JP2013257211A - Work vehicle and its electric leakage detection method - Google Patents

Work vehicle and its electric leakage detection method Download PDF

Info

Publication number
JP2013257211A
JP2013257211A JP2012133174A JP2012133174A JP2013257211A JP 2013257211 A JP2013257211 A JP 2013257211A JP 2012133174 A JP2012133174 A JP 2012133174A JP 2012133174 A JP2012133174 A JP 2012133174A JP 2013257211 A JP2013257211 A JP 2013257211A
Authority
JP
Japan
Prior art keywords
storage device
power storage
leakage
leakage detection
load circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133174A
Other languages
Japanese (ja)
Inventor
Masaaki Sumida
雅明 寿美田
Masao Ueda
雅夫 上田
Keiichi Inai
恵一 稲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2012133174A priority Critical patent/JP2013257211A/en
Priority to CN201310229613.8A priority patent/CN103487711A/en
Priority to TW102120697A priority patent/TW201419708A/en
Publication of JP2013257211A publication Critical patent/JP2013257211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a work vehicle and its electric leakage detection method that can determine electric leakage with high precision through simple circuit constitution.SOLUTION: A work vehicle includes an electric leakage detection part 5 which detects electric leakage of a capacitor 2; a circuit changeover switch which disconnected the capacitor 2 from a load circuit 1 and connects the electric leakage detection part 5 to the capacitor 2, and disconnects the electric leakage detection part 5 from the capacitor 2 and connects the capacitor 2 to the load circuit 1; and a microcomputer 6 which places the circuit changeover switch SW in operation to disconnect the capacitor 2 from the load circuit 1 and to connect the electric leakage detection part 5 to the capacitor 2 on detecting the capacitor 2 being fully charged and also detecting no current flowing to the load circuit 1, and also places the circuit changeover switch to disconnect the electric leakage detection part 5 from the capacitor 2 and to connect the capacitor 2 to the load circuit 1 after the electric leakage detection part 5 detects electric leakage of the capacitor 2.

Description

本発明は、蓄電装置に蓄積された電力により駆動される負荷回路を有する作業車両およびその漏電検知方法に関する。   The present invention relates to a work vehicle having a load circuit driven by electric power stored in a power storage device and a method for detecting leakage of the work vehicle.

従来、バッテリフォークリフト、ハイブリッドパワーショベル、電動高所作業車、ハイブリッドクレーンや鉄道車両などの各種作業車両において、蓄電装置を用いた電動システムが広く使用されている。例えば、特許文献1に記載のミキサー車では、エンジンによって駆動される発電機と、発電機の出力を蓄積する蓄電装置と、蓄電装置に蓄積された電力によって駆動される電動機からなる電動駆動装置とを備え、電動駆動装置によってドラムを回転させる。   Conventionally, an electric system using a power storage device has been widely used in various work vehicles such as a battery forklift, a hybrid power shovel, an electric aerial work vehicle, a hybrid crane, and a railway vehicle. For example, in the mixer truck described in Patent Document 1, a generator driven by an engine, a power storage device that stores the output of the power generator, and an electric drive device that includes a motor that is driven by the power stored in the power storage device; The drum is rotated by an electric drive device.

ところで、この種の作業車両では、通常のガソリンエンジンが搭載している鉛電池と比べて、蓄電装置の電圧が高い。そのため、高電圧の蓄電装置が搭載された作業車両では、漏電を自動的に検知する漏電検知装置が搭載される。例えば、特許文献2には、走行用電池の端子と電気車両の車体との間に設けた漏電検知用抵抗と、この漏電検知用抵抗の端子電圧を監視する手段と、その端子電圧の値が所定値以上かどうかを比較する手段と、端子抵抗の値が所定値以上になった時にメンテナンス指示を報知する手段とを備えた電気車両の漏電検知装置が開示されている。   By the way, in this type of work vehicle, the voltage of the power storage device is higher than that of a lead battery mounted on a normal gasoline engine. Therefore, a work vehicle equipped with a high-voltage power storage device is equipped with a leakage detection device that automatically detects leakage. For example, in Patent Document 2, a leakage detection resistor provided between a terminal of a battery for traveling and the body of an electric vehicle, a means for monitoring a terminal voltage of the leakage detection resistor, and a value of the terminal voltage are disclosed. There is disclosed an electric vehicle leakage detection device including means for comparing whether or not a predetermined value or more and means for notifying a maintenance instruction when the value of the terminal resistance exceeds a predetermined value.

特開2003−226192号公報JP 2003-226192 A 実開平6−2901号公報Japanese Utility Model Publication No. 6-2901

ところが、蓄電装置に蓄積された電力によって電動システムを動作させる作業車両の場合、蓄電装置の電圧が、電動システムの駆動による放電量と発電機による蓄電装置への充電量に応じて変化する。そのため、単純に電圧の変化を監視するだけでは、漏電検知を行うことが難しく、漏電検知のための回路が複雑化する。   However, in the case of a work vehicle that operates an electric system with electric power stored in the power storage device, the voltage of the power storage device changes according to the amount of discharge by driving the electric system and the amount of charge to the power storage device by a generator. Therefore, it is difficult to detect leakage by simply monitoring the voltage change, and the circuit for detecting leakage becomes complicated.

