反映した電圧を計測する。このため、スイッチング素子S2、S3をオンにし、スイッチング素子S1、S4をオフにして、検出用コンデンサC1を充電する。すなわち、図13(b)に示すように、高電圧バッテリ300、絶縁抵抗RLp、接地、抵抗R3、抵抗R1、検出用コンデンサC1が計測経路となる。   In the Vc1p measurement period, a voltage reflecting the influence of the insulation resistance RLp is measured. Therefore, the switching elements S2 and S3 are turned on, the switching elements S1 and S4 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 13B, the high-voltage battery 300, the insulation resistance RLp, the ground, the resistance R3, the resistance R1, and the detection capacitor C1 are measurement paths.

これらの計測期間で得られたV0、Vc1n、Vc1pから算出される(Vc1p+Vc1n)/V0に基づいて、(RLp×RLn)/(RLp+RLn)を求められることが知られている。このため、地絡検出装置400内の制御装置420は、V0、Vc1n、Vc1pを測定することにより、絶縁抵抗RLp、RLnを把握することができる。そして、絶縁抵抗RLp、RLnが所定の判定基準レベル以下となった場合に、地絡が発生しているものとして判定し、警報を出力する。   It is known that (RLp × RLn) / (RLp + RLn) can be obtained based on (Vc1p + Vc1n) / V0 calculated from V0, Vc1n, and Vc1p obtained in these measurement periods. For this reason, the control device 420 in the ground fault detection device 400 can grasp the insulation resistances RLp and RLn by measuring V0, Vc1n, and Vc1p. When the insulation resistances RLp and RLn are equal to or lower than a predetermined determination reference level, it is determined that a ground fault has occurred, and an alarm is output.

また、特許文献1では、図14に示すような回路構成の地絡検出装置440が提案されている。地絡検出装置440においても各計測期間のスイッチング切換状態は、地絡検出装置400と同様である。   Patent Document 1 proposes a ground fault detection device 440 having a circuit configuration as shown in FIG. Also in the ground fault detection device 440, the switching switching state in each measurement period is the same as that of the ground fault detection device 400.

特開2009−281986号公報JP 2009-281986 A

従来の地絡検出装置は、スイッチング素子S1〜S4を、絶縁型のスイッチング素子である光MOS−FETを4個用いて構成している。しかしながら、光MOS−FETは、高価であるため地絡検出装置のコスト増を招いている。   In the conventional ground fault detection device, the switching elements S1 to S4 are configured by using four optical MOS-FETs that are insulating switching elements. However, since the optical MOS-FET is expensive, the cost of the ground fault detection device is increased.

そこで、本発明は、フライングキャパシタを用いた地絡検出装置において、スイッチング素子に起因するコスト増を抑制することを目的とする。   Accordingly, an object of the present invention is to suppress an increase in cost caused by a switching element in a ground fault detection device using a flying capacitor.

上記課題を解決するため、本発明の地絡検出装置は、非接地の高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置であって、制御部と、フライングキャパシタとして動作する検出用コンデンサと、前記高電圧バッテリの正極側と接続する正極側電源線と、前記高電圧バッテリの負極側と接続する負極側電源線と、一端が接地し、他端の電圧が前記制御部によって測定される正極2次側抵抗と、一端が接地した負極2次側抵抗と、前記制御部の指示に基づいて、前記検出用コンデンサの一端の接続先を、前記正極側電源線を含む経路と、前記正極2次側抵抗を含む経路とで択一的に切り換える正極側C接点スイッチと、前記制御部の指示に基づいて、前記検出用コンデンサの他端の接続先を、前記負極側電源線を含む経路と、前記負極2次側抵抗を含む経路とで択一的に切り換える負極側C接点スイッチと、を備え、前記制御部は、前記高電圧バッテリ相当電圧の測定、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ第1計測モードと、いずれかの測定を省いた第2計測モードと、を切り換えて、前記正極側C接点スイッチおよび前記負極側C接点スイッチの切り換え制御を行なうことを特徴とする。
ここで、前記制御部は、正極側絶縁抵抗の影響を受ける電圧の測定結果、あるいは負極側絶縁抵抗の影響を受ける電圧の測定結果が所定の条件を満たす場合に、第1計測モードに移行することができる。
また、前記制御部は、前記計測モードを、外部制御装置からの指示に従って切り換え、前記第2計測モードは、さらに、すべての測定を省いた計測モードを含んでいてもよい。
また、前記第2計測モードは、前記高電圧バッテリ相当電圧の測定を省き、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ計測モードを含み、前記制御部は、この計測モードにおいて、正極側絶縁抵抗の影響を受ける電圧の測定結果から得られる電圧値および負極側絶縁抵抗の影響を受ける電圧の測定結果から得られる電圧値のいずれかが所定の閾値を超える場合に、第1計測モードに移行してもよい。
あるいは、前記第2計測モードは、前記高電圧バッテリ相当電圧の測定を省き、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ計測モードを含み、前記制御部は、この計測モードにおいて、正極側絶縁抵抗の影響を受ける電圧の変化率および正極側絶縁抵抗の影響を受ける電圧の変化率のいずれかが所定の条件を満たす場合に、第1計測モードに移行してもよい。
In order to solve the above-described problem, a ground fault detection device of the present invention is a ground fault detection device that is connected to an ungrounded high voltage battery and detects a ground fault of a system provided with the high voltage battery. Part, a detection capacitor that operates as a flying capacitor, a positive power line connected to the positive side of the high voltage battery, a negative power line connected to the negative side of the high voltage battery, one end is grounded, Based on a positive secondary resistance whose voltage at the other end is measured by the control unit, a negative secondary resistance whose one end is grounded, and an instruction from the control unit, the connection destination of the one end of the detection capacitor is A positive-side C contact switch that selectively switches between a path including the positive-side power line and a path including the positive-side secondary resistance, and the other end of the detection capacitor based on an instruction from the control unit Connect to the negative electrode A negative-side C contact switch that selectively switches between a path including a power supply line and a path including the negative-electrode secondary-side resistance, and the control unit measures the high-voltage battery equivalent voltage, and positive-side insulation Switching between the measurement of the voltage affected by the resistance, the first measurement mode including the measurement of the voltage affected by the negative-side insulation resistance in the measurement cycle, and the second measurement mode without any measurement, Switching control of the positive side C contact switch and the negative side C contact switch is performed.
Here, the control unit shifts to the first measurement mode when the measurement result of the voltage affected by the positive-side insulation resistance or the measurement result of the voltage affected by the negative-side insulation resistance satisfies a predetermined condition. be able to.
The control unit may switch the measurement mode in accordance with an instruction from an external control device, and the second measurement mode may further include a measurement mode in which all measurements are omitted.
In the second measurement mode, the measurement of the voltage equivalent to the high-voltage battery is omitted, the measurement of the voltage affected by the positive-side insulation resistance, and the measurement of the voltage affected by the negative-side insulation resistance are included in the measurement cycle. The control unit includes a voltage value obtained from the measurement result of the voltage affected by the positive-side insulation resistance and a voltage value obtained from the measurement result of the voltage affected by the negative-side insulation resistance in this measurement mode. When either exceeds a predetermined threshold, the first measurement mode may be entered.
Alternatively, in the second measurement mode, the measurement of the voltage that is affected by the positive-side insulation resistance and the measurement of the voltage that is affected by the negative-side insulation resistance are omitted in the measurement cycle, without measuring the high-voltage battery equivalent voltage. In this measurement mode, the control unit, when either the voltage change rate affected by the positive-side insulation resistance or the voltage change rate affected by the positive-side insulation resistance satisfies a predetermined condition The first measurement mode may be entered.

本発明によれば、フライングキャパシタを用いた地絡検出装置において、コスト増の起因となる光MOS−FETを用いていないため、スイッチング素子に起因するコスト増を抑制することができる。   According to the present invention, since the ground fault detection device using the flying capacitor does not use the optical MOS-FET that causes the increase in cost, the increase in cost due to the switching element can be suppressed.

