JP2018127653A - Manufacturing facility and manufacturing method of cobalt carbonate - Google Patents

Manufacturing facility and manufacturing method of cobalt carbonate Download PDF

Info

Publication number
JP2018127653A
JP2018127653A JP2017019993A JP2017019993A JP2018127653A JP 2018127653 A JP2018127653 A JP 2018127653A JP 2017019993 A JP2017019993 A JP 2017019993A JP 2017019993 A JP2017019993 A JP 2017019993A JP 2018127653 A JP2018127653 A JP 2018127653A
Authority
JP
Japan
Prior art keywords
cobalt
flow rate
concentration
flow
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019993A
Other languages
Japanese (ja)
Other versions
JP6770252B2 (en
Inventor
堅士 山本
Kenji Yamamoto
堅士 山本
英一 中川
Hidekazu Nakagawa
英一 中川
宏之 三ツ井
Hiroyuki Mitsui
宏之 三ツ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017019993A priority Critical patent/JP6770252B2/en
Publication of JP2018127653A publication Critical patent/JP2018127653A/en
Application granted granted Critical
Publication of JP6770252B2 publication Critical patent/JP6770252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing facility and a manufacturing method of cobalt carbonate capable of sufficiently suppressing variation in solid component concentration of a slurry and reducing load on a solid liquid separation device.SOLUTION: A manufacturing facility 1 of cobalt carbonate has: a first flow meter 31 for measuring a flow rate of a cobalt solution; a cobalt concentration measure 32 for measuring a cobalt concentration of the cobalt solution; a flow rate control valve 34 for controlling a flow rate of a dilution water; a control device 35 for controlling the flow rate control valve 34; a dilution tank 11 for mixing the cobalt solution and the dilution water to obtain a post-dilution liquid; a reaction tank 12 for reacting the post-dilution liquid and carbonate to obtain a slurry containing cobalt carbonate; and a solid solution separation device 13 for solid solution separating the slurry. The control deice 35 adjusts the open degree of the flow rate control valve 34 so that the flow rate of the dilution water becomes a target flow rate with which the cobalt concentration of the post-dilution liquid becomes a target concentration, based on measured values of the first flow meter 31 and the cobalt concentration measure 32.SELECTED DRAWING: Figure 1

Description

本発明は、炭酸コバルトの製造設備、および製造方法に関する。さらに詳しくは、コバルト水溶液と炭酸塩とを反応させて炭酸コバルトを製造する設備および方法に関する。   The present invention relates to a production facility and a production method for cobalt carbonate. More specifically, the present invention relates to equipment and a method for producing cobalt carbonate by reacting a cobalt aqueous solution with a carbonate.

硫化物からニッケル、コバルトを回収する湿式製錬プロセスでは、原料であるニッケルマットやニッケル・コバルト混合硫化物を塩素浸出し、得られた浸出液から不純物を除去する浄液工程などを経て、電解工程で電気ニッケルや電気コバルトを回収する。   In the hydrometallurgical process for recovering nickel and cobalt from sulfides, the nickel matte and nickel-cobalt mixed sulfide as raw materials are leached with chlorine, and the electrolytic process is performed through a purification process that removes impurities from the obtained leachate. Collect electric nickel and cobalt.

前記浄液工程には塩化コバルト水溶液に硫化剤とpH調整剤とを添加して不純物を硫化澱物として除去する工程が含まれる(例えば、特許文献1)。この工程ではpH調整剤として炭酸コバルトが好適に用いられる。塩化コバルト水溶液への不純物の混入を防止できるからである。   The liquid purification step includes a step of removing impurities as sulfided starch by adding a sulfurizing agent and a pH adjuster to the cobalt chloride aqueous solution (for example, Patent Document 1). In this step, cobalt carbonate is preferably used as a pH adjuster. This is because contamination of the cobalt chloride aqueous solution can be prevented.

特開2015−227489号公報Japanese Patent Laying-Open No. 2015-227489

炭酸コバルトはコバルト電解工程から排出された電解廃液にソーダ灰を添加し、得られたスラリーを固液分離することで得られる。この炭酸コバルトを前記浄液工程のpH調整剤として用いることで、コバルトロスを低減できるとともに、湿式製錬プロセスの水バランスの維持に寄与できる。   Cobalt carbonate is obtained by adding soda ash to the electrolytic waste liquid discharged from the cobalt electrolysis step and solid-liquid separation of the resulting slurry. By using this cobalt carbonate as a pH adjuster in the liquid purification step, it is possible to reduce cobalt loss and contribute to maintaining the water balance of the hydrometallurgical process.