そこで、本発明においては、簡単な回路構成で漏電を高精度に判定可能とした作業車両およびその漏電検知方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a work vehicle and a leakage detection method thereof that can determine leakage with high accuracy with a simple circuit configuration.

本発明の作業車両は、電力により駆動される負荷回路と、負荷回路に供給する電力を蓄積する蓄電装置と、蓄電装置に充電する充電回路とを有する作業車両であって、蓄電装置の漏電検知を行う漏電検知部と、蓄電装置を負荷回路から切り離すとともに蓄電装置に漏電検知部を接続し、また、漏電検知部を蓄電装置から切り離すとともに蓄電装置を負荷回路に接続する回路切替スイッチと、蓄電装置が満充電になったことを検出し、かつ負荷回路の電流がゼロであることを検出したときに、回路切替スイッチを動作させて蓄電装置を負荷回路から切り離すとともに蓄電装置に漏電検知部を接続し、漏電検知部により蓄電装置の漏電検知を行った後、回路切替スイッチを動作させて漏電検知部を蓄電装置から切り離すとともに蓄電装置を負荷回路に接続する制御部とを有するものである。   A work vehicle according to the present invention is a work vehicle having a load circuit driven by electric power, a power storage device that stores power supplied to the load circuit, and a charging circuit that charges the power storage device, and detecting leakage of the power storage device An earth leakage detection unit that disconnects the electricity storage device from the load circuit, connects the electricity leakage detection unit to the electricity storage device, disconnects the electricity leakage detection unit from the electricity storage device, and connects the electricity storage device to the load circuit; When it is detected that the device is fully charged and the current of the load circuit is zero, the circuit changeover switch is operated to disconnect the power storage device from the load circuit, and a leakage detector is connected to the power storage device. After connecting and detecting the leakage of the power storage device by the leakage detection unit, the circuit changeover switch is operated to disconnect the leakage detection unit from the storage device and load the storage device. In which a control unit to be connected to.

本発明の作業車両の漏電検知方法は、電力により駆動される負荷回路と、負荷回路に供給する電力を蓄積する蓄電装置と、蓄電装置に充電する充電回路とを有する作業車両の漏電検知方法であって、蓄電装置が満充電になったことを検出し、かつ負荷回路の電流がゼロであることを検出したときに、蓄電装置を負荷回路から切り離して蓄電装置の漏電検知を行うこと、蓄電装置の漏電検知を行った後、蓄電装置を負荷回路に再接続することを含むことを特徴とする。   The work vehicle leakage detection method of the present invention is a work vehicle leakage detection method including a load circuit driven by electric power, a power storage device that stores power supplied to the load circuit, and a charging circuit that charges the power storage device. And detecting the leakage of the power storage device by disconnecting the power storage device from the load circuit when it is detected that the power storage device is fully charged and the current of the load circuit is zero. The method includes reconnecting the power storage device to the load circuit after detecting leakage of the device.

これらの発明によれば、蓄電装置が満充電になったことが検出され、かつ負荷回路の電流がゼロであることが検出されたときに、蓄電装置が負荷回路から切り離されて蓄電装置の漏電検知が行われ、蓄電装置の漏電検知が行われた後、蓄電装置が負荷回路に再接続される。このように、これらの発明では、蓄電装置が負荷回路から切り離された状態で漏電検知が行われるため、高精度な判定が可能となる。   According to these inventions, when it is detected that the power storage device is fully charged and the current of the load circuit is detected as zero, the power storage device is disconnected from the load circuit and the leakage of the power storage device is detected. After the detection is performed and the leakage detection of the power storage device is performed, the power storage device is reconnected to the load circuit. Thus, in these inventions, since leakage detection is performed in a state where the power storage device is disconnected from the load circuit, highly accurate determination is possible.

本発明の作業車両は、制御部が、当該作業車両のエンジンキーオン信号を検出するごとに回路切替スイッチを動作させて漏電検知部により蓄電装置の漏電検知を行わせるものであることが望ましい。これにより、作業車両の1回のエンジン起動について1回の漏電検知が行われる。   In the work vehicle of the present invention, it is preferable that the control unit operates the circuit changeover switch every time the engine key-on signal of the work vehicle is detected, and causes the leakage detection unit to detect the leakage of the power storage device. As a result, one leakage detection is performed for one engine start of the work vehicle.

また、漏電検知部は、蓄電回路と当該作業車両のシャーシとの間の抵抗値を1回切り替えたときの蓄電装置の電圧の変化から漏電検知を行うものであることが望ましい。これにより、蓄電回路と作業車両のシャーシとの間に漏電が発生した場合には、蓄電装置と作業車両のシャーシ間との間の抵抗値の切り替え前後で蓄電装置の電圧の変化が小さくなるので、漏電検知を容易に行うことが可能となる。   Moreover, it is desirable that the leakage detection unit is configured to detect leakage from a change in voltage of the power storage device when the resistance value between the power storage circuit and the chassis of the work vehicle is switched once. As a result, when an electrical leakage occurs between the power storage circuit and the chassis of the work vehicle, the change in the voltage of the power storage device is reduced before and after switching of the resistance value between the power storage device and the chassis of the work vehicle. It is possible to easily detect leakage.

