JP2018127709A - Method for preventing the leakage of water and/or mineral material - Google Patents

Method for preventing the leakage of water and/or mineral material Download PDF

Info

Publication number
JP2018127709A
JP2018127709A JP2017023125A JP2017023125A JP2018127709A JP 2018127709 A JP2018127709 A JP 2018127709A JP 2017023125 A JP2017023125 A JP 2017023125A JP 2017023125 A JP2017023125 A JP 2017023125A JP 2018127709 A JP2018127709 A JP 2018127709A
Authority
JP
Japan
Prior art keywords
water
raw material
mineral raw
leakage
storage facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023125A
Other languages
Japanese (ja)
Other versions
JP6780526B2 (en
Inventor
駿 中村
Shun Nakamura
駿 中村
宗亮 井上
Sosuke Inoue
宗亮 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63173654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018127709(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017023125A priority Critical patent/JP6780526B2/en
Publication of JP2018127709A publication Critical patent/JP2018127709A/en
Application granted granted Critical
Publication of JP6780526B2 publication Critical patent/JP6780526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing the leakage of water and/or mineral material from a storage facility.SOLUTION: The present invention provides a method for preventing the leakage of water and/or mineral material, wherein, a mixture material containing a wet mineral material and a superabsorbent resin and/or water-soluble polymer compound is stored in a storage facility, and the leakage of water and/or mineral material from the storage facility is prevented.SELECTED DRAWING: None

Description

本発明は、水及び/又は鉱物原料の漏出防止方法に関し、特に、屋外の原料ヤードから搬出された鉱物原料を一時的に貯留する貯留設備において、鉱物原料に含まれた水及び/又は鉱物原料が、貯留設備の外部に漏出することを防止するための漏出防止方法に関する。   The present invention relates to a method for preventing leakage of water and / or mineral raw materials, and in particular, in a storage facility for temporarily storing mineral raw materials transported from an outdoor raw material yard, water and / or mineral raw materials contained in the mineral raw materials. However, it is related with the leak prevention method for preventing leaking outside the storage equipment.

火力発電所や製鉄所等では、通常、30〜60日分の鉱物原料を在庫として原料ヤードに野積みしている。原料ヤードの鉱物原料には、防塵対策として散水される水や雨水が含浸するため、原料ヤードから搬出された鉱物原料は含水率が高い傾向がある。   In thermal power plants, steelworks, etc., mineral raw materials for 30 to 60 days are usually stocked in a raw material yard as stock. Since the mineral raw material in the raw material yard is impregnated with water or rainwater sprayed as a measure against dust, the mineral raw material carried out from the raw material yard tends to have a high water content.

原料ヤードから搬出された鉱物原料は、貯留設備で一旦保管された後にボイラーやコークス炉など様々な設備に供給される。鉱物原料は、原料ヤードから各設備まで、ベルトコンベヤを乗り継いで移送される。
原料ヤードで鉱物原料の含水率が大きく上昇して泥状の流動物(以下、スラリーという)となった場合には、ベルトコンベヤでの搬送が困難となる。この問題に対し、本発明者は、スラリーに高分子吸収剤を接触させて固化体として取り扱いを改善した搬送方法を提案している(特許文献1参照)。
The mineral raw material carried out from the raw material yard is temporarily stored in a storage facility and then supplied to various facilities such as a boiler and a coke oven. The mineral raw material is transferred from the raw material yard to each facility by transferring the belt conveyor.
In the raw material yard, when the water content of the mineral raw material is greatly increased to become a mud-like fluid (hereinafter referred to as slurry), it becomes difficult to convey it on the belt conveyor. In response to this problem, the present inventor has proposed a conveying method in which the polymer absorbent is brought into contact with the slurry to improve handling as a solidified body (see Patent Document 1).

一方、スラリーとならないまでも、鉱物原料の含水率が上昇して湿潤状態となった場合には、貯留設備での貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動して、下部の鉱物原料の含水率が更に上昇する現象が観察される。このように貯留中に、貯留設備の下部で鉱物原料の含水率が更に上昇すると、摩擦力の低下によって、貯留中の鉱物原料が貯留設備から漏出しやすくなり好ましくない。   On the other hand, when the moisture content of the mineral raw material rises and becomes wet until it becomes slurry, the moisture contained in the mineral raw material moves to the lower part of the storage facility during storage in the storage facility, A phenomenon in which the water content of the lower mineral raw material is further increased is observed. Thus, if the moisture content of the mineral raw material further increases in the lower part of the storage facility during the storage, it is not preferable because the mineral raw material being stored easily leaks from the storage facility due to a decrease in frictional force.

また、鉱物原料に含まれる水分が貯留設備の下部に溜まると、その水が貯留設備の下方に配置されたベルトコンベヤ上に落下して、ベルトコンベヤの中央部に水溜まりを形成することもある。鉱物原料の移送時に、貯留設備内の鉱物原料がこの水溜り上に排出されると、鉱物原料が水で滑って搬送ができず、そこに滞留した鉱物原料がベルトコンベアの側部から下方に落下してベルトコンベアのリターン面を損傷する恐れがあった。   In addition, when water contained in the mineral raw material is accumulated in the lower part of the storage facility, the water may fall on the belt conveyor disposed below the storage facility to form a water reservoir in the central portion of the belt conveyor. If the mineral raw material in the storage facility is discharged onto the water pool during the transfer of the mineral raw material, the mineral raw material cannot be slid and transported with water, and the mineral raw material staying there is moved downward from the side of the belt conveyor. There was a risk of falling and damaging the return surface of the belt conveyor.

特開2013−256710号公報JP2013-256710A

本発明は上記の問題を解決し、貯留設備で貯留中の鉱物原料が貯留設備から漏出することを防止する方法、及び/又は、貯留設備で鉱物原料を貯留中に貯留設備から水が漏出することを防止する方法、を提供することを目的とする。   The present invention solves the above-described problem and prevents the mineral raw material being stored in the storage facility from leaking out of the storage facility, and / or water leaks from the storage facility while storing the mineral raw material in the storage facility. It is an object of the present invention to provide a method for preventing this.

本発明者らは、湿潤な鉱物原料を貯留設備で貯留する際に、高吸水性樹脂及び/又は水溶性高分子化合物を接触させると、貯留設備からの鉱物原料の漏出及び水の漏出が抑制できることを見出した。本発明は、当該知見に基づくものである。   When the wet mineral raw material is stored in the storage facility, the present inventors suppress leakage of the mineral raw material and water from the storage facility by bringing the superabsorbent resin and / or the water-soluble polymer compound into contact with each other. I found out that I can do it. The present invention is based on this finding.