実操業において、スラリーの固液分離に用いられる固液分離装置が異常停止することがある。固液分離装置が異常停止すると、炭酸コバルトの製造工程の操業効率が低下する。この問題に対して、固液分離装置に供給されるスラリーの固形分濃度を低減し、固液分離装置の負荷を抑えることが考えられる。しかし、スラリーの固形分濃度は操業現場で連続的に測定することが困難である。そのため、定期的に、例えば1回/日の頻度でサンプリングしたスラリーを用いて固形分濃度を測定することになる。この場合、スラリーの固形分濃度の変動を十分に抑えることができず、固液分離装置の負荷が増大する可能性がある。   In actual operation, the solid-liquid separator used for the solid-liquid separation of the slurry may stop abnormally. If the solid-liquid separator is abnormally stopped, the operation efficiency of the cobalt carbonate manufacturing process is lowered. In order to solve this problem, it is conceivable to reduce the solid content concentration of the slurry supplied to the solid-liquid separator and to suppress the load on the solid-liquid separator. However, it is difficult to continuously measure the solid content concentration of the slurry at the operation site. Therefore, the solid content concentration is measured periodically using, for example, a slurry sampled at a frequency of once / day. In this case, fluctuations in the solid content concentration of the slurry cannot be sufficiently suppressed, and the load on the solid-liquid separation device may increase.

本発明は上記事情に鑑み、スラリーの固形分濃度の変動を十分に抑えることができ、固液分離装置の負荷を低減できる炭酸コバルトの製造設備、および製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a cobalt carbonate production facility and a production method capable of sufficiently suppressing fluctuations in the solid content concentration of a slurry and reducing the load of a solid-liquid separator.

第1発明の炭酸コバルトの製造設備は、コバルト水溶液が流れる第1流路と、前記第1流路に設けられ、コバルト水溶液の流量を測定する第1流量計と、前記第1流路に設けられ、コバルト水溶液のコバルト濃度を測定するコバルト濃度計と、希釈水が流れる第2流路と、前記第2流路に設けられ、前記希釈水の流量を制御する流量制御弁と、前記流量制御弁を制御する制御装置と、前記第1流路から供給されたコバルト水溶液と、前記第2流路から供給された前記希釈水とを混合して、希釈後液を得る希釈槽と、前記希釈後液と炭酸塩とを反応させて、炭酸コバルトを含むスラリーを得る反応槽と、前記スラリーを固液分離する固液分離装置と、を備え、前記制御装置は、前記第1流量計および前記コバルト濃度計の測定値に基づき、前記希釈水の流量が前記希釈後液のコバルト濃度が目標濃度となる目標流量となるように、前記流量制御弁の開度を調節することを特徴とする。
第2発明の炭酸コバルトの製造設備は、第1発明において、前記第2流路に設けられ、前記希釈水の流量を測定する第2流量計を備え、前記制御装置は、前記第2流量計の測定値が前記目標流量となるように、前記流量制御弁の開度を調節することを特徴とする。
第3発明の炭酸コバルトの製造設備は、第1または第2発明において、前記固液分離装置はスクリューデカンタであることを特徴とする。
第4発明の炭酸コバルトの製造設備は、第1、第2または第3発明において、前記目標濃度は50〜60g/Lであることを特徴とする。
第5発明の炭酸コバルトの製造方法は、第1、第2、第3または第4発明の製造設備を用いて炭酸コバルトを製造することを特徴とする。
The cobalt carbonate manufacturing facility according to the first aspect of the present invention is provided with a first flow path through which a cobalt aqueous solution flows, a first flow meter provided in the first flow path for measuring the flow rate of the cobalt aqueous solution, and the first flow path. A cobalt concentration meter that measures the cobalt concentration of the cobalt aqueous solution, a second flow path through which the dilution water flows, a flow control valve that is provided in the second flow path and controls the flow rate of the dilution water, and the flow control A control device for controlling the valve; a cobalt aqueous solution supplied from the first flow path; and a dilution tank for obtaining a diluted liquid by mixing the dilution water supplied from the second flow path; and the dilution A reaction tank for reacting a post-solution with carbonate to obtain a slurry containing cobalt carbonate; and a solid-liquid separation device for solid-liquid separation of the slurry; and the control device includes the first flow meter and the Based on the measured value of cobalt densitometer, As the flow rate of Shakumizu becomes a target flow rate cobalt concentration of target concentration of the diluted solution after, and adjusting the opening of the flow control valve.
A cobalt carbonate production facility according to a second aspect of the present invention includes, in the first aspect, a second flow meter that is provided in the second flow path and measures the flow rate of the dilution water, and the control device includes the second flow meter. The opening degree of the flow control valve is adjusted so that the measured value becomes the target flow rate.
The cobalt carbonate production facility according to a third aspect of the present invention is characterized in that, in the first or second aspect, the solid-liquid separator is a screw decanter.
The cobalt carbonate production facility according to a fourth aspect of the present invention is characterized in that, in the first, second or third aspect, the target concentration is 50 to 60 g / L.
The method for producing cobalt carbonate according to the fifth invention is characterized in that cobalt carbonate is produced using the production equipment according to the first, second, third or fourth invention.