(1)蓄電装置が満充電になったことが検出され、かつ負荷回路の電流がゼロであることが検出されたときに、蓄電装置が負荷回路から切り離されて蓄電装置の漏電検知が行われ、蓄電装置の漏電検知が行われた後、蓄電装置が負荷回路に再接続される構成により、充放電量によって電圧が変化するため、充放電中は正確な電圧測定ができない蓄電装置の漏電を簡単な回路構成で高精度に判定することが可能となる。 (1) When it is detected that the power storage device is fully charged and the current of the load circuit is detected to be zero, the power storage device is disconnected from the load circuit and the leakage detection of the power storage device is performed. After the detection of leakage of the power storage device, the voltage changes depending on the amount of charge / discharge due to the configuration in which the power storage device is reconnected to the load circuit. It becomes possible to determine with high accuracy with a simple circuit configuration.

(2)当該作業車両のエンジンキーオン信号を検出するごとに蓄電装置の漏電検知を行う構成により、作業車両の1回のエンジン起動について1回の漏電検知が行われ、充分な頻度で蓄電装置の漏電が検知される。 (2) By detecting the leakage of the power storage device every time the engine key-on signal of the work vehicle is detected, one leakage detection is performed for one engine start of the work vehicle. A leak is detected.

(3)蓄電回路と当該作業車両のシャーシとの間の抵抗値を1回切り替えたときの蓄電装置の電圧の変化から漏電検知を行う構成により、蓄電回路と作業車両のシャーシとの間に漏電が発生した場合には、蓄電装置と作業車両のシャーシ間との間の抵抗値の切り替え前後で蓄電装置の電圧の変化が小さくなるので、漏電検知を容易に行うことが可能となる。 (3) A leakage current is detected between the storage circuit and the chassis of the work vehicle by a configuration in which leakage detection is performed from a change in the voltage of the storage device when the resistance value between the storage circuit and the chassis of the work vehicle is switched once. When this occurs, the change in the voltage of the power storage device becomes small before and after the resistance value is switched between the power storage device and the chassis of the work vehicle, so that the leakage detection can be easily performed.

本発明の実施の形態における作業車両としての塵芥車の電気回路の一部を示す概略構成図である。It is a schematic block diagram which shows a part of electric circuit of the garbage truck as a working vehicle in embodiment of this invention. 図1の制御部のメイン処理の動作フロー図である。It is an operation | movement flowchart of the main process of the control part of FIG. 図2の漏電検知処理の動作フロー図である。It is an operation | movement flowchart of the electric leakage detection process of FIG.

図1は本発明の実施の形態における作業車両としての塵芥車の電気回路の一部を示す概略構成図である。図1において、本発明の実施の形態における作業車両としての塵芥車は、電力により駆動される負荷回路1と、負荷回路1に供給する電力を蓄積する蓄電装置としてのキャパシタ2と、キャパシタ2に充電する充電回路3と、キャパシタ2の漏電を検知する漏電検知回路4とを備えている。   FIG. 1 is a schematic configuration diagram showing a part of an electric circuit of a garbage truck as a work vehicle according to an embodiment of the present invention. In FIG. 1, a garbage truck as a work vehicle in an embodiment of the present invention includes a load circuit 1 driven by electric power, a capacitor 2 as a power storage device that stores electric power supplied to the load circuit 1, and a capacitor 2. A charging circuit 3 for charging and a leakage detection circuit 4 for detecting leakage of the capacitor 2 are provided.

なお、本実施形態における塵芥車は、詳細は図示しないが、通常の塵芥車と同様に、運転室の後方に設けられた塵芥収容箱と、塵芥収容箱の後部に設けられた塵芥投入箱とを備えている。塵芥投入箱内には、当該塵芥投入箱内に投入された塵芥を塵芥収容箱内へ積み込む塵芥押込板、回転板や排出板等から構成される作業装置としての塵芥積込装置が搭載されている。塵芥積込装置は、油圧ポンプで発生する圧油にて駆動される油圧シリンダおよび油圧モータにより駆動される。   Although the details of the garbage truck in this embodiment are not shown, a dust container box provided at the rear of the cab and a dust container box provided at the rear of the dust container box, as in a normal garbage truck, It has. In the dust input box, there is mounted a dust loading device as a working device composed of a dust pushing plate, a rotating plate, a discharge plate, etc. for loading the dust thrown into the dust containing box into the dust containing box. Yes. The dust loading device is driven by a hydraulic cylinder and a hydraulic motor that are driven by pressure oil generated by a hydraulic pump.