すなわち、本発明は、次の[1]〜[7]を提供するものである。
[1]湿潤な鉱物原料と、高吸水性樹脂及び/又は水溶性高分子化合物を含む原料混合物を貯留設備に収容し、前記貯留設備からの水の漏出及び/又は鉱物原料の漏出を防止する、水の漏出及び/又は鉱物原料の漏出防止方法。
[2]前記貯留設備が、配合槽、ホッパー、サイロ、及びバンカーの少なくとも何れかである、上記[1]に記載の水及び/又は鉱物原料の漏出防止方法。
[3]前記高吸水性樹脂及び/又は水溶性高分子化合物を、前記貯留設備に収容前の鉱物原料に添加して混合する工程を有する、上記[1]又は[2]に記載の水及び/又は鉱物原料の漏出防止方法。
[4]前記高吸水性樹脂及び/又は水溶性高分子化合物と、前記鉱物原料を、前記貯留設備内に、交互に且つ層状に、投入する工程を有する、上記[1]又は[2]に記載の水及び/又は鉱物原料の漏出防止方法。
[5]前記貯留設備に、前記高吸水性樹脂及び/又は水溶性高分子化合物を投入する工程と、続いて、前記鉱物原料を添加する工程を有する、上記[1]又は[2]に記載の水及び/又は鉱物原料の漏出防止方法。
[6]前記高吸水性樹脂がポリアクリル酸ナトリウム塩である、上記[1]〜[5]の何れかに記載の水及び/又は鉱物原料の漏出防止方法。
[7]前記水溶性高分子化合物がアクリルアミド・アクリル酸アンモニウム共重合物である、上記[1]〜[5]の何れかに記載の水及び/又は鉱物原料の漏出防止方法。
That is, the present invention provides the following [1] to [7].
[1] A raw material mixture containing a wet mineral raw material and a superabsorbent resin and / or a water-soluble polymer compound is stored in a storage facility to prevent leakage of water from the storage facility and / or leakage of a mineral raw material. Water leakage and / or mineral raw material leakage prevention method.
[2] The water and / or mineral raw material leakage prevention method according to [1], wherein the storage facility is at least one of a compounding tank, a hopper, a silo, and a bunker.
[3] The water according to the above [1] or [2], including a step of adding and mixing the superabsorbent resin and / or the water-soluble polymer compound with the mineral raw material before being stored in the storage facility. / Or prevention method of leakage of mineral raw materials.
[4] In the above [1] or [2], the method includes a step of charging the superabsorbent resin and / or water-soluble polymer compound and the mineral raw material into the storage facility alternately and in layers. The water and / or mineral raw material leakage prevention method described.
[5] The above [1] or [2], which includes a step of adding the superabsorbent resin and / or water-soluble polymer compound to the storage facility, and a step of adding the mineral raw material. To prevent leakage of water and / or mineral raw materials.
[6] The method for preventing leakage of water and / or mineral raw material according to any one of [1] to [5] above, wherein the superabsorbent resin is sodium polyacrylate.
[7] The method for preventing leakage of water and / or mineral raw materials according to any one of [1] to [5] above, wherein the water-soluble polymer compound is an acrylamide / ammonium acrylate copolymer.

本発明によれば、貯留設備での貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動する現象が抑制され、貯留設備からの水の漏出及び/又は鉱物原料の漏出を簡便に防止することができる。   According to the present invention, the phenomenon that moisture contained in the mineral raw material moves to the lower part of the storage facility during storage in the storage facility is suppressed, and leakage of water from the storage facility and / or leakage of the mineral raw material can be easily performed. Can be prevented.

以下、本発明の漏出防止方法について説明する。
なお、本発明における「漏出防止」とは、まったく漏出しない場合のみならず、一部漏出する場合も含む意味で用いるものとする。
Hereinafter, the leakage prevention method of the present invention will be described.
In the present invention, “leakage prevention” is used to mean not only a case where no leakage occurs, but also a case where some leakage occurs.

本発明の水の漏出及び/又は鉱物原料の漏出防止方法は、湿潤な鉱物原料と、高吸水性樹脂及び/又は水溶性高分子化合物を含む原料混合物を貯留設備に収容することで、貯留設備での貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動する現象を抑制し、貯留設備からの水の漏出及び/又は鉱物原料の漏出を防止するものである。   The method for preventing leakage of water and / or leakage of mineral raw material according to the present invention includes storing a raw material mixture containing a wet mineral raw material and a superabsorbent resin and / or a water-soluble polymer compound in the storage facility. This suppresses the phenomenon that moisture contained in the mineral raw material moves to the lower part of the storage facility during storage in the water, and prevents leakage of water and / or leakage of the mineral raw material from the storage facility.

湿潤な鉱物原料が、高吸水性樹脂及び/又は水溶性高分子化合物と接触すると、高吸水性樹脂及び/又は水溶性高分子化合物が鉱物原料中の水分を吸水する。これにより、従来、湿潤な鉱物原料を貯留設備に貯留した際に生じた水の漏出及び/又は鉱物原料の漏出を防止することができる。   When the wet mineral raw material comes into contact with the highly water-absorbing resin and / or the water-soluble polymer compound, the highly water-absorbing resin and / or the water-soluble polymer compound absorbs moisture in the mineral material. Thereby, it is possible to prevent leakage of water and / or leakage of mineral raw material that has occurred in the past when the wet mineral raw material is stored in the storage facility.

(鉱物原料)
鉱物原料の種類は、特に限定されるものではなく、例えば、鉄鉱石、焼結鉱、石炭、ダスト、コークス又は石灰石等が挙げられる。これらは、1種単独であっても、2種以上の混合物であってもよい。
また、鉱物原料の形状、大きさ等も、特に限定されるものではないが、本発明の目的の一つは、貯留設備における鉱物原料の漏出を防止するものであることから、漏出しやすい形態の鉱物原料、例えば、粒子1個の粒子径が2mm以下の粒状、粉末状等の鉱物原料に好適に適用される。
(Mineral raw materials)
The kind of mineral raw material is not particularly limited, and examples thereof include iron ore, sintered ore, coal, dust, coke, and limestone. These may be one kind alone or a mixture of two or more kinds.
Further, the shape, size, etc. of the mineral raw material are not particularly limited, but one of the objects of the present invention is to prevent the leakage of the mineral raw material in the storage facility. For example, it is suitably applied to mineral raw materials such as granular or powdery particles having a particle diameter of 2 mm or less.