第1発明によれば、コバルト濃度計で測定されたコバルト水溶液のコバルト濃度に基づき、コバルト水溶液と希釈水との混合比を調節することで、間接的にスラリーの固形分濃度を調節できる。そのため、スラリーの固形分濃度の変動を十分に抑えることができ、固液分離装置の負荷を低減できる。
第2発明によれば、第2流量計の測定値を参照するので、希釈水の流量を精度良く調節できる。
第3発明によれば、固液分離装置がスクリューデカンタであるので、設置サイズに対する処理能力が高い。
第4発明によれば、希釈後液のコバルト濃度を50〜60g/Lとすれば、スラリーの固形分濃度が100〜150g/Lとなり、固液分離装置の負荷を十分に低減できる。
第5発明によれば、コバルト濃度計で測定されたコバルト水溶液のコバルト濃度に基づき、コバルト水溶液と希釈水との混合比を調節することで、間接的にスラリーの固形分濃度を調節できる。そのため、スラリーの固形分濃度の変動を十分に抑えることができ、固液分離装置の負荷を低減できる。
According to the first invention, the solid content concentration of the slurry can be indirectly adjusted by adjusting the mixing ratio of the cobalt aqueous solution and the dilution water based on the cobalt concentration of the cobalt aqueous solution measured by the cobalt densitometer. Therefore, the fluctuation | variation of the solid content density | concentration of a slurry can fully be suppressed, and the load of a solid-liquid separator can be reduced.
According to the second invention, since the measurement value of the second flow meter is referred to, the flow rate of the dilution water can be adjusted with high accuracy.
According to the third invention, since the solid-liquid separator is a screw decanter, the processing capacity for the installation size is high.
According to the fourth invention, if the cobalt concentration of the diluted liquid is 50 to 60 g / L, the solid content concentration of the slurry is 100 to 150 g / L, and the load on the solid-liquid separation device can be sufficiently reduced.
According to the fifth invention, the solid content concentration of the slurry can be indirectly adjusted by adjusting the mixing ratio of the cobalt aqueous solution and the dilution water based on the cobalt concentration of the cobalt aqueous solution measured by the cobalt densitometer. Therefore, the fluctuation | variation of the solid content density | concentration of a slurry can fully be suppressed, and the load of a solid-liquid separator can be reduced.

本発明の一実施形態に係る炭酸コバルトの製造設備の説明図である。It is explanatory drawing of the manufacturing facility of the cobalt carbonate which concerns on one Embodiment of this invention. (A)図は実施例1における希釈後液のコバルト濃度の時間変化を示すグラフである。(B)図は比較例1におけるコバルト水溶液のコバルト濃度の時間変化を示すグラフである。(A) is a graph which shows the time change of the cobalt concentration of the liquid after dilution in Example 1. FIG. (B) is a graph showing the change over time of the cobalt concentration of the aqueous cobalt solution in Comparative Example 1. FIG.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る炭酸コバルトの製造設備1および製造方法は、コバルト水溶液と炭酸塩とを反応させて炭酸コバルトを製造する。コバルト水溶液は特に限定されないが、ニッケル、コバルトを回収する湿式製錬プロセスのコバルト電解工程の電解廃液(塩化コバルト水溶液)を用いることができる。ここで、電解廃液のコバルト濃度は例えば55〜95g/Lである。炭酸塩としては、ソーダ灰(無水炭酸ナトリウム)、炭酸ナトリウム、炭酸カリウム、炭酸水素カリウムなどが用いられる。
Next, an embodiment of the present invention will be described with reference to the drawings.
The cobalt carbonate production facility 1 and production method according to an embodiment of the present invention produce cobalt carbonate by reacting a cobalt aqueous solution with a carbonate. Although cobalt aqueous solution is not specifically limited, The electrolytic waste liquid (cobalt chloride aqueous solution) of the cobalt electrolysis process of the hydrometallurgical process which collect | recovers nickel and cobalt can be used. Here, the cobalt concentration of the electrolytic waste liquid is, for example, 55 to 95 g / L. As the carbonate, soda ash (anhydrous sodium carbonate), sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like are used.