負荷回路1は、例えば、この油圧ポンプを駆動する電動モータである。電動モータには、永久磁石同期電動モータが採用されている。この永久磁石同期電動モータは、ベクトル制御駆動することにより、従来のインダクションモータに比べてサイズや質量が小さくなり、効率が極めて高いので、キャパシタ2で蓄えた電気エネルギを効率良く使用することができるという特徴を有している。   The load circuit 1 is, for example, an electric motor that drives the hydraulic pump. A permanent magnet synchronous electric motor is adopted as the electric motor. Since this permanent magnet synchronous electric motor is vector-controlled, the size and mass are reduced and the efficiency is extremely high compared to a conventional induction motor, so that the electric energy stored in the capacitor 2 can be used efficiently. It has the characteristics.

キャパシタ2は、電気二重層キャパシタ(いわゆるコンデンサ)であり、バッテリのように化学反応を使用せず、単に電荷を蓄えるという物理現象を利用するものである。電気二重層キャパシタは、寿命が非常に長く、また、大電流で充電が可能であるため、充電時間が非常に短く、比較的安価であるという特徴がある。本実施形態のキャパシタ2は複数のユニットからなり、運転室と塵芥収容箱との間に設けられた機器収納箱内と、車台の側方(図示せず。)とに配設され、電気的に直列接続されている。これにより、合計で数百Vの電圧出力が可能となっている。   The capacitor 2 is an electric double layer capacitor (so-called capacitor), and utilizes a physical phenomenon that does not use a chemical reaction and simply stores electric charges unlike a battery. Since the electric double layer capacitor has a very long life and can be charged with a large current, the charging time is very short and it is relatively inexpensive. The capacitor 2 of the present embodiment is composed of a plurality of units, and is disposed in an equipment storage box provided between the cab and the dust storage box and on the side (not shown) of the chassis, and is electrically connected. Are connected in series. Thereby, voltage output of several hundred volts is possible in total.

充電回路3は、詳細は図示しないが、車両走行駆動源としての車両走行エンジンを利用して発電する発電機と、AVR(自動電圧制御装置)とを備えている。発電機は、車両が通常搭載する小型の発電装置(ダイナモ)とは別に設置され、車両走行エンジンの駆動中はそのファンベルト(図示せず。)により常時駆動される。なお、発電機は、必要なときにのみ駆動するようにしてもよい。AVRは、発電機の交流電力を直流に変換するとともに、車両走行エンジンの回転数変化に関わらず発電機の出力電圧を目標値一定となるように調整する。つまり、AVRの電圧上限制御機能により、所定の電圧を超える電圧がキャパシタ2に供給されることがないようになっている。   Although not shown in detail, the charging circuit 3 includes a generator that generates electricity using a vehicle travel engine as a vehicle travel drive source, and an AVR (automatic voltage control device). The generator is installed separately from a small power generator (dynamo) normally mounted on a vehicle, and is always driven by a fan belt (not shown) while the vehicle traveling engine is driven. The generator may be driven only when necessary. AVR converts the AC power of the generator into DC, and adjusts the output voltage of the generator to be a constant target value regardless of changes in the rotational speed of the vehicle travel engine. That is, the voltage exceeding the predetermined voltage is not supplied to the capacitor 2 by the voltage upper limit control function of the AVR.

漏電検知回路4は、抵抗R1〜R4,RpやリレーRy等により構成され、キャパシタ2の漏電検知を行う漏電検知部5と、回路切替スイッチSWと、キャパシタ2から負荷回路1に流れる電流を検出する電流センサIと、制御部としてのマイクロコントローラ(以下、「マイコン」と称す。)6とを有する。マイコン6には、漏電検知部5がアナログ入力1として入力され、電流センサIがアナログ入力2として入力されている。また、マイコン6には、作業車両のエンジンキーオン信号がデジタル入力1として入力されている。また、マイコン6は、これらのアナログ入力1,2およびデジタル入力1からの入力に基づき、デジタル出力1として回路切替スイッチSWの制御信号と、デジタル出力2としてリレーRyの制御信号を出力する。   The leakage detection circuit 4 includes resistors R1 to R4, Rp, a relay Ry, and the like, and detects a leakage current detection unit 5 that detects leakage of the capacitor 2, a circuit changeover switch SW, and a current that flows from the capacitor 2 to the load circuit 1. And a microcontroller (hereinafter referred to as “microcomputer”) 6 as a control unit. In the microcomputer 6, the leakage detector 5 is input as the analog input 1, and the current sensor I is input as the analog input 2. Further, the engine key-on signal of the work vehicle is inputted as the digital input 1 to the microcomputer 6. The microcomputer 6 outputs a control signal for the circuit changeover switch SW as the digital output 1 and a control signal for the relay Ry as the digital output 2 based on the inputs from the analog inputs 1 and 2 and the digital input 1.

回路切替スイッチSWは、負荷回路1とキャパシタ2と漏電検知部5とマイコン6のアナログ入力1との間に設けられている。回路切替スイッチSWが接点aに切り替えられると、キャパシタ2の正極および負極が負荷回路1に接続されるとともに、キャパシタ2の正極および負極がマイコン6のアナログ入力1に接続される。一方、回路切替スイッチSWが接点bに切り替えられると、負荷回路1の正極および負極がキャパシタ2から切り離されるとともに、キャパシタ2の正極および負極が漏電検知部5に接続され、漏電検知部5がマイコン6のアナログ入力1に接続される。   The circuit selector switch SW is provided between the load circuit 1, the capacitor 2, the leakage detection unit 5, and the analog input 1 of the microcomputer 6. When the circuit selector switch SW is switched to the contact a, the positive and negative electrodes of the capacitor 2 are connected to the load circuit 1, and the positive and negative electrodes of the capacitor 2 are connected to the analog input 1 of the microcomputer 6. On the other hand, when the circuit changeover switch SW is switched to the contact point b, the positive and negative electrodes of the load circuit 1 are disconnected from the capacitor 2, and the positive and negative electrodes of the capacitor 2 are connected to the leakage detecting unit 5, and the leakage detecting unit 5 is connected to the microcomputer. 6 analog inputs 1 are connected.

キャパシタ2は作業車両のシャーシから電気的に浮いており、シャーシと繋がっている抵抗分が漏電抵抗Rop,Ronとなる。キャパシタ2の電圧は、抵抗R1,R2,R3で分圧されて、抵抗R2の両端の電圧がさらに抵抗R4とマイコン6のアナログ入力1の入力抵抗Rinで分圧されて、アナログ入力1に入力される。抵抗R2の片側は、シャーシに接続されている。リレーRyをオンすると、抵抗Rpがキャパシタ2の正極とシャーシと間に接続される。   Capacitor 2 is electrically floating from the chassis of the work vehicle, and resistances connected to the chassis are leakage resistances Rop and Ron. The voltage of the capacitor 2 is divided by the resistors R1, R2, and R3, and the voltage across the resistor R2 is further divided by the resistor R4 and the input resistor Rin of the analog input 1 of the microcomputer 6 and input to the analog input 1. Is done. One side of the resistor R2 is connected to the chassis. When the relay Ry is turned on, the resistor Rp is connected between the positive electrode of the capacitor 2 and the chassis.

ここで、リレーRyがオフのときのアナログ入力1の入力電圧をV1とし、リレーRyがオンのときの入力電圧をV2とする。リレーRyをオンにすると、抵抗Rpが抵抗R1,R2と並列になるので、V1>V2となる。このとき、V1−V2=V3とする。キャパシタ2の正極が漏電したときは、キャパシタ2の正極に漏電抵抗Ropが常時繋がった状態となるので、リレーRyをオフしたときの入力電圧V1,V2の変化が小さくなり、V3が小さくなる。つまり、V3を測定することで、漏電抵抗Ropを測定できることになる。キャパシタ2の負極が漏電したときも同様に、V3を測定することで、漏電抵抗Ronを測定できる。   Here, the input voltage of the analog input 1 when the relay Ry is off is V1, and the input voltage when the relay Ry is on is V2. When the relay Ry is turned on, the resistor Rp is in parallel with the resistors R1 and R2, so that V1> V2. At this time, V1−V2 = V3. When the positive electrode of the capacitor 2 is leaked, the leakage resistance Rop is always connected to the positive electrode of the capacitor 2, so that changes in the input voltages V1 and V2 when the relay Ry is turned off are small, and V3 is small. In other words, the leakage resistance Rop can be measured by measuring V3. Similarly, when the negative electrode of the capacitor 2 is leaked, the leakage resistance Ron can be measured by measuring V3.

次に、図2および図3を参照してマイコン6の動作について説明する。図2は図1のマイコン6のメイン処理の動作フロー図、図3は図2の漏電検知処理のフロー図である。   Next, the operation of the microcomputer 6 will be described with reference to FIGS. FIG. 2 is an operation flowchart of main processing of the microcomputer 6 of FIG. 1, and FIG. 3 is a flowchart of leakage detection processing of FIG.

図2に示すように、マイコン6は、まずデジタル出力1によりスイッチSWを制御して接点a側に切り替え、キャパシタ2を漏電検知部5から切り離すとともに、キャパシタ2を負荷回路1に接続する(ステップS101)。次に、マイコン6は、デジタル入力1にエンジンキーオン信号が入力されることによりエンジンの起動を検出した後(ステップS102)、アナログ入力1によりキャパシタ2が満充電であることを検出し(ステップS103)、かつアナログ入力2により負荷回路1の電流がゼロであることを検出すると(ステップS104)、デジタル出力1によりスイッチSWを制御して接点b側に切り替え、キャパシタ2を負荷回路1から切り離すとともにキャパシタ2に漏電検知部5を接続し(ステップS105)、漏電検知処理を起動する(ステップS106)。   As shown in FIG. 2, the microcomputer 6 first controls the switch SW by the digital output 1 to switch to the contact a side, disconnects the capacitor 2 from the leakage detector 5 and connects the capacitor 2 to the load circuit 1 (step). S101). Next, the microcomputer 6 detects engine start-up by inputting an engine key-on signal to the digital input 1 (step S102), and then detects that the capacitor 2 is fully charged by the analog input 1 (step S103). When the analog input 2 detects that the current of the load circuit 1 is zero (step S104), the switch SW is controlled by the digital output 1 to switch to the contact b side, and the capacitor 2 is disconnected from the load circuit 1. The leakage detection unit 5 is connected to the capacitor 2 (step S105), and the leakage detection process is started (step S106).

漏電検知処理が起動されると、図3に示すように、マイコン6は、まずリレーRyをオフとし(ステップS110)、アナログ入力1の入力電圧V1を測定する(ステップS111)。次に、マイコン6は、リレーRyをオンとし(ステップS112)、アナログ入力1の入力電圧V2を測定する(ステップS113)。次に、マイコン6は、リレーRyをオフとし(ステップS114)、V1/V2が判定基準値以下であれば、漏電状態と判定して(ステップS115)、漏電時処理を起動する(ステップS116)。一方、基準値以上であれば、正常としてメインに戻り、漏電検知処理起動待ちとなる(ステップS117)。   When the leakage detection process is started, as shown in FIG. 3, the microcomputer 6 first turns off the relay Ry (step S110) and measures the input voltage V1 of the analog input 1 (step S111). Next, the microcomputer 6 turns on the relay Ry (step S112), and measures the input voltage V2 of the analog input 1 (step S113). Next, the microcomputer 6 turns off the relay Ry (step S114). If V1 / V2 is equal to or less than the determination reference value, the microcomputer 6 determines that the current is leaking (step S115), and starts the leakage process (step S116). . On the other hand, if it is equal to or greater than the reference value, it returns to the main as normal and waits for the start of leakage detection processing (step S117).

正常処理後、図2に戻ってマイコン6は、デジタル出力1によりスイッチSWを制御して接点a側に切り替え、キャパシタ2を漏電検知部5から切り離すとともに、キャパシタ2を負荷回路1に再接続し(ステップS107)、次回のエンジン起動を待つ(ステップS102)。つまり、マイコン6は、1回のエンジン起動について1回の漏電検知を行う。   After normal processing, returning to FIG. 2, the microcomputer 6 controls the switch SW with the digital output 1 to switch to the contact a side, disconnects the capacitor 2 from the leakage detector 5, and reconnects the capacitor 2 to the load circuit 1. (Step S107), the next engine start is awaited (Step S102). That is, the microcomputer 6 performs one leakage detection for one engine start.

以上のように、本実施形態における塵芥車では、キャパシタ2が満充電になったことが検出され、かつ負荷回路1の電流がゼロであることが検出されたときに、キャパシタ2が負荷回路1から切り離されてキャパシタ2の漏電検知が行われ、キャパシタ2の漏電検知が行われた後、キャパシタ2が負荷回路1に再接続される。したがって、充放電量によって電圧が変化するため、充放電中は正確な電圧測定ができないキャパシタ2の漏電を、簡単な回路構成で高精度に判定することが可能である。   As described above, in the garbage truck in the present embodiment, when it is detected that the capacitor 2 is fully charged and the current of the load circuit 1 is detected to be zero, the capacitor 2 is connected to the load circuit 1. Is disconnected from the capacitor 2 and the leakage of the capacitor 2 is detected. After the leakage of the capacitor 2 is detected, the capacitor 2 is reconnected to the load circuit 1. Therefore, since the voltage changes depending on the charge / discharge amount, it is possible to determine the leakage of the capacitor 2 that cannot be accurately measured during charge / discharge with high accuracy with a simple circuit configuration.

また、本実施形態における塵芥車では、作業車両のエンジンキーオン信号を検出するごとにキャパシタ2の漏電検知を行うので、作業車両の1回のエンジン起動について1回の漏電検知が行われ、充分な頻度でキャパシタ2の漏電が検知される。   Moreover, in the garbage truck in this embodiment, since the leak detection of the capacitor 2 is detected every time when the engine key-on signal of the work vehicle is detected, one leak detection is performed for one engine start of the work vehicle. The leakage of the capacitor 2 is detected with frequency.

また、本実施形態における塵芥車では、キャパシタ2と作業車両のシャーシとの間の抵抗値をリレーRyのオンオフにより1回切り替えたときのキャパシタ2の電圧の変化から漏電検知を行うため、キャパシタ2と作業車両のシャーシとの間に漏電が発生した場合には、キャパシタ2と作業車両のシャーシ間との間の抵抗値の切り替え前後でキャパシタ2の電圧の変化が小さくなるので、漏電検知を容易に行うことが可能となっている。   Moreover, in the garbage truck in this embodiment, since the resistance value between the capacitor 2 and the chassis of the work vehicle is detected once by changing the voltage of the capacitor 2 when the resistance value between the capacitor 2 and the chassis of the work vehicle is switched once by turning on / off the relay Ry, When a leakage occurs between the motor 2 and the chassis of the work vehicle, the change in the voltage of the capacitor 2 becomes small before and after the resistance value is switched between the capacitor 2 and the chassis of the work vehicle. It is possible to do it.

本発明は、蓄電装置に蓄積された電力により駆動される負荷回路を有する作業車両およびその漏電検知方法として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a work vehicle having a load circuit that is driven by electric power stored in a power storage device and a method for detecting leakage of the work vehicle.