本発明で言う「湿潤な鉱物原料」とは、スラリー状態ではないが、水を含んだ鉱物原料であり、ベルトコンベヤで固形物として搬送可能なものを指す。すなわち、ベルトコンベヤでは搬送困難な、水分が多い泥状又は液状の流動物であるスラリーとは区別される。湿潤状態の鉱物原料中の含水分は、該鉱物原料の種類や性状によって異なり、一概には定めることはできないが、例えば、石炭の場合には、含水率が約1〜30質量%のとき湿潤状態であると言え、約30質量%を超えるときスラリー状態と言える。
鉱物原料中の含水分は、その由来は特に限定されるものではなく、原料自体に由来するものでもよく、あるいはまた、搬送や保管中に接触した雨や粉塵防止のための散水等の水でもよい。
The “wet mineral raw material” referred to in the present invention is a mineral raw material which is not in a slurry state but contains water and can be conveyed as a solid matter by a belt conveyor. That is, it is distinguished from a slurry which is a muddy or liquid fluid with much moisture, which is difficult to convey with a belt conveyor. The moisture content of the mineral raw material in a wet state varies depending on the type and properties of the mineral raw material and cannot be determined generally. For example, in the case of coal, the moisture content is about 1 to 30% by mass. It can be said that it is a state, and when it exceeds about 30 mass%, it can be said that it is a slurry state.
The moisture content in the mineral raw material is not particularly limited, it may be derived from the raw material itself, or it may be water such as rain water or water spray to prevent dust contacted during transportation or storage. Good.

(高吸水性樹脂)
高吸水性樹脂は、JIS K7223(1996)及びJIS K7224(1996)で定義される、「水を高度に吸収して、膨潤する樹脂で、架橋構造の親水性物質で水と接触することにより吸水し、一度吸水すると圧力をかけても離水しにくい特徴を持っている」ものである。すなわち、吸水量が多く、保水性に優れた樹脂である。
高吸水性樹脂の種類は、合成樹脂系及び天然物由来系のいずれでもよく、特に限定されるものではないが、例えば、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸塩、ポリ(メタ)アクリル酸エステル、ポリ(メタ)アクリルアミド、ポリアルキレンイミン、ポリオキシアルキレン、ポリマレイン酸、及びこれらを構成する単量体のいずれかを含む共重合体等が挙げられる。なお、本発明において、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
(High water absorption resin)
The highly water-absorbent resin is defined by JIS K7223 (1996) and JIS K7224 (1996). “It is a resin that highly absorbs water and swells, and absorbs water by contact with water with a hydrophilic substance having a crosslinked structure. And once it absorbs water, it has the characteristic that it is difficult to remove water even when pressure is applied. That is, the resin has a large amount of water absorption and excellent water retention.
The type of the superabsorbent resin may be either a synthetic resin type or a natural product-derived type, and is not particularly limited. For example, poly (meth) acrylic acid, poly (meth) acrylate, poly (meta) ) Acrylic acid ester, poly (meth) acrylamide, polyalkyleneimine, polyoxyalkylene, polymaleic acid, and copolymers containing any of the monomers constituting these. In the present invention, “(meth) acryl” means acryl or methacryl.

ポリ(メタ)アクリル酸塩を構成する単量体としては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸アンモニウム等が挙げられる。
ポリ(メタ)アクリル酸エステルを構成する単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸−2−エチルヘキシル等が挙げられる。
ポリアルキレンイミンを構成する単量体としては、エチレンイミン、メチルエチレンイミン等が挙げられる。
ポリオキシアルキレンを構成する単量体としては、エチレンオキシド、プロピレンオキシド等が挙げられる。
前記共重合体を構成する他の単量体としては、ビニルスルホン酸、スチレンスルホン酸、(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、ビニルピリジン等が挙げられる。
Examples of the monomer constituting the poly (meth) acrylate include sodium (meth) acrylate, potassium (meth) acrylate, ammonium (meth) acrylate, and the like.
Examples of monomers constituting the poly (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) Isobutyl acrylate, hydroxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
Examples of the monomer constituting the polyalkyleneimine include ethyleneimine and methylethyleneimine.
Examples of the monomer constituting polyoxyalkylene include ethylene oxide and propylene oxide.
Examples of other monomers constituting the copolymer include vinyl sulfonic acid, styrene sulfonic acid, (meth) acrylamide, N-ethyl (meth) acrylamide, and vinyl pyridine.

高吸水性樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。入手容易性及び高い吸水能等の観点から、ポリアクリル酸又はポリアクリル酸ナトリウム塩が好適に用いられ、ポリアクリル酸ナトリウム塩が特に好ましい。
また、高吸水性樹脂は、他の吸水剤と併用してもよい。他の吸水剤としては、シリカゲル、ゼオライト、活性炭等が挙げられる。
高吸水性樹脂の性状は、鉱物原料表面に均一に接触させること、また、取り扱い容易性等の観点から、鉱物原料と同等以下の粒径の粒状又は粉末状であることが好ましい。
A super absorbent polymer may be used individually by 1 type, and may use 2 or more types together. Polyacrylic acid or polyacrylic acid sodium salt is preferably used, and polyacrylic acid sodium salt is particularly preferred from the viewpoints of availability and high water absorption.
Further, the highly water-absorbing resin may be used in combination with other water-absorbing agents. Examples of other water absorbing agents include silica gel, zeolite, activated carbon and the like.
The properties of the superabsorbent resin are preferably in the form of particles or powder having a particle size equal to or smaller than that of the mineral raw material from the viewpoint of uniformly contacting the surface of the mineral raw material and ease of handling.

鉱物原料に接触させる高吸水性樹脂の量は、鉱物原料及び高吸水性樹脂の種類、性状等に応じて適宜調整される。鉱物原料の用途における所望の物性を損なうことなく、鉱物原料の表面の含水分を十分に低下させる観点、また、コスト等の観点から、例えば、湿潤な鉱物原料100質量部に対して、0.001〜2質量部であることが好ましく、より好ましくは0.01〜2質量部、さらに好ましくは0.1〜1質量部である。
高吸水性樹脂の量を、鉱物原料100質量部に対し0.001質量部以上とすることで、鉱物原料に起因する水分を十分に吸水することができる。
高吸水性樹脂が過剰量となると、後の燃焼工程で灰分が多く発生し、環境、経済の面から好ましくないが、高吸水性樹脂の量を、鉱物原料100質量部に対し2質量部以下とすることで燃焼工程における灰分量を抑制することができる。
The amount of the superabsorbent resin to be brought into contact with the mineral raw material is appropriately adjusted according to the kind and properties of the mineral raw material and the superabsorbent resin. From the viewpoint of sufficiently reducing the moisture content on the surface of the mineral raw material without impairing the desired physical properties in the use of the mineral raw material, and from the viewpoint of cost and the like, for example, 0.1 parts by weight with respect to 100 parts by weight of the wet mineral raw material. It is preferable that it is 001-2 mass parts, More preferably, it is 0.01-2 mass parts, More preferably, it is 0.1-1 mass part.
By setting the amount of the highly water-absorbent resin to 0.001 part by mass or more with respect to 100 parts by mass of the mineral raw material, it is possible to sufficiently absorb the water caused by the mineral raw material.
If the amount of the superabsorbent resin becomes excessive, a large amount of ash is generated in the subsequent combustion process, which is not preferable from the viewpoint of environment and economy, but the amount of superabsorbent resin is 2 parts by mass or less with respect to 100 parts by mass of the mineral raw material. By doing so, the amount of ash in the combustion process can be suppressed.

(水溶性高分子化合物)
水溶性高分子化合物も、前記の高吸水性樹脂と同様に、吸水量が多く保水性に優れる特性を備える。本発明において水溶性とは、25℃の水100gに対して、0.01g以上溶解することをいう。
水溶性高分子化合物は、人工的につくられる合成高分子化合物でも、天然に存在する天然高分子化合物でも良く、例えば、合成水溶性高分子化合物、半合成水溶性高分子化合物及び天然水溶性高分子化合物等が挙げられる。
(Water-soluble polymer compound)
The water-soluble polymer compound also has a characteristic that it has a large water absorption amount and excellent water retention, like the above-described highly water-absorbent resin. In the present invention, “water-soluble” means that 0.01 g or more is dissolved in 100 g of water at 25 ° C.
The water-soluble polymer compound may be an artificially produced synthetic polymer compound or a naturally-occurring natural polymer compound, such as a synthetic water-soluble polymer compound, a semi-synthetic water-soluble polymer compound, and a natural water-soluble polymer compound. Examples thereof include molecular compounds.

合成水溶性高分子化合物としては、ポリビニルアルコール、ポリビニルピロリドン又はその塩、ポリエチレンオキサイド、ポリビニルメチルエーテル;(メタ)アクリル酸、(メタ)アクリルアミド、無水マレイン酸、マレイン酸、マレイン酸アミド、マレイン酸イミド、イタコン酸、クロトン酸、フマル酸等の共重合物又はその塩等が挙げられる。この塩としては、例えばナトリウム、カリウム等のアルカリ金属塩等が挙げられる。   Synthetic water-soluble polymer compounds include polyvinyl alcohol, polyvinyl pyrrolidone or salts thereof, polyethylene oxide, polyvinyl methyl ether; (meth) acrylic acid, (meth) acrylamide, maleic anhydride, maleic acid, maleic amide, maleic imide , Copolymers of itaconic acid, crotonic acid, fumaric acid, etc., or salts thereof. Examples of the salt include alkali metal salts such as sodium and potassium.

半合成水溶性高分子化合物としては、ビスコース、メチルセルロース、カチオン化セルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体;アルファ化デンプン、カルボキシルデンプン、ジアルデヒドロデンプン、カチオン化デンプン、デキストリン、ブリティッシュゴム等のデンプン誘導体;カチオン化グアーガム、アニオン化グアーガム、メチルグリコールキトサン等が挙げられる。   Semisynthetic water-soluble polymer compounds include cellulose derivatives such as viscose, methylcellulose, cationized cellulose, ethylcellulose, carboxymethylcellulose, hydroxypropylcellulose; pregelatinized starch, carboxyl starch, dialdehyde starch, cationized starch, dextrin, British Examples include starch derivatives such as rubber; cationized guar gum, anionized guar gum, methyl glycol chitosan and the like.

天然水溶性高分子化合物としては、デンプン、マンナン、グアーガム、キサンタンガム、アルギン酸ナトリウム、ローカストビーンガム、ペクチン、デキストラン、ゼラチン、ラムザンガム、ジェランガム等が挙げられる。   Examples of natural water-soluble polymer compounds include starch, mannan, guar gum, xanthan gum, sodium alginate, locust bean gum, pectin, dextran, gelatin, lambzan gum, gellan gum and the like.

水溶性高分子化合物は、アニオン性、カチオン性、ノニオン性、両性の何れでもよい。このうち、魚類への毒性が少ないアニオン性及びノニオン性が好ましく、更にアニオン性が好ましい。   The water-soluble polymer compound may be any of anionic, cationic, nonionic, and amphoteric. Of these, anionic and nonionic, which are less toxic to fish, are preferred, and anionic is more preferred.