本発明の実施形態に係る地絡検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ground fault detection apparatus which concerns on embodiment of this invention. 各計測期間におけるC接点スイッチの状態を示す図である。It is a figure which shows the state of the C contact switch in each measurement period. 正極側C接点スイッチ配置箇所の別例を示す図である。It is a figure which shows another example of the positive electrode side C contact switch arrangement | positioning location. 計測モードの例を示す図である。It is a figure which shows the example of measurement mode. 地絡検出装置が行なう計測モードの切り換え判定を説明するフローチャートである。It is a flowchart explaining the switching determination of the measurement mode which a ground fault detection apparatus performs. 外部制御装置が行なう計測モードの切り換え判定を説明するフローチャートである。It is a flowchart explaining the switching determination of the measurement mode which an external control apparatus performs. 測定値Vc1が判定閾値より大きい場合に計測モードを切換える制御を説明する図である。It is a figure explaining the control which switches a measurement mode when measured value Vc1 is larger than a determination threshold value. コンデンサCの充電電圧の立ち上がり時における時間変化を説明する図である。It is a figure explaining the time change at the time of the rise of the charging voltage of the capacitor | condenser C. FIG. 充電電圧の変化率の大きさに基づいた判定を行なう場合の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement in the case of performing determination based on the magnitude | size of the change rate of a charging voltage. 計測モードB1の例を示す図である。It is a figure which shows the example of measurement mode B1. フライングキャパシタ方式の従来の地絡検出装置の回路例を示す図である。It is a figure which shows the circuit example of the conventional ground fault detection apparatus of a flying capacitor system. V0計測期間の計測経路を示す図である。It is a figure which shows the measurement path | route of V0 measurement period. Vc1n計測期間とVc1p計測期間の計測経路を示す図である。It is a figure which shows the measurement path | route of a Vc1n measurement period and a Vc1p measurement period. フライングキャパシタ方式の従来の地絡検出装置の回路の別例を示す図である。It is a figure which shows another example of the circuit of the conventional ground fault detection apparatus of a flying capacitor system.

本発明の実施形態について、図面を参照して詳細に説明する。図1は、本発明の実施形態に係る地絡検出装置100の構成を示すブロック図である。本図に示すように地絡検出装置100は、非接地の高電圧バッテリ300と接続し、高電圧バッテリ300が設けられた系の地絡を検出するフライングキャパシタ方式の装置である。ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLpと表し、負極側と接地間の絶縁抵抗をRLnと表すものとする。なお、高電圧とは、車両内の各種機器(ランプ、ワイパー等)を駆動させるための低電圧バッテリ(一般的には12V)よりも高い電圧を意味し、高電圧バッテリ300は、車両走行の駆動用に用いられるバッテリである。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a ground fault detection apparatus 100 according to an embodiment of the present invention. As shown in the figure, the ground fault detection apparatus 100 is a flying capacitor type apparatus that is connected to an ungrounded high voltage battery 300 and detects a ground fault of a system provided with the high voltage battery 300. Here, the insulation resistance between the positive electrode side and the ground of the high-voltage battery 300 is represented as RLp, and the insulation resistance between the negative electrode side and the ground is represented as RLn. The high voltage means a voltage higher than a low voltage battery (generally 12V) for driving various devices (lamps, wipers, etc.) in the vehicle, and the high voltage battery 300 is used for driving the vehicle. A battery used for driving.

高電圧バッテリ300は、リチウムイオン電池等のように充電可能なバッテリにより構成されており、図示しない高圧バスバーを経由して放電し、インバータ等を介して接続された電気モータを駆動する。また、回生時や充電設備接続時には、高圧バスバーを介して充電を行なう。   The high voltage battery 300 is configured by a rechargeable battery such as a lithium ion battery, and discharges via a high voltage bus bar (not shown) to drive an electric motor connected via an inverter or the like. In addition, during regeneration or when charging equipment is connected, charging is performed via a high-pressure bus bar.

高電圧バッテリ300の正極側電源ライン301と接地電極との間および負極側電源ライン302と接地電極との間には、電源の高周波ノイズを除去したり動作を安定化するために、それぞれYコンデンサ(ライン・バイパス・コンデンサ)と呼ばれるコンデンサCYp、CYnが接続されている。ただし、Yコンデンサは省くようにしてもよい。   In order to remove high frequency noise from the power source and stabilize the operation, a Y capacitor is provided between the positive power line 301 and the ground electrode and between the negative power line 302 and the ground electrode of the high voltage battery 300, respectively. Capacitors CYp and CYn called (line bypass capacitors) are connected. However, the Y capacitor may be omitted.

本図に示すように、地絡検出装置100は、フライングキャパシタとして動作する検出用コンデンサC1を備えるとともに、検出用コンデンサC1の充電電圧に相当する計測用の電圧をサンプリングするためのスイッチング素子Saを備えている。ただし、スイッチング素子Saは省くことも可能である。また、マイクロコンピュータ等で構成された制御装置120を備えている。制御装置120は、あらかじめ組み込まれたプログラムを実行することにより、後述するスイッチ切り換え処理等の地絡検出装置100に必要とされる各種制御を実行する。制御装置120は、上位装置である外部制御装置200と通信を行ない、計測期間で得られる測定値や地絡検出結果を出力したり、動作指示等を入力したりする。   As shown in the figure, the ground fault detection apparatus 100 includes a detection capacitor C1 that operates as a flying capacitor, and includes a switching element Sa for sampling a measurement voltage corresponding to the charging voltage of the detection capacitor C1. I have. However, the switching element Sa can be omitted. Moreover, the control apparatus 120 comprised with the microcomputer etc. is provided. The control device 120 executes various programs required for the ground fault detection device 100 such as a switch switching process described later by executing a program incorporated in advance. The control device 120 communicates with the external control device 200, which is a higher-level device, and outputs measurement values and ground fault detection results obtained during the measurement period, and inputs operation instructions and the like.

図12、図13を参照して説明したように、各計測期間の計測経路では、正極側電源ライン301系のスイッチング素子S1とスイッチング素子S3とが同時にオンになることは無く、負極側電源ライン302系のスイッチング素子S2とスイッチング素子S4とが同時にオンになることは無い。すなわち、スイッチング素子S1とスイッチング素子S3とは排他的に切り換えられ、スイッチング素子S2とスイッチング素子S4とは排他的に切り換えられる。   As described with reference to FIGS. 12 and 13, in the measurement path of each measurement period, the switching element S1 and the switching element S3 of the positive power supply line 301 system are not simultaneously turned on, and the negative power supply line The 302 series switching element S2 and the switching element S4 are not simultaneously turned on. That is, the switching element S1 and the switching element S3 are exclusively switched, and the switching element S2 and the switching element S4 are exclusively switched.

このため、地絡検出装置100では、正極側電源ライン301系のスイッチング素子として、正極側C接点スイッチ111を用い、負極側電源ライン302系のスイッチング素子として、負極側C接点スイッチ112を用いている。正極側C接点スイッチ111、負極側C接点スイッチ112は、例えば、高耐圧−小信号のメカニカルリレーやリードリレーで構成することができる。   Therefore, in the ground fault detection device 100, the positive side C contact switch 111 is used as the switching element of the positive side power supply line 301 system, and the negative side C contact switch 112 is used as the switching element of the negative side power line 302 system. Yes. The positive-side C contact switch 111 and the negative-side C contact switch 112 can be configured by, for example, a high voltage-small signal mechanical relay or a reed relay.

