JP2022156426A - Method for suppressing facility disorder due to mineral raw material - Google Patents

Method for suppressing facility disorder due to mineral raw material Download PDF

Info

Publication number
JP2022156426A
JP2022156426A JP2021060112A JP2021060112A JP2022156426A JP 2022156426 A JP2022156426 A JP 2022156426A JP 2021060112 A JP2021060112 A JP 2021060112A JP 2021060112 A JP2021060112 A JP 2021060112A JP 2022156426 A JP2022156426 A JP 2022156426A
Authority
JP
Japan
Prior art keywords
mineral raw
raw material
dispersant
polymer dispersant
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021060112A
Other languages
Japanese (ja)
Inventor
雅敏 加藤
Masatoshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Nalco Japan GK
Original Assignee
Katayama Chemical Inc
Nalco Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc, Nalco Japan GK filed Critical Katayama Chemical Inc
Priority to JP2021060112A priority Critical patent/JP2022156426A/en
Publication of JP2022156426A publication Critical patent/JP2022156426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for suppressing facility disorders due to a mineral raw material by suppressing natural oxidation and heat generation of the mineral raw material having a particular water content and particle diameter during transfer and storage of the mineral raw material and improving handling of the mineral raw material during the transfer and storage.SOLUTION: A method for suppressing facility disorders due to a mineral raw material comprises a contact step of bringing a polymer dispersant into contact with a mineral raw material including 70 wt.% or more of a particle having a water content of 1 to 30 wt.% and a particle diameter of 8 mm or less to obtain a dispersant-containing mineral raw material. In the contact step, the mineral raw material and the polymer dispersant are brought into contact with each other so that a particle diameter of 95 wt.% or more of the polymer dispersant after the contact step is 110% or more and less than 500% relative to an average of the particle diameter of the polymer dispersant before the contact step and a water content of 95 wt.% or more of the dispersant-containing mineral raw material after the contact step is 1 to 12 wt.%.SELECTED DRAWING: None

Description

本発明は、鉱物原料に起因する設備障害の抑制方法に関する。 TECHNICAL FIELD The present invention relates to a method for suppressing equipment failure caused by mineral raw materials.

通常、発電所、製鉄所、鉱山等では、大量の石炭が石炭置き場(石炭ヤード)に山積みされ、堆積、貯蔵されることが多い。また、石炭を1,200℃の高温で乾留することにより生産される炭素を主成分とした多孔質の個体であるコークスは、製鉄用、鋳物用、燃料用等の用途に用いられるが、このコークスについても、コークス置き場(コークスヤード)に山積みされ、堆積、貯蔵されることが多い。
また、製鉄所等では、上記に加え原料となる塊状の鉄鉱石、あるいは粉状の鉄鉱石や粉状の石灰石を高炉装入に適した粒度及び強度とするべく処理された焼結鉱、高炉、転炉、電気炉などから排出される製鉄所ダスト、スラッジなども山積みされ、堆積、貯蔵されている。
上記のような石炭、コークス、石灰石、鉄鉱石、焼結鉱、製鉄所ダスト及びスラッジ等(以下、鉱物原料という。)の置き場(ヤード)は、屋外に設置されているケースも多く、貯蔵後の鉱物原料の水分含有量が降雨や粉塵防止用の散水等により高くなり、その結果、鉱物原料における表面の粘着性が増大し、鉱物原料の移送経路におけるベルトコンベヤのベルトや異物除去のための櫛(格子、網目は問わない)、あるいは移送対象物を貯蔵若しくは仮置きするためのホッパー等において詰まり等の不具合が発生していた。また、ベルトコンベヤのベルトに鉱物原料が付着することにより、ベルトコンベヤの巻き返し位置で鉱物原料が落下する等の不具合が発生していた。このように、鉱物原料の含水率が高まることにより、鉱物原料の取扱い性が悪化し、鉱物原料を保管、移送に供される設備の効率が低下し、さらに安全性の問題が生じていた。
Generally, in power plants, ironworks, mines, etc., a large amount of coal is often piled up, deposited, and stored in a coal storage place (coal yard). In addition, coke, which is a porous solid mainly composed of carbon produced by carbonizing coal at a high temperature of 1,200 ° C, is used for iron manufacturing, casting, fuel, etc. Coke is also often piled up, deposited, and stored in a coke storage place (coke yard).
In steelworks, etc., in addition to the above, sintered ore and blast furnaces are processed to make lump-shaped iron ore, powdered iron ore, and powdered limestone, which are raw materials, into a particle size and strength suitable for charging into a blast furnace. Steel mill dust and sludge discharged from , converters, electric furnaces, etc. are also piled up, accumulated and stored.
The above-mentioned coal, coke, limestone, iron ore, sintered ore, steel mill dust and sludge, etc. (hereinafter referred to as mineral raw materials) are often stored outdoors. The moisture content of the mineral raw materials in the water increases due to rainfall and water spraying for dust prevention. Problems such as clogging have occurred in combs (regardless of lattice or mesh) or hoppers for storing or temporarily placing objects to be transferred. In addition, when the mineral raw material adheres to the belt of the belt conveyor, problems such as the mineral raw material dropping at the rewinding position of the belt conveyor have occurred. As described above, the increase in the water content of the mineral raw material deteriorates the handling property of the mineral raw material, lowers the efficiency of equipment used for storing and transporting the mineral raw material, and further raises safety problems.

なお、従来はスラリー化した製鉄原料の取り扱いを改善する製鉄原料の移送方法(特許文献1)等のように、貯蔵時の降雨や散水により、製鉄原料がスラリー化し、搬出自体が困難となった場合には、製鉄原料スラリーの取り扱いを改善するため、製鉄原料スラリーに対し、高分子吸水剤を接触させることが知られている。
しかしながら、石炭、コークス、鉄鉱石、石灰石、焼結鉱及び製鉄所ダスト等の鉄鉱原料に関しては、スラリー化している状態で移送されるケースは稀であり、スラリー化はしていないが水分含有量が高い鉄鋼原料が移送されるケースが多い。
In addition, in the conventional transfer method for iron-making raw materials that improves the handling of slurried iron-making raw materials (Patent Document 1), rainfall and water spraying during storage make iron-making raw materials slurry, making it difficult to carry them out. In some cases, in order to improve the handling of the ironmaking raw material slurry, it is known to bring the ironmaking raw material slurry into contact with a polymeric water absorbing agent.
However, iron ore raw materials such as coal, coke, iron ore, limestone, sintered ore, and steel mill dust are rarely transported in a slurry state. In many cases, steel raw materials with high

さらに、上記の鉱物原料は、保管中に空気中の酸素と反応して酸化反応を起こし温度上昇による発熱、発煙を生じることがあり、場合によっては火災などの事故の原因にもなり得る。そのため、これらの反応を抑制し、発熱を抑制し安全な保管が行えるように様々な対策がされてきた。その対策として、サイロやホッパーを不活性ガスで置換して設備内での酸化反応を抑制する手法が考えられるが、大規模な設備が必要となることから時間とコストの問題も生じ、より簡単な手法での対策が望まれている。 Furthermore, the above-mentioned mineral raw materials may react with oxygen in the air during storage to cause an oxidation reaction, causing heat generation and smoke due to temperature rise, which may cause accidents such as fires in some cases. Therefore, various measures have been taken to suppress these reactions, suppress heat generation, and enable safe storage. As a countermeasure, replacing the silo and hopper with an inert gas to suppress the oxidation reaction in the facility is conceivable, but this requires a large-scale facility, which causes problems of time and cost, and is easier. It is desired that countermeasures be taken using various methods.

例えば、特許文献2には、特に低品位炭の塊の自然燃焼を抑制する方法として阻害剤組成物を石炭に適用することを提案しており、阻害剤組成物としては、粗製グリセリン、及びVAEコポリマー又はPVAコポリマーを、90:10~10:90の比率で含むものとされている。そして粗製グリセリンとは、バイオディーゼルの製造過程に関するエステル交換反応を含む、トリグリセリドに関するエステル交換反応からの副生成物誘導体を意味しており、副生成物としては、グリセリンと、脂肪酸、エステル、塩、メタノール、トコフェロール、ステロール、モノグリセリド、ジグリセリド、及びトリグリセリドなどから少なくとも1つの成分とを含むものが記載されている。 For example, Patent Document 2 proposes applying an inhibitor composition to coal as a method of suppressing spontaneous combustion of lumps of low-rank coal, and the inhibitor composition includes crude glycerin and VAE It is said to contain a copolymer or PVA copolymer in a ratio of 90:10 to 10:90. And by crude glycerin is meant the by-product derivatives from transesterification reactions on triglycerides, including transesterification reactions associated with the biodiesel manufacturing process, which by-products include glycerin and fatty acids, esters, salts, At least one component from methanol, tocopherols, sterols, monoglycerides, diglycerides, triglycerides and the like is described.