水溶性高分子化合物は、合成水溶性高分子化合物であることが好ましい。合成水溶性高分子化合物としては、アニオン性モノマーとノニオン性モノマーの1種又は2種以上を構成成分とする単独重合体又は共重合体が好適である。アニオン性基(アニオン性モノマー)としては、例えば、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸等のカルボン酸(モノマー);スチレンスルホン酸、ビニルスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸等のスルホン酸(モノマー)等が例示される。また、ノニオン性基(ノニオン性モノマー)としては、例えば、アクリルアミド(モノマー)やメタクリルアミド(モノマー)等が例示される。合成水溶性高分子化合物としては、アクリル酸系及び/又はアクリルアミド系ポリマーが更に好ましい。アクリル酸系及び/又はアクリルアミド系ポリマーとしては、例えば、アクリル酸単重合物、アクリルアミド単独重合物、アクリル酸/アクリルアミド共重合物、ポリアクリルアミドの部分加水分解物、アクリル酸/アクリルアミド/2−アクリルアミド−2−メチルプロパンスルホン酸、アクリル酸/マレイン酸共重合物又はその塩、等が挙げられ、これらを単独で又は2種以上組み合わせて使用してもよい。このうち、アクリル酸/アクリルアミド共重合物、アクリルアミド単独重合物、ポリアクリルアミドの部分加水分解物は、何れも高分子量であり、本発明の用途に好適に用いられる。
前記アクリルアミド系又はアクリル酸系ポリマーの平均分子量は、好ましくは1,000,000〜10,000,000、より好ましくは5,000,000〜9,000,000(固有粘度法)とするのが好適である。
また、アニオン性高分子の場合、前記アクリル酸系及び/又はアクリルアミド系ポリマーを生成する際のアクリル酸単位の含有量は、使用する単量体の全合計量(100モル%)に対して、好ましくは5モル%以上、より好ましくは20〜100モル%とするのが好適である。
前記水溶性高分子化合物を使用するときの状態としては、特に限定されず、粉末状、液体状又はエマルジョン状で使用するのが好適である。特に処理対象の水分を増加させずに使用できる粉末状とエマルジョン状で使用するのが好適である。W/O型エマルジョン状の水溶性高分子化合物は、公知の手法(例えば、特公昭52−039417号公報、特開昭51−41090号公報)にて製造することができる。
The water-soluble polymer compound is preferably a synthetic water-soluble polymer compound. As the synthetic water-soluble polymer compound, a homopolymer or a copolymer having one or more of an anionic monomer and a nonionic monomer as a constituent component is preferable. Examples of the anionic group (anionic monomer) include carboxylic acids (monomers) such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid; styrene sulfonic acid, vinyl sulfonic acid, and 3-allyloxy-2- Examples thereof include sulfonic acids (monomers) such as hydroxypropane sulfonic acid. Examples of nonionic groups (nonionic monomers) include acrylamide (monomer) and methacrylamide (monomer). As the synthetic water-soluble polymer compound, acrylic acid-based and / or acrylamide-based polymers are more preferable. Examples of acrylic acid-based and / or acrylamide-based polymers include acrylic acid homopolymers, acrylamide homopolymers, acrylic acid / acrylamide copolymers, polyacrylamide partial hydrolysates, acrylic acid / acrylamide / 2-acrylamide- Examples thereof include 2-methylpropanesulfonic acid, acrylic acid / maleic acid copolymer or a salt thereof, and these may be used alone or in combination of two or more. Among these, acrylic acid / acrylamide copolymer, acrylamide homopolymer, and polyacrylamide partial hydrolyzate all have high molecular weight and are preferably used for the application of the present invention.
The average molecular weight of the acrylamide-based or acrylic acid-based polymer is preferably 1,000,000 to 10,000,000, more preferably 5,000,000 to 9,000,000 (inherent viscosity method). Is preferred.
In the case of an anionic polymer, the content of acrylic acid units in producing the acrylic acid-based and / or acrylamide-based polymer is based on the total amount (100 mol%) of the monomers used. Preferably it is 5 mol% or more, more preferably 20-100 mol%.
The state when the water-soluble polymer compound is used is not particularly limited, and it is preferable to use the water-soluble polymer compound in the form of powder, liquid or emulsion. In particular, it is preferable to use in the form of powder and emulsion that can be used without increasing the water to be treated. The water-soluble polymer compound in the form of a W / O emulsion can be produced by a known method (for example, Japanese Patent Publication No. 52-039417 and Japanese Patent Publication No. 51-41090).

水溶性高分子化合物は、1種単独で用いてもよく、2種以上を併用してもよい。アクリル酸/アクリルアミド共重合物、アクリルアミド単独重合物、ポリアクリルアミドの部分加水分解物は、何れも高分子量であり、本発明の用途に好適に用いられる。   A water-soluble high molecular compound may be used individually by 1 type, and may use 2 or more types together. The acrylic acid / acrylamide copolymer, acrylamide homopolymer, and polyacrylamide partial hydrolyzate all have a high molecular weight and are preferably used in the application of the present invention.

(貯留設備)
本発明で言う貯留設備とは、他の設備に原料を移すための設備や原料を貯めておく設備を意味する。例えば、配合槽、ホッパー、サイロ、バンカー等があげられる。
湿潤な鉱物原料をこれらの貯留設備で貯留した場合、貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動する。その結果、水分が貯留設備から漏出したり、下部の鉱物原料の含水率が上昇して貯留中の鉱物原料が貯留設備から漏出しやすく、不都合であった。
これに対して、本発明によれば、貯留設備での貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動する現象が抑制され、貯留設備からの水の漏出及び/又は鉱物原料の漏出を簡便に防止することができる。
(Storage facility)
The storage equipment referred to in the present invention means equipment for transferring raw materials to other equipment and equipment for storing raw materials. For example, a mixing tank, a hopper, a silo, a bunker and the like can be mentioned.
When wet mineral raw materials are stored in these storage facilities, the moisture contained in the mineral raw materials moves to the lower part of the storage facilities during storage. As a result, moisture leaked from the storage facility, or the moisture content of the lower mineral raw material increased, and the mineral raw material being stored easily leaked from the storage facility.
On the other hand, according to the present invention, the phenomenon that the moisture contained in the mineral raw material moves to the lower part of the storage facility during storage in the storage facility is suppressed, the leakage of water from the storage facility and / or the mineral raw material Can be easily prevented.

(原料混合物)
原料混合物は、湿潤な鉱物原料と、高吸水性樹脂及び/又は水溶性高分子化合物の混合物である。
高吸水性樹脂及び/又は水溶性高分子化合物が湿潤な鉱物原料と接触することにより、鉱物原料中の含水分の少なくとも一部が高吸水性樹脂に吸収され、鉱物原料の表面の含水分が低減して、貯留中に鉱物原料に含まれる水分が貯留設備の下部へと移動する現象が抑制される。なお、移送設備の接触面に対する付着性が抑制されればよく、鉱物原料中の含水分の全量が、高吸水性樹脂及び/又は水溶性高分子化合物に吸収される必要はない。
(Raw material mixture)
The raw material mixture is a mixture of a wet mineral raw material and a superabsorbent resin and / or a water-soluble polymer compound.
When the superabsorbent resin and / or the water-soluble polymer compound comes into contact with the wet mineral raw material, at least a part of the moisture content in the mineral raw material is absorbed by the superabsorbent resin, and the moisture content on the surface of the mineral raw material is reduced. It reduces and the phenomenon in which the water | moisture content contained in a mineral raw material moves to the lower part of storage equipment during storage is suppressed. Note that it is only necessary to suppress the adhesion to the contact surface of the transfer facility, and it is not necessary that the total amount of water content in the mineral raw material is absorbed by the superabsorbent resin and / or the water-soluble polymer compound.