正極側C接点スイッチ111、負極側C接点スイッチ112とも共通接点cが検出用コンデンサC1側に配置される。具体的には、正極側C接点スイッチ111の共通接点cは、ダイオードD1と抵抗R1の経路と、抵抗R2とダイオードD2との経路との並列回路を経由して検出用コンデンサC1に接続し、負極側C接点スイッチ112の共通接点cは、検出用コンデンサC1の他端に接続している。充電時の経路となるダイオードD1は、正極側C接点スイッチ111から検出用コンデンサC1が順方向となる向きで接続され、放電時の経路となるダイオードD2は逆方向で接続されている。抵抗R2は、放電用抵抗として機能する。   A common contact c is arranged on the detection capacitor C1 side for both the positive side C contact switch 111 and the negative side C contact switch 112. Specifically, the common contact c of the positive side C contact switch 111 is connected to the detection capacitor C1 via a parallel circuit of a path of the diode D1 and the resistor R1 and a path of the resistor R2 and the diode D2. The common contact c of the negative side C contact switch 112 is connected to the other end of the detection capacitor C1. The diode D1 serving as a charging path is connected in a direction in which the detection capacitor C1 is in the forward direction from the positive-side C contact switch 111, and the diode D2 serving as a discharging path is connected in the reverse direction. The resistor R2 functions as a discharging resistor.

正極側C接点スイッチ111の接点aは、抵抗Raを介して正極側電源ライン301に接続し、負極側C接点スイッチ112の接点aは、抵抗Rbを介して負極側電源ライン302に接続している。すなわち、いずれのC接点スイッチとも高電圧バッテリ300側を接点aとしている。ただし、抵抗Ra、抵抗Rbは、省いてもよい。   The contact a of the positive side C contact switch 111 is connected to the positive power line 301 via the resistor Ra, and the contact a of the negative side C contact switch 112 is connected to the negative side power line 302 via the resistor Rb. Yes. That is, in any C contact switch, the high voltage battery 300 side is set as the contact a. However, the resistor Ra and the resistor Rb may be omitted.

正極側C接点スイッチ111の接点bは、スイッチング素子Saに接続するとともに、他端が接地された正極2次側抵抗である抵抗R3と接続している。負極側C接点スイッチ112の接点bは、他端が接地された負極2次側抵抗である抵抗R4と接続している。すなわち、いずれのC接点スイッチとも制御装置120側(接地側)を接点bとしている。   The contact b of the positive side C contact switch 111 is connected to the switching element Sa and is connected to a resistor R3 which is a positive side secondary resistance whose other end is grounded. The contact b of the negative side C contact switch 112 is connected to a resistor R4, which is a negative secondary side resistor whose other end is grounded. That is, in any C contact point switch, the control device 120 side (ground side) is set as the contact point b.

図1に示すように、正極側C接点スイッチ111、負極側C接点スイッチ112は、制御装置120により独立に切換制御される。制御装置120は、正極側C接点スイッチ111、負極側C接点スイッチ112、スイッチング素子Saを独立に切換制御することにより、計測経路を切り換えるとともに、検出用コンデンサC1の充電および放電、充電電圧の計測を行なう。   As shown in FIG. 1, the positive side C contact switch 111 and the negative side C contact switch 112 are switched and controlled independently by the control device 120. The control device 120 switches the measurement path by independently controlling the positive side C contact switch 111, the negative side C contact switch 112, and the switching element Sa to charge and discharge the detection capacitor C1 and measure the charging voltage. To do.

具体的には、V0計測期間では、図2(a)に示すように、正極側C接点スイッチ111、負極側C接点スイッチ112とも接点a側に切り換え、高電圧バッテリ300、抵抗Ra、抵抗R1、検出用コンデンサC1、抵抗Rbという計測経路を形成する。   Specifically, in the V0 measurement period, as shown in FIG. 2A, both the positive side C contact switch 111 and the negative side C contact switch 112 are switched to the contact a side, and the high voltage battery 300, resistor Ra, resistor R1 are switched. , A measurement path of the detection capacitor C1 and the resistor Rb is formed.

検出用コンデンサC1の充電電圧の計測時には、図2(d)に示すように、正極側C接点スイッチ111、負極側C接点スイッチ112とも接点b側に切り換え、スイッチング素子Saをオンにする。その後、スイッチング素子Saをオフにして次の計測のために主として抵抗R2を利用して検出用コンデンサC1の放電を行なう。検出用コンデンサC1の充電電圧の計測時、放電時の動作は他の計測期間においても同様である。   At the time of measuring the charging voltage of the detection capacitor C1, as shown in FIG. 2D, both the positive side C contact switch 111 and the negative side C contact switch 112 are switched to the contact b side, and the switching element Sa is turned on. Thereafter, the switching element Sa is turned off, and the detection capacitor C1 is discharged mainly using the resistor R2 for the next measurement. The operation at the time of measuring the charging voltage of the detection capacitor C1 and discharging is the same in other measurement periods.

Vc1n計測期間では、図2(b)に示すように、正極側C接点スイッチ111を接点a側、負極側C接点スイッチ112を接点b側に切り換え、高電圧バッテリ300、抵抗Ra、抵抗R1、検出用コンデンサC1、抵抗R4、接地、絶縁抵抗RLnという計測経路を形成する。   In the Vc1n measurement period, as shown in FIG. 2 (b), the positive side C contact switch 111 is switched to the contact a side and the negative side C contact switch 112 is switched to the contact b side, and the high voltage battery 300, resistor Ra, resistor R1, A measurement path including a detection capacitor C1, a resistor R4, a ground, and an insulation resistance RLn is formed.

Vc1p計測期間では、図2(c)に示すように、正極側C接点スイッチ111を接点b側、負極側C接点スイッチ112を接点a側に切り換え、高電圧バッテリ300、絶縁抵抗RLp、接地、抵抗R3、抵抗R1、検出用コンデンサC1、抵抗Rbという計測経路を形成する。   In the Vc1p measurement period, as shown in FIG. 2 (c), the positive side C contact switch 111 is switched to the contact b side, and the negative side C contact switch 112 is switched to the contact a side, and the high voltage battery 300, insulation resistance RLp, ground, A measurement path including a resistor R3, a resistor R1, a detection capacitor C1, and a resistor Rb is formed.

地絡検出装置100において、抵抗Ra、抵抗Rb、抵抗R1は、例えば、数100kΩ程度の高抵抗とし、抵抗R2、抵抗R3、抵抗R4は、例えば、数kΩ程度の低抵抗とする。   In the ground fault detection device 100, the resistor Ra, the resistor Rb, and the resistor R1 are, for example, high resistance of about several hundred kΩ, and the resistor R2, the resistor R3, and the resistor R4 are, for example, low resistance of about several kΩ.

抵抗R1とは別に正極側に抵抗Raを配置し、負極側に抵抗Rbを配置するとともに、正極側C接点スイッチ111、負極側C接点スイッチ112をC接点リレーで構成するため、いずれかのC接点スイッチで固着が生じたとしても、高電圧バッテリ300と制御装置120との間には、高抵抗である抵抗Raあるいは抵抗Rbのいずれかが介在して電流制限がかかる。このため、制御装置120および通電回路を保護することができる。   Aside from the resistor R1, the resistor Ra is arranged on the positive electrode side, the resistor Rb is arranged on the negative electrode side, and the positive electrode side C contact switch 111 and the negative electrode C contact switch 112 are constituted by C contact relays. Even if the contact switch is stuck, either the high-resistance resistor Ra or the resistor Rb is interposed between the high-voltage battery 300 and the control device 120 to limit the current. For this reason, the control device 120 and the energization circuit can be protected.

さらに、仮にいずれかのC接点スイッチで接点aと接点bとがショートしたとしても、高電圧バッテリ300と制御装置120との間には、高抵抗である抵抗Raあるいは抵抗Rbのいずれかが介在して電流制限がかかるため、制御装置120を保護することができる。   Further, even if the contact a and the contact b are short-circuited by any one of the C contact switches, either the high-resistance resistor Ra or the resistance Rb is interposed between the high-voltage battery 300 and the control device 120. Since the current is limited, the control device 120 can be protected.