1 負荷回路
2 キャパシタ
3 充電回路
4 漏電検知回路
5 漏電検知部
6 マイクロコントローラ(マイコン)
DESCRIPTION OF SYMBOLS 1 Load circuit 2 Capacitor 3 Charging circuit 4 Earth leakage detection circuit 5 Earth leakage detection part 6 Microcontroller (microcomputer)

Claims (6)

電力により駆動される負荷回路と、
前記負荷回路に供給する電力を蓄積する蓄電装置と、
前記蓄電装置に充電する充電回路と
を有する作業車両であって、
前記蓄電装置の漏電検知を行う漏電検知部と、
前記蓄電装置を前記負荷回路から切り離すとともに前記蓄電装置に前記漏電検知部を接続し、また、前記漏電検知部を前記蓄電装置から切り離すとともに前記蓄電装置を前記負荷回路に接続する回路切替スイッチと、
前記蓄電装置が満充電になったことを検出し、かつ前記負荷回路の電流がゼロであることを検出したときに、前記回路切替スイッチを動作させて前記蓄電装置を前記負荷回路から切り離すとともに前記蓄電装置に前記漏電検知部を接続し、前記漏電検知部により前記蓄電装置の漏電検知を行った後、前記回路切替スイッチを動作させて前記漏電検知部を前記蓄電装置から切り離すとともに前記蓄電装置を前記負荷回路に接続する制御部と
を有する作業車両。
A load circuit driven by electric power;
A power storage device for storing electric power to be supplied to the load circuit;
A work vehicle having a charging circuit for charging the power storage device,
A leakage detection unit for detecting leakage of the power storage device;
Disconnecting the power storage device from the load circuit and connecting the leakage detector to the power storage device; and disconnecting the leakage detector from the power storage device and connecting the power storage device to the load circuit;
When detecting that the power storage device is fully charged and detecting that the current of the load circuit is zero, the circuit changeover switch is operated to disconnect the power storage device from the load circuit and The leakage detection unit is connected to a power storage device, and after the leakage detection unit detects the leakage of the power storage device, the circuit changeover switch is operated to disconnect the leakage detection unit from the power storage device and to connect the power storage device. A work vehicle having a control unit connected to the load circuit.
前記制御部は、当該作業車両のエンジンキーオン信号を検出するごとに前記回路切替スイッチを動作させて前記漏電検知部により前記蓄電装置の漏電検知を行わせるものである請求項1記載の作業車両。   2. The work vehicle according to claim 1, wherein the control unit operates the circuit changeover switch each time an engine key-on signal of the work vehicle is detected, and causes the leakage detection unit to detect leakage of the power storage device. 前記漏電検知部は、前記蓄電回路と当該作業車両のシャーシとの間の抵抗値を1回切り替えたときの前記蓄電装置の電圧の変化から漏電検知を行うものである請求項1または2に記載の作業車両。   The leakage detection unit detects leakage from a change in voltage of the power storage device when a resistance value between the power storage circuit and the chassis of the work vehicle is switched once. Work vehicle. 電力により駆動される負荷回路と、
前記負荷回路に供給する電力を蓄積する蓄電装置と、
前記蓄電装置に充電する充電回路と
を有する作業車両の漏電検知方法であって、
前記蓄電装置が満充電になったことを検出し、かつ前記負荷回路の電流がゼロであることを検出したときに、前記蓄電装置を前記負荷回路から切り離して前記蓄電装置の漏電検知を行うこと、
前記蓄電装置の漏電検知を行った後、前記蓄電装置を前記負荷回路に接続すること
を含む作業車両の漏電検知方法。
A load circuit driven by electric power;
A power storage device for storing electric power to be supplied to the load circuit;
A leakage detection method for a work vehicle having a charging circuit for charging the power storage device,
When detecting that the power storage device is fully charged and detecting that the current of the load circuit is zero, disconnecting the power storage device from the load circuit and detecting leakage of the power storage device ,
An electrical leakage detection method for a work vehicle, comprising: connecting the electrical storage device to the load circuit after performing electrical leakage detection of the electrical storage device.
前記蓄電装置の漏電検知は、当該作業車両のエンジンキーオン信号を検出するごとに行うことを特徴とする請求項4記載の作業車両の漏電検知方法。   5. The work vehicle leakage detection method according to claim 4, wherein the leakage detection of the power storage device is performed each time an engine key-on signal of the work vehicle is detected. 前記蓄電装置の漏電検知は、前記蓄電回路と当該車両のシャーシとの間の抵抗値を1回切り替えたときの前記蓄電装置の電圧の変化から行うことを特徴とする請求項4または5に記載の作業車両の漏電検知方法。   6. The leakage detection of the power storage device is performed from a change in voltage of the power storage device when a resistance value between the power storage circuit and the vehicle chassis is switched once. Method for detecting electric leakage in work vehicles.
JP2012133174A 2012-06-12 2012-06-12 Work vehicle and its electric leakage detection method Pending JP2013257211A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012133174A JP2013257211A (en) 2012-06-12 2012-06-12 Work vehicle and its electric leakage detection method
CN201310229613.8A CN103487711A (en) 2012-06-12 2013-06-09 Operation vehicle and electricity leakage detecting method thereof
TW102120697A TW201419708A (en) 2012-06-12 2013-06-11 Operation vehicle and electricity leakage detecting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133174A JP2013257211A (en) 2012-06-12 2012-06-12 Work vehicle and its electric leakage detection method