原料混合物を得る方法は、特に限定されるものではないが、湿潤な鉱物原料と高吸水性樹脂及び/又は水溶性高分子化合物とが均一に混合されて、相互に接している状態の原料混合物が得られることが好ましい。   The method for obtaining the raw material mixture is not particularly limited, but the raw material mixture in a state where the wet mineral raw material and the superabsorbent resin and / or water-soluble polymer compound are uniformly mixed and in contact with each other. Is preferably obtained.

例えば、鉱物原料を貯留設備に投入する前に鉱物原料に高吸水性樹脂及び/又は水溶性高分子化合物を添加して攪拌混合する方法、貯留設備に鉱物原料よりも先に高吸水性樹脂及び/又は水溶性高分子化合物を添加する方法、貯留設備に鉱物原料が多少残った状態で高吸水性樹脂及び/又は水溶性高分子化合物を添加する方法、鉱物原料を貯留設備に入る際、同時に高吸水性樹脂及び/又は水溶性高分子化合物を添加する方法、鉱物原料と高吸水性樹脂及び/又は水溶性高分子化合物を交互に重ねて添加する方法等が挙げられる。   For example, a method of adding a superabsorbent resin and / or a water-soluble polymer compound to a mineral raw material and stirring and mixing it before the mineral raw material is put into the storage facility; A method of adding water-soluble polymer compounds, a method of adding a superabsorbent resin and / or a water-soluble polymer compound with some mineral raw material remaining in the storage facility, and a mineral raw material entering the storage facility at the same time Examples thereof include a method of adding a highly water-absorbing resin and / or a water-soluble polymer compound, and a method of alternately adding a mineral raw material and a highly water-absorbing resin and / or a water-soluble polymer compound.

鉱物原料と混合することなく高吸水性樹脂及び/又は水溶性高分子化合物を添加するのみでも本発明の効果を発揮することはできるが、高吸水性樹脂及び/又は水溶性高分子化合物を、鉱物原料に添加した後に撹拌混合すると、鉱物原料の表面に高吸水性樹脂及び/又は水溶性高分子化合物が均一に付着した、全体的に均一な原料混合物が得られる。   Although the effect of the present invention can be exhibited only by adding the superabsorbent resin and / or water-soluble polymer compound without mixing with the mineral raw material, the superabsorbent resin and / or the water-soluble polymer compound is When added to the mineral raw material and then stirred and mixed, an overall uniform raw material mixture is obtained in which the superabsorbent resin and / or the water-soluble polymer compound are uniformly attached to the surface of the mineral raw material.

以下、本発明を実施例により具体的に説明するが、本発明は下記実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by the following Example.

[漏出試験]
(実施例1)
湿潤な石炭(含水率26質量%、粒径2mm以下)1000gに対して、高吸水性樹脂として「クリラインS−200」(栗田工業株式会社製;ポリアクリル酸ナトリウム)を0.01質量%を添加して、均一に撹拌混合し、原料混合物試料を調製した。高吸水性樹脂の添加は、粉体散布装置(株式会社ブレス、ブレスライダー40)を用いて、高吸水性樹脂を石炭に添加する手法で行った
電動フルイ(「ANF−30」、日陶科学株式会社製)の上部に、フルイに代えて、模擬ホッパー(投入口:200mm×200mm、排出口:30mm×50mmの逆四角錘台状外形;鋼製)を取り付けた振動試験装置を用いて、原料混合物試料の漏出試験を行った。
漏出試験は、振動試験装置の模擬ホッパーに、調製した原料混合物試料を投入し、15分間静置して、その静置時間内にホッパー下部から滴り落ちた水分量(漏水量)を測定することにより行った。
なお、石炭の含水率は、約20gの石炭について、質量(A)を測定し、また、これを105℃の乾燥器で2時間乾燥した後の質量(B)を測定し、その減量(A−B)を含水量とみなして、下記式から算出した。
含水率[%]=(A−B)/A×100
[Leakage test]
Example 1
For 1000 g of wet coal (water content 26 mass%, particle size 2 mm or less), 0.01% by mass of “Kuriline S-200” (manufactured by Kurita Kogyo Co., Ltd .; sodium polyacrylate) as a highly water-absorbent resin. The mixture was added and stirred and mixed uniformly to prepare a raw material mixture sample. The superabsorbent resin was added by a method of adding the superabsorbent resin to the coal using a powder spraying device (BRES, Breslide 40). Using a vibration test apparatus in which a simulated hopper (input port: 200 mm × 200 mm, discharge port: 30 mm × 50 mm, inverted square frustum-shaped outer shape; made of steel) is attached to the upper part of the product) A leakage test of the raw material mixture sample was performed.
In the leak test, put the prepared raw material mixture sample into the simulated hopper of the vibration test device, let it stand for 15 minutes, and measure the amount of water dripping from the lower part of the hopper (leakage amount) within the standing time. It went by.
In addition, the moisture content of coal measured the mass (A) about about 20 g of coal, measured the mass (B) after drying this with a 105 degreeC dryer for 2 hours, and reduced the weight (A -B) was regarded as the water content and calculated from the following formula.
Moisture content [%] = (A−B) / A × 100

(実施例2〜3)
高吸水性樹脂の添加濃度を下記表1に示すように変更し、それ以外は実施例1と同様にして、原料混合物試料の排出時間を測定した。
(Examples 2-3)
The additive concentration of the superabsorbent resin was changed as shown in Table 1 below, and the discharging time of the raw material mixture sample was measured in the same manner as in Example 1 except that.

(実施例4)
高吸水性樹脂を水溶性高分子化合物(アクリルアミド・アクリル酸アンモニウム共重合物(分子量800万(固有粘度換算)、アクリル酸アンモニウム単量体35モル%))に変更し、それ以外は実施例3と同様にして、原料混合物試料の排出時間を測定した。
Example 4
The superabsorbent resin was changed to a water-soluble polymer compound (acrylamide / ammonium acrylate copolymer (molecular weight: 8 million (in terms of intrinsic viscosity), ammonium acrylate monomer: 35 mol%)). In the same manner as described above, the discharge time of the raw material mixture sample was measured.

(実施例5)
湿潤な石炭(含水率26質量%、粒径2mm以下)1000gを5分割し、振動試験装置ホッパー部に石炭、薬品、石炭、薬品…の順で層状に投入して原料混合物試料を調製した。それ以外は実施例3と同様にして、原料混合物試料の排出時間を測定した。
(Example 5)
1000 g of wet coal (moisture content 26 mass%, particle size 2 mm or less) was divided into 5 parts, and the raw material mixture sample was prepared by charging the vibration test apparatus hopper with layers of coal, chemicals, coal, chemicals in this order. Other than that was carried out similarly to Example 3, and measured the discharge time of the raw material mixture sample.

(実施例6)
振動試験装置ホッパー部に高吸水性樹脂を投入した後に、湿潤な石炭(含水率26質量%、粒径2mm以下)1000gを投入して原料混合物試料を調製した。それ以外は実施例3と同様にして、原料混合物試料の排出時間を測定した。
(Example 6)
After the superabsorbent resin was put into the vibration test apparatus hopper, 1000 g of wet coal (water content 26 mass%, particle size 2 mm or less) was added to prepare a raw material mixture sample. Other than that was carried out similarly to Example 3, and measured the discharge time of the raw material mixture sample.

(比較例1)
実施例1において、高吸水性樹脂及び水溶性高分子化合物の何れも添加せずに、それ以外は実施例1と同様にして、ホッパー部から滴り落ちた水分量を測定した。
(Comparative Example 1)
In Example 1, the amount of water dripped from the hopper was measured in the same manner as in Example 1 except that neither the superabsorbent resin nor the water-soluble polymer compound was added.

(比較例2)
高吸水性樹脂をシリカゲルに変更し、それ以外は実施例3と同様にして、原料混合物試料の排出時間を測定した。
(Comparative Example 2)
The superabsorbent resin was changed to silica gel, and the discharge time of the raw material mixture sample was measured in the same manner as in Example 3 except that.

(比較例3)
高吸水性樹脂をアルカンスルホン酸ナトリウムに変更し、それ以外は実施例3と同様にして、原料混合物試料の排出時間を測定した。
(Comparative Example 3)
The superabsorbent resin was changed to sodium alkanesulfonate, and the discharge time of the raw material mixture sample was measured in the same manner as in Example 3 except that.

上記各実施例及び各比較例の水分漏出量(漏水量)を評価した結果を表1にまとめて示す。   Table 1 summarizes the results of evaluating the amount of water leakage (water leakage) in each of the above Examples and Comparative Examples.

Figure 2018127709
Figure 2018127709

表1に示した結果から分かるように、湿潤な石炭にポリアクリル酸ナトリウムもしくはアクリルアミド・アクリル酸アンモニウム共重合物を添加することにより、振動試験装置ホッパー部からの漏水がなくなること(実施例2〜4、5〜6)、もしくは、ブランクと比較して30%以下に抑制されること(実施例1)が確認された。   As can be seen from the results shown in Table 1, water leakage from the vibration test apparatus hopper is eliminated by adding sodium polyacrylate or acrylamide / ammonium acrylate copolymer to wet coal (Example 2). 4, 5-6) or 30% or less compared to the blank (Example 1) was confirmed.

Claims (7)

湿潤な鉱物原料と、高吸水性樹脂及び/又は水溶性高分子化合物を含む原料混合物を貯留設備に収容し、前記貯留設備からの水の漏出及び/又は鉱物原料の漏出を防止する、水及び/又は鉱物原料の漏出防止方法。   A raw material mixture containing a wet mineral raw material and a superabsorbent resin and / or a water-soluble polymer compound is stored in a storage facility, and water and / or a mineral raw material are prevented from leaking from the storage facility. / Or prevention method of leakage of mineral raw materials. 前記貯留設備が、配合槽、ホッパー、サイロ、及びバンカーの少なくとも何れかである、請求項1に記載の水及び/又は鉱物原料の漏出防止方法。   The water and / or mineral raw material leakage prevention method according to claim 1, wherein the storage facility is at least one of a compounding tank, a hopper, a silo, and a bunker. 前記高吸水性樹脂及び/又は水溶性高分子化合物を、前記貯留設備に収容前の鉱物原料に添加して混合する工程を有する、請求項1又は2に記載の水及び/又は鉱物原料の漏出防止方法。   The leakage of water and / or mineral raw material according to claim 1 or 2, comprising a step of adding and mixing the superabsorbent resin and / or water-soluble polymer compound with the mineral raw material before being stored in the storage facility. Prevention method. 前記高吸水性樹脂及び/又は水溶性高分子化合物と、前記鉱物原料を、前記貯留設備内に、交互に且つ層状に、投入する工程を有する、請求項1又は2に記載の水及び/又は鉱物原料の漏出防止方法。   The water and / or according to claim 1 or 2, comprising a step of charging the superabsorbent resin and / or water-soluble polymer compound and the mineral raw material alternately and in layers into the storage facility. How to prevent leakage of mineral raw materials. 前記貯留設備に、前記高吸水性樹脂及び/又は水溶性高分子化合物を投入する工程と、続いて、前記鉱物原料を添加する工程を有する、請求項1又は2に記載の水及び/又は鉱物原料の漏出防止方法。   The water and / or mineral according to claim 1, comprising a step of adding the superabsorbent resin and / or water-soluble polymer compound to the storage facility, and a step of adding the mineral raw material. Raw material leakage prevention method. 前記高吸水性樹脂がポリアクリル酸ナトリウム塩である、請求項1〜5の何れか1項に記載の水及び/又は鉱物原料の漏出防止方法。   The method for preventing leakage of water and / or mineral raw materials according to any one of claims 1 to 5, wherein the superabsorbent resin is polyacrylic acid sodium salt. 前記水溶性高分子化合物がアクリルアミド・アクリル酸アンモニウム共重合物である、請求項1〜5の何れか1項に記載の水及び/又は鉱物原料の漏出防止方法。   The method for preventing leakage of water and / or mineral raw material according to any one of claims 1 to 5, wherein the water-soluble polymer compound is an acrylamide / ammonium acrylate copolymer.
JP2017023125A 2017-02-10 2017-02-10 Leakage prevention method for water and / or mineral raw materials Active JP6780526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023125A JP6780526B2 (en) 2017-02-10 2017-02-10 Leakage prevention method for water and / or mineral raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023125A JP6780526B2 (en) 2017-02-10 2017-02-10 Leakage prevention method for water and / or mineral raw materials

Publications (2)

Publication Number Publication Date
JP2018127709A true JP2018127709A (en) 2018-08-16
JP6780526B2 JP6780526B2 (en) 2020-11-04

Family

ID=63173654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023125A Active JP6780526B2 (en) 2017-02-10 2017-02-10 Leakage prevention method for water and / or mineral raw materials

Country Status (1)

Country Link
JP (1) JP6780526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205836A1 (en) * 2020-04-09 2021-10-14 栗田工業株式会社 Method for modifying mineral raw material
WO2021205835A1 (en) * 2020-04-09 2021-10-14 栗田工業株式会社 Method for preventing adhesion and clogging of raw mineral material
AU2021266190A1 (en) * 2021-11-08 2023-05-25 Patrick Cook The application of an additive that absorbs moisture and reduces the liquefaction potential of a granular bulk solid material during transport.

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160784A (en) * 1984-09-03 1986-03-28 Kawasaki Steel Corp Reduction method of moisture content of outdoor deposit
JPS61151294A (en) * 1984-12-25 1986-07-09 Nippon Steel Chem Co Ltd Reducing water content of coal
JPS6228384A (en) * 1985-07-22 1987-02-06 清水建設株式会社 Coal silo structure
JPS63134008A (en) * 1986-11-25 1988-06-06 Nippon Steel Corp Method for removing water in particulate matter
JPH02140293A (en) * 1988-11-22 1990-05-29 Mitsubishi Heavy Ind Ltd Coal slurry production device
JP2010077332A (en) * 2008-09-29 2010-04-08 Jfe Steel Corp Manufacturing method of coke
JP2010181055A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Ind Ltd Equipment and method of granulating sintered ore coagulating material
JP2013023375A (en) * 2011-07-25 2013-02-04 Jfe Steel Corp Method for discharging aqueous bulk
JP2013203365A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Steel making raw material housing body
JP2013256710A (en) * 2012-05-16 2013-12-26 Kurita Water Ind Ltd Method for conveying iron-making raw material and method for manufacturing iron-making raw material solidified body
JP2014012871A (en) * 2012-07-04 2014-01-23 Nippon Steel & Sumitomo Metal Method of producing fine coal for blast furnace blowing
JP2016518526A (en) * 2013-04-26 2016-06-23 エス.ピー.シー.エム. エス.エイ. Method of loading loose iron ore partially treated with superabsorbent

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160784A (en) * 1984-09-03 1986-03-28 Kawasaki Steel Corp Reduction method of moisture content of outdoor deposit
JPS61151294A (en) * 1984-12-25 1986-07-09 Nippon Steel Chem Co Ltd Reducing water content of coal
JPS6228384A (en) * 1985-07-22 1987-02-06 清水建設株式会社 Coal silo structure
JPS63134008A (en) * 1986-11-25 1988-06-06 Nippon Steel Corp Method for removing water in particulate matter
JPH02140293A (en) * 1988-11-22 1990-05-29 Mitsubishi Heavy Ind Ltd Coal slurry production device
JP2010077332A (en) * 2008-09-29 2010-04-08 Jfe Steel Corp Manufacturing method of coke
JP2010181055A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Ind Ltd Equipment and method of granulating sintered ore coagulating material
JP2013023375A (en) * 2011-07-25 2013-02-04 Jfe Steel Corp Method for discharging aqueous bulk
JP2013203365A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Steel making raw material housing body
JP2013256710A (en) * 2012-05-16 2013-12-26 Kurita Water Ind Ltd Method for conveying iron-making raw material and method for manufacturing iron-making raw material solidified body
JP2014012871A (en) * 2012-07-04 2014-01-23 Nippon Steel & Sumitomo Metal Method of producing fine coal for blast furnace blowing
JP2016518526A (en) * 2013-04-26 2016-06-23 エス.ピー.シー.エム. エス.エイ. Method of loading loose iron ore partially treated with superabsorbent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205836A1 (en) * 2020-04-09 2021-10-14 栗田工業株式会社 Method for modifying mineral raw material
WO2021205835A1 (en) * 2020-04-09 2021-10-14 栗田工業株式会社 Method for preventing adhesion and clogging of raw mineral material
JP2021167441A (en) * 2020-04-09 2021-10-21 栗田工業株式会社 Adhesion and clogging prevention method for mineral raw material
JP2021167442A (en) * 2020-04-09 2021-10-21 栗田工業株式会社 Method for modifying mineral raw material
CN115427590A (en) * 2020-04-09 2022-12-02 栗田工业株式会社 Process for upgrading a mineral feedstock
KR20220164719A (en) 2020-04-09 2022-12-13 쿠리타 고교 가부시키가이샤 Method of reforming mineral raw materials
AU2021266190A1 (en) * 2021-11-08 2023-05-25 Patrick Cook The application of an additive that absorbs moisture and reduces the liquefaction potential of a granular bulk solid material during transport.

Also Published As

Publication number Publication date
JP6780526B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP2018127709A (en) Method for preventing the leakage of water and/or mineral material
ES2624440T3 (en) Use of a polymer dispersion as a dust control agent
JP2009173942A5 (en) Acrylic acid-based water absorbent resin and absorbent article
CN111662682A (en) Instant environment-friendly dust suppressant
CN103484063B (en) The method using plasticized fibre element ether suppression dust
JP5927807B2 (en) Method for modifying coal and / or iron ore slurry
US20140141162A1 (en) Dust Suppression Formulas Using Plasticized Cellulose Ethers
WO2018066333A1 (en) Method for preventing adhesion and clogging of mineral raw material
CN106029820B (en) Method and composition for dust Control
JP5817974B2 (en) Unloading method of water-containing roses
JP2013256710A (en) Method for conveying iron-making raw material and method for manufacturing iron-making raw material solidified body
JP2015093977A (en) Method of forming friction-reducing coat, formation agent and method of treating water-containing particle/muddy matter
JP2013203365A (en) Steel making raw material housing body
CN101497781A (en) Antifreezing dust suppression agent and preparation
EP4134411A1 (en) Method for modifying mineral raw material
JP2020033437A (en) Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil
JP6825738B1 (en) How to prevent adhesion and clogging of mineral raw materials
JP7258392B1 (en) Powdery anti-adhesion agent and anti-adhesion method
CN1285646C (en) Surface treatment of ethylene-based polymer pellets to improve blocking resistance
JP2015096451A (en) Unloading method of hydrous bulk
JPH083554A (en) Liquid-type soil moisture-treating agent
JP2022156426A (en) Method for suppressing facility disorder due to mineral raw material
AU2017361285A1 (en) Enhancing release of bulk solids from a surface
JPH05310842A (en) Inhibitor for hardening and heat generation of fly ash
JP2002336638A (en) Drying agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6780526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250