また、絶縁抵抗RLpおよび絶縁抵抗RLnについて地絡と判定する基準値をRLsとすると、絶縁抵抗RLpおよび絶縁抵抗RLnが基準値RLsのとき、V0計測期間、Vc1n計測期間、Vc1p計測期間で経路上の抵抗値が等しくなるように、
R1+Ra+Rb=R1+R4+Ra+RLs=R1+R3+Rb+RLs
という関係で各抵抗値を定めることにより、検出用コンデンサC1にセラミックコンデンサを用いた場合であっても、DCバイアス特性の影響で地絡検出精度が低下することを防ぐことができる。
When the reference value for determining the ground fault for the insulation resistance RLp and the insulation resistance RLn is RLs, when the insulation resistance RLp and the insulation resistance RLn are the reference value RLs, the V0 measurement period, the Vc1n measurement period, and the Vc1p measurement period are on the path. So that the resistance values of
R1 + Ra + Rb = R1 + R4 + Ra + RLs = R1 + R3 + Rb + RLs
By determining the respective resistance values in such a relationship, even when a ceramic capacitor is used as the detection capacitor C1, it is possible to prevent the ground fault detection accuracy from being lowered due to the influence of the DC bias characteristic.

正極側C接点スイッチ111、負極側C接点スイッチ112において、高電圧バッテリ300側の接点a、制御装置120側(接地側)の接点bのどちらをノーマルクローズ側とするかは、以下の特性を考慮して適宜定めることができる。
1)正極側C接点スイッチ111、負極側C接点スイッチ112とも高電圧バッテリ300側の接点aをノーマルクローズ側とすると、地絡検出装置100の起動開始時には既に高圧電圧が検出用コンデンサC1に充電されているため、最初のV0計測期間の充電処理を省略できる。このため、起動時に安全確保のため通常時より地絡判定を早めたいという機能ニーズに対応することができる。
2)正極側C接点スイッチ111、負極側C接点スイッチ112とも制御装置120側(接地側)の接点bをノーマルクローズ側とすると、動作停止時は検出用コンデンサC1が放電された状態となる。このため、地絡検出装置100の取り外し時等の感電危険性が低下する。
3)正極側C接点スイッチ111、負極側C接点スイッチ112のいずれか一方の接点aをノーマルクローズ側とすると、起動時において検出用コンデンサC1にはどちらかの極と接地間の電圧が充電されていることになる。この電圧を計測して正常状態と比較することにより、簡易的ながらも一方の極の絶縁抵抗が低下している状況をいち早く把握することができる。
In the positive side C contact switch 111 and the negative side C contact switch 112, which of the contact a on the high voltage battery 300 side and the contact b on the control device 120 side (grounding side) is the normally closed side has the following characteristics. It can be determined as appropriate in consideration.
1) When both the positive side C contact switch 111 and the negative side C contact switch 112 have the contact a on the high voltage battery 300 side as the normally closed side, the high voltage is already charged in the detection capacitor C1 when the ground fault detection device 100 is started. Therefore, the charging process in the first V0 measurement period can be omitted. For this reason, it is possible to meet the functional need to make the ground fault determination earlier than usual for ensuring safety at the time of startup.
2) If both the positive side C contact switch 111 and the negative side C contact switch 112 are set to the normally closed contact b on the control device 120 side (ground side), the detection capacitor C1 is discharged when the operation is stopped. For this reason, the risk of electric shock when removing the ground fault detection device 100 is reduced.
3) When one of the positive side C contact switch 111 and the negative side C contact switch 112 is set to the normally closed side, the voltage between one of the electrodes and the ground is charged in the detection capacitor C1 at the time of startup. Will be. By measuring this voltage and comparing it with the normal state, it is possible to quickly grasp the situation where the insulation resistance of one of the poles is reduced, although it is simple.

以上説明したように、本実施形態の地絡検出装置100は、地絡検出のための測定経路の切り換えスイッチに、コスト増の起因となる光MOS−FETを用いていないため、スイッチング素子に起因するコスト増を抑制することができる。   As described above, the ground fault detection apparatus 100 according to the present embodiment does not use the optical MOS-FET that causes an increase in cost as the measurement path changeover switch for ground fault detection, and thus is caused by the switching element. Increase in cost can be suppressed.

また、従来4個用いていたスイッチング素子を2個のC接点スイッチで構成するため、従来よりも部品数を削減できるとともに制御線を削減することができる。さらに、C接点スイッチは小型化が容易であるため、省スペース化も可能である。   Further, since the four switching elements conventionally used are constituted by two C contact switches, the number of parts can be reduced and the control lines can be reduced as compared with the conventional one. Furthermore, since the C contact switch can be easily miniaturized, space saving is also possible.

なお、上述の例では、正極側C接点スイッチ111は、共通接点cが、ダイオードD1と抵抗R1の経路と、抵抗R2とダイオードD2との経路との並列回路を経由して検出用コンデンサC1に接続していたが、図3に示すように、正極側C接点スイッチ111の共通接点cを直接検出用コンデンサC1に接続してもよい。この場合、接点aは、ダイオードD1、抵抗R1を介して抵抗Raと接続し、接点bは、ダイオードD2、抵抗R2を介してスイッチング素子Saに接続するとともに、ダイオードD2の経路と並列にダイオードD2とは逆方向のダイオードD11と抵抗R11の経路を接続すればよい。   In the above example, the positive side C contact switch 111 has the common contact c connected to the detection capacitor C1 via a parallel circuit of the path of the diode D1 and the resistor R1 and the path of the resistor R2 and the diode D2. However, as shown in FIG. 3, the common contact c of the positive side C contact switch 111 may be directly connected to the detection capacitor C1. In this case, the contact a is connected to the resistor Ra via the diode D1 and the resistor R1, and the contact b is connected to the switching element Sa via the diode D2 and the resistor R2, and the diode D2 in parallel with the path of the diode D2. What is necessary is just to connect the path | route of the diode D11 and resistance R11 of the reverse direction.

ところで、C接点スイッチはメカニカルな接点構成のため、開閉耐久回数に制限がある。特に、通電電流や印加電圧が大きいほど、開閉耐久回数に与える影響が大きくなる。そこで、開閉耐久回数を向上させるために、以下に説明するような制御を行なって開閉回数を削減してもよい。   By the way, since the C contact switch has a mechanical contact configuration, there is a limit on the number of times of opening and closing. In particular, the greater the energization current and applied voltage, the greater the effect on the number of opening / closing durability. Therefore, in order to improve the number of times of opening and closing, the number of times of opening and closing may be reduced by performing control as described below.

従来、地絡検出のための計測は、図4(a)に示すように、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返している。このサイクルを計測モードAと称する。この場合、図2に示した各状態が頻繁に切り換わるため、C接点スイッチの開閉回数が多くなる。   Conventionally, as shown in FIG. 4A, the measurement for detecting a ground fault repeats the measurement operation with one cycle of V0 measurement period → Vc1n measurement period → V0 measurement period → Vc1p measurement period. This cycle is referred to as measurement mode A. In this case, since the respective states shown in FIG. 2 are frequently switched, the number of times the C contact switch is opened and closed increases.

そこで、図4(b)〜(d)に示すように、V0計測期間を省いた計測モードB、Vc1計測期間を省いた計測モードC、すべての計測を行なわない計測モードDを用意して適宜モードを切り換えるようにして、C接点スイッチの開閉回数を抑える。   Therefore, as shown in FIGS. 4B to 4D, a measurement mode B that omits the V0 measurement period, a measurement mode C that omits the Vc1 measurement period, and a measurement mode D that does not perform all measurements are prepared as appropriate. The number of times the C contact switch is opened and closed is reduced by switching the mode.