図1に示すように、炭酸コバルトの製造設備1は、希釈槽11と、反応槽12と、固液分離装置13とを備えている。希釈槽11にはコバルト水溶液が流れる第1流路21と、希釈水が流れる第2流路22とが接続されており、コバルト水溶液と希釈水とが供給されている。希釈槽11でコバルト水溶液と希釈水とを混合して希釈後液を得る。   As shown in FIG. 1, the cobalt carbonate production facility 1 includes a dilution tank 11, a reaction tank 12, and a solid-liquid separator 13. The dilution tank 11 is connected to a first flow path 21 through which a cobalt aqueous solution flows and a second flow path 22 through which dilution water flows, and is supplied with a cobalt aqueous solution and dilution water. In the dilution tank 11, the cobalt aqueous solution and the dilution water are mixed to obtain a diluted solution.

希釈槽11と反応槽12とは第3流路23で接続されている。希釈槽11から排出された希釈後液は、第3流路23を通って反応槽12に供給される。反応槽12には炭酸塩も供給されている。反応槽12で希釈後液と炭酸塩とを撹拌することにより、希釈後液(コバルト水溶液)と炭酸塩とが反応し、炭酸コバルトが生成される。   The dilution tank 11 and the reaction tank 12 are connected by a third flow path 23. The diluted solution discharged from the dilution tank 11 is supplied to the reaction tank 12 through the third flow path 23. Carbonate is also supplied to the reaction tank 12. By stirring the diluted solution and carbonate in the reaction tank 12, the diluted solution (cobalt aqueous solution) reacts with carbonate to produce cobalt carbonate.

なお、塩化コバルト水溶液に炭酸ナトリウムを添加した場合には、下記化学式(1)の反応により炭酸コバルトが生成される。
CoCl2+Na2CO3 → 2NaCl+CoCO3 ・・・(1)
In addition, when sodium carbonate is added to the cobalt chloride aqueous solution, cobalt carbonate is generated by the reaction of the following chemical formula (1).
CoCl 2 + Na 2 CO 3 → 2NaCl + CoCO 3 (1)

ソーダ灰はコバルトと比べて単価が安い。そのため、反応槽12に供給されるコバルトの量に対して過剰にソーダ灰を添加することが好ましい。そうすれば、希釈後液に含まれるコバルトの全量を回収することができ、反応槽12から排出されたスラリーの液相には実質的にコバルトが残留しない。   Soda ash is cheaper than cobalt. Therefore, it is preferable to add soda ash in excess of the amount of cobalt supplied to the reaction tank 12. Then, the total amount of cobalt contained in the diluted solution can be recovered, and substantially no cobalt remains in the liquid phase of the slurry discharged from the reaction vessel 12.

反応槽12と固液分離装置13とは第4流路24で接続されている。反応槽12から排出されたスラリー(炭酸コバルトを含むスラリー)は、第4流路24を通って固液分離装置13に供給される。   The reaction tank 12 and the solid-liquid separator 13 are connected by a fourth flow path 24. The slurry discharged from the reaction tank 12 (a slurry containing cobalt carbonate) is supplied to the solid-liquid separator 13 through the fourth flow path 24.

固液分離装置13において、スラリーが炭酸コバルトと濾液とに固液分離される。これにより炭酸コバルトが得られる。固液分離により得られる濾液は廃水工程に移送され、廃水処理後に系外に排出される。固液分離装置13としては、特に限定されないが、デカンタなどの遠心分離機、オリバーフィルターなどの真空脱水機、フィルタープレスなどの加圧脱水機などを用いることができる。なかでも、スクリューデカンタは設置サイズに対する処理能力が高いので好ましい。   In the solid-liquid separator 13, the slurry is solid-liquid separated into cobalt carbonate and a filtrate. Thereby, cobalt carbonate is obtained. The filtrate obtained by solid-liquid separation is transferred to a wastewater process, and discharged outside the system after wastewater treatment. The solid-liquid separation device 13 is not particularly limited, and a centrifugal separator such as a decanter, a vacuum dehydrator such as an oliver filter, a pressure dehydrator such as a filter press, and the like can be used. Among these, a screw decanter is preferable because it has a high processing capacity with respect to the installation size.

上記構成の製造設備1において、固液分離装置13に供給されるスラリーの固形分濃度が高いと、固液分離装置13の負荷が高くなり、異常停止することがある。本実施形態の製造設備1は、コバルト水溶液と希釈水との混合比を調節し、希釈後液のコバルト濃度を所定濃度に調節することで、間接的にスラリーの固形分濃度を調節する。これにより、固液分離装置13の負荷を低減する。以下、この機能を実現する構成を説明する。   In the manufacturing facility 1 having the above-described configuration, when the solid content concentration of the slurry supplied to the solid-liquid separator 13 is high, the load on the solid-liquid separator 13 is increased and may be abnormally stopped. The manufacturing facility 1 of the present embodiment indirectly adjusts the solid content concentration of the slurry by adjusting the mixing ratio of the cobalt aqueous solution and the dilution water and adjusting the cobalt concentration of the diluted solution to a predetermined concentration. Thereby, the load of the solid-liquid separator 13 is reduced. Hereinafter, a configuration for realizing this function will be described.

コバルト水溶液が流れる第1流路21には、コバルト水溶液の流量を測定する第1流量計31と、コバルト水溶液のコバルト濃度を測定するコバルト濃度計32とが設けられている。コバルト濃度計32としては、操業現場で連続的に測定可能な、密度測定器、吸光度測定器、導電率測定器、屈折率測定器などが用いられる。   The first flow path 21 through which the cobalt aqueous solution flows is provided with a first flow meter 31 that measures the flow rate of the cobalt aqueous solution and a cobalt concentration meter 32 that measures the cobalt concentration of the cobalt aqueous solution. As the cobalt densitometer 32, a density measuring device, an absorbance measuring device, a conductivity measuring device, a refractive index measuring device, or the like that can be continuously measured at the operation site is used.

希釈水が流れる第2流路22には、希釈水の流量を測定する第2流量計33と、希釈水の流量を制御する流量制御弁34とが設けられている。流量制御弁34には制御装置35が接続されている。制御装置35には第1流量計31、コバルト濃度計32、第2流量計33の各測定値が入力されている。なお、制御装置35はCPUやメモリなどで構成されたコンピュータである。   The second flow path 22 through which the dilution water flows is provided with a second flow meter 33 that measures the flow rate of the dilution water and a flow rate control valve 34 that controls the flow rate of the dilution water. A controller 35 is connected to the flow rate control valve 34. The measurement values of the first flow meter 31, the cobalt concentration meter 32, and the second flow meter 33 are input to the control device 35. The control device 35 is a computer configured with a CPU, a memory, and the like.

制御装置35には、予め希釈後液のコバルト濃度の目標値(目標濃度)が記憶されている。目標濃度は反応槽12で得られるスラリーの固形分濃度が固液分離装置13の負荷を十分に低減できる濃度となるように設定される。例えば、希釈後液のコバルト濃度を50〜60g/Lとすれば、スラリーの固形分濃度が100〜150g/Lとなり、固液分離装置13の負荷を十分に低減できる。この場合、目標濃度は50〜60g/Lの間の特定の値に設定される。   The control device 35 stores in advance a target value (target concentration) of the cobalt concentration of the diluted liquid. The target concentration is set so that the solid content concentration of the slurry obtained in the reaction tank 12 is a concentration that can sufficiently reduce the load of the solid-liquid separator 13. For example, if the cobalt concentration of the diluted solution is 50 to 60 g / L, the solid content concentration of the slurry is 100 to 150 g / L, and the load on the solid-liquid separator 13 can be sufficiently reduced. In this case, the target concentration is set to a specific value between 50 and 60 g / L.

第1流路21を流れるコバルト水溶液の流量およびコバルト濃度は、操業条件により変動する。第1流量計31およびコバルト濃度計32により、コバルト水溶液の流量およびコバルト濃度を測定する。制御装置35は第1流量計31およびコバルト濃度計32の測定値に基づき、希釈後液のコバルト濃度が目標濃度となる希釈水の流量(目標流量)を求める。   The flow rate and cobalt concentration of the cobalt aqueous solution flowing through the first flow path 21 vary depending on the operating conditions. The first flow meter 31 and the cobalt concentration meter 32 measure the flow rate and cobalt concentration of the cobalt aqueous solution. Based on the measured values of the first flow meter 31 and the cobalt concentration meter 32, the control device 35 obtains the flow rate (target flow rate) of the dilution water at which the cobalt concentration of the diluted solution becomes the target concentration.

そして、制御装置35は第2流量計33の測定値(希釈水の流量)が目標流量となるように、流量制御弁34の開度を調節する。すなわち、制御装置35は希釈水の流量を制御量、流量制御弁34の開度を操作量としたフィードバック制御を行う。   And the control apparatus 35 adjusts the opening degree of the flow control valve 34 so that the measured value (flow volume of dilution water) of the 2nd flow meter 33 may turn into target flow volume. That is, the control device 35 performs feedback control with the flow rate of the dilution water as the control amount and the opening degree of the flow rate control valve 34 as the operation amount.

なお、流量制御弁34の開度と希釈水の流量との対応関係が常に一定である場合には、第2流量計33の測定値を参照する必要はない。しかし、第2流量計33の測定値を参照するよう構成すれば、希釈水の流量を精度良く調節できる。   When the correspondence between the opening degree of the flow control valve 34 and the flow rate of the dilution water is always constant, it is not necessary to refer to the measurement value of the second flow meter 33. However, if the measurement value of the second flow meter 33 is referred to, the flow rate of the dilution water can be adjusted with high accuracy.

以上のように、コバルト濃度計32で測定されたコバルト水溶液のコバルト濃度に基づき、コバルト水溶液と希釈水との混合比を調節することで、希釈後液のコバルト濃度を目標濃度に調節できる。これにより、間接的にスラリーの固形分濃度を調節できる。そのため、スラリーの固形分濃度の変動を十分に抑えることができ、固液分離装置13の負荷を低減できる。   As described above, the cobalt concentration of the diluted solution can be adjusted to the target concentration by adjusting the mixing ratio of the cobalt aqueous solution and the dilution water based on the cobalt concentration of the cobalt aqueous solution measured by the cobalt concentration meter 32. Thereby, the solid content density | concentration of a slurry can be adjusted indirectly. Therefore, the fluctuation | variation of the solid content density | concentration of a slurry can fully be suppressed, and the load of the solid-liquid separator 13 can be reduced.

つぎに、実施例を説明する。
(実施例1)
図1に示す構成の製造設備1を用いて炭酸コバルトを製造した。コバルト水溶液としてコバルト電解工程の電解廃液(塩化コバルト水溶液)を用いた。希釈槽11に供給されるコバルト水溶液の流量は15〜25L/分、コバルト濃度は55〜95g/Lであった。目標濃度を56g/Lに設定し、コバルト水溶液を希釈水で希釈した。
Next, examples will be described.
Example 1
Cobalt carbonate was manufactured using the manufacturing equipment 1 having the configuration shown in FIG. As the cobalt aqueous solution, an electrolytic waste solution (cobalt chloride aqueous solution) of the cobalt electrolysis process was used. The flow rate of the cobalt aqueous solution supplied to the dilution tank 11 was 15 to 25 L / min, and the cobalt concentration was 55 to 95 g / L. The target concentration was set to 56 g / L, and the cobalt aqueous solution was diluted with dilution water.

反応槽12において希釈後液にソーダ灰を用いた。ソーダ灰の添加量は、希釈後液に含まれるコバルトの1.1倍等量とした。反応槽12で得られたスラリーを固液分離装置13で固液分離した。固液分離装置13としてスクリューデカンタ(巴工業製 PTM300)を用いた。   Soda ash was used as a solution after dilution in the reaction vessel 12. The amount of soda ash added was 1.1 times the amount of cobalt contained in the diluted solution. The slurry obtained in the reaction vessel 12 was subjected to solid-liquid separation with a solid-liquid separator 13. A screw decanter (PTM300 manufactured by Sakai Kogyo Co., Ltd.) was used as the solid-liquid separator 13.

図2(A)のグラフに希釈後液のコバルト濃度の時間変化を示す。
希釈後液のコバルト濃度の平均値は56.2g/Lであった。また、コバルト濃度のばらつき(±2σ)は±3.9g/Lであった。固液分離装置13の予定外の停止回数は1.5回/月であった。
The graph of FIG. 2A shows the change over time in the cobalt concentration of the diluted solution.
The average value of the cobalt concentration of the diluted solution was 56.2 g / L. Further, the variation (± 2σ) in cobalt concentration was ± 3.9 g / L. The number of unscheduled shutdowns of the solid-liquid separator 13 was 1.5 times / month.

(比較例1)
実施例1において、電解廃液を反応槽12に直接供給した。すなわち、電解廃液の希釈を行わなかった。その余の条件は実施例1と同様である。
(Comparative Example 1)
In Example 1, the electrolytic waste liquid was directly supplied to the reaction tank 12. That is, the electrolytic waste liquid was not diluted. The other conditions are the same as in Example 1.

図2(B)のグラフに電解廃液のコバルト濃度の時間変化を示す。
電解廃液のコバルト濃度の平均値は74.1g/Lであった。また、電解廃液のばらつき(±2σ)は±18.9g/Lであった。固液分離装置13の予定外の停止回数は4回/月であった。
The time change of the cobalt concentration of the electrolytic waste liquid is shown in the graph of FIG.
The average value of the cobalt concentration of the electrolytic waste liquid was 74.1 g / L. Moreover, the variation (± 2σ) of the electrolytic waste liquid was ± 18.9 g / L. The number of unscheduled shutdowns of the solid-liquid separator 13 was 4 times / month.

以上より、実施例1は比較例1に比べて、固液分離装置13の異常停止の回数を低減できることが確認できた。   From the above, it was confirmed that Example 1 can reduce the number of abnormal stop of the solid-liquid separator 13 as compared with Comparative Example 1.

1 製造設備
11 希釈槽
12 反応槽
13 固液分離装置
21 第1流路
22 第2流路
31 第1流量計
32 コバルト濃度計
33 第2流量計
34 流量制御弁
35 制御装置
DESCRIPTION OF SYMBOLS 1 Manufacturing equipment 11 Dilution tank 12 Reaction tank 13 Solid-liquid separator 21 1st flow path 22 2nd flow path 31 1st flow meter 32 Cobalt concentration meter 33 2nd flow meter 34 Flow control valve 35 Control apparatus

Claims (5)

コバルト水溶液が流れる第1流路と、
前記第1流路に設けられ、コバルト水溶液の流量を測定する第1流量計と、
前記第1流路に設けられ、コバルト水溶液のコバルト濃度を測定するコバルト濃度計と、
希釈水が流れる第2流路と、
前記第2流路に設けられ、前記希釈水の流量を制御する流量制御弁と、
前記流量制御弁を制御する制御装置と、
前記第1流路から供給されたコバルト水溶液と、前記第2流路から供給された前記希釈水とを混合して、希釈後液を得る希釈槽と、
前記希釈後液と炭酸塩とを反応させて、炭酸コバルトを含むスラリーを得る反応槽と、
前記スラリーを固液分離する固液分離装置と、を備え、
前記制御装置は、前記第1流量計および前記コバルト濃度計の測定値に基づき、前記希釈水の流量が前記希釈後液のコバルト濃度が目標濃度となる目標流量となるように、前記流量制御弁の開度を調節する
ことを特徴とする炭酸コバルトの製造設備。
A first flow path through which a cobalt aqueous solution flows;
A first flow meter provided in the first flow path for measuring the flow rate of the cobalt aqueous solution;
A cobalt concentration meter that is provided in the first flow path and measures the cobalt concentration of the cobalt aqueous solution;
A second flow path through which dilution water flows;
A flow rate control valve provided in the second flow path for controlling the flow rate of the dilution water;
A control device for controlling the flow rate control valve;
A dilution tank for mixing the cobalt aqueous solution supplied from the first flow path and the dilution water supplied from the second flow path to obtain a diluted liquid;
A reaction vessel for reacting the diluted liquid with carbonate to obtain a slurry containing cobalt carbonate;
A solid-liquid separation device for solid-liquid separation of the slurry,
The control device is configured to control the flow rate control valve so that the flow rate of the dilution water becomes a target flow rate at which the cobalt concentration of the diluted liquid becomes a target concentration based on the measurement values of the first flow meter and the cobalt concentration meter. A facility for producing cobalt carbonate, characterized by adjusting the opening degree.
前記第2流路に設けられ、前記希釈水の流量を測定する第2流量計を備え、
前記制御装置は、前記第2流量計の測定値が前記目標流量となるように、前記流量制御弁の開度を調節する
ことを特徴とする請求項1記載の炭酸コバルトの製造設備。
A second flow meter provided in the second flow path for measuring the flow rate of the dilution water;
The said control apparatus adjusts the opening degree of the said flow control valve so that the measured value of a said 2nd flow meter may become the said target flow volume, The manufacturing apparatus of the cobalt carbonate of Claim 1 characterized by the above-mentioned.
前記固液分離装置はスクリューデカンタである
ことを特徴とする請求項1または2記載の炭酸コバルトの製造設備。
3. The apparatus for producing cobalt carbonate according to claim 1, wherein the solid-liquid separator is a screw decanter.
前記目標濃度は50〜60g/Lである
ことを特徴とする請求項1、2または3記載の炭酸コバルトの製造設備。
The said target density | concentration is 50-60 g / L, The manufacturing apparatus of the cobalt carbonate of Claim 1, 2, or 3 characterized by the above-mentioned.
請求項1、2、3または4記載の製造設備を用いて炭酸コバルトを製造する
ことを特徴とする炭酸コバルトの製造方法。
Cobalt carbonate is produced using the production facility according to claim 1, 2, 3 or 4.
JP2017019993A 2017-02-07 2017-02-07 Cobalt carbonate manufacturing equipment and manufacturing method Active JP6770252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019993A JP6770252B2 (en) 2017-02-07 2017-02-07 Cobalt carbonate manufacturing equipment and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019993A JP6770252B2 (en) 2017-02-07 2017-02-07 Cobalt carbonate manufacturing equipment and manufacturing method

Publications (2)

Publication Number Publication Date
JP2018127653A true JP2018127653A (en) 2018-08-16
JP6770252B2 JP6770252B2 (en) 2020-10-14

Family

ID=63172188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019993A Active JP6770252B2 (en) 2017-02-07 2017-02-07 Cobalt carbonate manufacturing equipment and manufacturing method

Country Status (1)

Country Link
JP (1) JP6770252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807420A (en) * 2019-04-12 2020-10-23 荆门市格林美新材料有限公司 Preparation method of high-density low-chlorine cobalt carbonate
CN111892094A (en) * 2020-06-22 2020-11-06 荆门市格林美新材料有限公司 Mass production method of low-impurity and high-solubility basic cobalt carbonate
CN112010357A (en) * 2019-05-30 2020-12-01 荆门市格林美新材料有限公司 Preparation method of small-particle-size and high-density cobalt carbonate
CN113292110A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Preparation method of superfine and highly dispersed spherical cobalt carbonate
CN113371764A (en) * 2020-03-10 2021-09-10 荆门市格林美新材料有限公司 Preparation method of flower-rod-shaped cobalt carbonate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807420A (en) * 2019-04-12 2020-10-23 荆门市格林美新材料有限公司 Preparation method of high-density low-chlorine cobalt carbonate
CN111807420B (en) * 2019-04-12 2023-11-07 荆门市格林美新材料有限公司 Preparation method of high-density low-chlorine cobalt carbonate
CN112010357A (en) * 2019-05-30 2020-12-01 荆门市格林美新材料有限公司 Preparation method of small-particle-size and high-density cobalt carbonate
CN112010357B (en) * 2019-05-30 2023-11-07 荆门市格林美新材料有限公司 Preparation method of small-particle-size high-density cobalt carbonate
CN113292110A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Preparation method of superfine and highly dispersed spherical cobalt carbonate
CN113292110B (en) * 2020-02-24 2023-08-15 荆门市格林美新材料有限公司 Preparation method of superfine and highly dispersed spherical cobalt carbonate
CN113371764A (en) * 2020-03-10 2021-09-10 荆门市格林美新材料有限公司 Preparation method of flower-rod-shaped cobalt carbonate
CN113371764B (en) * 2020-03-10 2023-11-07 荆门市格林美新材料有限公司 Preparation method of flower-rod-shaped cobalt carbonate
CN111892094A (en) * 2020-06-22 2020-11-06 荆门市格林美新材料有限公司 Mass production method of low-impurity and high-solubility basic cobalt carbonate
CN111892094B (en) * 2020-06-22 2024-04-12 荆门市格林美新材料有限公司 Mass production method of low-impurity high-solubility basic cobalt carbonate

Also Published As

Publication number Publication date
JP6770252B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6770252B2 (en) Cobalt carbonate manufacturing equipment and manufacturing method
US20230416874A1 (en) Processes for preparing lithium carbonate
US10800663B2 (en) Processes for preparing lithium carbonate
US7264733B2 (en) Method for treating heavy-metal-containing wastewater using sulfidizing agent
EP2350351B1 (en) Apparatus and method for reducing an alkali metal electrochemically at a temperature below the metal's melting temperature
JP6135609B2 (en) How to blow gas into the autoclave
JP5716614B2 (en) Metal sulfide precipitation method
JP6364716B2 (en) Heavy metal removal method
JP2015182052A (en) Method of treating waste acid generated in copper smelting
JP2009161803A (en) Nonferrous refining dust treatment method
JP2020033229A (en) Method for producing aqueous nickel sulfate solution
Biswal et al. Influence of alternative alkali reagents on Fe removal during recovery of Mn as Electrolytic Manganese Dioxide (EMD) from Mn sludge
JP5920584B2 (en) Method of oxidation neutralization treatment of nickel chloride aqueous solution
JP6613962B2 (en) Method for removing copper ion from copper-containing nickel chloride aqueous solution and method for producing electrolytic nickel
EP3524700A1 (en) Hydrometallurgical method for refining nickel oxide ore
CN104828788A (en) Method for extracting selenium from mercury-selenium acid mud waste
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2018083747A (en) Nickel carbonate production facility and production method therefor
CN107129018A (en) The method for concentration of arsenic in a kind of arsenic-containing waste water
JP2018193588A (en) Method for leaching sulfide
CA2923570C (en) Method for neutralizing sulfuric acid acidic solution and hydrometallurgical method for nickel oxide ore
JP6603641B2 (en) Chlorine-containing powder processing method and chlorine-containing powder processing system
Xia et al. Ca removal and Mg recovery from flue gas desulfurization (FGD) wastewater by selective precipitation
JP2021176981A (en) Method for managing thickener for obtaining high-concentration slurry
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6770252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150