Publications (1)

Publication Number Publication Date
JP2013257211A true JP2013257211A (en) 2013-12-26

Family

ID=49828086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133174A Pending JP2013257211A (en) 2012-06-12 2012-06-12 Work vehicle and its electric leakage detection method

Country Status (3)

Country Link
JP (1) JP2013257211A (en)
CN (1) CN103487711A (en)
TW (1) TW201419708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097472A (en) * 2019-12-16 2021-06-24 株式会社今仙電機製作所 Vehicle power supply
WO2021149371A1 (en) * 2020-01-20 2021-07-29 株式会社今仙電機製作所 Vehicle power supply

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625586B2 (en) * 2017-02-07 2019-12-25 矢崎総業株式会社 Ground fault detection device
CN107271828B (en) * 2017-04-28 2019-07-12 国网山东省电力公司寿光市供电公司 Aerial lift device with insulating arm for live working leakage current warning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124370U (en) * 1974-03-25 1975-10-11
JPH07203601A (en) * 1993-12-29 1995-08-04 Matsushita Electric Works Ltd Method and device for discriminating leakage
JP2008058085A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Short circuit detection method of battery pack for electric vehicle
JP2010019603A (en) * 2008-07-08 2010-01-28 Hitachi Ltd Power supply
WO2011037257A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Battery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074986A (en) * 1998-08-31 2000-03-14 Ando Electric Co Ltd Device testing device
JP3594562B2 (en) * 2001-03-30 2004-12-02 三洋電機株式会社 Power supply leakage detection circuit
US6977518B2 (en) * 2002-11-11 2005-12-20 Matsushita Electric Works, Ltd. Electrical leak detecting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124370U (en) * 1974-03-25 1975-10-11
JPH07203601A (en) * 1993-12-29 1995-08-04 Matsushita Electric Works Ltd Method and device for discriminating leakage
JP2008058085A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Short circuit detection method of battery pack for electric vehicle
JP2010019603A (en) * 2008-07-08 2010-01-28 Hitachi Ltd Power supply
WO2011037257A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Battery system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097472A (en) * 2019-12-16 2021-06-24 株式会社今仙電機製作所 Vehicle power supply
WO2021124952A1 (en) * 2019-12-16 2021-06-24 株式会社今仙電機製作所 Power source device for vehicles
JP7415145B2 (en) 2019-12-16 2024-01-17 株式会社今仙電機製作所 Vehicle power supply device
US11904706B2 (en) 2019-12-16 2024-02-20 Imasen Electric Industrial Co., Ltd. Power supply device for vehicle
WO2021149371A1 (en) * 2020-01-20 2021-07-29 株式会社今仙電機製作所 Vehicle power supply
US11951843B2 (en) 2020-01-20 2024-04-09 Imasen Electric Industrial Co., Ltd. Power supply device for vehicle

Also Published As

Publication number Publication date
TW201419708A (en) 2014-05-16
CN103487711A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5117537B2 (en) Battery management system and driving method thereof
EP2336794B1 (en) Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus
JP4116609B2 (en) Power supply control device, electric vehicle and battery control unit
CN107852002B (en) Method and system for balancing battery pack
KR101984326B1 (en) Apparatus and method for measuring insulation resistance of battery
JP2013099002A (en) Vehicle power supply device, and vehicle having the same
US20150081147A1 (en) Hybrid working machine and method of controlling hybrid working machine
JP4744859B2 (en) Battery pack
KR101407735B1 (en) Electric vehicle and method for detecting status of PRA pre-charge resistor in the same
JP2009286292A (en) Vehicular power supply device
CN109313232B (en) Apparatus and method for diagnosing switches using voltage distribution
JP6523333B2 (en) Switch degradation detection device and method
JP6013857B2 (en) Secondary battery charge / discharge controller for construction machinery
JP6729714B2 (en) Short circuit detector
JP5347186B2 (en) Temperature detecting method and apparatus for power storage device, and temperature detecting device for power storage device in hybrid construction machine
CN110466364B (en) Battery pack for vehicle
JP2013257211A (en) Work vehicle and its electric leakage detection method
CN113994562A (en) Method for giving a second life to a used electric vehicle battery pack by reusing it as a power source for a battery charger
KR20160122005A (en) Apparatus for energy management of vehicles
JP5058959B2 (en) Secondary battery deterioration state diagnosis device
CN102832596B (en) Low voltage electrombile drive protecting circuit and low voltage electrombile drive protecting method
KR20130096481A (en) Relay sequential control apparatus and method thereof
JP6918428B2 (en) Ground fault detector
WO2004034074A1 (en) Battery managing metod and device
KR101498763B1 (en) Apparatus for detecting insulation resestance and diagnostic apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160830