ここで、各計測モードにおける「計測無し」は、図2(d)に示すように正極側C接点スイッチ111、負極側C接点スイッチ112とも接点b側とすることで、直前の計測期間からのスイッチ切換を不要とする。このため、「計測無し」の期間が多いほど、C接点スイッチの開閉回数を抑えることができる。   Here, “no measurement” in each measurement mode means that the positive side C contact switch 111 and the negative side C contact switch 112 are set to the contact b side as shown in FIG. No need to switch. For this reason, the more the period of “no measurement” is, the more the number of times of opening and closing the C contact switch can be suppressed.

なお、用意する計測モードは、計測モードA〜Dに限られない。例えば、全計測期間をV0計測期間としたり、計測モードAにおける1サイクル中の2回のV0計測期間を1回とした計測モード等を用意してもよい。   Note that the measurement modes to be prepared are not limited to the measurement modes A to D. For example, a measurement mode in which the entire measurement period is a V0 measurement period or two V0 measurement periods in one cycle in the measurement mode A may be prepared.

また、異なる計測モードを複数個組み合わせた計測モードを用意してもよい。例えば、計測モードAの後に計測モードDを複数回繰り返すパターンを1サイクルとする計測モードを用意することで、間欠的に地絡判定を行ない、その間はC接点スイッチの切換を不要とする運用を行なうことができる。   Moreover, you may prepare the measurement mode which combined multiple different measurement modes. For example, by preparing a measurement mode in which a pattern in which the measurement mode D is repeated a plurality of times after the measurement mode A is prepared as one cycle, ground fault determination is performed intermittently, and during that time, switching of the C contact switch is unnecessary. Can be done.

計測モードの切換判断は、例えば、地絡検出装置100あるいは外部制御装置200が行なうようにする。図5は、地絡検出装置100が計測モード切換判断を行なう場合の制御例を示すフローチャートである。   The measurement mode switching determination is performed by, for example, the ground fault detection device 100 or the external control device 200. FIG. 5 is a flowchart showing an example of control when the ground fault detection device 100 makes a measurement mode switching determination.

起動時においては、正確に地絡判定を行なうために計測モードAの計測動作を行なう(S101)。その後は、C接点スイッチの開閉回数を抑えるために、計測モードBの計測動作に移行する(S102)。計測モードBでは、Vc1計測のみを行なうので、C接点スイッチの電流負荷、電圧負荷も抑えることができる。   At the time of start-up, a measurement operation in measurement mode A is performed to accurately determine the ground fault (S101). Thereafter, in order to reduce the number of times the C contact switch is opened and closed, the process proceeds to the measurement mode B measurement operation (S102). In measurement mode B, since only Vc1 measurement is performed, the current load and voltage load of the C contact switch can be suppressed.

計測モードBの計測動作では、V0計測を行なわないため、正確な絶縁抵抗の測定はできないが、Vc1n計測期間、Vc1p計測期間で得られる測定値(測定値Vc1と総称する)に基づいておおよその地絡状況を把握することができる。すなわち、絶縁抵抗RLp、RLnが小さくなっていると、測定回路中を流れる電流が増加するため、測定値Vc1が平常時よりも増加する。   In the measurement operation in measurement mode B, V0 measurement is not performed, so accurate insulation resistance measurement cannot be performed. However, an approximate measurement based on measurement values (collectively referred to as measurement value Vc1) obtained in the Vc1n measurement period and the Vc1p measurement period is not possible. The ground fault situation can be grasped. That is, when the insulation resistances RLp and RLn are small, the current flowing in the measurement circuit increases, and thus the measured value Vc1 increases from the normal time.

このため、測定値Vc1が所定の判定閾値より大きくなっている場合(S103:Yes)は、正確な絶縁抵抗の測定を行なうために計測モードAに移行する(S104)。計測モードAへの移行後は、例えば、正確な絶縁抵抗の測定で異常がないことが判明すれば計測モードBに戻るようにしてもよい。   For this reason, when the measured value Vc1 is larger than the predetermined determination threshold value (S103: Yes), the process shifts to the measurement mode A in order to accurately measure the insulation resistance (S104). After the transition to the measurement mode A, for example, if it is determined that there is no abnormality in the accurate insulation resistance measurement, the measurement mode B may be returned.

図6は、外部制御装置200が計測モード切換判断を行なって地絡検出装置100に計測モード切換を指示する場合の制御例を示すフローチャートである。なお、外部制御装置200は、地絡検出装置100のV0計測とは別に、他の測定経路により高電圧バッテリ300の電圧Vbを取得することができる。   FIG. 6 is a flowchart showing an example of control when the external control device 200 makes a measurement mode switching determination and instructs the ground fault detection device 100 to switch the measurement mode. In addition, the external control device 200 can acquire the voltage Vb of the high-voltage battery 300 through another measurement path separately from the V0 measurement of the ground fault detection device 100.

起動時においては、正確に地絡判定を行なうために計測モードAの計測動作を行なわせる(S201)。その後は、C接点スイッチの開閉回数を抑えるために、計測モードBの計測動作に移行させる(S202)。   At the time of start-up, the measurement mode A measurement operation is performed in order to accurately determine the ground fault (S201). Thereafter, in order to suppress the number of times of opening and closing the C contact switch, the measurement mode B is shifted to the measurement operation (S202).

計測モードBの計測動作中には、地絡検出装置100とは別の測定経路から高電圧バッテリ300の電圧Vbを取得するとともに(S203)、地絡検出装置100の測定結果である電圧Vc1を取得する(S204)。   During the measurement operation in the measurement mode B, the voltage Vb of the high voltage battery 300 is acquired from a measurement path different from the ground fault detection device 100 (S203), and the voltage Vc1 that is the measurement result of the ground fault detection device 100 is obtained. Obtain (S204).

そして、取得した電圧Vbと電圧Vc1に基づいて絶縁抵抗を算出する(S206)。電圧Vbと電圧Vc1とは、取得経路が異なるため、同期しているとは限られず、また、測定条件等が異なる場合もある。このため、算出された絶縁抵抗は正確な値とは限られない。   Then, an insulation resistance is calculated based on the acquired voltage Vb and voltage Vc1 (S206). Since the acquisition path is different between the voltage Vb and the voltage Vc1, the voltage Vb and the voltage Vc1 are not limited to being synchronized, and the measurement conditions and the like may be different. For this reason, the calculated insulation resistance is not necessarily an accurate value.

そこで、絶縁抵抗が所定の基準値を下回っている場合(S206:Yes)には、正確に地絡判定を行なうために計測モードAの計測動作を行なわせる(S207)。   Therefore, when the insulation resistance is lower than the predetermined reference value (S206: Yes), the measurement mode A measurement operation is performed to accurately determine the ground fault (S207).

一方、絶縁抵抗が所定の基準値を下回っていない場合(S206:No)であっても、あらかじめ定めたモード変更条件を満たす場合(S208:Yes)、その条件に従って地絡検出装置100に計測モードの変更を行なわせるようにしてもよい(S209)。   On the other hand, even if the insulation resistance is not lower than the predetermined reference value (S206: No), if the predetermined mode change condition is satisfied (S208: Yes), the ground fault detection device 100 is set to the measurement mode according to the condition. May be changed (S209).

例えば、外部制御装置200が動作上必要な測定値がある場合に、その測定値を得られるような計測モードを行なわせることができる。また、測定値が不要な場合等には、C接点スイッチの開閉が不要な計測モードDに移行させることもできる。変更した計測モードはそれぞれの条件に基づいて適宜他の計測モードに変更させることができる。   For example, when there is a measurement value necessary for the operation of the external control device 200, a measurement mode in which the measurement value can be obtained can be performed. Further, when a measurement value is unnecessary, it is possible to shift to a measurement mode D that does not require opening / closing of the C contact switch. The changed measurement mode can be appropriately changed to another measurement mode based on each condition.

