JP2018127671A - Refining method for molten steel - Google Patents

Refining method for molten steel Download PDF

Info

Publication number
JP2018127671A
JP2018127671A JP2017021357A JP2017021357A JP2018127671A JP 2018127671 A JP2018127671 A JP 2018127671A JP 2017021357 A JP2017021357 A JP 2017021357A JP 2017021357 A JP2017021357 A JP 2017021357A JP 2018127671 A JP2018127671 A JP 2018127671A
Authority
JP
Japan
Prior art keywords
hot metal
concentration
index
oxygen
refining method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021357A
Other languages
Japanese (ja)
Inventor
慎平 小野
Shinpei Ono
慎平 小野
進 工藤
Susumu Kudo
進 工藤
靖久 立入
Yasuhisa Tachiiri
靖久 立入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017021357A priority Critical patent/JP2018127671A/en
Publication of JP2018127671A publication Critical patent/JP2018127671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To control slag foaming and prevent slopping which induces operation troubles and deteriorates yield in a desiliconizing process of molten steel of high Si concentration.SOLUTION: There is provided a refining method for molten steel which is subjected to desiliconization treatment by charging a desiliconizing agent into molten steel of high Si concentration in a refining vessel. (i) A desiliconizing agent having a gaseous oxygen ratio Rof 0.70 or more is charged into molten steel having a forming index S of 0.06 or more so that the foaming index S decreases to less than 0.06, where Rindicates a ratio of gaseous oxygen to oxygen in the desiliconizing agent. (ii) Subsequently, a required amount of the desiliconizing agent is charged at a time. S=ΔSi×Cwhere ΔSi=([%Si]-0.20), C=5-(0.0026*T-0.32×[%Si]+1.25), [%Si]is Si concentration (mass%) of molten steel, Tis temperature (°C) of molten steel. R=F/(F+F) where Fis gaseous oxygen blowing speed (Nm/min)×1.429 (kg/Nm), Fis solid oxygen source blowing speed (kg/min)×α where α is an adjustment factor by the solid oxygen source.SELECTED DRAWING: None

Description

本発明は、溶銑の精錬、特に、混銑車に収容した溶銑の精錬において、スラグフォーミングを抑制し、スロッピングを防止する精錬方法に関する。   The present invention relates to a refining method that suppresses slag forming and prevents slopping in refining hot metal, particularly refining hot metal contained in a kneading vehicle.

従来から、多様な用途に応える高品質の鋼を製造するため、転炉での精錬に備え、混銑車に収容する溶銑に、不純物(S、P等)を除去し、Si量を調整する予備精錬を施すことが行われている。   Conventionally, in order to produce high-quality steel that meets various applications, in preparation for refining in the converter, it is a spare that removes impurities (S, P, etc.) and adjusts the amount of Si in the hot metal contained in the kneading car Refining is done.

予備精錬は、混銑車に収容する溶銑に、受銑口から固体酸素源(通常、酸化鉄)を投入するか、又は、溶銑に挿入したランスから固体酸素源(通常、酸化鉄)及び/又は気体酸素源を吹き込んで行うが、酸素と溶銑中のCが反応してCOガスが生成し、このCOガスでスラグが泡立って体積が増大する現象、即ち、スラグフォーミングが発生する。   In the preliminary refining, a solid oxygen source (usually iron oxide) is introduced into the hot metal contained in the kneading vehicle from the receiving port, or a solid oxygen source (usually iron oxide) and / or from a lance inserted into the hot metal. Although a gaseous oxygen source is blown in, oxygen reacts with C in the molten iron to generate CO gas, and a phenomenon in which the volume of slag is increased by this CO gas, that is, slag foaming occurs.

混銑車は、フリーボード(溶銑面から受銑口までの空間)が狭いので、スラグフォーミングが過剰に発生すると、スラグが受銑口から溢れ出る現象、即ち、スロッピングが発生する。   The kneading vehicle has a narrow free board (the space from the molten metal surface to the receiving port). Therefore, if excessive slag forming occurs, a phenomenon in which the slag overflows from the receiving port, that is, slopping occurs.

スロッピングは、操業トラブルや、歩留りの低下に繋がるので、混銑車に収容する溶銑の予備精錬において、スラグフォーミングの発生を抑制し、スロッピングを防止する技術が、これまで数多く提案されている(例えば、特許文献1〜6、参照)。   Since slopping leads to operational troubles and reduced yields, many technologies have been proposed to prevent slugging and prevent slopping in the preliminary refining of hot metal contained in a kneading vehicle ( For example, see Patent Documents 1 to 6.)

例えば、特許文献5には、スラグフォーミングを抑制しつつ、反応容器内の溶銑に固体酸化物、石灰化合物、気体酸素等の予備処理剤を投入して、溶銑の脱珪,脱燐等の予備精錬を行う溶銑の予備精錬方法において、溶銑への上記固体酸化物及び気体酸素による酸素投入量とスラグ塩基度とを指標として求められるスラグのスロッピング発生条件に基づきスロッピングの発生し易い領域と発生しにくい領域との発生臨界を求め、時間当たりの上記酸素投入量を、上記求めた発生臨界内に収めるように制御することを特徴とする溶銑の予備精錬方法が提案されている。   For example, in Patent Document 5, a pretreatment agent such as desiliconization or dephosphorization of hot metal is introduced by introducing a pretreatment agent such as a solid oxide, a lime compound, or gaseous oxygen into the hot metal in the reaction vessel while suppressing slag forming. In the hot metal preliminary refining method for refining, a region where slopping is likely to occur based on the slump generation conditions of slag obtained by using the solid oxide and gaseous oxygen input to the hot metal and the slag basicity as an index, and There has been proposed a hot metal preliminary refining method characterized by determining the criticality of occurrence with a region that is difficult to generate and controlling the amount of oxygen input per hour to be within the determined criticality of generation.

また、特許文献6には、トピードカーに保持された溶銑にインジェクションランスを通じて固体酸素源を吹き込んで脱珪−脱燐処理を行う溶銑予備処理法において、側部にガス噴射口(x)を有するインジェクションランスを用い、ランス先端の噴射口から溶銑中に固体酸素源を吹き込みつつ、(i)処理の初期においては、インジェクションランスのガス噴射口(x)から、トピードカー上部内側の付着地金に酸素ガスを噴射し、該付着地金を溶解除去すること、及び、(ii)処理の中期以降においては、インジェクションランスのガス噴射口(x)をスラグ中に位置させ、該ガス噴射口(x)からスラグ中に窒素ガスを噴射してスラグの撹拌を行うことを特徴とする溶銑予備処理法が提案されている。   Further, Patent Document 6 discloses an injection having a gas injection port (x) on the side in a hot metal preliminary treatment method in which a solid oxygen source is blown into an hot metal held in a topped car through an injection lance to perform desiliconization and dephosphorization. Using a lance, blowing a solid oxygen source into the hot metal from the injection port at the tip of the lance, and (i) oxygen gas from the gas injection port (x) of the injection lance to the adhering metal inside the topped car at the initial stage of the treatment And (ii) after the middle stage of the treatment, the gas injection port (x) of the injection lance is positioned in the slag, and from the gas injection port (x) There has been proposed a hot metal preliminary treatment method in which nitrogen gas is injected into the slag to stir the slag.

特開平02−290911号公報JP-A-02-290911 特開平05−125424号公報Japanese Patent Laid-Open No. 05-125424 特開平10−176210号公報JP-A-10-176210 特開平10−183217号公報JP-A-10-183217 特開平10−195515号公報Japanese Patent Laid-Open No. 10-195515 特開2008−297590号公報JP 2008-297590 A

スラグフォーミングは、通常、溶銑中のCと酸素の反応(脱炭反応)で生じ、この脱炭反応が起き難い組成領域では殆ど生じない。従来技術は、上記脱炭反応によるスラグフォーミングに対するものであるところ、本発明者らの経験によれば、上記脱炭反応が殆ど起きない高Si濃度の溶銑の精錬においても、スラグフォーミングが頻発する。   Slag forming is usually caused by the reaction between C and oxygen in the hot metal (decarburization reaction) and hardly occurs in the composition region where this decarburization reaction is difficult to occur. The prior art is for slag forming by the above decarburization reaction. According to the experience of the present inventors, slag forming occurs frequently even in the refining of hot metal having a high Si concentration where the above decarburization reaction hardly occurs. .

そこで、本発明は、このスラグフォーミングの頻発に鑑み、高Si濃度の溶銑の脱珪処理において、スラグフォーミングを抑制し、操業トラブルや、歩留りの低下を招くスロッピングを防止することを課題とし、該課題を解決する溶銑の精錬方法を提供することを目的とする。   Therefore, in view of the frequent occurrence of this slag forming, the present invention has an object to suppress slug forming in the desiliconization treatment of hot metal having a high Si concentration, and to prevent slopping that causes operational trouble and yield reduction. It aims at providing the refining method of the hot metal which solves this subject.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、高Si濃度の溶銑の脱珪処理においては、固体酸素源(酸化鉄)を投入する前の段階で、気体酸素源を主体とする脱珪剤を投入し、溶銑温度を高めつつSi濃度を下げて、C飽和溶解度を高めると、スラグフォーミングが発生し難くなり、次に、本格的な脱珪処理を行うことができることを見いだした。この点については後述する。   The present inventors diligently studied a method for solving the above problems. As a result, in the desiliconization treatment of hot metal having a high Si concentration, before the solid oxygen source (iron oxide) is introduced, a desiliconizing agent mainly composed of a gaseous oxygen source is introduced, while the hot metal temperature is increased. It has been found that when the concentration is lowered and the C saturation solubility is increased, slag foaming is less likely to occur, and then full-scale desiliconization treatment can be performed. This point will be described later.

本発明は、上記知見に基づいてなされたもので、その要旨は次のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)精錬容器に収容した、高Si濃度の溶銑に、脱珪剤を投入して脱珪処理を施す溶銑の精錬方法において、
(i)下記式(1)で定義するフォーミング指標Sが0.06以上の溶銑に、下記式(2)で定義する、脱珪剤中の酸素に占める気体酸素の割合を示す気体酸素比RO2が0.70以上の脱珪剤を、フォーミング指標Sが0.06未満になるまで投入し、その後、
(ii)必要量の脱珪剤を一括して投入する
ことを特徴とする溶銑の精錬方法。
S=ΔSi×Cindex 1.3 ・・・(1)
ΔSi=([%Si]HM−0.20)
index=5−(0.0026*THM−0.32*[%Si]HM+1.25)
[%Si]HM:溶銑のSi濃度(質量%)
HM:溶銑温度(℃)
O2=FO _ O2/(FO _ O2+FO _ FetO) ・・・(2)
O _ O2:気体酸素源吹込速度(Nm3/分)×1.429(kg/Nm3
O _ FetO:固体酸素源吹込速度(kg/分)×α
α:固体酸素源による調整係数
(1) In a hot metal refining method in which a silicon removal agent is added to a high Si concentration hot metal contained in a refining vessel and subjected to a desiliconization treatment.
(I) Gas oxygen ratio R indicating the ratio of gaseous oxygen to oxygen in the desiliconizing agent, defined by the following formula (2), in the hot metal having a forming index S defined by the following formula (1) of 0.06 or more A desiliconizing agent having O2 of 0.70 or more is added until the forming index S is less than 0.06, and then
(Ii) A hot metal refining method characterized in that a necessary amount of a desiliconizing agent is charged in a lump.
S = ΔSi × C index 1.3 (1)
ΔSi = ([% Si] HM −0.20)
C index = 5- (0.0026 * T HM −0.32 * [% Si] HM +1.25)
[% Si] HM : Si concentration of molten iron (mass%)
T HM : Hot metal temperature (° C)
R O2 = F O _ O2 / (F O _ O2 + F O _ FetO) ··· (2)
F O _ O2: gaseous oxygen source blowing rate (Nm 3 / min) × 1.429 (kg / Nm 3 )
F O _ FetO: solid oxygen source blowing rate (kg / min) × alpha
α: Adjustment factor for solid oxygen source

(2)前記高Si濃度の溶銑のSi濃度が0.60質量%以上であることを特徴とする前記(1)に記載の溶銑の精錬方法。   (2) The hot metal refining method according to (1), wherein the high Si concentration hot metal has a Si concentration of 0.60% by mass or more.

(3)前記脱珪処理により、溶銑中のSiを0.20質量%以下に低減することを特徴とする前記(1)又は(2)に記載の溶銑の精錬方法。   (3) The hot metal refining method according to (1) or (2), wherein Si in the hot metal is reduced to 0.20% by mass or less by the desiliconization treatment.

(4)前記脱珪剤が酸化鉄、気体酸素、及び、石灰系フラックスからなることを特徴とする前記(1)〜(3)のいずれかに記載の溶銑の精錬方法。   (4) The hot metal refining method according to any one of (1) to (3), wherein the desiliconizing agent comprises iron oxide, gaseous oxygen, and lime-based flux.

(5)前記精錬容器が混銑車であることを特徴とする前記(1)〜(4)のいずれかに記載の溶銑の精錬方法。   (5) The hot metal refining method according to any one of (1) to (4), wherein the refining vessel is a chaotic vehicle.

本発明によれば、高Si濃度の溶銑の精錬において、スラグフォーミングを抑制し、操業トラブルや、歩留りの低下を招くスロッピングを防止して、脱珪処理を行うことができる。   According to the present invention, in the refining of hot metal having a high Si concentration, slag forming can be suppressed, and slopping that can cause operational troubles and a decrease in yield can be prevented, thereby performing desiliconization treatment.

本発明の溶銑の精錬方法(以下「本発明精錬方法」ということがある。)は、高Si濃度の溶銑の精錬において、スラグフォーミングを抑制するため、溶銑のSi濃度と溶銑温度の関数でフォーミング指標を定義し、該指標が閾値を下回るまで、脱珪剤中の酸素に占める気体酸素の割合を示す気体酸素比が一定値以上の脱珪剤を投入して予備脱珪処理を行い、その後、本格的な脱珪処理を行うことを基本思想とする。   The hot metal refining method of the present invention (hereinafter also referred to as “the present invention refining method”) is a function of the hot metal Si concentration and the hot metal temperature in order to suppress slag forming in the refining of hot metal with a high Si concentration. An index is defined, and until the index falls below a threshold value, a preliminary desiliconization treatment is performed by introducing a desiliconization agent having a gas oxygen ratio of a certain value or more indicating a ratio of gaseous oxygen to oxygen in the desiliconization agent, and thereafter The basic idea is to perform full-scale siliconization.

具体的には、本発明精錬方法は、精錬容器に収容した、高Si濃度の溶銑に、脱珪剤を投入して脱珪処理を施す溶銑の精錬方法において、
(i)下記式(1)で定義するフォーミング指標Sが0.06以上の溶銑に、下記式(2)で定義する、脱珪剤中の酸素に占める気体酸素の割合を示す気体酸素比RO2が0.70以上の脱珪剤を、フォーミング指標Sが0.06未満になるまで投入し、その後、
(ii)必要量の脱珪剤を一括して投入する
ことを特徴とする。
Specifically, the refining method of the present invention is a refining method for hot metal in which a silicon removal agent is added to a high Si concentration hot metal contained in a refining vessel and subjected to desiliconization treatment.
(I) Gas oxygen ratio R indicating the ratio of gaseous oxygen to oxygen in the desiliconizing agent, defined by the following formula (2), in the hot metal having a forming index S defined by the following formula (1) of 0.06 or more A desiliconizing agent having O2 of 0.70 or more is added until the forming index S is less than 0.06, and then
(Ii) It is characterized in that a necessary amount of desiliconizing agent is added all at once.

S=ΔSi×Cindex 1.3 ・・・(1)
ΔSi=([%Si]HM−0.20)
index=5−(0.0026*THM−0.32*[%Si]HM+1.25)
[%Si]HM:溶銑のSi濃度(質量%)
HM:溶銑温度(℃)
O2=FO _ O2/(FO _ O2+FO _ FetO) ・・・(2)
O _ O2:気体酸素吹込速度(Nm3/分)×1.429(kg/Nm3
O _ FetO:固体酸素源吹込速度(kg/分)×α
α:固体酸素源による調整係数
S = ΔSi × C index 1.3 (1)
ΔSi = ([% Si] HM −0.20)
C index = 5- (0.0026 * T HM −0.32 * [% Si] HM +1.25)
[% Si] HM : Si concentration of molten iron (mass%)
T HM : Hot metal temperature (° C)
R O2 = F O _ O2 / (F O _ O2 + F O _ FetO) ··· (2)
F O _ O2: gaseous oxygen blowing rate (Nm 3 / min) × 1.429 (kg / Nm 3 )
F O _ FetO: solid oxygen source blowing rate (kg / min) × alpha
α: Adjustment factor for solid oxygen source

以下、本発明精錬方法について説明する。   Hereinafter, the refining method of the present invention will be described.

前述したように、脱炭反応が殆ど起きない高Si濃度の溶銑の脱珪処理においても、スラグフォーミングが頻発する。このスラグフォーミングの頻発について、本発明者らは、「溶銑はSi濃度が高いほど飽和C濃度が低いので、固体酸素源(酸化鉄)の投入で溶銑温度が下がるとCが析出し、析出Cとスラグ中の固体酸素源(酸化鉄)が反応してCOガスが発生して、スラグフォーミングが生じる」と推定した。   As described above, slag forming frequently occurs even in the desiliconization treatment of hot metal having a high Si concentration in which decarburization reaction hardly occurs. Regarding the frequent occurrence of this slag forming, the present inventors have stated that “the higher the concentration of Si, the lower the saturation C concentration. Therefore, when the hot metal temperature is lowered by the introduction of a solid oxygen source (iron oxide), C precipitates and precipitates C The solid oxygen source (iron oxide) in the slag reacts to generate CO gas, resulting in slag forming. "

そして、高Si濃度の溶銑の脱珪処理においては、固体酸素源(酸化鉄)を投入する前の段階で、気体酸素源を主体とする脱珪剤を投入し、溶銑温度を高めつつSi濃度を下げて、C飽和溶解度を高めると、Cの析出に起因するスラグフォーミングの発生を抑制することができ、かつ、次の段階で、固体酸素源(酸化鉄)を一括して投入して溶銑温度が低下してもCが析出せず、COが発生しないので、スラグフォーミングが生じ難く、本格的な脱珪処理を行うことができることが判明した。   In the desiliconization treatment of hot metal having a high Si concentration, before the solid oxygen source (iron oxide) is introduced, a desiliconizing agent mainly composed of a gaseous oxygen source is introduced to increase the Si concentration while increasing the hot metal temperature. If the C saturation solubility is lowered and the generation of slag foaming due to the precipitation of C can be suppressed, the solid oxygen source (iron oxide) is charged all at once in the next stage. It has been found that even if the temperature is lowered, C does not precipitate and CO is not generated, so that slag forming hardly occurs and a full-scale silicon removal treatment can be performed.

以下、スラグフォーミングを抑制する精錬条件について説明する。   Hereinafter, refining conditions for suppressing slag forming will be described.

フォーミング指標S:ΔSi×Cindex 1.3(上記式(1))
スラグフォーミングの発生に影響する溶銑の特性は、CとSiの組成、及び、溶銑温度に依って変動する。本発明者らは、高Si濃度の溶銑の精錬において、溶銑の特性を、CとSiの組成、及び、溶銑温度を総合して一義的に評価する指標として、上記式(1)で定義するフォーミング指標S(以下「指標S」ということがある。)を導入した。
Forming index S: ΔSi × C index 1.3 (formula (1) above)
The characteristics of the hot metal that affects the occurrence of slag forming vary depending on the composition of C and Si and the hot metal temperature. In the refining of hot metal having a high Si concentration, the present inventors define the characteristics of hot metal by the above formula (1) as an index for uniquely evaluating the composition of C and Si and the hot metal temperature. A forming index S (hereinafter also referred to as “index S”) was introduced.

指標Sは、下記式で定義するΔSiと、同じく下記式で定義するCindexのCindex 1.3の積である。
ΔSi=([%Si]HM−0.20)
index=5−(0.0026*THM−0.32*[%Si]HM+1.25)
[%Si]HM:溶銑のSi濃度(質量%)
HM:溶銑温度(℃)
Index S is the product of C index of C index 1.3 to define the ΔSi be defined by the following formula, also by the following equation.
ΔSi = ([% Si] HM −0.20)
C index = 5- (0.0026 * T HM −0.32 * [% Si] HM +1.25)
[% Si] HM : Si concentration of molten iron (mass%)
T HM : Hot metal temperature (° C)

ΔSiは、溶銑のSi濃度(質量%):[%Si]HMと、脱珪処理で到達を目指すSi濃度(質量%):0.20(質量%)の差、即ち、脱珪処理で低減するSi量を示す指標である。ΔSiが大きいと、多量の気体酸素源及び/又は固体酸素源が必要となり、脱珪処理中、フォーミングが発生し易くなるので、ΔSiは、フォーミング発生の可能性を示す指標でもある。 ΔSi is the difference between the Si concentration (mass%) of molten iron: [% Si] HM and the Si concentration (mass%) aimed at reaching by desiliconization treatment: 0.20 (mass%), that is, reduced by desiliconization treatment. It is a parameter | index which shows the amount of Si to do. When ΔSi is large, a large amount of gaseous oxygen source and / or solid oxygen source is required, and forming is likely to occur during the desiliconization process. Therefore, ΔSi is also an index indicating the possibility of forming.

indexは、[%Si]HMと、溶銑温度(℃):THMで定義する、Cの析出指数である。[%Si]HMが高いと、溶銑の飽和C濃度(質量%)は低く、THMが高いと、溶銑の飽和C濃度(質量%)は高いので、Cindexは、飽和C濃度(質量%)に対する[%Si]HMとTHMの影響を総合的に考慮した指数であり、Cindexが大きいと、脱珪剤の投入による溶銑温度の低下でCが析出し易いことを示す。 C index is a precipitation index of C defined by [% Si] HM and hot metal temperature (° C.): T HM . [% Si] When the HM is high, the saturated C concentration (mass%) of the hot metal is low, and when T HM is high, the saturated C concentration (mass%) of the hot metal is high, so the C index is the saturated C concentration (mass%). ) Is an index that comprehensively considers the influence of [% Si] HM and T HM , and a large C index indicates that C is likely to precipitate due to a decrease in hot metal temperature due to the introduction of a desiliconizing agent.

Cの析出量がスラグフォーミングの発生に大きく影響するので、CindexはCindex 1.3としてΔSiに乗算する。即ち、指標Sは、高Si濃度の溶銑のSi濃度を0.20質量%以下まで低減する脱珪処理において、スラグフォーミングが生じる蓋然性を示す指標である。 Since the precipitation amount of C greatly affects the occurrence of slag forming, C index is multiplied by ΔSi as C index 1.3 . That is, the index S is an index indicating the probability that slag forming will occur in the desiliconization process in which the Si concentration of the hot Si molten iron is reduced to 0.20 mass% or less.

本発明精錬方法は、前述したように、高Si濃度の溶銑の精錬において、脱珪処理中のスラグフォーミングを抑制するため、指標Sに閾値を設定し、指標Sが閾値以上の溶銑に、指標Sが閾値を下回るまで、脱珪剤中の酸素に占める気体酸素の割合が一定値以上の脱珪剤を投入して予備脱珪を行う。   In the refining method of the present invention, as described above, in refining hot metal having a high Si concentration, a threshold is set for the index S in order to suppress slag forming during the desiliconization process, Until the S falls below the threshold value, preliminary desiliconization is performed by introducing a desiliconization agent in which the ratio of gaseous oxygen to oxygen in the desiliconization agent is a certain value or more.

本発明精錬方法においては、指標Sの閾値を、実操業においてスロッピングが発生した精錬条件に基づいて、0.06と設定し、指標Sが0.06以上の溶銑に、下記式(2)で定義する、脱珪剤中の酸素に占める気体酸素の割合を示す気体酸素比RO2が0.70以上の脱珪剤を、指標Sが0.06未満に達するまで投入し、予備脱珪処理を含む脱珪処理において、スラグフォーミングの発生を抑制する。この点が、本発明者らが見いだした知見であり、本発明精錬方法の特徴である。 In the refining method of the present invention, the threshold value of the index S is set to 0.06 on the basis of the refining conditions in which slapping has occurred in actual operation, and the following formula (2) A desiliconizing agent having a gas oxygen ratio R O2 of 0.70 or more, which indicates the ratio of gaseous oxygen to oxygen in the desiliconizing agent, is defined until the index S reaches less than 0.06. In the desiliconization process including the process, the occurrence of slag forming is suppressed. This is a finding found by the present inventors and is a feature of the refining method of the present invention.

O2=FO _ O2/(FO _ O2+FO _ FetO) ・・・(2)
O _ O2:気体酸素吹込速度(Nm3/分)×1.429(kg/Nm3
O _ FetO:固体酸素源吹込速度(kg/分)×α
α:固体酸素源による調整係数
R O2 = F O _ O2 / (F O _ O2 + F O _ FetO) ··· (2)
F O _ O2: gaseous oxygen blowing rate (Nm 3 / min) × 1.429 (kg / Nm 3 )
F O _ FetO: solid oxygen source blowing rate (kg / min) × alpha
α: Adjustment factor for solid oxygen source

気体酸素比RO2:FO _ O2/(FO _ O2+FO _ FetO)(上記式(2))
固体酸素源(酸化鉄)、気体酸素源、及び、石灰系フラックスを主体とする脱珪剤において、全酸素量(気体酸素量+固体酸素量)に占める気体酸素量の割合を、気体酸素比RO2として、上記式(2)で定義する。
Gaseous oxygen ratio R O2: F O _ O2 / (F O _ O2 + F O _ FetO) ( the formula (2))
In the desiliconization agent mainly composed of solid oxygen source (iron oxide), gaseous oxygen source, and lime-based flux, the ratio of gaseous oxygen to the total oxygen content (gas oxygen content + solid oxygen content) R O2 is defined by the above formula (2).

固体酸素源中の固体酸素の量は、固体酸素源の種類によって異なるので、固体酸素源の種類に応じた調整係数αをFO _ FetOに乗算する。例えば、固体酸素源がミルスケールの場合、α=0.22であり、鉄鉱石の場合、α=0.30であり、通常、1.0以下である。 The amount of solid oxygen solid oxygen source in is different depending on the type of solid oxygen source, multiplying the α adjustment coefficient corresponding to the type of solid oxygen source to F O _ FetO. For example, when the solid oxygen source is mill scale, α = 0.22. When the solid oxygen source is iron ore, α = 0.30, which is usually 1.0 or less.

脱珪剤の気体酸素比RO2は、スラグフォーミングの発生を抑制する点で、指標Sとともに重要である。予備脱珪処理において、溶銑温度の低下を抑制して、Cの析出を回避し、Si濃度を低減するため、気体酸素比RO2に閾値を設定する必要がある。本発明者らは、実操業においてスロッピングが発生した精錬条件に基づいて、気体酸素比RO2を0.70以上と設定した。 The gas oxygen ratio R O2 of the silicon removal agent is important together with the index S in that it suppresses the occurrence of slag foaming. In the preliminary desiliconization treatment, it is necessary to set a threshold value for the gas oxygen ratio R O2 in order to suppress the decrease in the hot metal temperature, avoid the precipitation of C, and reduce the Si concentration. The inventors set the gas oxygen ratio R O2 to be 0.70 or more based on the refining conditions in which slapping occurred in actual operation.

即ち、気体酸素比RO2が0.70未満であると、固体酸素の割合が増大し、溶銑温度(THM)が低下して、Cが析出し、スラグフォーミングの原因となるCOガスが発生するので、気体酸素比RO2は0.70以上とする。好ましくは0.75以上である。 That is, when the gas oxygen ratio R O2 is less than 0.70, the proportion of solid oxygen increases, the hot metal temperature (T HM ) decreases, C precipitates, and CO gas that causes slag foaming is generated. Therefore, the gas oxygen ratio R O2 is set to 0.70 or more. Preferably it is 0.75 or more.

高Si濃度の溶銑の予備脱珪処理において、気体酸素比RO2が0.70以上の脱珪剤を溶銑に投入することにより、溶銑温度(THM)を下げることなく、即ち、溶銑温度の低下によるCの析出を回避して、スラグフォーミングを抑制し、指標Sが0.06未満の溶銑を得ることができる。 In the preliminary desiliconization treatment of hot metal having a high Si concentration, by introducing a desiliconizing agent having a gas oxygen ratio R O2 of 0.70 or more into the hot metal, the hot metal temperature (T HM ) is not lowered, that is, the hot metal temperature is reduced. C precipitation due to the decrease can be avoided, slag forming can be suppressed, and hot metal having an index S of less than 0.06 can be obtained.

気体酸素比RO2が0.70以上の脱珪剤の投入により、指標Sが0.06未満に至った溶銑に、次の段階で、必要量の脱珪剤を一括して投入し、Si濃度を所要のレベル、例えば、0.20質量%以下まで低減する。この脱珪処理で一括して投入する脱珪材のRO2は、特に限定されない。この脱珪処理においても、スラグフォーミングは発生しない。 In the next stage, a necessary amount of desiliconizing agent is added all at once to the hot metal having an index S of less than 0.06 by introducing a desiliconizing agent having a gas oxygen ratio R O2 of 0.70 or more. The concentration is reduced to a required level, for example, 0.20% by mass or less. The R O2 of the desiliconized material to be charged all at once in this desiliconization treatment is not particularly limited. Even in this desiliconization process, slag forming does not occur.

本発明精錬方法において、高Si濃度の溶銑を収容する精錬容器は、特に特定の精錬容器に限定されない。高炉から出銑した溶銑を次の工程へ運搬する容器で、運搬中、精錬を実施できる容器(例えば、混銑車、溶銑鍋等)を精錬容器として使用可能であるが、本発明精錬方法は、特に、フリーボードの狭い混銑車に収容した溶銑の脱珪処理に好適である。   In the refining method of the present invention, the refining vessel that accommodates the hot metal having a high Si concentration is not particularly limited to a specific refining vessel. A container that transports the hot metal discharged from the blast furnace to the next process, and a container that can be refined during transportation (for example, a kneading car, a hot metal ladle, etc.) can be used as a refining container. In particular, it is suitable for the desiliconization treatment of hot metal contained in a kneading wheel with a narrow free board.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
混銑車に収容した、指標Sが0.06以上の溶銑に、表1に示す条件で予備脱珪処理を施し、次いで、表1に示す条件で脱珪処理を行い、スラグフォーミングの発生の有無で処理を評価した。
Example 1
Preliminary desiliconization treatment is performed on hot metal contained in a kneading vehicle with an index S of 0.06 or more under the conditions shown in Table 1, and then desiliconization treatment is performed under the conditions shown in Table 1 to determine whether slag foaming occurs. The treatment was evaluated.

評価1は、予備脱珪処理中にスラグフォーミングが発生したか否かを評価し、発生した場合を×、発生しない場合を○とした。評価2は、よび脱珪処理後の脱珪処理中にスラグフォーミングが生じたか否かを評価し、評価1と同じく、発生した場合を×、発生しない場合を○とした。   Evaluation 1 evaluated whether or not slag foaming occurred during the preliminary desiliconization treatment. Evaluation 2 evaluated whether or not slag foaming occurred during the desiliconization treatment after the desiliconization treatment, and in the same manner as in Evaluation 1, the case where the slag was formed was evaluated as x, and the case where the slag was not formed was evaluated as ◯.

Figure 2018127671
Figure 2018127671

予備脱珪処理で、RO2が0.70未満の脱珪材を用いて処理を行った比較例1では、処理後、指標Sが0.06未満に達せず、また、予備脱珪処理中にスラグフォーミングが発生し(「評価1」参照)、処理を中断した(「評価2」参照)。 In Comparative Example 1 in which the pre-silicon removal treatment was performed using a silicon removal material having an R O2 of less than 0.70, the index S did not reach less than 0.06 after the treatment, and the pre-silicon removal treatment was in progress. Slag forming occurred (see “Evaluation 1”), and the process was interrupted (see “Evaluation 2”).

予備脱珪処理で、RO2が0.70以上の脱珪剤を用いて処理を行った比較例2では、処理中にスラグフォーミングは発生しなかった(「評価1」参照)が、処理後、指標Sが0.06を超えているため、続く脱珪処理中にスラグフォーミングが発生した(「評価2」参照)。 In Comparative Example 2 where the pre-silicon removal treatment was performed using a silicon removal agent having an R O2 of 0.70 or more, no slag forming occurred during the treatment (see “Evaluation 1”). Since the index S exceeds 0.06, slag foaming occurred during the subsequent desiliconization process (see “Evaluation 2”).

このことから、RO2が0.70未満の脱珪剤で予備脱珪処理を行うと、予備脱珪処理中にスラグフォーミングが発生すること、また、RO2が0.70以上の脱珪剤で予備脱珪処理を行うと、処理中のフォーミングの発生を抑制できるものの、指標Sが0.06未満に達せず、続く脱珪処理中にスラグフォーミングが発生することを確認できる。 Therefore, if preliminary desiliconization treatment is performed with a desiliconization agent having an R O2 of less than 0.70, slag forming occurs during the preliminary desiliconization treatment, and a desiliconization agent having an R O2 of 0.70 or more. When the preliminary desiliconization process is performed, the occurrence of forming during the process can be suppressed, but the index S does not reach less than 0.06, and it can be confirmed that slag forming occurs during the subsequent desiliconization process.

O2が0.70以上の脱珪剤で予備脱珪処理を行い、予備脱珪処理後の指標Sが0.06未満の実施例1〜3では、予備脱珪処理に続く脱珪処理において、RO2が小さい(固体酸素量が多い)脱珪材を投入しても、スラグフォーミングが抑制され、スロッピングが生じることなく、最終的に、Si濃度を0.20質量%以下まで低減することができた(「評価1」、「評価2」、参照)。 In Examples 1 to 3 where R O2 is pre-silicon removal treatment with a desiliconization agent of 0.70 or more and the index S after the pre-silicon removal treatment is less than 0.06, in the silicon removal treatment following the preliminary silicon removal treatment , Even if a desiliconized material having a small R O2 (a large amount of solid oxygen) is added, slag forming is suppressed, and no slopping occurs, and finally the Si concentration is reduced to 0.20% by mass or less. (See “Evaluation 1”, “Evaluation 2”).

以上のことから、高Si濃度の溶銑の精錬においては、最初、気体酸素比RO2が0.70以上の脱珪剤を用いて、指標Sが0.06未満になるまで、Si濃度を低減(予備脱珪処理)し、次いで、必要量の脱珪剤(気体酸素比RO2が0.70未満でもよい)を一括して投入して脱珪処理を行う必要があることが解る。 From the above, in the refining of hot metal with a high Si concentration, first, the Si concentration is reduced until the index S is less than 0.06 by using a desiliconizing agent having a gas oxygen ratio R O2 of 0.70 or more. It is understood that it is necessary to carry out (preliminary desiliconization treatment) and then carry out the desiliconization treatment by supplying a necessary amount of desiliconization agent (gas oxygen ratio R O2 may be less than 0.70) all at once.

前述したように、本発明によれば、高Si濃度の溶銑の精錬において、スラグフォーミングを抑制し、操業トラブルや、歩留りの低下を招くスロッピングを防止して、脱珪処理を行うことができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, in the refining of hot metal having a high Si concentration, slag forming can be suppressed, and operation troubles and slopping that can lead to a decrease in yield can be prevented, and desiliconization can be performed. . Therefore, the present invention has high applicability in the steel industry.

Claims (5)

精錬容器に収容した、高Si濃度の溶銑に、脱珪剤を投入して脱珪処理を施す溶銑の精錬方法において、
(i)下記式(1)で定義するフォーミング指標Sが0.06以上の溶銑に、下記式(2)で定義する、脱珪剤中の酸素に占める気体酸素の割合を示す気体酸素比RO2が0.70以上の脱珪剤を、フォーミング指標Sが0.06未満になるまで投入し、その後、
(ii)必要量の脱珪剤を一括して投入する
ことを特徴とする溶銑の精錬方法。
S=ΔSi×Cindex 1.3 ・・・(1)
ΔSi=([%Si]HM−0.20)
index=5−(0.0026*THM−0.32*[%Si]HM+1.25)
[%Si]HM:溶銑のSi濃度(質量%)
HM:溶銑温度(℃)
O2=FO _ O2/(FO _ O2+FO _ FetO) ・・・(2)
O _ O2:気体酸素吹込速度(Nm3/分)×1.429(kg/Nm3
O _ FetO:固体酸素源吹込速度(kg/分)×α
α:固体酸素源による調整係数
In a hot metal refining method in which a silicon removal agent is added to a high Si concentration hot metal contained in a refining vessel and subjected to a desiliconization treatment.
(I) Gas oxygen ratio R indicating the ratio of gaseous oxygen to oxygen in the desiliconizing agent, defined by the following formula (2), in the hot metal having a forming index S defined by the following formula (1) of 0.06 or more A desiliconizing agent having O2 of 0.70 or more is added until the forming index S is less than 0.06, and then
(Ii) A hot metal refining method characterized in that a necessary amount of a desiliconizing agent is charged in a lump.
S = ΔSi × C index 1.3 (1)
ΔSi = ([% Si] HM −0.20)
C index = 5- (0.0026 * T HM −0.32 * [% Si] HM +1.25)
[% Si] HM : Si concentration of molten iron (mass%)
T HM : Hot metal temperature (° C)
R O2 = F O _ O2 / (F O _ O2 + F O _ FetO) ··· (2)
F O _ O2: gaseous oxygen blowing rate (Nm 3 / min) × 1.429 (kg / Nm 3 )
F O _ FetO: solid oxygen source blowing rate (kg / min) × alpha
α: Adjustment factor for solid oxygen source
前記高Si濃度の溶銑のSi濃度が0.60質量%以上であることを特徴とする請求項1に記載の溶銑の精錬方法。   The hot metal refining method according to claim 1, wherein the high Si concentration hot metal has a Si concentration of 0.60 mass% or more. 前記脱珪処理により、溶銑中のSiを0.20質量%以下に低減することを特徴とする請求項1又は2に記載の溶銑の精錬方法。   The hot metal refining method according to claim 1 or 2, wherein Si in the hot metal is reduced to 0.20 mass% or less by the desiliconization treatment. 前記脱珪剤が固体酸素源、気体酸素源、及び、石灰系フラックスからなることを特徴とする請求項1〜3のいずれか1項に記載の溶銑の精錬方法。   The hot metal refining method according to any one of claims 1 to 3, wherein the desiliconizing agent comprises a solid oxygen source, a gaseous oxygen source, and a lime-based flux. 前記精錬容器が混銑車であることを特徴とする請求項1〜4のいずれか1項に記載の溶銑の精錬方法。   The hot metal refining method according to claim 1, wherein the refining vessel is a chaotic vehicle.
JP2017021357A 2017-02-08 2017-02-08 Refining method for molten steel Pending JP2018127671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021357A JP2018127671A (en) 2017-02-08 2017-02-08 Refining method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021357A JP2018127671A (en) 2017-02-08 2017-02-08 Refining method for molten steel

Publications (1)

Publication Number Publication Date
JP2018127671A true JP2018127671A (en) 2018-08-16

Family

ID=63172249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021357A Pending JP2018127671A (en) 2017-02-08 2017-02-08 Refining method for molten steel

Country Status (1)

Country Link
JP (1) JP2018127671A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378913A (en) * 1976-12-24 1978-07-12 Nippon Steel Corp Refining method for steel for decreasing generating amount of slag
JPS57143416A (en) * 1981-03-02 1982-09-04 Kawasaki Steel Corp Pretreatment for molten iron
JP2011225917A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Preliminary treatment method for molten iron
JP2013167015A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for preliminary treatment of molten iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378913A (en) * 1976-12-24 1978-07-12 Nippon Steel Corp Refining method for steel for decreasing generating amount of slag
JPS57143416A (en) * 1981-03-02 1982-09-04 Kawasaki Steel Corp Pretreatment for molten iron
JP2011225917A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Preliminary treatment method for molten iron
JP2013167015A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for preliminary treatment of molten iron

Similar Documents

Publication Publication Date Title
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
AU2012206947B2 (en) Method of desulfurizing steel
JP7060113B2 (en) Method of adding Ca to molten steel
CN112210638A (en) Converter smelting method for medium and high silicon molten iron
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
WO2019172195A1 (en) Dephosphorization method for molten iron
JP7265136B2 (en) Melting method of ultra-low nitrogen steel
EP3674424B1 (en) Smelting method for ultra-low carbon 13cr stainless steel
KR102189097B1 (en) Pre-treatment method of molten iron and manufacturing method of ultra-low-tough steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP6897274B2 (en) Pretreatment method of hot metal
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP2018127671A (en) Refining method for molten steel
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2013127089A (en) Method for pretreating molten iron
JP5157228B2 (en) Desulfurization method for molten steel
JP7269485B2 (en) Melting method of high nitrogen stainless molten steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP2012207248A (en) Method for dephosphorizing molten iron
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
JP2017145435A (en) Method for desiliconizing molten iron
JP6375822B2 (en) Hot metal desiliconization method
JP2021070855A (en) Steel smelting method
CN117441032A (en) Secondary refining method of molten steel and manufacturing method of steel
CN117529566A (en) Method for denitriding molten steel, method for simultaneously denitriding and desulfurizing molten steel, and method for producing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210209