また特許文献3には、バイオディーゼルを生成する過程で副生した含グリセリン溶液を石炭の表面に散布して低温酸化を抑制することを特徴とする石炭の製造方法が記載されている。上記の方法では、粉体中に含有される水分の蒸発が早く効果が持続的でないことと降雨による過度の水分の上昇に対応しきれず、流失や粉体により汚染された水の発生が問題となっている。 Further, Patent Document 3 describes a coal production method characterized by spraying a glycerin-containing solution, which is a by-product in the process of producing biodiesel, over the surface of coal to suppress low-temperature oxidation. In the above method, the moisture contained in the powder evaporates quickly and the effect is not sustainable, and it is not possible to cope with the excessive increase in moisture due to rainfall, resulting in problems such as runoff and generation of water contaminated by powder. It's becoming

特許文献4には、粉塵防止用に他の成分と混合した水溶性の高分子吸収剤を用いた液体製品が示されている。しかし、その用途は粉塵防止であり、石炭表面に混合された薬品を噴霧することで表面樹脂層を形成し粉塵飛散を防止するものであり、同時に発火防止の効果もあることが記載されている。しかしながら自然発火防止については表面樹脂層による効果にのみ言及しており、具体的な実施例は示されていない。 U.S. Pat. No. 5,400,002 shows a liquid product using a water-soluble polymeric absorbent mixed with other ingredients for dust prevention. However, the application is dust prevention, and it is described that spraying chemicals mixed on the coal surface forms a surface resin layer to prevent dust scattering, and at the same time, it also has the effect of preventing ignition. . However, with regard to prevention of spontaneous combustion, only the effect of the surface resin layer is mentioned, and specific examples are not shown.

また特許文献5には、石炭パイル表層に高吸水性高分子と石炭と水とによりヒドロゲル層皮膜を形成して従来の技術による高分子皮膜と同様の効果原理により、自然発火と発塵とを防止する技術が開示されている。しかし、本方法では、部分的なパイルの移送による表面樹脂層の亀裂や破壊が生じた場合に充分な自然発火防止効果が得られていない。 In addition, in Patent Document 5, a hydrogel layer film is formed on the coal pile surface layer with a superabsorbent polymer, coal, and water, and spontaneous ignition and dust generation are achieved by the same effect principle as the polymer film according to the conventional technology. Techniques for preventing are disclosed. However, this method does not provide a sufficient effect of preventing spontaneous combustion when the surface resin layer cracks or breaks due to partial transfer of the pile.

特許文献6は、尿素を主成分とする自然発火防止剤の応用が示されている。そして尿素の効果を補完する形の添加剤として高分子吸収剤が添加されている。ここでは、尿素と自然発火防止剤との併用が必須の条件であり、使用に伴いアンモニガスが熱分解時に発生することが示されており、環境安全性の面から充分な効果が得られていない。 Patent Document 6 shows the application of a spontaneous ignition inhibitor containing urea as a main component. A polymeric absorbent is added as an additive to complement the effect of urea. Here, the combined use of urea and a spontaneous ignition inhibitor is an essential condition, and it is shown that ammonia gas is generated during thermal decomposition with use, and sufficient effects have not been obtained from the viewpoint of environmental safety. .

特許第6041627号公報Japanese Patent No. 6041627 特表2015-512470号公報Japanese Patent Application Publication No. 2015-512470 特開2011-195779号公報JP 2011-195779 A 特開昭59-025871号公報JP-A-59-025871 特開平05-230480号公報JP-A-05-230480 特開2005-194447号公報JP 2005-194447 A

従って、含水率が高い鉱物原料については、移送における取り扱い性が、安全性及び効率の観点から問題となっている。そして、酸化により発熱するという特性を有する鉱物原料自体の課題を抑制する方法、すなわち、移送時及び保管時の自然酸化や発熱を抑制する方法も、安全性の観点から望まれている。 Therefore, for mineral raw materials with a high moisture content, handling during transportation is a problem from the viewpoint of safety and efficiency. From the viewpoint of safety, there is also a demand for a method of suppressing the problem of the mineral raw material itself, which has the property of generating heat due to oxidation, that is, a method of suppressing natural oxidation and heat generation during transportation and storage.

本発明は、上記現状に鑑み、特定の含水率及び粒子径を有する鉱物原料の移送時及び保管時の自然酸化や発熱を抑制し、並びに、移送時及び保管時の鉱物原料の取扱い性を向上させることにより、鉱物原料に起因する設備障害の抑制方法を提供することを目的とする。 In view of the above-mentioned current situation, the present invention suppresses natural oxidation and heat generation during transportation and storage of mineral raw materials having a specific moisture content and particle size, and improves the handling of mineral raw materials during transportation and storage. It is an object of the present invention to provide a method for suppressing equipment failure caused by mineral raw materials.

本発明者らは、上記課題を解決するため、鋭意検討した結果、特定の含水率及び粒子径を有する鉱物原料に対し、単に保水量の高い高分子分散剤を接触させるのではなく、接触後の高分子分散剤が特定の粒子径を有し、また、接触後の鉱物原料が特定の含水率になるように、鉱物原料と高分子分散剤とを接触させることにより、鉱物原料に起因する設備障害(鉱物原料の自然酸化、発熱及び自然発火に伴う設備障害、鉱物原料の設備への付着に伴う設備障害等)を抑制できるという顕著な効果があることを見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have made intensive studies, and as a result, rather than simply contacting a mineral raw material having a specific water content and particle size with a polymer dispersant having a high water retention capacity, The polymer dispersant has a specific particle size, and by contacting the mineral raw material and the polymer dispersant so that the mineral raw material after contact has a specific moisture content, It has been found that there is a remarkable effect of suppressing equipment failure (equipment failure due to natural oxidation of mineral raw materials, heat generation and spontaneous combustion, equipment failure due to adhesion of mineral raw materials to equipment, etc.). Arrived.

すなわち、本発明は、鉱物原料に起因する設備障害の抑制方法であって、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程を有し、上記接触工程において、上記接触工程後の95重量%以上の高分子分散剤の粒子径が、上記接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、上記接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、上記鉱物原料と上記高分子分散剤とを接触させることを特徴とする設備障害抑制方法である。
本発明の設備障害抑制方法では、接触工程前の高分子分散剤の平均粒子径が、5~1400μmであることが好ましい。
本発明の方法において、鉱物原料に起因する設備障害が、鉱物原料の自然発火、移送時及び保管時の根詰まり、並びに、鉱物原料の設備への付着からなる群より選択される少なくとも1種であることが好ましい。
本発明の方法における鉱物原料が、石炭、鉄、コークス及び酸化鉄からなる群より選択される少なくとも1種であることが好ましい。
That is, the present invention is a method for suppressing equipment failure caused by mineral raw materials, wherein a mineral raw material having a moisture content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is added to a polymer. a contacting step of contacting a dispersant to obtain a dispersant-containing mineral raw material; 110% or more and less than 500% with respect to the average particle diameter of the dispersant, and the water content of the dispersant-containing mineral raw material of 95% by weight or more after the contacting step is 1 to 12% by weight. and the polymer dispersant are brought into contact with each other.
In the method for suppressing equipment failure of the present invention, the average particle size of the polymer dispersant before the contacting step is preferably 5 to 1400 μm.
In the method of the present invention, the equipment failure caused by the mineral raw material is at least one selected from the group consisting of spontaneous ignition of the mineral raw material, root clogging during transportation and storage, and adhesion of the mineral raw material to the equipment. Preferably.
The mineral raw material in the method of the present invention is preferably at least one selected from the group consisting of coal, iron, coke and iron oxide.

本発明によれば、特定の含水率及び粒子径を有する鉱物原料の移送時及び保管時の自然酸化や発熱を抑制し、並びに、移送時及び保管時の鉱物原料の取扱い性を向上させることにより、鉱物原料に起因する設備障害の抑制方法を提供することができる。
本発明の方法は、鉱物原料の移送時及び保管時の安全性に寄与し得るものである。
According to the present invention, by suppressing natural oxidation and heat generation during transportation and storage of mineral raw materials having a specific moisture content and particle size, and by improving handling properties of mineral raw materials during transportation and storage, , it is possible to provide a method for suppressing equipment failures caused by mineral raw materials.
The method of the present invention can contribute to safety during transportation and storage of mineral raw materials.

本発明は、鉱物原料に起因する設備障害の抑制方法であって、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程を有し、上記接触工程において、上記接触工程後の95重量%以上の高分子分散剤の粒子径が、上記接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、上記接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、上記鉱物原料と上記高分子分散剤とを接触させることを特徴とする設備障害抑制方法である。
本明細書において、分散剤含有鉱物原料とは、高分子分散剤を含有する鉱物原料であり、高分子分散剤と鉱物原料との混合物と言い換えることもできる。
The present invention is a method for suppressing equipment failure caused by mineral raw materials, wherein a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is added with a polymer dispersant. to obtain a dispersant-containing mineral raw material, and in the contacting step, the particle size of 95% by weight or more of the polymer dispersant after the contacting step is equal to that of the polymer dispersing agent before the contacting step. 110% or more and less than 500% with respect to the average particle size of the mineral raw material, and the water content of the dispersant-containing mineral raw material of 95% by weight or more after the contacting step is 1 to 12% by weight. It is a method for suppressing equipment failure, characterized by contacting with a polymer dispersant.
In the present specification, a dispersant-containing mineral raw material is a mineral raw material containing a polymer dispersant, and can also be referred to as a mixture of a polymer dispersant and a mineral raw material.

上述の通り、鉱物原料は酸化により発熱するため、鉱物原料の含水率が低いと自然発火する可能性が高くなる。一方で鉱物原料の含水率が高いと、設備への付着が生じ、保管時及び移送時の取り扱い性が悪化し、設備効率及び安全性が低下する。よって、鉱物原料の発熱抑制と、鉱物原料の保管時及び移送時の取り扱い性とはトレードオフの関係にある。例えば、鉱物原料の発熱を抑制するために、堆積保管されている鉱物原料の表層を被覆するように界面活性剤や、高吸水性高分子を散布し、水を散布する技術が知られている(特許文献5)。しかし、鉱物原料の表層を被覆することにより発熱を抑制する技術は、堆積した鉱物原料の表層が崩れたり、また、鉱物原料を移送する際等に、表層被覆が崩壊し、発熱抑制効果が失われるという欠点がある。また、鉱物原料の発熱を抑制、遅延させる技術として鉱物原料に界面活性剤と水を散布することが知られている。しかし、鉱物原料の含水率が上昇すると、上述の通り鉱物原料が貯蔵設備のホッパーや、移送設備のベルトコンベヤに鉱物原料が付着することにより、詰まりや、付着による設備障害が生じ、鉱物原料の取り扱い性の悪化による設備効率の低下や、安全性の低下の問題が生じる。そのため、従来は、鉱物原料の貯蔵保管時には、鉱物原料に対し酸化による発熱を抑制するための技術が実施され、鉱物原料の移送時には、鉱物原料の付着を防止、抑制する技術が実施されていた。
本発明は、鉱物原料の酸化による発熱、鉱物原料の付着等により生じる設備障害(鉱物原料の自然発火、移送時及び保管時の詰まり、鉱物原料の設備への付着等)を抑制するための方法であり、従来は別々に検討されてきた課題を、一つの方法(すなわち本発明の方法)により解決するものである。
As described above, the mineral raw material generates heat when oxidized, so if the water content of the mineral raw material is low, the possibility of spontaneous combustion increases. On the other hand, if the water content of the mineral raw material is high, it will adhere to the equipment, making it difficult to handle during storage and transportation, and lowering the efficiency and safety of the equipment. Therefore, there is a trade-off relationship between the heat generation suppression of the mineral raw material and the handleability of the mineral raw material during storage and transportation. For example, in order to suppress the heat generation of mineral raw materials, a technique is known in which surfactants or superabsorbent polymers are sprayed so as to cover the surface layer of mineral raw materials stored in piles, and water is sprayed. (Patent Document 5). However, the technique of suppressing heat generation by coating the surface layer of the mineral raw material may cause the surface layer of the deposited mineral raw material to collapse, or when the mineral raw material is transported, the surface layer coating may collapse and the heat generation suppressing effect may be lost. It has the drawback of being In addition, as a technique for suppressing or delaying the heat generation of mineral raw materials, spraying a surfactant and water on the mineral raw materials is known. However, if the moisture content of the mineral raw material rises, as mentioned above, the mineral raw material will adhere to the hopper of the storage facility and the belt conveyor of the transfer facility, causing clogging and equipment failure due to adhesion. Problems such as a decrease in equipment efficiency due to deterioration in handling and a decrease in safety arise. Therefore, conventionally, during storage of mineral raw materials, techniques for suppressing heat generation due to oxidation of mineral raw materials have been implemented, and during transportation of mineral raw materials, techniques for preventing and suppressing adhesion of mineral raw materials have been implemented. .
The present invention is a method for suppressing equipment failures (spontaneous ignition of mineral raw materials, clogging during transfer and storage, adhesion of mineral raw materials to equipment, etc.) caused by heat generation due to oxidation of mineral raw materials, adhesion of mineral raw materials, etc. , and the problems that have been considered separately in the past are solved by a single method (that is, the method of the present invention).

本発明者は、特定の含水率及び特定の粒子径を有する鉱物原料に、高分子分散剤を、特定の条件で接触させることにより、鉱物原料の酸化による発熱を抑制し、さらに、鉱物原料の付着による障害(例えば、移送時及び保管時の根詰まり、鉱物原料の設備への付着)を抑制し、鉱物原料の安全性及び取り扱い性を向上させることができることを見出し、本発明を完成させた。 The present inventors brought a mineral raw material having a specific moisture content and a specific particle size into contact with a polymer dispersant under specific conditions to suppress heat generation due to oxidation of the mineral raw material. The inventors have found that it is possible to suppress obstacles due to adhesion (e.g. root clogging during transportation and storage, adhesion of mineral raw materials to equipment) and improve the safety and handleability of mineral raw materials, and completed the present invention. .

本発明の方法の対象となる鉱物原料の種類は、酸化により発熱するものであれば特に限定されないが、例えば、石炭、鉄、コークス、酸化鉄、石灰石、鉄鉱石、焼結鉱、製鉄所ダスト及びスラッジ等が挙げられる。これらは1種単独であっても2種以上の混合物であってもよい。本明細書において「鉱物原料」は、鉱物原料自体、及び、鉱物原料に対して用途に応じて粉砕、粒度調整、塊成、凝集及び造粒などの前処理を施したものも含む。例えば、「鉱物原料」が「石炭」の場合、石炭自体、及び石炭に対して用途に応じて粉砕、粒度調整、塊成、凝集及び造粒等の前処理を施したものも含む。
鉱物原料は、石炭、鉄、コークス及び酸化鉄からなる群より選択される少なくとも1種であることが好ましい。
The type of mineral raw material to be subjected to the method of the present invention is not particularly limited as long as it generates heat by oxidation. Examples include coal, iron, coke, iron oxide, limestone, iron ore, sintered ore, and steel mill dust and sludge. These may be used singly or as a mixture of two or more. As used herein, the term "mineral raw material" includes mineral raw materials themselves and mineral raw materials subjected to pretreatments such as pulverization, particle size adjustment, agglomeration, agglomeration, and granulation depending on the application. For example, when the "mineral raw material" is "coal", it includes the coal itself and the coal that has undergone pretreatment such as pulverization, particle size adjustment, agglomeration, agglomeration, and granulation depending on the application.
The mineral raw material is preferably at least one selected from the group consisting of coal, iron, coke and iron oxide.

本発明における鉱物原料は、含水率が1~30重量%である。一般的に、含水率が30重量%より大きい鉱物原料は、スラリー化し、用いられる頻度が極端に減少する。また、スラリー化した鉱物原料は流動性を有するため、設備等への付着が生じにくく、また、酸化による発熱や自然発火が生じにくい。すなわち、含水率が30重量%を超える鉱物原料は、設備障害を生じにくい状態にあるため、本発明における鉱物原料は含水率が30重量%以下である。また、鉱物原料の含水率が1重量%未満の場合は、乾燥工程で長時間の処理をしても、含水率を1重量%未満とすることが難しいためである。 The mineral raw material in the present invention has a water content of 1 to 30% by weight. In general, mineral raw materials with a water content of more than 30% by weight are slurried, and the frequency of use is extremely reduced. In addition, since the slurried mineral raw material has fluidity, it is less likely to adhere to equipment and the like, and is less likely to generate heat or spontaneously ignite due to oxidation. That is, the mineral raw material having a water content of more than 30% by weight is in a state where it is difficult for equipment failure to occur, so the mineral raw material in the present invention has a water content of 30% by weight or less. Also, if the water content of the mineral raw material is less than 1% by weight, it is difficult to reduce the water content to less than 1% by weight even if the drying process is performed for a long time.

(鉱物原料の含水率(含有水分率)の測定方法)
鉱物原料の含水率は、例えば、加熱乾燥法により測定することができ、具体的に赤外線水分計(株式会社ケツト科学研究所製、FD-230)によりその含水率を測定することができる。なお、本発明における含水率(Wi)は、一般の乾燥条件で、蒸発除去される水の含有率を示す自由含水率(Wf)と、乾燥がそれ以上進行しない平衡含水率(We)とから算出され、下記式(I)にて表される値である。
(式I) Wi=Wf+We
含水率の測定方法は、特に限定されず、水分含有量の測定において一般的に用いられる方法を使用することができる。例えば、石炭、コークスの水分含有量は、JIS M8812に準拠して測定することができる。また、鉄鉱石、石灰石、焼結鉱の水分含有量は、JIS M8705に準拠して測定することができる。そして、鉱物原料の含水率は、測定により得られた水分含有量から算出できる。
(Method for measuring water content (moisture content) of mineral raw materials)
The water content of the mineral raw material can be measured, for example, by a heat drying method. Specifically, the water content can be measured by an infrared moisture meter (FD-230, manufactured by Kett Scientific Laboratory Co., Ltd.). The water content (Wi) in the present invention is obtained from the free water content (Wf), which indicates the content of water removed by evaporation under general drying conditions, and the equilibrium water content (We), at which drying does not proceed any further. It is a value calculated and represented by the following formula (I).
(Formula I) Wi=Wf+We
A method for measuring the moisture content is not particularly limited, and a method generally used for measuring the moisture content can be used. For example, the moisture content of coal and coke can be measured according to JIS M8812. Moreover, the moisture content of iron ore, limestone, and sintered ore can be measured according to JIS M8705. Then, the water content of the mineral raw material can be calculated from the water content obtained by measurement.

本発明の方法に用いられる高分子分散剤は、鉱物原料に含まれる水分を分散させ、鉱物原料と接触した後の95重量%以上の高分子分散剤の粒子径が、接触前の高分子分散剤の平均粒子径に対し、110%以上500%未満となるものであれば特に限定されない。
鉱物原料と接触した後(すなわち本発明における接触工程後)の95重量%以上の高分子分散剤の粒子径が、鉱物原料と接触する前(すなわち本発明における接触工程前)の高分子分散剤の平均粒子径に対し、110%以下であると、鉱物原料と接触し、分散している高分子分散剤の保水量が低く、鉱物原料の酸化による発熱を充分に抑制できない可能性が生じる。
また、鉱物原料と接触した後(すなわち本発明における接触工程後)の95重量%以上の高分子分散剤の粒子径が、鉱物原料と接触する前(すなわち本発明における接触工程前)の高分子分散剤の平均粒子径に対し、500%以上であると、鉱物原料と接触し、分散している高分子分散剤の保水量が高まり、変形しやすくなり、流動により安定に粒子状で水分を分散できなくなる可能性がある。また、鉱物原料の含水率を抑えることにより粘着性を抑制しても、接触している高分子分散剤の保水量が高まり粘着性を有すると、鉱物原料のホッパー等の設備での詰まりや、ベルトコンベヤへの付着を招く可能性を生じ、取り扱い性、安全性及び設備効率の悪化を招く可能性がある。
本発明の方法に用いられる高分子分散剤は、鉱物原料に含まれる水分を分散させ、鉱物原料と接触した後(接触工程後)の95重量%以上の高分子分散剤の粒子径が、接触前(接触工程前)の高分子分散剤の平均粒子径に対し、115%以上500%未満となるものが好ましく、120%以上500%未満となるものがより好ましい。
本発明の方法に用いられる高分子分散剤は、鉱物原料に含まれる水分を分散させ、鉱物原料と接触した後(接触工程後)の95重量%以上の高分子分散剤の粒子径が、接触前(接触工程前)の高分子分散剤の平均粒子径に対し、110%以上450%未満となるものが好ましく、110%以上420%未満となるものがより好ましく、110%以上400%未満となるものがさらに好ましい。
なお、本発明において、上述の接触工程後の高分子分散剤の平均粒子径の好適な下限及び好適な上限は、適宜組み合わせることができる。
The polymer dispersant used in the method of the present invention disperses the water contained in the mineral raw material, and the particle size of 95% by weight or more of the polymer dispersant after contact with the mineral raw material is the same as the polymer dispersion before contact. It is not particularly limited as long as it is 110% or more and less than 500% of the average particle size of the agent.
95% by weight or more of the particle size of the polymer dispersant after contacting with the mineral raw material (i.e., after the contacting step in the present invention) is equal to that of the polymer dispersing agent before contacting with the mineral raw material (i.e., before the contacting step in the present invention). If it is 110% or less of the average particle size of , the water retention capacity of the polymer dispersant dispersed in contact with the mineral raw material is low, and there is a possibility that heat generation due to oxidation of the mineral raw material cannot be sufficiently suppressed.
In addition, 95% by weight or more of the particle size of the polymer dispersant after contacting with the mineral raw material (i.e., after the contacting step in the present invention) is the polymer before contacting with the mineral raw material (i.e., before the contacting step in the present invention). When the average particle size of the dispersant is 500% or more, the water retention capacity of the polymer dispersant dispersed in contact with the mineral raw material increases, the dispersant becomes easily deformed, and the particles stably retain moisture due to flow. Dispersion may not be possible. In addition, even if the stickiness is suppressed by suppressing the water content of the mineral raw material, if the water retention amount of the polymer dispersant in contact with the polymer dispersant is increased and the stickiness is obtained, the equipment such as the hopper of the mineral raw material will be clogged. It can lead to sticking to belt conveyors, which can lead to poor handling, safety and equipment efficiency.
The polymer dispersant used in the method of the present invention disperses the water contained in the mineral raw material, and after contact with the mineral raw material (after the contacting step), the particle size of the polymer dispersant is 95% by weight or more. It is preferably 115% or more and less than 500%, more preferably 120% or more and less than 500%, of the average particle size of the polymer dispersant before (before the contact step).
The polymer dispersant used in the method of the present invention disperses the water contained in the mineral raw material, and after contact with the mineral raw material (after the contacting step), the particle size of the polymer dispersant is 95% by weight or more. It is preferably 110% or more and less than 450%, more preferably 110% or more and less than 420%, and 110% or more and less than 400% of the average particle size of the polymer dispersant before (before the contact step). is more preferable.
In the present invention, the preferred lower limit and preferred upper limit of the average particle size of the polymer dispersant after the contacting step can be appropriately combined.

高分子分散剤は、例えば、ポリアクリル酸(塩)、ポリアクリル酸エステル、ポリアクリルアミド、ポリメタクリル酸(塩)、ポリメタクリル酸エステル、ポリアルキレンイミン、ポリオキシアルキレン、ポリマレイン酸、これらの単量体同士の重合体又はこれらの単量体と他の単量体との共重合体等である。 Polymeric dispersants include, for example, polyacrylic acid (salt), polyacrylic acid ester, polyacrylamide, polymethacrylic acid (salt), polymethacrylic acid ester, polyalkyleneimine, polyoxyalkylene, polymaleic acid, monomers thereof and copolymers of these monomers and other monomers.

ポリアクリル酸(塩)の単量体は、アクリル酸、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸アンモニウム等;ポリアクリル酸エステルの単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸-2-エチルヘキシル等;ポリメタクリル酸(塩)の単量体としては、メタクリル酸、メタクリル酸ナトリウム等;ポリメタクリル酸エステルの単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸-2-エチルヘキシル等;ポリアルキレンイミンの単量体としては、エチレンイミン、メチルエチレンイミン等;ポリオキシアルキレンの単量体としては、エチレンオキシド等;他の単量体としては、ビニルスルホン酸、スチレンスルホン酸、アクリルアミド、メタアクリルアミド、N-エチル(メタ)アクリルアミド、ビニルピリジン等である。 Polyacrylic acid (salt) monomers include acrylic acid, sodium acrylate, potassium acrylate, ammonium acrylate, etc.; polyacrylic acid ester monomers include methyl acrylate, ethyl acrylate, acrylic acid n -propyl, n-butyl acrylate, isobutyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, etc.; monomers of polymethacrylic acid (salts) such as methacrylic acid, sodium methacrylate, etc.; polymethacrylic acid Ester monomers include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hydroxyethyl methacrylate, 2-ethylhexyl methacrylate, etc.; polyalkyleneimine monomers Examples include ethyleneimine, methylethyleneimine, etc.; examples of polyoxyalkylene monomers include ethylene oxide, etc.; examples of other monomers include vinylsulfonic acid, styrenesulfonic acid, acrylamide, methacrylamide, N-ethyl (meth ) acrylamide, vinylpyridine and the like.

高分子分散剤は、ポリアクリル酸、ポリアクリル酸ナトリウム塩、ポリアクリル酸カルシウム塩及びポリアクリル酸アンモニウム塩からなる群より選択される少なくとも1種であることが好ましく、ポリアクリル酸ナトリウム塩及び/又はポリアクリル酸アンモニウム塩がより好ましい。
高分子分散剤は、1種単独で用いてもよく、2種以上を併用してもよい。
The polymer dispersant is preferably at least one selected from the group consisting of polyacrylic acid, sodium polyacrylate, calcium polyacrylate and ammonium polyacrylate, and sodium polyacrylate and/or Or polyacrylic acid ammonium salt is more preferable.
Polymer dispersants may be used alone or in combination of two or more.

また、添加される高分子分散剤の量は、特に限定されないが、例えば、鉱物原料100重量部に対し、0.02重量部以上1重量部以下であることが好ましい。高分子分散剤の量が、鉱物原料100質量部に対し、0.02重量部より少ない場合は、鉱物原料の含水率が10重量%以下にならず、含水率が高い鉱物原料の設備への付着が生じ、設備障害を抑制することができない場合がある。また、高分子分散剤の量が、鉱物原料100重量部に対し、1重量部より多い場合は、過剰に高分子分散剤が存在することとなり、鉱物原料の不純物の増加、また、費用対効果の面から好ましくない。
添加される高分子分散剤の量は、鉱物原料100重量部に対し、下限が0.02重量部であることが好ましく、下限が0.025重量部であることがより好ましい。
また、添加される高分子分散剤の量は、鉱物原料100重量部に対し、上限が1重量部であることが好ましく、0.8重量部であることがより好ましく、0.06重量部であることがさらに好ましい。本発明において、上述の高分子分散剤の量の好適な下限及び好適な上限は、適宜組み合わせることができる。
なお、添加される高分子分散剤の量は、鉱物原料の水分率に応じて決定することとしてもよい。鉱物原料の水分率は、降水や散水後からの日数や、貯蔵環境の湿度に応じて変化するため、測定された鉱物原料の水分率に応じて高分子分散剤の添加量を決定することが好ましい。
The amount of polymer dispersant to be added is not particularly limited, but for example, it is preferably 0.02 parts by weight or more and 1 part by weight or less with respect to 100 parts by weight of the mineral raw material. If the amount of the polymer dispersant is less than 0.02 parts by weight with respect to 100 parts by mass of the mineral raw material, the water content of the mineral raw material does not become 10% by weight or less, and the mineral raw material having a high water content cannot be used in equipment. Adhesion may occur and equipment failure may not be suppressed. In addition, when the amount of the polymer dispersant is more than 1 part by weight with respect to 100 parts by weight of the mineral raw material, the polymer dispersant is excessively present, which increases impurities in the mineral raw material, and is cost effective. It is not preferable from the aspect of
The lower limit of the amount of polymer dispersant to be added is preferably 0.02 parts by weight, more preferably 0.025 parts by weight, per 100 parts by weight of the mineral raw material.
The upper limit of the amount of the polymer dispersant to be added is preferably 1 part by weight, more preferably 0.8 part by weight, and 0.06 part by weight with respect to 100 parts by weight of the mineral raw material. It is even more preferable to have In the present invention, the preferred lower limit and preferred upper limit of the amount of the polymeric dispersant described above can be combined as appropriate.
The amount of polymer dispersant to be added may be determined according to the moisture content of the mineral raw material. Since the moisture content of mineral raw materials changes depending on the number of days after precipitation or watering, and the humidity of the storage environment, it is possible to determine the amount of polymer dispersant to be added according to the measured moisture content of mineral raw materials. preferable.

本発明の方法は、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、上述の高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程を有し、該接触工程後の分散剤含有鉱物原料(高分子分散剤を含有する鉱物原料)の95重量%以上の含水率が、1~12重量%となるように、上記鉱物原料と上記高分子分散剤とを接触させるものである。
接触工程後の分散剤含有鉱物原料の含水率が1~12重量%となることにより、鉱物原料の移送時及び保管時の自然酸化や発熱を抑制し、並びに、移送時及び保管時の鉱物原料の取扱い性を向上させることができる。
なお、鉱物原料の移送時及び保管時の自然酸化や発熱をより抑制する観点から、接触工程後の分散剤含有鉱物原料の含水率は、3%以上であることが好ましく、5%以上であることがより好ましい。
また、移送時及び保管時の鉱物原料の取扱い性をより向上させる観点から、接触工程後の分散剤含有鉱物原料の含水率は、11%以下であることが好ましく、10%以下であることがより好ましい。
なお、本発明において、上述の接触工程後の分散剤含有鉱物原料の含水率の好適な下限及び好適な上限は、適宜組み合わせることができる。
In the method of the present invention, a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is brought into contact with the above-described polymer dispersant to obtain a dispersant-containing mineral raw material. so that the water content of 95% by weight or more of the dispersant-containing mineral raw material (mineral raw material containing a polymer dispersant) after the contacting step is 1 to 12% by weight. The raw material and the polymer dispersant are brought into contact with each other.
The water content of the dispersant-containing mineral raw material after the contacting step is 1 to 12% by weight, thereby suppressing natural oxidation and heat generation during transportation and storage of the mineral raw material, and during transportation and storage. It is possible to improve the handleability of.
From the viewpoint of further suppressing natural oxidation and heat generation during transportation and storage of the mineral raw material, the water content of the dispersant-containing mineral raw material after the contacting step is preferably 3% or more, and is 5% or more. is more preferable.
Further, from the viewpoint of further improving the handling properties of the mineral raw material during transportation and storage, the water content of the dispersant-containing mineral raw material after the contacting step is preferably 11% or less, more preferably 10% or less. more preferred.
In the present invention, the preferred lower limit and preferred upper limit of the moisture content of the dispersant-containing mineral raw material after the contacting step can be combined as appropriate.

本発明の方法における高分子分散剤は、平均粒子径が5~1400μmであることが好ましい。粒子径が8mm以下の粒子を70%以上含む鉱物原料に、平均粒子径が5~1400μmである高分子分散剤を接触させることにより、上記鉱物原料の含水率を効果的に低減でき、自然酸化や発熱抑制に対して充分な効果が得られるためである。
高分子分散剤の平均粒子径が5μmより小さいと、鉱物原料が含有する水分の分散性はよくなるが、鉱物原料の自然酸化や発熱の抑制に関しては、鉱物原料の含水率に対する高分子分散剤の比表面積が大きくなり、高分子分散剤表面からの蒸発により水分の保持が不充分となる可能性がある。よって、期待する自然酸化や発熱の抑制効果が充分に得られない可能性が生じる。
また、高分子分散剤の平均粒子径が1400μmより大きいと高分子分散剤の吸水量が大きいので水分の保持能力は高くなるが、高分子分散剤の吸水量が多くなり鉱物原料が含有する水分の分散性が悪くなる。よって、期待する均一な自然酸化や発熱の抑制効果が充分に得られない可能性が生じる。
高分子分散剤の平均粒子径は、篩い分け法による体積平均粒子径であり、例えば、JIS 8815に準拠した測定方法を用いて測定することができる。
本発明の方法における高分子分散剤は、平均粒子径が150μm以上であることがより好ましい。また、平均粒子径が900μ以下であることがより好ましい。本発明において、上記高分子分散剤の平均粒子径の好適な下限及び好適な上限は、適宜組み合わせることができる。
The polymeric dispersant used in the method of the present invention preferably has an average particle size of 5 to 1400 μm. By bringing a polymer dispersant having an average particle size of 5 to 1400 μm into contact with a mineral raw material containing 70% or more of particles having a particle size of 8 mm or less, the water content of the mineral raw material can be effectively reduced, and natural oxidation can be performed. This is because sufficient effects can be obtained for heat generation suppression.
When the average particle size of the polymer dispersant is smaller than 5 µm, the dispersibility of the water contained in the mineral raw material is improved. The specific surface area increases, and evaporation from the surface of the polymer dispersant may result in insufficient retention of moisture. Therefore, there is a possibility that the expected effects of suppressing natural oxidation and heat generation cannot be sufficiently obtained.
Further, when the average particle size of the polymer dispersant is larger than 1400 μm, the water absorption of the polymer dispersant is large and the water retention capacity is high. dispersibility becomes worse. Therefore, there is a possibility that expected uniform spontaneous oxidation and heat generation suppressing effect cannot be sufficiently obtained.
The average particle size of the polymeric dispersant is the volume average particle size determined by a sieving method, and can be measured using a measuring method according to JIS 8815, for example.
More preferably, the polymer dispersant used in the method of the present invention has an average particle size of 150 μm or more. Moreover, it is more preferable that the average particle diameter is 900 μm or less. In the present invention, the preferred lower limit and preferred upper limit of the average particle size of the polymeric dispersant can be combined as appropriate.

本発明の方法は、鉱物原料に起因する設備障害が、鉱物原料の自然発火、移送時及び保管時の根詰まり、並びに、鉱物原料の設備への付着からなる群より選択される少なくとも1種であることが好ましい。
本発明における設備とは、例えば、採掘及び選鉱場所から、原料ヤード等の鉱物原料の保管場所を経て、鉱物原料を使用する設備まで、所定のラインで鉱物原料を送り込む移送ライン内の設備を指し、船倉、トラック、貨車の荷台、原料ヤード、配管、ベルトコンベヤ、ベルトコンベヤ乗継部、コンベヤチェーン、シュート、ホッパー、サイロ、配合槽、粉砕機、調湿炭設備、装炭車等を示す。なおここでは、シュート、ホッパー、サイロ等の一時的に貯蔵する機能を有するものも含む。
In the method of the present invention, the equipment failure caused by the mineral raw material is at least one selected from the group consisting of spontaneous ignition of the mineral raw material, root clogging during transportation and storage, and adhesion of the mineral raw material to the equipment. Preferably.
The facility in the present invention refers to, for example, a facility in a transfer line that feeds mineral raw materials in a predetermined line from a mining and ore processing site, through a storage location for mineral raw materials such as a raw material yard, to a facility that uses mineral raw materials. , holds, trucks, wagon beds, raw material yards, pipes, belt conveyors, belt conveyor joints, conveyor chains, chutes, hoppers, silos, blending tanks, pulverizers, moisture conditioning equipment, coal charging vehicles, etc. Note that here, chutes, hoppers, silos, etc., which have a function of temporary storage are also included.

本発明の方法において、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程は、上述の本発明における設備、及び、1つの設備と他の設備とをつなぐ移送ラインのいずれに位置してもよく、特に限定されるものではないが、鉱物原料の保管場所、鉱物原料の保管場所からの移送ラインにて、高分子分散剤と鉱物原料とを接触させることが好ましい。これにより、ベルトコンベヤ等の移送ラインの乗り継ぎの度に、鉱物原料と高分子分散剤とが混合され、鉱物原料中に高分子分散剤が分散した状態とすることができる。
なお、鉱物原料の保管場所、保管容器で鉱物原料と高分子分散剤とを接触させる場合は、適宜攪拌混合することが好ましい。
In the method of the present invention, a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is brought into contact with a polymer dispersant to obtain a dispersant-containing mineral raw material. The process may be located in any of the facilities in the present invention described above and the transfer line connecting one facility and another facility, and is not particularly limited, but is a storage place for mineral raw materials, mineral raw materials It is preferable that the polymeric dispersant and the mineral raw material are brought into contact with each other on the transfer line from the storage location of . As a result, the mineral raw material and the polymeric dispersant are mixed each time the transfer line such as a belt conveyor is transferred, and the polymeric dispersant can be dispersed in the mineral raw material.
When the mineral raw material and the polymer dispersant are brought into contact with each other in the place where the mineral raw material is stored or in the storage container, it is preferable to stir and mix them appropriately.

また、高分子分散剤と鉱物原料とを接触させる方法は、特に限定されず、例えば、散布、エアー圧送、スクリューフィーダー、などが挙げられる。
また、高分子分散剤と鉱物原料とを混合する方法は、特に限定されず、重機を用いて混合する方法、ベルトコンベヤの乗継部の衝撃を利用して混合する方法、ミキサーなどの混合装置を用いて混合する方法、などが挙げられる。
The method of bringing the polymer dispersant and the mineral raw material into contact is not particularly limited, and examples thereof include spraying, air pressure feeding, screw feeder, and the like.
In addition, the method of mixing the polymer dispersant and the mineral raw material is not particularly limited, and a method of mixing using a heavy machine, a method of mixing using the impact of a transfer section of a belt conveyor, and a mixing device such as a mixer. and the like.

本願発明の方法は、接触工程と同時、又は、接触工程の後に、さらに、分散剤含有鉱物原料(高分子分散剤を含有する鉱物原料)に対し、水を添加することにより、接触工程後の95重量%以上の高分子分散剤の粒子径が、接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、水分量を調整する水分調整工程を有してもよい。
また、上記水分調整工程は、接触工程後の95重量%以上の高分子分散剤の粒子径が、115%以上となるように分散剤含有鉱物原料に水を添加することが好ましく、200%以上となるように水を添加することがより好ましい。
また、上記水分調整工程は、接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、3%以上となるように分散剤含有鉱物原料に水を添加することが好ましく、5%以上となるように水を添加することがより好ましい。
また、上記水分調整工程は、上述の好適な下限及び好適な上限を適宜組み合わせた範囲に水分量を調整することができる。
水分調整工程は、本発明の設備障害抑制方法において、1回以上実施されてもよく、例えば、船倉、トラック、貨車の荷台、原料ヤード、配管、ベルトコンベヤ、ベルトコンベヤ乗継部、コンベヤチェーン、シュート、ホッパー、サイロ、配合槽、粉砕機、調湿炭設備、装炭車等の設備にて実施されることが好ましい。
In the method of the present invention, water is added to the dispersant-containing mineral raw material (mineral raw material containing a polymer dispersant) at the same time as the contacting step or after the contacting step. 95% by weight or more of the polymer dispersant has a particle size of 110% or more and less than 500% of the average particle size of the polymer dispersant before the contacting step, and 95% by weight or more of the dispersant-containing mineral after the contacting step. A water content adjustment step of adjusting the water content so that the raw material has a water content of 1 to 12% by weight may be included.
In addition, in the moisture adjustment step, water is preferably added to the dispersant-containing mineral raw material so that the particle size of the polymer dispersant, which accounts for 95% by weight or more after the contact step, becomes 115% or more, and preferably 200% or more. It is more preferable to add water so that
In addition, in the moisture adjustment step, water is added to the dispersant-containing mineral raw material so that the water content of the dispersant-containing mineral raw material of 95% by weight or more after the contacting step becomes 3% or more, preferably 5%. It is more preferable to add water so as to achieve the above.
In addition, the water content adjustment step can adjust the water content within a range in which the preferred lower limit and the preferred upper limit are appropriately combined.
The moisture adjustment step may be performed one or more times in the method for suppressing equipment failure of the present invention. It is preferably carried out in facilities such as chutes, hoppers, silos, blending tanks, pulverizers, moisture conditioning facilities, and coal charging vehicles.

本発明によると、水分が分散された状態で保持されている分散剤含有鉱物原料を得ることができる。本発明は、鉱物原料と高分子分散剤とを含む分散剤含有鉱物原料の製造方法であって、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させる接触工程を有し、上記接触工程において、上記接触工程後の95重量%以上の高分子分散剤の粒子径が、上記接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、上記接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、上記鉱物原料と上記高分子分散剤とを接触させることを特徴とする分散剤含有鉱物原料の製造方法でもある。
上述の通り、鉱物原料は、含水率が低いと自然発火する可能性が高くなり、一方で含水率が高いと、設備への付着が生じ、保管時及び移送時の取り扱い性が悪化し、設備効率及び安全性が低下するという課題を有している。本発明の製造方法によると、鉱物原料に保持されていた水分が高分子分散剤により分散され、鉱物原料自体の含水率が1~12重量%であって、鉱物原料の周囲に水分を保持する高分子分散剤が分散された状態の鉱物原料を得ることができるため、鉱物原料の酸化による発熱、鉱物原料の付着による取り扱い性の悪化が抑制された、分散剤含有鉱物原料を得ることができる。
According to the present invention, a dispersant-containing mineral raw material in which water is kept dispersed can be obtained. The present invention is a method for producing a dispersant-containing mineral raw material containing a mineral raw material and a polymer dispersant, which contains 70% or more by weight of particles having a water content of 1 to 30% by weight and a particle diameter of 8 mm or less. A mineral raw material has a contacting step of contacting a polymer dispersant, and in the contacting step, the particle size of 95% by weight or more of the polymer dispersing agent after the contacting step is equal to that of the polymer dispersing agent before the contacting step. 110% or more and less than 500% with respect to the average particle size of the mineral raw material, and the water content of the dispersant-containing mineral raw material of 95% by weight or more after the contacting step is 1 to 12% by weight. It is also a method for producing a dispersant-containing mineral raw material, characterized by bringing it into contact with a polymer dispersant.
As mentioned above, if the water content of mineral raw materials is low, the possibility of spontaneous combustion increases, while if the water content is high, it will adhere to equipment, making it difficult to handle during storage and transportation, and It has the problem of reduced efficiency and safety. According to the production method of the present invention, the water retained in the mineral raw material is dispersed by the polymer dispersant, the water content of the mineral raw material itself is 1 to 12% by weight, and the water is retained around the mineral raw material. Since it is possible to obtain the mineral raw material in which the polymer dispersant is dispersed, it is possible to obtain the dispersant-containing mineral raw material in which heat generation due to oxidation of the mineral raw material and deterioration of handling properties due to adhesion of the mineral raw material are suppressed. .

本発明の分散剤含有鉱物原料の製造方法における、高分子分散剤、鉱物原料、接触工程後の高分子分散剤及び接触工程後の分散剤含有鉱物原料の態様、並びに、これらの好適な態様は、本発明の設備障害抑制方法における高分子分散剤、鉱物原料、接触工程後の高分子分散剤及び接触工程後の分散剤含有鉱物原料の態様、並びに、これらの好適な態様と同じである。
また、本発明の分散剤含有鉱物原料の製造方法における、高分子分散剤と鉱物原料との接触方法、接触位置は、本発明の設備障害抑制方法におけるものと同じである。
Embodiments of the polymeric dispersant, the mineral raw material, the polymeric dispersant after the contacting step, and the dispersing agent-containing mineral raw material after the contacting step in the method for producing a dispersant-containing mineral raw material of the present invention, and preferred aspects thereof , the aspects of the polymer dispersant, the mineral raw material, the polymeric dispersant after the contacting step, and the dispersant-containing mineral raw material after the contacting step in the method for suppressing equipment failure of the present invention, and preferred aspects thereof.
In the method for producing a dispersant-containing mineral raw material of the present invention, the method and position of contact between the polymer dispersant and the mineral raw material are the same as in the method for suppressing equipment failure of the present invention.

以下に本発明の実施例を示し、更に具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.

<試験例1:高分子分散剤の平均粒子径における有効性確認試験>
高分子分散剤(購入先:片山ナルコ株式会社 Nalco_9922)について、乾燥時の平均粒子径を基準として、水分保有時の粒子径が下記表1に記載の比率となる場合の変形率を測定した。上記高分子分散剤の平均粒子径の比率(%)は、105℃、2時間以上の乾燥により水分が蒸発した時の平均粒子径(B)と、水分を含む鉱物原料との接触により増大する平均粒子径(W)とを用い、下記式IIにより算出した。
(式II) 平均粒子径の比率(%)=W×100/B
変形率は、JIS K7181に準拠して測定した。容器に充填した20ccの上記高分子分散剤を予備負荷として、初期に1/10の荷重で粒子間の空隙をなくすために填圧を行ない、測定条件を揃えた後に1kg/cmの圧力で圧縮試験を行ない、填圧後の容器内の分散剤の粒子の高さ(L)に対し、変形後の分散剤の高さ(L)に対する変形率(ひずみ、(L-L)/L)の測定を行なった。変形率は%に換算し、粒子の変形強度の指標とした。同時に試験後の荷重ロッドへの分散剤の粒子の付着の有無を確認し、表面粘着性の有無を評価した。得られた結果を表1に示す。
<Test Example 1: Effectiveness Confirmation Test for Average Particle Size of Polymer Dispersant>
Regarding the polymer dispersant (purchased by Nalco_9922 from Katayama Nalco Co., Ltd.), the deformation rate was measured when the particle size when containing water was the ratio shown in Table 1 below, based on the average particle size when dry. The ratio (%) of the average particle size of the polymer dispersant is the average particle size (B) when water is evaporated by drying at 105°C for 2 hours or more, and the contact with the mineral raw material containing water increases. It was calculated by the following formula II using the average particle diameter (W).
(Formula II) Average particle size ratio (%) = W x 100/B
The deformation ratio was measured according to JIS K7181. A container was filled with 20 cc of the polymer dispersant as a preload, and a pressure of 1 kg/cm 2 was applied after adjusting the measurement conditions by applying a load of 1/10 at the initial stage to eliminate voids between the particles. A compression test was performed, and the deformation ratio (strain, (L 0 - L) / L 0 ) was measured. The deformation rate was converted into % and used as an index of the deformation strength of the particles. At the same time, the presence or absence of adhesion of dispersant particles to the load rod after the test was confirmed to evaluate the presence or absence of surface tackiness. Table 1 shows the results obtained.

(Nalco_9922)
成分 : ポリアクリル酸系ポリマー
販売元 : Ecolab,Inc.
最大吸水率 : 280%
平均粒子径 : 99%以上が1mm以下
(Nalco_9922)
Ingredients: Polyacrylic acid-based polymer Distributor: Ecolab, Inc.
Maximum water absorption: 280%
Average particle size: 99% or more are 1 mm or less

Figure 2022156426000001
Figure 2022156426000001

表1の結果から、水分を含む高分子分散剤の平均粒子径の、乾燥状態の高分子分散剤の平均粒子径に対する比率が500%以上大きくなると、変形率も大きくなり、高分子分散剤が軟化することで粘着性が生じ、ゲル化が進行していることを確認した。このため高分子分散剤の流動性が向上し、偏りが生じやすく、水分を安定に保持できなくなり、分散剤としての充分な効果を発揮できないことがわかった。 From the results in Table 1, when the ratio of the average particle size of the polymer dispersant containing water to the average particle size of the polymer dispersant in a dry state increases by 500% or more, the deformation ratio increases, and the polymer dispersant increases. It was confirmed that tackiness was generated by softening and gelation was progressing. As a result, it has been found that the fluidity of the polymer dispersant is improved, the dispersant tends to be biased, the water cannot be stably retained, and a sufficient effect as a dispersant cannot be exhibited.

<実施例1:亜瀝青炭粉末を用いた温度上昇抑制効果試験>
下記表2に記載の粒子径分布を有する某製鉄所の亜瀝青炭200gを、温風で2時間乾燥させた後、初期含水率を測定し、350ccの容量の容器に取り分け、下記表3に示す含水率となるように高分子分散剤(Nalco_9922)と水、又は、水のみをそれぞれ添加し、実施例1-1及び1-2並びに比較例1-1~1-4に係る亜瀝青炭A~Fを得た。次に得られた亜瀝青炭A~Fを下記条件にて加熱し、加熱により亜瀝青炭が150℃及び200℃に到達した時間(h)を測定した。
(加熱条件)
容器内には3本の熱電対を試料内部の温度測定用に、試料の中心に近い側面や底面や表面から等間隔を保つ部分の内部中央に1~1.5cmの間隔を取って2本、試料内側表面の温度測定用に容器の側面から0.5cm内側の試料の高さの中央部分に1本を設置した。次に容器の大きさに合わせた赤外線加熱器を用いて容器の外部から加熱した。加熱時の温度のコントロールは、上記容器内の試料の内部中央と内側表面に設置した熱電対を用いて、試料の内部温度と内側表面温度を測定し、試料の内部中央部分の2本の熱電対の平均温度の上昇により、試料の内側表面の温度が試料の内部中央温度に対し温度差が10℃となった時に加熱器の電源がオンになり、温度差が20℃となった時にオフになる調整を行ない、内側表面の温度が内部中央の温度より10~20℃高い温度となるように、加熱温度を調整した。加熱により亜瀝青炭が150℃及び200℃に到達した時間(h)を表3に示す。なお、温風で2時間乾燥させた後の亜瀝青炭の初期含水率は、3%であった。
<Example 1: Temperature rise suppression effect test using sub-bituminous coal powder>
200 g of sub-bituminous coal from a certain ironworks having a particle size distribution shown in Table 2 below was dried with warm air for 2 hours, and then the initial moisture content was measured, placed in a container with a capacity of 350 cc, and shown in Table 3 below. A polymer dispersant (Nalco_9922) and water, or only water was added to obtain a water content, and sub-bituminous coal A to each of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-4 were prepared. got F. Next, the obtained sub-bituminous coals A to F were heated under the following conditions, and the time (h) for the sub-bituminous coals to reach 150° C. and 200° C. by heating was measured.
(Heating conditions)
For temperature measurement inside the sample, three thermocouples are placed in the container. , one was placed in the middle of the height of the sample, 0.5 cm inside from the side of the container for the temperature measurement of the inner surface of the sample. Next, the container was heated from the outside using an infrared heater adapted to the size of the container. The temperature during heating is controlled by measuring the internal temperature and inner surface temperature of the sample using thermocouples installed at the center and inner surface of the sample in the container, and measuring the temperature of the inner surface of the sample. Due to the increase in the average temperature of the pair, the heater is turned on when the temperature of the inner surface of the sample has a temperature difference of 10°C with respect to the internal center temperature of the sample, and turned off when the temperature difference is 20°C. The heating temperature was adjusted so that the inner surface temperature was 10 to 20° C. higher than the internal center temperature. Table 3 shows the time (h) for the sub-bituminous coal to reach 150° C. and 200° C. by heating. The initial moisture content of the sub-bituminous coal after being dried with warm air for 2 hours was 3%.

Figure 2022156426000002
Figure 2022156426000002

Figure 2022156426000003
Figure 2022156426000003

上記表3の結果から、150℃に到達するまでに30時間以上を要した亜瀝青炭A及びBは、用いた高分子分散剤の平均粒子径の比率が118%及び129%であった。
150℃に到達するまでに5.8時間だった亜瀝青炭Cの結果から、用いた高分子分散剤の水分保有後の平均粒子径の比率が、乾燥時の高分子分散剤の平均粒子径(亜瀝青炭と接触する前の高分子分散剤の平均粒子径)に対し110%未満の場合は、150℃に到達するまでの時間が5.8時間と短く、発熱抑制効果を充分に得ることができないことを確認した。(比較例1-1)。
また、比較例1-2及び1-3の結果から、亜瀝青炭の含水率が7%、11%と湿潤状態にあっても、高分子分散剤が添加されていない亜瀝青炭D及びEは、150℃に到達するまでの時間が、短く、発熱抑制効果を充分に得ることができなかった。
From the results in Table 3 above, sub-bituminous coals A and B, which required 30 hours or more to reach 150° C., had average particle size ratios of 118% and 129% of the polymer dispersants used.
From the result of sub-bituminous coal C, which took 5.8 hours to reach 150 ° C., the ratio of the average particle size of the polymer dispersant used after retaining moisture was the average particle size of the polymer dispersant when dried ( When it is less than 110% of the average particle size of the polymer dispersant before contact with subbituminous coal), the time to reach 150 ° C. is as short as 5.8 hours, and the heat generation suppressing effect can be sufficiently obtained. I confirmed that it is not possible. (Comparative Example 1-1).
Further, from the results of Comparative Examples 1-2 and 1-3, sub-bituminous coals D and E, to which no polymer dispersant was added, even when the moisture content of the sub-bituminous coal was 7% and 11%, were in a wet state. The time required to reach 150° C. was short, and a sufficient heat generation suppressing effect could not be obtained.

<実施例2:酸化鉄を含むダストを用いた温度上昇抑制効果試験>
下記表4に記載の粒子径分布を有する転炉ガスのダスト成分(Fe;50%、酸化鉄(FeO、Fe);40%、その他成分(Ca,Si,Mn,Mg等;10%))200gを、温風で2時間乾燥させた後、初期含水率を測定し、350ccの容量の容器に取り分け、下記表5に示す含水率となるように高分子分散剤(Nalco_9922)と水、又は、水のみをそれぞれ添加し、実施例2-1及び2-2並びに比較例2-1~2-3に係るダストG~Kを得た。
亜瀝青炭A~Fの代わりに、ダストG~Kを用いたこと以外は、実施例1と同様の条件で温度上昇抑制効果試験を実施し、加熱によりダストが150℃及び200℃に到達した時間(h)を測定した。得られた結果を下記表5に示す。なお、温風で2時間乾燥させた後のダストの初期含水率は、2.5%であった。
<Example 2: Temperature rise suppression effect test using dust containing iron oxide>
Dust components of converter gas having particle size distribution shown in Table 4 below (Fe; 50%, iron oxides (FeO, Fe 2 O 3 ); 40%, other components (Ca, Si, Mn, Mg, etc.; 10 %)) was dried with warm air for 2 hours, and then the initial moisture content was measured. Water or only water was added to obtain dusts G to K according to Examples 2-1 and 2-2 and Comparative Examples 2-1 to 2-3.
A temperature rise suppression effect test was conducted under the same conditions as in Example 1 except that dusts G to K were used instead of subbituminous coals A to F, and the time required for the dust to reach 150 ° C. and 200 ° C. by heating. (h) was measured. The results obtained are shown in Table 5 below. The initial moisture content of the dust after drying with warm air for 2 hours was 2.5%.

Figure 2022156426000004
Figure 2022156426000004

Figure 2022156426000005
Figure 2022156426000005

上記表5の結果から、150℃に到達するまでに12時間以上を要したダストG及びHは、用いた高分子分散剤の水分保有後の平均粒子径の比率が、乾燥時の高分子分散剤の平均粒子径(ダストと接触する前の高分子分散剤の平均粒子径)に対し116%及び124%であった。
一方、高分子分散剤を用いなかった場合、ダストの含水率が6%、10%と湿潤状態にあっても150℃に到達するまでに要する時間が3時間以内であった(比較例2-1~2-3)。
From the results in Table 5 above, for Dusts G and H, which required 12 hours or more to reach 150°C, the ratio of the average particle size after retaining moisture of the polymer dispersant used was They were 116% and 124% of the average particle size of the agent (average particle size of the polymeric dispersant before contact with dust).
On the other hand, when the polymer dispersant was not used, the time required to reach 150 ° C. was within 3 hours even when the moisture content of the dust was 6% and 10% in a wet state (Comparative Example 2- 1-2-3).

以上の試験例1の結果から、鉱物原料と接触した後の高分子分散剤の平均粒子径の比率が、接触前の高分子分散剤の平均粒子径に対し500%以上になると、高分子分散剤の変形による粘着性が生じることを確認した。
また、実施例1及び実施例2の結果から、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料と高分子分散剤とを接触させ、接触後の高分子分散剤の平均粒子径が、接触前の高分子分散剤の平均粒子径に対し、110%以上であることにより、鉱物原料の発熱を効果的に抑制できることを確認した。
すなわち、試験例1、実施例1及び2の結果から、含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程を有し、接触工程において、接触工程後の95重量%以上の高分子分散剤の粒子径が、接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、前記鉱物原料と前記高分子分散剤とを接触させることにより、鉱物原料の発熱と付着が抑制されることを確認した。

From the results of Test Example 1 above, when the ratio of the average particle size of the polymer dispersant after contact with the mineral raw material is 500% or more with respect to the average particle size of the polymer dispersant before contact, the polymer dispersion It was confirmed that tackiness was caused by deformation of the agent.
Further, from the results of Examples 1 and 2, a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is brought into contact with a polymer dispersant. It was confirmed that heat generation of the mineral raw material can be effectively suppressed by setting the average particle size of the polymer dispersant after contact to be 110% or more of the average particle size of the polymer dispersant before contact.
That is, from the results of Test Example 1, Examples 1 and 2, a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less is brought into contact with a polymer dispersant. , a contacting step for obtaining a dispersant-containing mineral raw material, and in the contacting step, the particle size of 95% by weight or more of the polymer dispersant after the contacting step is greater than the average particle size of the polymer dispersing agent before the contacting step. , 110% or more and less than 500%, and the water content of 95% by weight or more of the dispersant-containing mineral raw material after the contacting step is 1 to 12% by weight. It was confirmed that heat generation and adhesion of mineral raw materials were suppressed by increasing the temperature.

Claims (4)

鉱物原料に起因する設備障害の抑制方法であって、
含水率が1~30重量%であり、粒子径が8mm以下の粒子を70重量%以上含む鉱物原料に、高分子分散剤を接触させ、分散剤含有鉱物原料を得る接触工程を有し、
前記接触工程において、前記接触工程後の95重量%以上の高分子分散剤の粒子径が、前記接触工程前の高分子分散剤の平均粒子径に対し、110%以上500%未満となり、前記接触工程後の95重量%以上の分散剤含有鉱物原料の含水率が、1~12重量%となるように、前記鉱物原料と前記高分子分散剤とを接触させることを特徴とする設備障害抑制方法。
A method for suppressing equipment failure caused by mineral raw materials,
a contacting step of contacting a mineral raw material having a water content of 1 to 30% by weight and containing 70% by weight or more of particles having a particle diameter of 8 mm or less with a polymer dispersant to obtain a dispersant-containing mineral raw material;
In the contact step, the particle size of 95% by weight or more of the polymer dispersant after the contact step is 110% or more and less than 500% of the average particle size of the polymer dispersant before the contact step, and the contact A method for suppressing equipment failure, comprising contacting the mineral raw material with the polymer dispersant so that the dispersant-containing mineral raw material having a water content of 95% by weight or more after the process has a water content of 1 to 12% by weight. .
接触工程前の高分子分散剤の平均粒子径が、5~1400μmである請求項1に記載の設備障害抑制方法。 2. The method for suppressing equipment failure according to claim 1, wherein the polymer dispersant has an average particle size of 5 to 1400 μm before the contacting step. 鉱物原料に起因する設備障害が、鉱物原料の自然発火、移送時及び保管時の根詰まり、並びに、鉱物原料の設備への付着からなる群より選択される少なくとも1種である請求項1又は2記載の設備障害抑制方法。 2. The equipment failure caused by the mineral raw material is at least one selected from the group consisting of spontaneous ignition of the mineral raw material, root clogging during transportation and storage, and adhesion of the mineral raw material to the equipment. Equipment failure suppression method described. 鉱物原料が、石炭、鉄、コークス及び酸化鉄からなる群より選択される少なくとも1種である請求項1、2又は3に記載の設備障害抑制方法。 4. The equipment failure suppression method according to claim 1, 2 or 3, wherein the mineral raw material is at least one selected from the group consisting of coal, iron, coke and iron oxide.
JP2021060112A 2021-03-31 2021-03-31 Method for suppressing facility disorder due to mineral raw material Pending JP2022156426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021060112A JP2022156426A (en) 2021-03-31 2021-03-31 Method for suppressing facility disorder due to mineral raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060112A JP2022156426A (en) 2021-03-31 2021-03-31 Method for suppressing facility disorder due to mineral raw material

Publications (1)

Publication Number Publication Date
JP2022156426A true JP2022156426A (en) 2022-10-14

Family

ID=83559135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060112A Pending JP2022156426A (en) 2021-03-31 2021-03-31 Method for suppressing facility disorder due to mineral raw material

Country Status (1)

Country Link
JP (1) JP2022156426A (en)

Similar Documents

Publication Publication Date Title
JP4887728B2 (en) Granulation method of sintering raw material
JP2009074105A (en) Method for manufacturing carbonaceous-material-containing briquette by using oil-containing dust in ironworks
JP5762403B2 (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
JPH013038A (en) Method for producing solidified material using fluidized bed combustion ash as raw material
JPH0419180B2 (en)
EP1051242A1 (en) Binder formulation used in forming mineral pellets
JP2022156426A (en) Method for suppressing facility disorder due to mineral raw material
JP3635253B2 (en) Method for producing pellet for reducing furnace, and method for reducing metal oxide
WO2018066333A1 (en) Method for preventing adhesion and clogging of mineral raw material
JP5398820B2 (en) Processing method of granulated material for sintering
JPH1112624A (en) Formation of reduced iron-producing raw material
RU2016048C1 (en) Fuel briquette for metallurgical processes and process for manufacturing thereof
Hycnar et al. Conditions for the preparation of stable ferrosilicon dust briquettes
JP6307997B2 (en) Pretreatment method of sintering raw materials
AU2017388174B2 (en) Sintered ore manufacturing method
JP5167641B2 (en) Method for producing sintered ore
RU2809893C1 (en) Method for producing granular iron-containing slag
JP4204789B2 (en) Method for granulating raw materials for iron making
JP2016176121A (en) Method for producing sintered ore
JP7207153B2 (en) agglomerates
JP2012082456A (en) Method for manufacturing raw material granule for iron making
JP6825738B1 (en) How to prevent adhesion and clogging of mineral raw materials
JP4837850B2 (en) Granulation treatment agent for iron making and granulation treatment method using the same
WO2015178433A1 (en) Modified coal storage method
WO2015049961A1 (en) Method for producing modified coal, and modified coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240307