計測モードの切換判断は、地絡検出装置100と外部制御装置200の両方が行なうようにしてもよい。この場合、例えば、地絡検出装置100が、図5示したような切り換え判断を行なっている最中に、外部制御装置200から計測モードの切り換え指示を受け付けた場合には、外部制御装置200からの指示を優先して計測モードの切り換えを行なうようにする。   The measurement mode switching determination may be performed by both the ground fault detection device 100 and the external control device 200. In this case, for example, when the ground fault detection device 100 receives a measurement mode switching instruction from the external control device 200 while performing the switching determination as shown in FIG. The measurement mode is switched with priority given to the instruction.

次に、図5を参照して説明した、地絡検出装置100がV0計測を行なわない計測モードBからV0計測を行なう計測モードAへの切換判断を行なう場合の制御の別例について説明する。上述の処理(S103)では、測定値Vc1が所定の判定閾値より大きくなっている場合に、計測モードAに移行するようにしていた。   Next, another example of the control when the ground fault detection apparatus 100 described with reference to FIG. 5 performs the switching determination from the measurement mode B in which V0 measurement is not performed to the measurement mode A in which V0 measurement is performed will be described. In the above-described process (S103), when the measured value Vc1 is larger than a predetermined determination threshold value, the mode is shifted to the measurement mode A.

例えば、図7(a)に示すように、Vc1n、Vc1pとも判定閾値より大きくなっていない場合には、計測モードBを継続する。一方で、図7(b)に示すように、Vc1n、Vc1pの少なくとも一方が判定閾値より大きくなった場合には、正確な絶縁抵抗の測定を行なうために計測モードAに移行する。   For example, as shown in FIG. 7A, when both Vc1n and Vc1p are not larger than the determination threshold, the measurement mode B is continued. On the other hand, as shown in FIG. 7B, when at least one of Vc1n and Vc1p becomes larger than the determination threshold value, the mode shifts to the measurement mode A in order to accurately measure the insulation resistance.

しかしながら、Vc1n、Vc1pは、高電圧バッテリ300の電圧変動に応じて増減する。このため、高電圧バッテリ300の電圧が何らかの原因で増加した場合に、絶縁抵抗が低下していないにも関わらず、図7(c)に示すように、Vc1n、Vc1pが判定閾値を超えてしまうときがある。これにより、不必要に計測モードAに移行し、C接点スイッチの開閉回数を増加させてしまうことが起こり得る。   However, Vc1n and Vc1p increase / decrease according to the voltage fluctuation of the high voltage battery 300. For this reason, when the voltage of the high-voltage battery 300 increases for some reason, Vc1n and Vc1p exceed the determination threshold as shown in FIG. 7C even though the insulation resistance does not decrease. There is a time. This may unnecessarily shift to the measurement mode A and increase the number of times the C contact switch is opened and closed.

そこで、不必要な計測モードAへの移行を防ぐために、Vc1n、Vc1pの電圧値が判定閾値より大きくなっているか否かの判定に代えて、以下に説明するような、検出用コンデンサC1の充電電圧の所定期間における変化率の大きさに基づいた判定を行なうようにしてもよい。   Therefore, in order to prevent unnecessary transition to the measurement mode A, instead of determining whether or not the voltage values of Vc1n and Vc1p are larger than the determination threshold value, charging of the detection capacitor C1 as described below is performed. You may make it perform determination based on the magnitude | size of the change rate in the predetermined period of a voltage.

一般に、RC直列回路において、電圧Eが印加されたときのコンデンサCの充電電圧Vcの時間変化は、
Vc=E(1−exp(−t/RC))
となる。
In general, in the RC series circuit, the time change of the charging voltage Vc of the capacitor C when the voltage E is applied is
Vc = E (1-exp (-t / RC))
It becomes.

地絡検出装置100のVc1計測時においては、Eが高電圧バッテリ300の電圧、Cが検出用コンデンサC1の容量、Rが地絡検出装置100の測定経路抵抗値と絶縁抵抗値との合成値に相当する。なお、説明を簡単にするため、Yコンデンサの影響は無視している。   At the time of measuring Vc1 of the ground fault detection device 100, E is the voltage of the high voltage battery 300, C is the capacitance of the detection capacitor C1, and R is a composite value of the measurement path resistance value and the insulation resistance value of the ground fault detection device 100. It corresponds to. In order to simplify the explanation, the influence of the Y capacitor is ignored.

この式から、図8に示すように、絶縁抵抗が高くて正常であるにもかかわらず、高電圧バッテリ300の電圧が高くなっているためにVc1計測値が高くなっている場合と、高電圧バッテリ300の電圧が通常で絶縁抵抗が低下しているためにVc1計測値が高くなっている場合とで、仮に、Vc1計測値が等しくなっていたとしても、コンデンサCの充電電圧の立ち上がり時における時間変化は異なることになる。   From this equation, as shown in FIG. 8, the Vc1 measurement value is high because the voltage of the high-voltage battery 300 is high even though the insulation resistance is high and normal, and the high voltage When the Vc1 measurement value is high because the voltage of the battery 300 is normal and the insulation resistance is low, even if the Vc1 measurement value is equal, the charging voltage of the capacitor C at the rise time Time changes will be different.

具体的には、絶縁抵抗が低下している場合には、立ち上がりのカーブが急峻になる。このため、Vc1の充電時間tcにおける絶縁抵抗低時の充電電圧をVc1L、絶縁抵抗高時の充電電圧をVc1Hとし、tcよりも短い時間taにおける、絶縁抵抗低時の充電電圧をVaL、絶縁抵抗高時の充電電圧をVaHとすると、(Vc1H/VaH)>(Vc1L/VaL)が成り立つことになる。   Specifically, when the insulation resistance is lowered, the rising curve becomes steep. For this reason, the charging voltage when the insulation resistance is low during the charging time tc of Vc1 is Vc1L, the charging voltage when the insulation resistance is high is Vc1H, the charging voltage when the insulation resistance is low during the time ta shorter than tc is VaL, and the insulation resistance. When the charging voltage at the time of high is VaH, (Vc1H / VaH)> (Vc1L / VaL) is established.

Vc1/Vaの値は、高電圧バッテリ300の電圧に影響を受けず、絶縁抵抗に依存する。このため、時間tcにおける充電電圧Vc1と時間taにおける充電電圧Vaとの比であるVc1/Vaに基づいて、計測モードAへの移行判定を行なうことが可能となる。すなわち、Vc1/Vaが所定の判定比率よりも小さい場合に、絶縁抵抗が低下したおそれがあるため計測モードAに移行すると判定することができる。もちろん、逆数のVa/Vc1に基づいて判定を行なってもよい。   The value of Vc1 / Va is not affected by the voltage of the high voltage battery 300 and depends on the insulation resistance. For this reason, it is possible to determine whether to shift to the measurement mode A based on Vc1 / Va that is a ratio of the charging voltage Vc1 at time tc and the charging voltage Va at time ta. That is, when Vc1 / Va is smaller than a predetermined determination ratio, it can be determined that the measurement mode A is entered because the insulation resistance may be reduced. Of course, the determination may be made based on the inverse number Va / Vc1.

ここで、Vaの測定は、Vc1の測定とは別個に行なってもよいし、Vc1の測定途中でVaを測定してもよい。後者の場合、Vc1の測定を開始してから時間ta経過後に一度計測用の経路に切替えてVaを測定し、その後、再度Vc1計測用の経路に切換えて、充電時間tcの残りの時間を確保すればよい。以下では、Vaの測定は、Vc1の測定とは別個に行なう場合を例に説明する。   Here, the measurement of Va may be performed separately from the measurement of Vc1, or Va may be measured during the measurement of Vc1. In the latter case, after the time ta has elapsed since the start of the measurement of Vc1, the measurement path is once switched to measure Va, and then the Vc1 measurement path is switched again to secure the remaining charging time tc. do it. Hereinafter, an example in which the measurement of Va is performed separately from the measurement of Vc1 will be described.

図9は、充電電圧の変化率の大きさに基づいた判定を行なう場合の動作を説明するフローチャートである。図5に示したフローチャートのうち、処理(S102)に代えて処理(S1021)を行ない、処理(S103)に代えて処理(S1031)を行なうものとする。   FIG. 9 is a flowchart for explaining the operation in the case of making a determination based on the magnitude of the change rate of the charging voltage. In the flowchart shown in FIG. 5, processing (S1021) is performed instead of processing (S102), and processing (S1031) is performed instead of processing (S103).

本動作では、計測モードBに代えて、Vaの測定を追加した計測モードB1を行なう(S1021)。計測モードB1は、V0計測は行なわずに、Vc1n、Vc1pに加え、Vc1nについてのVaであるVna、Vc1pについてのVaであるVpaを計測するモードである。   In this operation, instead of the measurement mode B, a measurement mode B1 in which measurement of Va is added is performed (S1021). The measurement mode B1 is a mode in which Vna that is Va for Vc1n and Vpa that is Va for Vc1p are measured in addition to Vc1n and Vc1p without performing V0 measurement.

計測モードB1は、例えば、図10(a)に示すように、Vna計測期間、Vc1n計測期間、Vpa計測期間、Vc1p計測期間を1サイクルとしてもよいし、図10(b)に示すように、Vna計測期間、Vpa計測期間、Vc1n計測期間、Vc1p計測期間を1サイクルとしてもよい。   In the measurement mode B1, for example, as shown in FIG. 10 (a), the Vna measurement period, the Vc1n measurement period, the Vpa measurement period, and the Vc1p measurement period may be one cycle, or as shown in FIG. 10 (b). The Vna measurement period, the Vpa measurement period, the Vc1n measurement period, and the Vc1p measurement period may be one cycle.

そして、計測モードB1で各測定値が得られると、Vc1n/Vna、Vc1p/Vpaをそれぞれ算出し、少なくとも一方が所定の判定比率より小さい場合には(S1031:Yes)、正確な絶縁抵抗の測定を行なうために計測モードAに移行する(S104)。   When each measurement value is obtained in the measurement mode B1, Vc1n / Vna and Vc1p / Vpa are calculated, and when at least one is smaller than a predetermined determination ratio (S1031: Yes), accurate insulation resistance measurement is performed. In order to carry out, the measurement mode A is entered (S104).

これにより、計測モードAへの移行判定が、高電圧バッテリ300の電圧変動の影響を受けなくなるため、不必要な計測モードA移行によるC接点スイッチの開閉回数の増加を防ぐことができる。   As a result, the determination to shift to the measurement mode A is not affected by the voltage fluctuation of the high-voltage battery 300, and therefore an increase in the number of times of opening and closing the C contact switch due to unnecessary shift to the measurement mode A can be prevented.

100 地絡検出装置
111 正極側C接点スイッチ
112 負極側C接点スイッチ
120 制御装置
200 外部制御装置
300 高電圧バッテリ
301 正極側電源ライン
302 負極側電源ライン
100 Ground Fault Detection Device 111 Positive Side C Contact Switch 112 Negative Side C Contact Switch 120 Control Device 200 External Control Device 300 High Voltage Battery 301 Positive Side Power Line 302 Negative Side Power Line

Claims (5)

非接地の高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置であって、
制御部と、
フライングキャパシタとして動作する検出用コンデンサと、
前記高電圧バッテリの正極側と接続する正極側電源線と、
前記高電圧バッテリの負極側と接続する負極側電源線と、
一端が接地し、他端の電圧が前記制御部によって測定される正極2次側抵抗と、
一端が接地した負極2次側抵抗と、
前記制御部の指示に基づいて、前記検出用コンデンサの一端の接続先を、前記正極側電源線を含む経路と、前記正極2次側抵抗を含む経路とで択一的に切り換える正極側C接点スイッチと、
前記制御部の指示に基づいて、前記検出用コンデンサの他端の接続先を、前記負極側電源線を含む経路と、前記負極2次側抵抗を含む経路とで択一的に切り換える負極側C接点スイッチと、
を備え、
前記制御部は、
前記高電圧バッテリ相当電圧の測定、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ第1計測モードと、
いずれかの測定を省いた第2計測モードと、を切り換えて、前記正極側C接点スイッチおよび前記負極側C接点スイッチの切り換え制御を行なうことを特徴とする地絡検出装置。
A ground fault detection device connected to a non-grounded high voltage battery and detecting a ground fault of a system provided with the high voltage battery,
A control unit;
A detection capacitor that operates as a flying capacitor;
A positive-side power line connected to the positive-side of the high-voltage battery;
A negative-side power line connected to the negative-side of the high-voltage battery;
One end is grounded, and the other end of the voltage is measured by the controller.
A negative secondary resistance whose one end is grounded;
Based on an instruction from the control unit, a positive-side C contact that selectively switches a connection destination of one end of the detection capacitor between a path including the positive-side power line and a path including the positive-side secondary resistance. A switch,
Based on an instruction from the control unit, a negative electrode side C that selectively switches a connection destination of the other end of the detection capacitor between a path including the negative power supply line and a path including the negative secondary resistance. A contact switch;
With
The controller is
A first measurement mode including measurement of the high-voltage battery equivalent voltage, measurement of the voltage affected by the positive side insulation resistance, measurement of the voltage affected by the negative side insulation resistance in the measurement cycle;
A ground fault detection device, wherein switching between the positive side C contact switch and the negative side C contact switch is performed by switching to a second measurement mode in which any measurement is omitted.
前記制御部は、正極側絶縁抵抗の影響を受ける電圧の測定結果、あるいは負極側絶縁抵抗の影響を受ける電圧の測定結果が所定の条件を満たす場合に、第1計測モードに移行することを特徴とする請求項1に記載の地絡検出装置。   The control unit shifts to the first measurement mode when the measurement result of the voltage affected by the positive-side insulation resistance or the measurement result of the voltage affected by the negative-side insulation resistance satisfies a predetermined condition. The ground fault detection apparatus according to claim 1. 前記制御部は、前記計測モードを、外部制御装置からの指示に従って切り換え、前記第2計測モードは、さらに、すべての測定を省いた計測モードを含んでいることを特徴とする請求項1または2に記載の地絡検出装置。   The control unit switches the measurement mode according to an instruction from an external control device, and the second measurement mode further includes a measurement mode in which all measurements are omitted. The ground fault detection apparatus described in 1. 前記第2計測モードは、前記高電圧バッテリ相当電圧の測定を省き、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ計測モードを含み、
前記制御部は、この計測モードにおいて、正極側絶縁抵抗の影響を受ける電圧の測定結果から得られる電圧値および負極側絶縁抵抗の影響を受ける電圧の測定結果から得られる電圧値のいずれかが所定の閾値を超える場合に、第1計測モードに移行することを特徴とする請求項1に記載の地絡検出装置。
The second measurement mode is a measurement mode in which the measurement of the voltage equivalent to the high-voltage battery is omitted, the measurement of the voltage affected by the positive-side insulation resistance, and the measurement of the voltage affected by the negative-side insulation resistance are included in the measurement cycle. Including
In this measurement mode, the control unit determines whether a voltage value obtained from the measurement result of the voltage affected by the positive electrode side insulation resistance or a voltage value obtained from the measurement result of the voltage affected by the negative electrode side insulation resistance is predetermined. The ground fault detection device according to claim 1, wherein the ground fault detection device shifts to the first measurement mode when exceeding the threshold value.
前記第2計測モードは、前記高電圧バッテリ相当電圧の測定を省き、正極側絶縁抵抗の影響を受ける電圧の測定、負極側絶縁抵抗の影響を受ける電圧の測定を測定周期に含んだ計測モードを含み、
前記制御部は、この計測モードにおいて、正極側絶縁抵抗の影響を受ける電圧の変化率および正極側絶縁抵抗の影響を受ける電圧の変化率のいずれかが所定の条件を満たす場合に、第1計測モードに移行することを特徴とする請求項1に記載の地絡検出装置。
The second measurement mode is a measurement mode in which the measurement of the voltage equivalent to the high-voltage battery is omitted, the measurement of the voltage affected by the positive-side insulation resistance, and the measurement of the voltage affected by the negative-side insulation resistance are included in the measurement cycle. Including
In this measurement mode, the control unit performs the first measurement when either the voltage change rate affected by the positive electrode side insulation resistance or the voltage change rate affected by the positive electrode side insulation resistance satisfies a predetermined condition. The ground fault detection apparatus according to claim 1, wherein the ground fault detection apparatus shifts to a mode.
JP2017132618A 2017-02-07 2017-07-06 Ground fault detection device Expired - Fee Related JP6625586B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/841,955 US10330716B2 (en) 2017-02-07 2017-12-14 Earth fault detector with flying capacitor
CN201810123326.1A CN108490302B (en) 2017-02-07 2018-02-07 Ground fault detector
DE102018201875.8A DE102018201875A1 (en) 2017-02-07 2018-02-07 Ground fault detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020600 2017-02-07
JP2017020600 2017-02-07

Publications (2)

Publication Number Publication Date
JP2018128440A true JP2018128440A (en) 2018-08-16
JP6625586B2 JP6625586B2 (en) 2019-12-25

Family

ID=63172818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132618A Expired - Fee Related JP6625586B2 (en) 2017-02-07 2017-07-06 Ground fault detection device

Country Status (2)

Country Link
JP (1) JP6625586B2 (en)
CN (1) CN108490302B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128320A (en) * 2017-02-07 2018-08-16 矢崎総業株式会社 Ground fault detector
JP2020030117A (en) * 2018-08-23 2020-02-27 矢崎総業株式会社 Ground fault detection device
JP2021043025A (en) * 2019-09-10 2021-03-18 矢崎総業株式会社 Earth-fault detection device
CN113306397A (en) * 2020-02-26 2021-08-27 郑州宇通客车股份有限公司 Insulation failure positioning method and system of battery system and new energy automobile
WO2022086097A1 (en) * 2020-10-19 2022-04-28 주식회사 엘지에너지솔루션 Battery test device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854750B2 (en) * 2017-12-25 2021-04-07 矢崎総業株式会社 Ground fault detector
CN110967651B (en) * 2018-09-30 2021-11-05 广东威灵汽车部件有限公司 Electric automobile and short circuit to ground detection device thereof
JP6918428B2 (en) * 2018-12-18 2021-08-11 矢崎総業株式会社 Ground fault detector
JP7086886B2 (en) * 2019-04-03 2022-06-20 矢崎総業株式会社 Ground fault detector
JP7094918B2 (en) * 2019-06-04 2022-07-04 矢崎総業株式会社 Ground fault detector
CN112881940B (en) * 2019-11-14 2022-07-26 华为技术有限公司 Grounding state detection circuit, electrical system and grounding state detection method thereof
JP7039541B2 (en) * 2019-11-15 2022-03-22 矢崎総業株式会社 Ground fault detector
JP7039540B2 (en) * 2019-11-15 2022-03-22 矢崎総業株式会社 Ground fault detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040770A (en) * 1996-07-22 1998-02-13 Hitachi Ltd Analog multiplexer circuit
JP2015021845A (en) * 2013-07-19 2015-02-02 矢崎総業株式会社 Insulation state detection device
JP2015197406A (en) * 2014-04-03 2015-11-09 矢崎総業株式会社 Insulation detector
JP2016038357A (en) * 2014-08-11 2016-03-22 株式会社Nttファシリティーズ Dc ground fault detector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124465A (en) * 1985-11-26 1987-06-05 Nec Corp Detecting circuit for disconnection of analog input signal line
US20070210805A1 (en) * 2006-03-08 2007-09-13 Yazaki Corporation Insulation detecting method and insulation detecting device
JP4674194B2 (en) * 2006-09-29 2011-04-20 矢崎総業株式会社 Insulation detector
US7852089B2 (en) * 2008-05-08 2010-12-14 Lear Corporation Ground-fault detection system for vehicles with a high-voltage power net
KR100958795B1 (en) * 2008-09-01 2010-05-18 주식회사 엘지화학 Apparatus and Method for sensing leakage current of battery, and Battery-driven apparatus and Battery pack including the apparatus
CN102652265A (en) * 2010-12-06 2012-08-29 科达汽车公司 Measuring isolated high voltage and detecting isolation breakdown with measures for self-detection of circuit faults
JP5474114B2 (en) * 2012-03-16 2014-04-16 三菱電機株式会社 In-vehicle high-voltage equipment leakage resistance detection apparatus and leakage resistance detection method thereof
JP5947584B2 (en) * 2012-03-27 2016-07-06 矢崎総業株式会社 Insulation state detector
JP2013257211A (en) * 2012-06-12 2013-12-26 Shin Meiwa Ind Co Ltd Work vehicle and its electric leakage detection method
JP2014020914A (en) * 2012-07-18 2014-02-03 Keihin Corp Leak detection device
JP6046506B2 (en) * 2013-01-31 2016-12-14 矢崎総業株式会社 Insulation state detector
JP6433305B2 (en) * 2014-04-09 2018-12-05 矢崎総業株式会社 Insulation detection device and insulation detection method for non-grounded power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040770A (en) * 1996-07-22 1998-02-13 Hitachi Ltd Analog multiplexer circuit
JP2015021845A (en) * 2013-07-19 2015-02-02 矢崎総業株式会社 Insulation state detection device
JP2015197406A (en) * 2014-04-03 2015-11-09 矢崎総業株式会社 Insulation detector
JP2016038357A (en) * 2014-08-11 2016-03-22 株式会社Nttファシリティーズ Dc ground fault detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128320A (en) * 2017-02-07 2018-08-16 矢崎総業株式会社 Ground fault detector
JP2020030117A (en) * 2018-08-23 2020-02-27 矢崎総業株式会社 Ground fault detection device
JP2021043025A (en) * 2019-09-10 2021-03-18 矢崎総業株式会社 Earth-fault detection device
CN112557941A (en) * 2019-09-10 2021-03-26 矢崎总业株式会社 Ground fault detection device
JP7118935B2 (en) 2019-09-10 2022-08-16 矢崎総業株式会社 Ground fault detector
CN112557941B (en) * 2019-09-10 2024-05-07 矢崎总业株式会社 Ground fault detection device
CN113306397A (en) * 2020-02-26 2021-08-27 郑州宇通客车股份有限公司 Insulation failure positioning method and system of battery system and new energy automobile
WO2022086097A1 (en) * 2020-10-19 2022-04-28 주식회사 엘지에너지솔루션 Battery test device
US11977122B2 (en) 2020-10-19 2024-05-07 Lg Energy Solution, Ltd. Battery inspection apparatus

Also Published As

Publication number Publication date
CN108490302A (en) 2018-09-04
CN108490302B (en) 2020-09-15
JP6625586B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6625586B2 (en) Ground fault detection device
JP6633585B2 (en) Ground fault detector
JP6676026B2 (en) Ground fault detector
JP7118935B2 (en) Ground fault detector
JP6698599B2 (en) Ground fault detector
JP6725577B2 (en) Ground fault detector
JP6491164B2 (en) Voltage detector
JP6633560B2 (en) Ground fault detector
US10330716B2 (en) Earth fault detector with flying capacitor
JP2019113431A (en) Ground fault detector
JP7086886B2 (en) Ground fault detector
US11555863B2 (en) Ground fault detection device
JP2020030117A (en) Ground fault detection device
JP7395240B2 (en) Ground fault detection device
JP6804320B2 (en) Ground fault detector, power supply system
CN110361598B (en) Ground fault detection device
JP6836411B2 (en) Ground fault detector, power supply system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191127

R150 Certificate of patent or registration of utility model

Ref document number: 6625586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees