JP2018126683A - Phosphorus adsorbent, and method for producing the same - Google Patents

Phosphorus adsorbent, and method for producing the same Download PDF

Info

Publication number
JP2018126683A
JP2018126683A JP2017020932A JP2017020932A JP2018126683A JP 2018126683 A JP2018126683 A JP 2018126683A JP 2017020932 A JP2017020932 A JP 2017020932A JP 2017020932 A JP2017020932 A JP 2017020932A JP 2018126683 A JP2018126683 A JP 2018126683A
Authority
JP
Japan
Prior art keywords
phosphorus
phosphorus adsorbent
solidified body
mass
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017020932A
Other languages
Japanese (ja)
Other versions
JP7193067B2 (en
Inventor
定博 山本
Sadahiro Yamamoto
定博 山本
典久 小山
Norihisa Koyama
典久 小山
松本 明
Akira Matsumoto
明 松本
康正 山浦
Yasumasa Yamaura
康正 山浦
友也 水石
Tomoya Mizuishi
友也 水石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKYOGUMI KK
Tottori University NUC
Original Assignee
DAIKYOGUMI KK
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKYOGUMI KK, Tottori University NUC filed Critical DAIKYOGUMI KK
Priority to JP2017020932A priority Critical patent/JP7193067B2/en
Publication of JP2018126683A publication Critical patent/JP2018126683A/en
Application granted granted Critical
Publication of JP7193067B2 publication Critical patent/JP7193067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and commercially profitable phosphorus adsorbent with high phosphorous adsorption capability due to a synergistic effect of an increase of the amount of phosphorous adsorption component, an expansion of a specific surface area and easy particle diameter adjustment.SOLUTION: A phosphorus adsorbent of the present invention is made of a foaming hydrothermally-solidified body which is created by using burned ash as a main raw material, and the foam hydrothermally-solidified body contains at least calcium and aluminum. According to the phosphorus adsorbent of the present invention, phosphorous adsorption capability is increased compared with phosphorus adsorbent made of carbide of the prior art, and can be easily created by an inexpensive device, so that phosphorus adsorbent becomes inexpensive and commercially profitable. Further, adsorbent that adsorbed/recovered phosphorous holds phosphorous in a plant-usable mode, can be directly used as fertilizer, and adsorbed phosphorous can be desorbed by thin acid solution.SELECTED DRAWING: Figure 1

Description

本発明は、リン吸着材及びその製造方法に係り、さらに詳しくは焼却灰を主原料にして生成したリン吸着材及びその製造方法に関する。   The present invention relates to a phosphorus adsorbent and a method for producing the same, and more particularly to a phosphorus adsorbent produced using incinerated ash as a main raw material and a method for producing the same.

従来技術として、製紙スラッジや石炭灰を原料に生成したリン吸着材(なお、リン回収材ともいう。)及びその製造方法などは、既に公知である。   As a prior art, a phosphorus adsorbing material (also referred to as a phosphorus recovery material) produced from paper sludge or coal ash as a raw material, a manufacturing method thereof, and the like are already known.

例えば、下記特許文献1には、製紙スラッジ由来のリン吸着材及びその生成方法などが記載されている。この特許文献1に記載のリン吸着材は、アルカリ物質成分と炭素成分を含んでなる製紙スラッジ由来のリン吸着材であって、この吸着材の骨格成分は多孔質にした炭化物からなり、その表面及び孔面にアルカリ質成分が配位したものである。   For example, Patent Document 1 below describes a phosphorus adsorbent derived from papermaking sludge, a method for producing the same, and the like. The phosphorus adsorbent described in Patent Document 1 is a phosphorus adsorbent derived from papermaking sludge containing an alkali substance component and a carbon component, and the skeleton component of the adsorbent is made of porous carbide, and its surface In addition, an alkaline component is coordinated on the pore surface.

このリン吸着材は、有害物質成分を含まず、アルカリ質成分と炭素成分とを含む製紙スラッジを間接加熱によって熱分解処理して、アルカリ質成分と炭素成分を含有する多孔質化した吸着材を得るものであって、リン吸着材生成施設によって生成されている。   This phosphorus adsorbent does not contain harmful substance components, and papermaking sludge containing alkaline components and carbon components is thermally decomposed by indirect heating to produce a porous adsorbent containing alkaline components and carbon components. Which is produced by a phosphorus adsorbent production facility.

このリン吸着材生成施設は、原料の製紙スラッジを乾燥処理する乾燥炉と、この乾燥炉で乾燥処理した原料を解砕する解砕手段と、乾燥炉で乾燥処理した原料を熱分解処理し多孔質性の炭化物を得る熱分解炉と、この熱分解炉で得た炭化物を粉砕し回収する粉砕移送手段と、乾燥炉で発生した水蒸気及び熱分解炉で発生した熱分解ガスを一定の雰囲気及び滞留時間のもとで(例えば、約850℃の雰囲気で2秒以上の滞留時間)燃焼し、無害化処理するガス燃焼炉と、及びこれらの付帯設備など、で構成されている。   This phosphorus adsorbent production facility has a drying furnace for drying raw material papermaking sludge, a pulverizing means for pulverizing the raw material dried in this drying furnace, and a thermal decomposition treatment of the raw material dried in the drying furnace to make it porous. A pyrolysis furnace for obtaining a qualitative carbide, pulverization transfer means for pulverizing and collecting the carbide obtained in the pyrolysis furnace, steam generated in the drying furnace and pyrolysis gas generated in the pyrolysis furnace in a certain atmosphere and It is composed of a gas combustion furnace that burns and detoxifies under a residence time (for example, a residence time of 2 seconds or more in an atmosphere of about 850 ° C.) and ancillary equipment thereof.

このリン吸着材生成施設によれば、製紙スラッジを外部からの間接加熱で且つ還元性雰囲気にて乾燥し且つ熱分解処理しているので、製紙スラッジが有害な塩素、硫黄を含む場合であっても、これらの成分を効果的に除去でき、乾燥物、炭化物中に残存することなく、安全且つ安心な資源として再利用できる。また、吸着材を加熱加工する際に分解析出して発生する有害物質と接触反応して無害な物質に置換生成する薬剤としてアルカリ物質を添加混合することで、熱分解処理工程において、このアルカリ物質が吸着材に取り込まれるので、一層、アルカリ成分のリッチな吸着材となり、リンの吸着回収効果の向上が期待できる。   According to this phosphorus adsorbent production facility, papermaking sludge is dried indirectly in a reducing atmosphere and thermally decomposed by indirect heating from the outside, so that the papermaking sludge contains harmful chlorine and sulfur. However, these components can be removed effectively and can be reused as a safe and secure resource without remaining in the dried product and carbide. In addition, in the thermal decomposition process, this alkaline substance is added and mixed as an agent that replaces and produces a harmless substance that reacts with harmful substances generated by decomposition and precipitation when heat-treating the adsorbent. Is taken into the adsorbent, so that the adsorbent is further rich in alkali components, and an improvement in the phosphorus adsorption recovery effect can be expected.

ところで、セメント系のリン吸着材はリン(リン酸)と反応してリン酸カルシウム(ヒドロキシアパタイト)を生成してリンを吸着することが知られている。しかし、水酸化カルシウムは強アルカリであり水に溶解すると湖沼などの水質のpHを大幅に上昇させ、アルカリ性が高くなって、特に淡水中または静水中ではpH値が大きくなり、環境を悪化させてしまう課題がある。   By the way, it is known that cement-based phosphorus adsorbents react with phosphorus (phosphoric acid) to produce calcium phosphate (hydroxyapatite) to adsorb phosphorus. However, calcium hydroxide is a strong alkali, and when dissolved in water, it significantly increases the pH of water quality such as lakes and marshes, increasing alkalinity, especially in fresh water or still water, increasing the pH value and deteriorating the environment. There is a problem.

この課題を解決するリン回収材が下記特許文献2に提案されている。このリン回収材は、石炭灰と、石膏と、水酸化ナトリウム水溶液とを含む混合物で構成されている。このリン回収材によれば、リンを含む溶液のアルカリ性が高くなることを抑制できて、リン回収性能を向上させることができる。   The phosphorus recovery material which solves this subject is proposed by the following patent document 2. This phosphorus collection | recovery material is comprised with the mixture containing coal ash, gypsum, and sodium hydroxide aqueous solution. According to this phosphorus collection | recovery material, it can suppress that the alkalinity of the solution containing phosphorus becomes high, and can improve phosphorus collection | recovery performance.

特開2004−14003号公報JP 2004-14003 A 特許第5879171号公報Japanese Patent No. 5879171

上記特許文献1に記載のリン吸着材は、製紙スラッジ由来の多孔質化した炭化物からなり、この炭化物の表面及び孔内壁にはアルカリ質成分が露出して存在するので、リンを含んだ溶液中のリンと接触反応しリン成分を効率よく回収できる。   The phosphorus adsorbent described in Patent Document 1 is made of a porous carbide derived from paper sludge, and since an alkaline component is exposed on the surface of the carbide and the inner wall of the pore, the phosphorus adsorbent is contained in a solution containing phosphorus. The phosphorus component can be efficiently recovered by contact reaction with phosphorus.

しかし、この多孔質化した炭化物は、製紙スラッジを乾燥処理する乾燥炉、この乾燥炉で乾燥処理した原料を熱分解処理し多孔質性の炭化物を得る熱分解炉、また乾燥炉で発生した水蒸気及び熱分解炉で発生した熱分解ガスを燃焼し無害化処理するガス燃焼炉、及びこれらの付帯設備などからなる特殊なリン吸着材生成施設で生成しなければならない。このため、この生成施設は各種の炉、すなわち乾燥炉、熱分解炉及びガス燃焼炉などの炉、並びにこれに付帯した粉砕及び移送手段などの付帯設備などを必要とするため、このリン吸着材生成施設、すなわちこれを構成する設備・装置などは特殊で複雑・高価なものとなって、そのために高額な設備投資を要し、その一方でまた、この施設を構成する装置を稼働する際には各種の炉へ大量の石油燃料を供給し、燃焼させなければならない。その結果、設備投資に掛かるイニシャルコスト及び稼働時のランニングコストが高騰し、これらのコストが製品、すなわちリン吸着材に転嫁されて高価なものとなり、商業的な採算性に課題がある。   However, this porous carbide is used in a drying furnace for drying paper sludge, a pyrolysis furnace in which the raw material dried in this drying furnace is pyrolyzed to obtain porous carbide, and water vapor generated in the drying furnace. It must be produced in a special phosphorus adsorbent production facility consisting of a gas combustion furnace that burns and detoxifies the pyrolysis gas generated in the pyrolysis furnace, and these incidental facilities. For this reason, this production facility requires various furnaces, that is, furnaces such as a drying furnace, a pyrolysis furnace, and a gas combustion furnace, and incidental equipment such as pulverization and transfer means attached thereto. The production facility, that is, the equipment and devices that make up this facility, becomes special, complex, and expensive, which requires expensive capital investment. On the other hand, when operating the equipment that makes up this facility, Must supply a large amount of petroleum fuel to various furnaces and burn them. As a result, the initial cost required for capital investment and the running cost during operation increase, and these costs are transferred to the product, that is, the phosphorus adsorbent and become expensive, and there is a problem in commercial profitability.

また、このリン吸着材は、リンを吸着する成分量を多くできず、しかも炭化物は粒形状に生成されるので任意形状に形成できず、さらにそれらは岩石状になるので、これを砕いた粒体の比表面積が小さい。その結果、リンを吸着する成分量を多くできないので、リン吸着量が少なく、また形状が限定さるので使用形態が制限され、さらにリンを吸着する面積が小さいのでリン吸着量も少なく、さらにまた、吸着・回収されたリンを直接肥料にして使用することにも課題がある。   In addition, this phosphorus adsorbent cannot increase the amount of the component that adsorbs phosphorus, and the carbide is generated in a granular shape, so it cannot be formed into an arbitrary shape, and further, it becomes a rock-like shape. The specific surface area of the body is small. As a result, the amount of components that adsorb phosphorus cannot be increased, so the amount of phosphorus adsorbed is small, and the form of use is limited, so the form of use is limited, and the amount of phosphorus adsorbed is small, so the amount of phosphorus adsorbed is small, There is also a problem in using directly absorbed and recovered phosphorus as fertilizer.

また、上記特許文献2に記載のリン回収材は、リンを吸着する成分量を多くできず、吸着・回収されたリンを直接肥料にするができない。また、リンを含む溶液のアルカリ性が高くなることを抑制するために、石膏と水酸化ナトリウム水溶液を混合しなければならないなどの課題がある。   Moreover, the phosphorus collection | recovery material of the said patent document 2 cannot increase the component amount which adsorb | sucks phosphorus, and cannot use the phosphorus which was adsorbed and collect | recovered directly as a fertilizer. Moreover, in order to suppress that the alkalinity of the solution containing phosphorus becomes high, there exists a subject that a gypsum and sodium hydroxide aqueous solution must be mixed.

本発明者らは、従来技術は多くの課題を抱えていることから、これらの課題を解決する方法乃至手段として、生成するリン吸着材を炭化物に代えて発泡水熱固化体で構成すれば、高価なリン吸着材生成設備を用いずに、設備投資に伴うイニシャルコストや稼働時のランニングコストを大幅に低減でき、その結果、価格を大幅に低減でき、しかも発泡水熱固化体を生成する際にリン吸着に寄与する成分を増量できて吸着量が多くなり、さらに吸着・回収したリンを直接肥料としても使用が可能になり、さらにまた、新たに別の溶液を混合せずとも、pH値が大きくなるのを抑制できることなどに想到して、本発明を完成させるに至ったものである。   The present inventors have many problems in the prior art, and as a method or means for solving these problems, if the generated phosphorus adsorbent is composed of foamed hydrothermal solidified body instead of carbide, Without using expensive phosphorus adsorbent production equipment, initial costs associated with capital investment and running costs during operation can be greatly reduced. As a result, prices can be drastically reduced and foamed hydrothermal solids can be produced. It is possible to increase the amount of components that contribute to phosphorus adsorption and increase the amount of adsorption. Furthermore, it is possible to use the adsorbed and recovered phosphorus directly as fertilizer, and even without adding another solution, the pH value can be increased. The present invention has been completed by conceiving that it is possible to suppress the increase in size.

すなわち、本発明の目的は、従来技術の炭化物からなるリン吸着材に比べて、リン吸着に寄与する成分の増量、比表面積の拡大及び易粒径調整の相乗作用によって、よりリン吸着能力がアップし、安価にして商業的に採算性がとれたリン吸着材を提供することにある。また、本発明の他の目的は、pHを基準値の範囲に安定させ、降雨によるリン溶脱が少なく、しかも植物が利用可能な形態で保持しているリン吸着材を提供することにある。さらに、本発明の他の目的は、吸着・回収したリンをそのまま肥料としても使用できる一方でまた、希薄な酸溶液で脱着できるリン吸着材を提供することにある。   That is, the object of the present invention is to increase the phosphorus adsorption capacity by the synergistic effect of increasing the amount of components contributing to phosphorus adsorption, increasing the specific surface area, and adjusting the easy particle size, compared to the conventional phosphorus adsorbents made of carbides. Another object of the present invention is to provide a phosphorus adsorbent that is inexpensive and commercially profitable. Another object of the present invention is to provide a phosphorus adsorbent that stabilizes the pH within the range of the reference value, reduces phosphorus leaching due to rainfall, and holds the plant in a form usable by plants. Furthermore, another object of the present invention is to provide a phosphorus adsorbent which can be used as it is as a fertilizer as it is, and can be desorbed with a dilute acid solution.

さらにまた、本発明の他の目的は、従来技術の炭化物からなるリン吸着材生成設備に比べて、高額な生成設備を不要にすると共に該生成設備を稼働するランニングコストの低減ができて、安価で且つリン吸着能力が高いリン吸着材の製造方法を提供することにある。   Furthermore, another object of the present invention is to reduce the running cost of operating the generating equipment and reducing the running cost of the generating equipment as compared with the conventional phosphorus adsorbent generating equipment made of carbide. Another object of the present invention is to provide a method for producing a phosphorus adsorbent having a high phosphorus adsorption capacity.

上記目的を達成するために、本発明の第1の態様のリン吸着材は、焼却灰を主原料にして生成した発泡水熱固化体からなり、前記発泡水熱固化体は、少なくともカルシウム及びアルミニウムを含有していることを特徴とする。   In order to achieve the above object, the phosphorus adsorbent according to the first aspect of the present invention comprises a foamed hydrothermal solidified body produced from incinerated ash as a main raw material, and the foamed hydrothermal solidified body contains at least calcium and aluminum. It is characterized by containing.

第2の態様のリン吸着材は、第1の態様のリン吸着材において、前記発泡水熱固化体は、さらに鉄を含有していることを特徴とする。   The phosphorus adsorbent according to the second aspect is the phosphorus adsorbent according to the first aspect, wherein the foamed hydrothermal solidified body further contains iron.

第3の態様のリン吸着材は、第1の態様のリン吸着材において、前記発泡水熱固化体は、X線回析でピーク位置を示すケイ酸カルシウム水和物を含有していることを特徴とする。   The phosphorus adsorbent of the third aspect is the phosphorus adsorbent of the first aspect, wherein the foamed hydrothermal solidified body contains calcium silicate hydrate showing a peak position by X-ray diffraction. Features.

第4の態様のリン吸着材は、第1または2の態様のリン吸着材において、前記カルシウムの含有量は、前記発泡水熱固化体100質量%に対して30以上50質量%以下、前記アルミニウムの含有量は0.4以上9.5質量%以下であることを特徴とする。   The phosphorus adsorbent of the fourth aspect is the phosphorus adsorbent of the first or second aspect, wherein the calcium content is 30 to 50% by mass with respect to 100% by mass of the foamed hydrothermal solidified body, and the aluminum The content of is not less than 0.4 and not more than 9.5% by mass.

第5の態様のリン吸着材は、第1〜第4のいずれかの態様のリン吸着材において、前記発泡水熱固化体は、表面発泡率は5以上30%以下で、かつ比表面積率は30以上130m/g以下であることを特徴とする。 The phosphorus adsorbent of the fifth aspect is the phosphorus adsorbent of any one of the first to fourth aspects. The foamed hydrothermal solidified body has a surface foaming ratio of 5 to 30% and a specific surface area ratio of It is 30 or more and 130 m < 2 > / g or less.

第6の態様のリン吸着材は、第1〜第5のいずれかの態様のリン吸着材において、前記発泡水熱固化体は、平均粒径が0.5mmを超えていることを特徴とする。   The phosphorus adsorbent according to a sixth aspect is the phosphorus adsorbent according to any one of the first to fifth aspects, wherein the foamed hydrothermal solidified body has an average particle size exceeding 0.5 mm. .

本発明の第7の態様のリン吸着材の製造方法は、以下の工程(a)〜(d)を含むことを特徴とする。
(a)両性金属を含有する焼却灰100質量%にセメントを5以上25質量%以下加えて混合する混合工程、
(b)前記混合工程の後、前記焼却灰及びセメントの混合物に混練水を投入して混練することで、前記焼却灰及びセメントに含まれる生石灰を水和させてファニキュラー状態の混練物を得る混練工程、
(c)前記混練工程の後、前記焼却灰及びセメントの混合物と混練水との混練物を成形型枠に移すと共に所定の圧縮力を加えながら水熱固化させて水熱固化体を得る養生工程、
(d)前記混練工程の後、養生を終了した固化体は成形枠体の大きさの成形塊物になっているので、これを所定の粒径に破砕する破砕工程。
The manufacturing method of the phosphorus adsorption material of the 7th aspect of this invention is characterized by including the following process (a)-(d).
(A) A mixing step of adding 5 to 25% by mass of cement to 100% by mass of incinerated ash containing amphoteric metals and mixing,
(B) After the mixing step, kneaded water is added to the mixture of the incinerated ash and cement to knead to hydrate the quick lime contained in the incinerated ash and cement to obtain a kneaded product in a funicular state. Kneading process,
(C) After the kneading step, the curing step of transferring the kneaded mixture of the incinerated ash and cement and the kneading water to a forming mold and hydrothermally solidifying the mixture while applying a predetermined compressive force to obtain a hydrothermal solidified body. ,
(D) A crushing step of crushing the solidified body that has been cured after the kneading step into a predetermined particle size because the solidified body is a molded lump of the size of the molding frame.

第8の態様のリン吸着材の製造方法は、第7の態様のリン吸着材の製造方法において、前記焼却灰は、都市ごみ、木材チップ・タイヤチップ、製紙スラッジ、下水汚泥、バイオマスなどの廃棄物焼却灰、或いは、石炭、ゴミ固形化燃料、紙・プラスチック固形化燃料等の焼却灰のいずれか又はこれらをミックスしたものであることを特徴とする。   A method for producing a phosphorus adsorbent according to an eighth aspect is the method for producing a phosphorus adsorbent according to the seventh aspect, wherein the incinerated ash is disposed of as municipal waste, wood chips / tire chips, paper sludge, sewage sludge, biomass, etc. It is characterized by being incinerated ash, incinerated ash such as coal, solid waste fuel, paper / plastic solidified fuel, or a mixture of these.

第9の態様のリン吸着材の製造方法は、第7の態様のリン吸着材の製造方法において、前記焼却灰中の両性金属の含有量が、0.5以上10質量%以下であることを特徴とする。   The method for producing a phosphorus adsorbent according to the ninth aspect is the method for producing a phosphorus adsorbent according to the seventh aspect, wherein the content of the amphoteric metal in the incinerated ash is 0.5 or more and 10% by mass or less. Features.

第10の態様のリン吸着材の製造方法は、第7または8の態様のリン吸着材の製造方法において、前記(a)の混合工程において、前記混合物に対して石灰を添加混合し、その割合を全混合物の30以上50質量%以下にしたことを特徴とする。   The method for producing a phosphorus adsorbent according to the tenth aspect is the method for producing a phosphorus adsorbent according to the seventh or eighth aspect, wherein in the mixing step (a), lime is added to and mixed with the mixture, and the ratio It is characterized by having made 30 to 50 mass% of the total mixture.

本発明の第1の態様のリン吸着材は、焼却灰を主原料として生成した発泡水熱固化体からなり、この発泡水熱固化体は少なくともカルシウム及びアルミニウムを含有している。これにより、従来技術の炭化物からなるリン吸着材に比べて、リン吸着に寄与するカルシウムの増量、比表面積の拡大及び易粒径調整(すなわち、任意の粒径のものを簡単に調整して形成できる。)の相乗作用によって、よりリン吸着能力がアップし、炭化物を生成する製造装置に比べて、安価な装置でしかも簡単に生成できるのでリン吸着材が安価になり商業的に採算性がとれたものになる。さらにリンを吸着・回収した吸着剤は、植物が利用可能な形態でリンが保持され、そのまま肥料としても使用でき、また、吸着されたリンは希薄な酸溶液で脱着できる。   The phosphorus adsorbent of the first aspect of the present invention comprises a foamed hydrothermal solidified body produced from incinerated ash as a main raw material, and this foamed hydrothermal solidified body contains at least calcium and aluminum. This makes it possible to increase the amount of calcium that contributes to phosphorus adsorption, increase the specific surface area, and adjust the particle size easily (that is, easily adjust the particle size of any particle size) compared to phosphorus adsorbents made of conventional carbides. )), The phosphorus adsorption capacity is improved, and it is easier to produce with a cheaper device than a production device that produces carbides, making the phosphorus adsorbent cheap and making it commercially profitable. It becomes a thing. Further, the adsorbent that adsorbs and recovers phosphorus retains phosphorus in a form that can be used by plants, and can be used as a fertilizer as it is. Adsorbed phosphorus can be desorbed with a dilute acid solution.

第2の態様のリン吸着材は、発泡水熱固化体はさらに鉄を含有しているので、さらにリン吸着量を増大できる。   In the phosphorus adsorbent of the second aspect, the foamed hydrothermal solidified body further contains iron, so that the phosphorus adsorption amount can be further increased.

第3の態様のリン吸着材によれば、ケイ酸カルシウム水和物は、長短及び太さが異なる針状結晶の集合体からなるので、溶液と反応する面積が大きくなり、リン吸着量が増加する。   According to the phosphorus-adsorbing material of the third aspect, since the calcium silicate hydrate is composed of aggregates of needle-like crystals with different lengths and thicknesses, the area that reacts with the solution increases and the amount of phosphorus adsorption increases. To do.

第4の態様のリン吸着材によれば、30以上50質量%以下、前記アルミニウムの含有量は0.4以上9.5質量%以下であるので、炭化物からなるリン吸着材に比べて、それらの量が多くなり、リン吸着に寄与する。   According to the phosphorus adsorbent of the fourth aspect, 30 or more and 50% by mass or less, and the aluminum content is 0.4 or more and 9.5% by mass or less. This increases the amount of phosphorus and contributes to phosphorus adsorption.

第5の態様のリン吸着材によれば、発泡水熱固化体は、表面発泡率は5以上30%以下で、かつ比表面積率は30以上130m/g以下であるので、炭化物からなるリン吸着材に比べて、それらの量が多くなり、多量のリンを吸着できる。 According to the phosphorus adsorbent of the fifth aspect, the foam hydrothermal solidified body has a surface foaming ratio of 5 to 30% and a specific surface area ratio of 30 to 130 m 2 / g. Compared with the adsorbent, the amount thereof increases and a large amount of phosphorus can be adsorbed.

第6の態様のリン吸着材は、発泡水熱固化体の平均粒径が0.5mmを超えているので、pHを基準値の範囲に安定させることができ、一方でまた、リン吸着の際は、この粒径の吸着材(固化体を粉砕したもの)を、例えば袋詰めなどして使用するので、この袋内の吸着材間が目詰まりを起こし、透水性が低下するのを防止できる。しかも、この粒径によれば吸着・回収したリンをそのまま肥料として使用できる。   In the phosphorus adsorbent of the sixth aspect, since the average particle diameter of the foamed hydrothermal solidified body exceeds 0.5 mm, the pH can be stabilized within the range of the reference value. Uses an adsorbent having this particle size (crushed solidified material), for example, in a bag, so that it is possible to prevent the adsorbent in the bag from becoming clogged and lowering the water permeability. . Moreover, according to this particle size, the adsorbed and recovered phosphorus can be used as it is as a fertilizer.

本発明の第7の態様のリン吸着材の製造方法によれば、従来技術の炭化物からなるリン吸着材生成設備に比べて、高額な生成設備が不要になると共に該生成設備を稼働するランニングコストの低減ができて、安価で且つリン吸着能力が高いリン吸着材の製造方法を提供できる。   According to the manufacturing method of the phosphorus adsorbent of the seventh aspect of the present invention, compared to the phosphorus adsorbent generating equipment made of carbide of the prior art, expensive generating equipment is unnecessary and the running cost for operating the generating equipment Therefore, it is possible to provide a method for producing a phosphorus adsorbent that is inexpensive and has a high phosphorus adsorption capacity.

第8の態様のリン吸着材の製造方法によれば、殆ど全ての焼却灰を再利用可能にしてリン吸着材等に再生できる。特に、製紙スラッジを含んだ焼却灰を原料にすると、焼却灰が保有する細孔性、多孔性を損なうことなく、所定の強度で重金属類の有害成分の溶出を抑制し、吸湿性や保水性を有するものとして製造できる。   According to the method for producing a phosphorus adsorbent of the eighth aspect, almost all incineration ash can be reused and regenerated into a phosphorus adsorbent or the like. In particular, when incinerated ash containing paper sludge is used as a raw material, the elution of harmful components of heavy metals with a predetermined strength is suppressed without impairing the porosity and porosity possessed by the incinerated ash. It can manufacture as what has.

第9の態様のリン吸着材の製造方法によれば、発泡水熱固化体にアルミニウムを0.4以上9.5質量%以下含有できる。   According to the method for producing the phosphorus adsorbent of the ninth aspect, the foamed hydrothermal solidified body can contain aluminum in an amount of 0.4 to 9.5% by mass.

第10の態様のリン吸着材の製造方法によれば、カルシウムは、30以上50質量%以下、アルミニウムは0.4以上9.5質量%以下含有できる。   According to the method for producing a phosphorus adsorbent of the tenth aspect, calcium can be contained in an amount of 30 to 50% by mass and aluminum can be contained in an amount of 0.4 to 9.5% by mass.

本発明の実施形態に係るリン吸着材の粉末X線回析図である。It is a powder X-ray diffraction pattern of the phosphorus adsorbent according to the embodiment of the present invention. 本発明の実施形態に係るリン吸着材の微細結晶構造を示す電子顕微鏡写真である。It is an electron micrograph which shows the fine crystal structure of the phosphorus adsorbent which concerns on embodiment of this invention. 図3はリン吸着量の測定試験法を示し、図3Aはバッチ試験の概略図、図3Bはカラム試験の概略図である。FIG. 3 shows a measurement test method of phosphorus adsorption amount, FIG. 3A is a schematic diagram of a batch test, and FIG. 3B is a schematic diagram of a column test. 溶液pHとリン除去量の関係を示したグラフである。It is the graph which showed the relationship between solution pH and phosphorus removal amount. 図5はカラム試験におけるリン吸着能の比較を示し、図5Aは従来技術の石炭灰からなる吸着材を用いた場合、図5Bは本発明の実施形態に係るリン吸着材を用いた場合を示す。FIG. 5 shows a comparison of phosphorus adsorption capacity in a column test, FIG. 5A shows a case where a conventional adsorbent made of coal ash is used, and FIG. 5B shows a case where a phosphorus adsorbent according to an embodiment of the present invention is used. . カラム試験における通水後の溶液pHを示した図である。It is the figure which showed the solution pH after the water flow in a column test. 吸着したリンの溶液中への脱着状態を示した図である。It is the figure which showed the desorption state to the solution of the adsorbed phosphorus.

以下、図表を参照して、本発明の実施形態に係るリン吸着材及びその製造方法を説明する。但し、以下に示す実施形態は、本発明の技術思想を具体化するためのリン吸着材及びその製造方法などを例示するものであって、本発明をこれに特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態のものにも等しく適応し得るものである。   Hereinafter, a phosphorus adsorbent and a method for manufacturing the same according to embodiments of the present invention will be described with reference to the drawings. However, the embodiment shown below exemplifies a phosphorus adsorbing material and a manufacturing method thereof for embodying the technical idea of the present invention, and is not intended to specify the present invention. Other embodiments within the scope of the claims are equally applicable.

[リン吸着材]
図1、図2及び表1を参照して、本発明の実施形態に係るリン吸着材を説明する。なお、図1は本発明の実施形態に係るリン吸着材の粉末X線回析図であり、図2はリン吸着材の微細結晶構造を示す電子顕微鏡写真であり、また、表1は実施形態に係るリン吸着材の元素組成表である。
[Phosphorus adsorbent]
With reference to FIG. 1, FIG. 2, and Table 1, the phosphorus adsorption material which concerns on embodiment of this invention is demonstrated. 1 is a powder X-ray diffraction pattern of a phosphorus adsorbent according to an embodiment of the present invention, FIG. 2 is an electron micrograph showing a fine crystal structure of the phosphorus adsorbent, and Table 1 is an embodiment. It is an element composition table | surface of the phosphorus adsorbent which concerns on this.

本発明の実施形態に係るリン吸着材は、焼却灰を主原料として生成した発泡水熱固化体からなり、この水熱固化体には、リン成分(以下、単に「リン」と言うことがある。)と結合する少なくともカルシウム(Ca)及びアルミニウム(Al)元素が含有されている。これらのカルシウム及びアルミニウムは、発泡水熱固化体を生成する際に必須の元素成分である。本発明の実施形態に係るリン吸着材の生成は、所定量の焼却灰と、セメント(生石灰)と、水とを混合・混錬し、水熱固化反応を利用して製造される。セメントには所定量、例えば40質量%(表1参照)のカルシウム元素が含まれている。また、アルミニウム元素は製紙スラッジを燃焼させた灰にも含まれている。   The phosphorus adsorbent according to the embodiment of the present invention is composed of a foamed hydrothermal solidified body produced from incinerated ash as a main raw material, and this hydrothermal solidified body may be referred to as a phosphorus component (hereinafter simply referred to as “phosphorus”). At least calcium (Ca) and aluminum (Al) elements. These calcium and aluminum are essential element components when producing a foamed hydrothermal solidified body. The production | generation of the phosphorus adsorption material which concerns on embodiment of this invention mixes and knead | mixes a predetermined amount of incineration ash, cement (quick lime), and water, and is manufactured using a hydrothermal solidification reaction. The cement contains a predetermined amount, for example, 40% by mass (see Table 1) of calcium element. Aluminum element is also contained in ash obtained by burning papermaking sludge.

図1の横軸2θと強度(縦軸)との関係で、三角印が付与されたピーク位置は、セメント(生石灰)の水和反応によって生成されたケイ酸カルシウム水和物を示している。このケイ酸カルシウム水和物は、実施形態のリン吸着材の方が主原料の焼却灰よりも多く含まれている。すなわち、図1には主原料の焼却灰の粉末X線回析図も図示されており、同図から明らかなように、実施形態のリン吸着材と主原料の焼却灰とは、ピーク位置は類似しているが、ピーク高さは実施形態のリン吸着材の方が主原料の焼却灰よりも高くなっている。このことは、実施形態のリン吸着材においては、発泡水熱固化体を生成(以下、製造と表現することがある。)する工程でケイ酸カルシウム水和物が新たに生成されていると云える。   In the relationship between the horizontal axis 2θ and the strength (vertical axis) in FIG. 1, the peak position to which the triangle mark is given indicates calcium silicate hydrate produced by the hydration reaction of cement (quick lime). The calcium silicate hydrate is more contained in the phosphorus adsorbent of the embodiment than the incinerated ash of the main raw material. That is, FIG. 1 also shows a powder X-ray diffraction diagram of the main raw material incineration ash. As is clear from the figure, the peak positions of the phosphorus adsorbent of the embodiment and the main raw material incineration ash are as follows. Although similar, the peak height of the phosphorus adsorbent of the embodiment is higher than the incinerated ash of the main raw material. This means that in the phosphorous adsorbent of the embodiment, calcium silicate hydrate is newly generated in the step of generating a foamed hydrothermal solidified body (hereinafter sometimes referred to as production). Yeah.

また、このケイ酸カルシウム水和物は、図2に示したように、長短及び太さが異なる針状結晶の集合体からなり、従来技術の炭化物からなるリン吸着材と形態が異なっているものと推察される。この針状結晶の集合体は、粗密(微細乃至多孔)になっているので溶液と反応する面積が大きくなっている。これにより、針状結晶の集合体はリンを含む溶液により多く接触し、溶液中のリンと反応して、効率よくリンを吸着できる。その一方でまた、主にケイ酸カルシウム水和物中のカルシウムがリン吸着に寄与しているが、植物が容易に利用可能な形態でリンが吸着確保されていると推察される。なお、ケイ酸カルシウム水和物に吸着されたリンは、希薄な酸溶液で容易に脱着できる。   In addition, as shown in FIG. 2, this calcium silicate hydrate is composed of a collection of needle-like crystals with different lengths and lengths, and is different in form from a phosphorus adsorbent composed of carbides of the prior art. It is guessed. This aggregate of acicular crystals is coarse (fine or porous) and therefore has a large area that reacts with the solution. As a result, the aggregate of acicular crystals comes into more contact with the solution containing phosphorus, reacts with phosphorus in the solution, and can efficiently adsorb phosphorus. On the other hand, calcium in calcium silicate hydrate mainly contributes to phosphorus adsorption, but it is speculated that phosphorus is adsorbed and secured in a form that can be easily used by plants. The phosphorus adsorbed on the calcium silicate hydrate can be easily desorbed with a dilute acid solution.

このリン吸着材は、焼却灰及びセメントを主原料にした発泡水熱固化体で形成されており、表1に示したように、カルシウム(Ca)、アルミニウム(Al)以外に、鉄(Fe)、珪素(Si)、硫黄(S)、亜鉛(Zn)、塩素(Cl)、炭素(C)…なども含まれている。なお、以下の説明では、元素記号を使用することがある。   This phosphorus adsorbent is formed of a foamed hydrothermal solidified material mainly composed of incinerated ash and cement. As shown in Table 1, in addition to calcium (Ca) and aluminum (Al), iron (Fe) is used. , Silicon (Si), sulfur (S), zinc (Zn), chlorine (Cl), carbon (C), etc. are also included. In the following description, element symbols may be used.

なお、この表は、各元素の含有割合と粒径との関係をも示しているが、各元素の含有割合は粒径によらず略同じとなっている。 This table also shows the relationship between the content ratio of each element and the particle diameter, but the content ratio of each element is substantially the same regardless of the particle diameter.

また、表1の元素組成のうち、カルシウム(Ca)、アルミニウム(Al)及び鉄(Fe)がリンと結合、すなわちリン吸着に寄与する成分となっている。この実施形態に係るリン吸着材は、表1に示したように、Caを約40質量%、Alを約9質量%、Feを約15質量%含有しており、これらがリンと結合、すなわちリンを吸着する。   Of the elemental compositions shown in Table 1, calcium (Ca), aluminum (Al), and iron (Fe) are components that contribute to phosphorus bonding, that is, phosphorus adsorption. As shown in Table 1, the phosphorus adsorbent according to this embodiment contains about 40% by mass of Ca, about 9% by mass of Al, and about 15% by mass of Fe. Adsorb phosphorus.

また、表1の元素組成に示した各成分量は、主原料の焼却灰及びセメント(生石灰)の種類乃至量などによって変化する。特に、Caはセメント(生石灰)の量によって変化し、発泡水熱固化体からなるリン吸着材を生成するための量として、Caは水熱固化体100質量%に対して、30以上50質量%以下、Alは0.4以上9.5質量%以下の範囲にするのが好ましい。   In addition, the amount of each component shown in the elemental composition in Table 1 varies depending on the type or amount of incinerated ash and cement (quick lime) as main raw materials. In particular, Ca varies depending on the amount of cement (quick lime), and Ca is 30 to 50% by mass with respect to 100% by mass of hydrothermally solidified material as an amount for producing a phosphorus adsorbent composed of foamed hydrothermally solidified material. Hereinafter, Al is preferably in the range of 0.4 to 9.5 mass%.

上記範囲のCa及びAl量により、本実施形態の吸着材の吸着量は、従来技術の石炭灰からなる吸着材に比べて、格段に大量、例えば10倍以上のリンを吸着(回収)できる。なお、この点は、後記する試験で検証した。   With the amount of Ca and Al in the above range, the adsorption amount of the adsorbent according to the present embodiment can adsorb (recover) a remarkably large amount of phosphorus, for example, 10 times or more, as compared with the adsorbent made of coal ash of the prior art. This point was verified by a test described later.

また、本実施形態のリン吸着材においては、表面気泡率が5以上30%以下の範囲であって、かつ、BET比表面積が30以上130m/g以下の範囲にあるのが好ましい。この比表面積は、石炭灰の一般的な比表面積値が0.53m/gであるので、格段に広い範囲となっている。これにより、従来技術の石炭灰からなる吸着材に比べて、表面気泡率及び比表面積が大きくなり、その分リン吸着面が拡大されると共に吸水率が高く(例えば40%以上)なるので、溶液中のリンとの接触頻度が多くなり、より大量のリンを吸着することが可能になる。 Moreover, in the phosphorus adsorption material of this embodiment, it is preferable that the surface bubble ratio is in the range of 5 to 30% and the BET specific surface area is in the range of 30 to 130 m 2 / g. This specific surface area is a remarkably wide range because the general specific surface area value of coal ash is 0.53 m 2 / g. Thereby, compared with the adsorbent made of coal ash of the prior art, the surface bubble rate and the specific surface area are increased, and accordingly, the phosphorus adsorption surface is enlarged and the water absorption is increased (for example, 40% or more). The contact frequency with the phosphorus in the inside increases, and a larger amount of phosphorus can be adsorbed.

なお、この発泡水熱固化体は、表面気泡率を5以上30%以下かつ比表面積を30〜130m/gに制御することで、吸水率40%以上と1軸圧縮強度5N/mm以上が共に達成され、また、放湿性をも兼ね備えた固化体となるので、その用途はリン吸着材だけのものでなく、透水性と強度の両立が要求される各種資材、例えば土木資材として使用することが可能となる。 In addition, this foaming hydrothermal solidified body has a water absorption of 40% or more and a uniaxial compressive strength of 5 N / mm 2 or more by controlling the surface cell ratio to 5 to 30% and the specific surface area to 30 to 130 m 2 / g. Is achieved, and it becomes a solidified body that also has moisture-releasing properties, so that its use is not only for phosphorus adsorbents, but also for various materials that require both water permeability and strength, such as civil engineering materials. It becomes possible.

なお、表面気泡率とは、固化体の任意の断面における目視可能な気泡(空隙)の面積が占め割合を意味し、対象となる固化体の任意の断面(10mm×10mmの正方形)において、目視可能な大きさの気泡の面積をプラニメータで計測して表面気泡面積(mm)とし、下記の計算式によって算定されたものとする。
表面気泡率(%)=(表面気泡面積(mm)/100(mm))×100
The surface bubble ratio means a ratio occupied by the area of air bubbles (voids) visible in an arbitrary cross section of the solidified body, and is visually observed in an arbitrary cross section (10 mm × 10 mm square) of the target solidified body. It is assumed that the bubble area of a possible size is measured with a planimeter to obtain the surface bubble area (mm 2 ) and is calculated by the following calculation formula.
Surface bubble rate (%) = (surface bubble area (mm 2 ) / 100 (mm 2 )) × 100

また、吸水率とは、表面乾燥飽水状態の固化体に含まれている全水量の、絶対乾燥状態の固化体に対する百分率を意味し、絶対乾燥状態の質量(絶乾質量)と、表面乾燥飽水状態の質量(飽水質量)とを測定して、下記の計算式によって算定されたものとする。
吸水率(%)=((飽水質量−絶乾質量)/絶乾質量)×100
Moreover, the water absorption means the percentage of the total water contained in the solid body in the surface dry saturated state with respect to the solid body in the absolute dry state. The mass in the absolute dry state (absolute dry mass) and the surface dry It is assumed that the saturated water mass (saturated water mass) is measured and calculated by the following formula.
Water absorption (%) = ((saturated water mass−absolute mass) / absolute mass) × 100

さらに、この固化体、表面気泡率が0%であっても、気泡が目視できない程度の大きさで、実際には多孔質構造を有しているため、気泡同士が連結することにより透水性を備えたものとなる。しかしながら、気泡の大きさが小さ過ぎると、気泡同士の連結が減少するなどにより、吸水性及び透水性が低下するため、比表面積は130m/g以下とすることが好ましい。比表面積が130m/g以下であれば、表面気泡率が0%であっても、吸水率40%以上を達成することが可能になる。 Furthermore, even if this solidified body has a surface bubble rate of 0%, it has a porous structure so that the bubbles are not visible, and actually has a porous structure. It will be prepared. However, if the size of the bubbles is too small, the water absorption and water permeability are reduced due to a decrease in the connection between the bubbles, and therefore the specific surface area is preferably 130 m 2 / g or less. When the specific surface area is 130 m 2 / g or less, even when the surface bubble rate is 0%, it is possible to achieve a water absorption rate of 40% or more.

本実施形態のリン吸着材は、その平均粒径が0.5mmを超えたものにするが、好ましくは、1mm以上2mm以下の範囲がよい。これにより、pHを高くせずにリン吸着量の増大が可能になる。この点は、後記する試験で検証した。   The phosphorus adsorbent of the present embodiment has an average particle size exceeding 0.5 mm, but preferably in the range of 1 mm to 2 mm. This makes it possible to increase the phosphorus adsorption amount without increasing the pH. This point was verified by a test described later.

この粒径の調整は、極めて簡単にできる。すなわち、発泡水熱固化体は任意の大きさで比較的弱い強度の成形塊物で生成されることから、単に破砕するだけで、任意の大きさに調整した粒径に形成できる。なお、従来技術の炭化物は粒状に生成された造粒物となるので、単に破砕するだけでは任意の大きさに調整した粒径に形成するのが困難になっている。   The adjustment of the particle size can be very easily performed. That is, since the foamed hydrothermal solidified body is formed as a molded lump having an arbitrary size and a relatively weak strength, it can be formed into a particle size adjusted to an arbitrary size simply by crushing. In addition, since the carbide | carbonized_material of a prior art turns into the granulated material produced | generated in granular form, it is difficult to form in the particle size adjusted to arbitrary magnitude | sizes only by crushing.

以上の説明から、本実施形態のリン吸着材は、まず、従来技術の炭化物からなるリン吸着材に比べて、リン吸着に寄与するカルシウムの増量、比表面積の拡大及び易粒径調整により、よりリン吸着能力が高く、しかも安価なものになる。また、pHを基準値の範囲に安定させ、降雨によるリン溶脱が少なく、しかもリンを植物が利用可能な形態で保持でき、さらに、リンを吸着・回収した本実施形態のリン吸着材をそのまま肥料として使用できる一方でまた、吸着・回収されたリンは希薄な酸溶液で脱着もできる。   From the above description, the phosphorus adsorbent of the present embodiment is first made by increasing the amount of calcium contributing to phosphorus adsorption, expanding the specific surface area, and adjusting the easy particle size as compared with the phosphorus adsorbent made of carbide of the prior art. Phosphorus adsorption capacity is high and inexpensive. In addition, the pH is stabilized within the range of the reference value, phosphorus leaching due to rainfall is small, and the phosphorus can be retained in a form that can be used by plants. On the other hand, the adsorbed / recovered phosphorus can also be desorbed with a dilute acid solution.

さらに、本実施形態のリン吸着材は、従来技術の炭化物からなるリン吸着材生成設備に比べて、高額な生成設備を不要にすると共に該生成設備を稼働するランニングコストの低減ができて、安価で製造できる。   Furthermore, the phosphorus adsorbent according to the present embodiment is less expensive than the conventional phosphorus adsorbent production facility made of carbide, because it eliminates the need for an expensive production facility and reduces the running cost of operating the production facility. Can be manufactured.

[リン吸着材の製造方法]
次に、この実施形態に係るリン吸着材の製造方法を説明する。
このリン吸着材の製造方法は、以下の工程を含んでいる。
(a)両性金属を含有する焼却灰100質量%にセメントを5以上25質量%以下加えて混合する混合工程、
(b)混合工程の後、焼却灰及びセメントの混合物に混練水を投入して混練することで、焼却灰及びセメントに含まれる石灰分を水和させてファニキュラー状態の混練物を得る混練工程、
(c)混練工程の後、焼却灰及びセメントの混合物と混練水との混練物を成形型枠に移すと共に所定の圧縮力を加えながら水熱固化させて水熱固化体を得る養生工程、
(d)養生を終了した固化体は成形枠体の大きさの成形塊物になっているので、これを所定の粒径に破砕する工程。
[Production method of phosphorus adsorbent]
Next, a method for manufacturing a phosphorus adsorbent according to this embodiment will be described.
This method for producing a phosphorus adsorbent includes the following steps.
(A) A mixing step of adding 5 to 25% by mass of cement to 100% by mass of incinerated ash containing amphoteric metals and mixing,
(B) A kneading step in which a kneaded product in a funicular state is obtained by hydrating the lime contained in the incinerated ash and cement by adding kneaded water to the mixture of incinerated ash and cement after the mixing step. ,
(C) After the kneading step, the curing step of transferring the kneaded mixture of the incinerated ash and cement and the kneading water to the molding mold and hydrothermally solidifying while applying a predetermined compressive force to obtain a hydrothermal solidified body,
(D) A step of crushing the solidified body that has been cured to a predetermined particle size because it is a molded lump of the size of the molded frame.

上記(a)の混合工程において、焼却灰は、リン吸着材の主原料になるものであって、以下のものを単独乃至配合して使用する。
都市ごみ、木材チップ・タイヤチップ、製紙スラッジ、下水汚泥、バイオマスなどの廃棄物焼却灰、或いは、石炭、ゴミ固形化燃料、紙・プラスチック固形化燃料等の焼却灰のいずれか又はこれらをミックスしたもの。なお、別表現では、ばいじん[製紙工場のバイオマスボイラーから生成した灰(石炭灰、廃タイヤ、木チップ、製紙スラッジなど)、流動砂]、燃えがら(バイオマスボイラーの燃焼灰、やしがらなどの木灰、シュレダ−ダスト灰)、無機汚泥(セラミック汚泥、金属加工、トンネル掘削汚泥、建設汚泥、土砂など)。
In the mixing step (a), the incineration ash is a main raw material of the phosphorus adsorbent, and the following are used alone or in combination.
Municipal waste, wood chips / tire chips, paper sludge, sewage sludge, waste incineration ash such as biomass, or incineration ash such as coal, garbage solidified fuel, paper / plastic solidified fuel, or a mixture of these thing. It should be noted that, in other words, soot and dust [ash generated from biomass boilers in paper mills (coal ash, waste tires, wood chips, paper sludge, etc.), fluidized sand], burners (burning ash of biomass boilers, palm ash etc.) , Shredder-dust ash), inorganic sludge (ceramic sludge, metal processing, tunnel drilling sludge, construction sludge, earth and sand, etc.).

これらの配合は、ばいじん、もえがら及び無機汚泥を所定の割合、例えばばいじんを70〜90質量%、もえがらを10〜20質量%、無機汚泥を0〜10質量%にする。なお、これらは有害物を含んでいない。この焼却灰によって、殆ど全ての焼却灰を再利用可能にしてリン吸着材等に再生できる。特に、製紙スラッジを含んだ焼却灰を原料にすると、焼却灰が保有する細孔性、多孔性を損なうことなく、所定の強度で重金属類の有害成分の溶出を抑制し、吸湿性や保水性を有するものとして製造できる。   These mix | blends make a soot, a rice bran, and inorganic sludge into a predetermined ratio, for example, 70-90 mass% of a soot, 10-20 mass% of a maize, and 0-10 mass% of an inorganic sludge. These do not contain harmful substances. With this incineration ash, almost all the incineration ash can be reused and regenerated into a phosphorus adsorbent or the like. In particular, when incinerated ash containing paper sludge is used as a raw material, the elution of harmful components of heavy metals with a predetermined strength is suppressed without impairing the porosity and porosity possessed by the incinerated ash. It can manufacture as what has.

上記(a)の混合工程において、焼却灰中の金属アルミ二ウム等の両性金属の含有量が少なすぎると、発泡に充分なだけの水素ガスが生じないことがあるが、一方でまた、両性金属自体は水熱固化反応とは無関係であるため、焼却灰中の両性金属の含有量は、0.5以上10質量%以下の範囲とすることが好ましい。この範囲により、発泡水熱固化体からなるリン吸着材には、0.4以上〜9.5質量%以下のアルミニウム量が含まれる。   In the mixing step (a), if the content of amphoteric metals such as metallic aluminum in the incineration ash is too small, hydrogen gas sufficient for foaming may not be generated. Since the metal itself is unrelated to the hydrothermal solidification reaction, the content of the amphoteric metal in the incinerated ash is preferably in the range of 0.5 to 10% by mass. With this range, the phosphorus adsorbent composed of the foamed hydrothermal solidified body contains an aluminum amount of 0.4 to 9.5% by mass.

また、上記(a)の混合工程において、混合物に対して石灰を添加混合すると、焼却灰中の生石灰(CaO)成分の含有量が極端に少ない場合においても、生石灰を追加混入することによって、消化反応の熱の発生をより活発化することができる。その場合、石灰の添加割合が高過ぎると、発泡水熱固化体のアルカリ性が強くなるため、石灰の添加割合は、カルシウムが全混合物の30以上50質量%以下の範囲になるように添加するのが好ましい。   In addition, in the mixing step (a), when lime is added to and mixed with the mixture, digestion can be achieved by additionally mixing quick lime even when the content of quick lime (CaO) component in the incinerated ash is extremely small. The generation of heat of reaction can be further activated. In that case, if the addition ratio of lime is too high, the alkalinity of the foamed hydrothermal solidified product becomes stronger, so the addition ratio of lime is added so that calcium is in the range of 30 to 50 mass% of the total mixture. Is preferred.

さらに、上記(a)の混合工程において、混合物の10質量%程度であれば、混合物に対してさらに無機汚泥を含有していても良い。   Furthermore, in the mixing step (a), inorganic sludge may further be contained in the mixture as long as it is about 10% by mass of the mixture.

上記(a)の混合工程において、一定量の水を混合用水として混合物に対して添加すると、混合時の粉塵発生低減と、早めに生石灰の消化反応を開始し、多少湿らせることにより次の混練工程における混練がスムーズになるため好ましい。   In the mixing step (a), when a certain amount of water is added to the mixture as mixing water, the generation of dust during mixing and the digestion reaction of quick lime are started early, and the next kneading is performed by slightly moistening. This is preferable because kneading in the process becomes smooth.

その場合の添加量としては、粉塵の発生を充分抑制するためには、混合物100質量%に対して15質量%以上とすることが好ましい。また、混合用水が多過ぎると粒状化する可能性があり、セメントとの混合に悪影響が生じることがあるため、加える混合用水の量は25質量%程度を上限とすることが好ましい。   In this case, the amount added is preferably 15% by mass or more with respect to 100% by mass of the mixture in order to sufficiently suppress the generation of dust. Further, if there is too much water for mixing, it may be granulated and may adversely affect mixing with cement. Therefore, the amount of mixing water to be added is preferably about 25% by mass.

上記(a)の混合工程における混合用水及び上記(b)の混練工程における混練水として加水される水分の総量については、少な過ぎると混練物の粘度が大きくなりすぎて混練し難くなる、加水量が増えるほど混練物の粘度が小さくなるので混練し易くなるが、多過ぎると、過剰な水分を蒸発させるために時間を要することになる。したがって、混合用水及び混練水として添加される水分の総量は、固形成分100質量%に対して35以上55質量%以下の範囲にすることが好ましい。なお、加水する水の温度には特に制限はなく、98℃程度の温水であっても問題ない。   Regarding the total amount of water to be added as mixing water in the mixing step (a) and kneading water in the kneading step (b), if the amount is too small, the viscosity of the kneaded product becomes too high and kneading becomes difficult. As the viscosity increases, the viscosity of the kneaded material becomes smaller, so that the kneading becomes easier. However, if too much, it takes time to evaporate excess water. Therefore, the total amount of water added as mixing water and kneading water is preferably in the range of 35 to 55% by mass with respect to 100% by mass of the solid component. In addition, there is no restriction | limiting in particular in the temperature of the water to add, There is no problem even if it is about 98 degreeC warm water.

また、混練物が水熱固化する際に、焼却灰に含まれる金属アルミ二ウム等の両性金属にアルカリ水が反応してガスが発生して発泡・膨張する。仮に、成形型枠が存在しない状態で混練物を固化させると大きく膨張してしまい、得られる発泡水熱固化体は、表面気泡率が30%を超え、1軸圧縮強度が2N/mmを下回るものとなる。そのため、表面気泡率を30%以下に抑えて固化体の強度を確保するため、混練物は圧縮力を加えて膨張を一定の範囲に収められるように成形型枠の中において固化させる必要がある。 In addition, when the kneaded product is hydrothermally solidified, alkaline water reacts with amphoteric metals such as metallic aluminum contained in the incinerated ash to generate gas and foam and expand. If the kneaded product is solidified in the absence of a mold, the foamed hydrothermal solid body has a surface foam ratio exceeding 30% and a uniaxial compressive strength of 2 N / mm 2 . It will be less. Therefore, in order to secure the strength of the solidified body by suppressing the surface bubble ratio to 30% or less, the kneaded product needs to be solidified in the molding mold so that the expansion can be kept within a certain range by applying a compressive force. .

なお、膨張を一定の範囲に収めるために加える圧縮力としては、50kg/cm程度が目安となるが、表面気泡率が30%以下となるように適宜調整すれば良い。また、成形型枠としては、混練物の固化の際の膨張方向の力に抗する程度の強度を有するものであれば制限はない。例えば、地面に掘った竪穴や、地表面から所定の高さに積み上げた土又は石壁等を型枠として利用することができる。 The compression force applied to keep the expansion within a certain range is about 50 kg / cm 2, but may be adjusted as appropriate so that the surface bubble ratio is 30% or less. The molding mold is not limited as long as it has a strength that resists the force in the expansion direction when the kneaded product is solidified. For example, potholes dug in the ground, earth or stone walls piled up to a predetermined height from the ground surface can be used as the mold.

地面に掘った竪穴を成形型枠として利用した場合、地面を掘るだけの作業で型枠が得られるため、コストが掛らず、その結果、製品のコスト低減に貢献でき、また、任意の大きさ及び形状の型枠が容易に得られる。   When the pit hole dug in the ground is used as a mold, the mold can be obtained by simply digging the ground, so there is no cost, and as a result, it can contribute to the cost reduction of the product. A mold having a shape and shape can be easily obtained.

また、上記(c)の養生工程において、石灰成分の水和熱によって成形型枠中の混練物の温度が上昇して水熱固化反応が進み、約3時間〜8時間で固化が完了する。なお、この水和熱は混練物の量に依存する一方、混練物からの排熱は表面積に比例するため、成形型枠中の混練物の温度を一定以上に保つ観点からは大きな型枠を利用することにメリットが生じる。小さい型枠の場合、排熱を押さえるため型枠の保温性などについて考慮する必要が出てくる虞がある。養生が終わった固化体は、成形枠体の大きさの成形塊物になっている。   In the curing step (c), the temperature of the kneaded product in the molding mold rises due to the heat of hydration of the lime component and the hydrothermal solidification reaction proceeds, and solidification is completed in about 3 to 8 hours. The heat of hydration depends on the amount of the kneaded product, while the exhaust heat from the kneaded product is proportional to the surface area. Therefore, from the viewpoint of keeping the temperature of the kneaded product in the molding mold above a certain level, There are advantages to using it. In the case of a small formwork, it may be necessary to consider the heat retaining property of the formwork in order to suppress exhaust heat. The solidified body after the curing is a molded lump of the size of the molded frame.

上記(d)の破砕工程において、養生工程で成形枠体の大きさの成形塊物を所定粒径のものに破砕する。その平均粒径が0.5mmを超える大きさにする。この粒径は1mm以上2mm以下の範囲が好ましい。これにより、pHを高くせずにリン吸着量の増大が可能になる。   In the crushing step (d), a molded lump having the size of the molding frame is crushed into a predetermined particle size in the curing step. The average particle size is set to a size exceeding 0.5 mm. This particle size is preferably in the range of 1 mm to 2 mm. This makes it possible to increase the phosphorus adsorption amount without increasing the pH.

この粒径の調整は、極めて簡単にできる。すなわち、任意大きさの比較的弱い強度の成形塊物で生成されることから、単に粉砕乃至破砕でき、しかも任意の大きさに調整した粒径に形成できる。なお、炭化物は粒状に生成された造粒物となるので、単に破砕するだけでは任意の大きさに調整した粒径に形成するのが困難になっている。   The adjustment of the particle size can be very easily performed. That is, since it is formed from a molded lump having a relatively weak strength with an arbitrary size, it can be simply pulverized or crushed, and can be formed to have a particle size adjusted to an arbitrary size. In addition, since a carbide | carbonized_material becomes the granulated material produced | generated in granular form, it is difficult to form in the particle size adjusted to arbitrary magnitude | sizes only by crushing.

この製造方法によれば、カルシウムの含有量が発泡水熱固化体100質量%に対して、30以上50質量%以下、アルミニウムの含有量が0.4以上9.5質量%以下、また、表面気泡率は、5以上30%以下で、かつ、BET比表面積が30以上130m/g以下、さらに、平均粒径が0.5mmを超えるリン吸着材を特殊な製造設備を使用せずに、低コストで容易に製造できる。 According to this production method, the calcium content is 30 to 50% by mass, the aluminum content is 0.4 to 9.5% by mass, and the surface is 100% by mass with respect to 100% by mass of the foam hydrothermal solidified The porosity is 5 to 30% and the BET specific surface area is 30 to 130 m 2 / g and the average particle size is more than 0.5 mm without using a special production facility. Easy to manufacture at low cost.

次に、本発明の実施形態に係るリン吸着材について、以下の特性等の試験を行い検証した。   Next, the phosphorus adsorbent according to the embodiment of the present invention was verified by performing tests such as the following characteristics.

<リン吸着性>
リン吸着性の試験法は、バッチ試験及びカラム試験を採用した。バッチ試験は、図3Aに示したように、添加したリン溶液の濃度と反応後の上澄みの濃度差からリン吸着量を算出する方法、また、カラム試験は、図3Bに示したように、通水前のリン溶液の濃度と通水後のリン溶液の濃度差からリン吸着量を算出する方法である。溶液中リン濃度の定量には、モリブデンブルー法を用いた。
<Phosphorus adsorption>
As a test method for phosphorus adsorption, a batch test and a column test were adopted. As shown in FIG. 3A, the batch test is a method for calculating the phosphorus adsorption amount from the difference between the concentration of the added phosphorus solution and the supernatant concentration after the reaction, and the column test is as shown in FIG. 3B. This is a method of calculating the phosphorus adsorption amount from the concentration difference of the phosphorus solution before water and the concentration of the phosphorus solution after passing water. The molybdenum blue method was used for quantification of the phosphorus concentration in the solution.

バッチ試験により、本実施形態に係るリン吸着材は、1.0以上594.5(mgP/g)以下の範囲で吸着できた。この範囲は、異なるリン濃度に適用して試験した値であって最大吸着量は従来技術の石炭灰からなるリン吸着材と比べて多くなった。この結果、本実施形態のリン吸着材は従来技術の石炭灰からなるリン吸着材と比べて同等もしくはそれ以上の吸着能があることが分かった。   By the batch test, the phosphorus adsorbent according to the present embodiment was able to be adsorbed in the range of 1.0 to 594.5 (mgP / g). This range is a value tested by applying to different phosphorus concentrations, and the maximum adsorption amount is larger than that of the phosphorus adsorbent made of prior art coal ash. As a result, it was found that the phosphorus adsorbent of the present embodiment has the same or higher adsorbability as compared with the phosphorus adsorbent made of coal ash of the prior art.

また、カラム試験により、リン吸着能を測った。リン回収率が20%になる時間を計測した結果、従来技術の石炭灰からなるリン吸着材は10時間(図5A参照)であったのに対し、本実施形態のン吸着材は100時間(図5B参照)であった。この結果、カラム通水で、本実施形態のリン吸着材は従来技術の石炭灰からなるリン吸着材10倍以上のリン溶液を処理できることが分かった。   Further, phosphorus adsorption ability was measured by a column test. As a result of measuring the time when the phosphorus recovery rate becomes 20%, the phosphorus adsorbent made of coal ash of the prior art was 10 hours (see FIG. 5A), whereas the adsorbent of this embodiment was 100 hours ( (See FIG. 5B). As a result, it was found that the phosphorus adsorbent of the present embodiment can treat a phosphorus solution 10 times or more of the phosphorus adsorbent made of coal ash of the prior art by passing through the column.

<pH特性>
リン溶液のpHを調整した際のバッチ試験では、図4の結果を得た。この結果、リン吸着量が溶液pHに左右され難いことが判明した。また、通水時間とpHとの関係を試験した。その結果、図6に示したように通水後の溶液pH値は、終始、基準値以内に安定していた。
<PH characteristics>
In the batch test when the pH of the phosphorus solution was adjusted, the results shown in FIG. 4 were obtained. As a result, it was found that the phosphorus adsorption amount is hardly influenced by the solution pH. Moreover, the relationship between water flow time and pH was tested. As a result, as shown in FIG. 6, the solution pH value after passing water was stable within the reference value throughout.

<粒径>
粒径が異なる2種類のリン吸着材を用意し、1〜1000mgP/Lの濃度のリン溶液を固液比1:100(0.3g:30mL)で1時間振とうさせ、表2の結果を得た。
<Particle size>
Two types of phosphorus adsorbents with different particle sizes were prepared, and a phosphorus solution having a concentration of 1-1000 mg P / L was shaken for 1 hour at a solid-liquid ratio of 1: 100 (0.3 g: 30 mL). Obtained.

この結果から、粒径が細かいと、リン吸着量は多くなるが、pHが高くなる。また、粒径が荒いと、pHは高くならないが、リン吸着量が多くなる。そこで、細かすぎず、粗すぎない粒径としては、0.5mmを超え、また1mm以上2mm以下が好ましい。   From this result, when the particle size is fine, the phosphorus adsorption amount increases, but the pH increases. In addition, when the particle size is rough, the pH does not increase, but the phosphorus adsorption amount increases. Therefore, the particle diameter which is not too fine and not too coarse is preferably more than 0.5 mm and preferably 1 mm or more and 2 mm or less.

<吸着したリンの形態>
肥料等試験法により、吸着したリンを肥料成分として評価した。その結果、吸着したリンに対する各形態リンの占める割合は、表3に示す結果となった。
<Form of adsorbed phosphorus>
Adsorbed phosphorus was evaluated as a fertilizer component by a fertilizer test method. As a result, the ratio of each form of phosphorus to the adsorbed phosphorus was as shown in Table 3.

この結果、植物の利用可能性が高い形態(ク溶性)でリンが回収され、かつ水溶性は殆どないことが分かった。その結果、降雨による溶脱は少なく、水圏への溶脱による環境汚染を防止するとともに、回収したリンを植物が無駄なく利用できるようになる。なお、この特性を活かすと、リン吸着をさせていないリン吸着材と一般的な水溶性のリン肥料を同時に使用することで、リン肥料成分の降雨による溶脱を防ぎ、植物によるリン肥料の利用効率を向上させるといった利用方法も可能である。   As a result, it was found that phosphorus was recovered in a form with high availability (plant solubility) and almost no water solubility. As a result, there is little leaching due to rain, and environmental pollution due to leaching into the hydrosphere is prevented, and the collected phosphorus can be used by plants without waste. If this property is utilized, phosphorus sorbents that are not adsorbed with phosphorus and general water-soluble phosphorus fertilizers can be used at the same time to prevent leaching of phosphorus fertilizer components due to rainfall, and the efficiency of use of phosphorus fertilizers by plants It is also possible to use such as improving the above.

<リン脱着>
吸着したリン溶液中への脱着では、図7に示した結果を得た。この結果から、吸着したリンを希薄な酸で脱着できることが分かった。特に、0.05M硫酸で80%以上の高い脱着率を得られた。その結果、リン吸着材として再利用可能性がさらに拡大できる。
<Phosphorus desorption>
In the desorption into the adsorbed phosphorus solution, the result shown in FIG. 7 was obtained. From this result, it was found that the adsorbed phosphorus can be desorbed with a dilute acid. In particular, a high desorption rate of 80% or more was obtained with 0.05 M sulfuric acid. As a result, the reusability as a phosphorus adsorbent can be further expanded.

以上説示したように、本発明のリン吸着材は、従来技術の炭化物からなるリン吸着材に比べて、リン吸着に寄与するカルシウムが増量され、比表面積が拡大され、さらには粒径調整などの相乗作用により、リン吸着能力が高く、安価で商業的な採算性がとれたものとなる。   As explained above, the phosphorus adsorbent of the present invention has an increased amount of calcium that contributes to phosphorus adsorption, an increased specific surface area, and particle size adjustment, etc., compared to a phosphorus adsorbent made of carbide of the prior art. Due to the synergistic action, the phosphorus adsorption capacity is high, and it is inexpensive and commercially profitable.

また、pHを基準値の範囲に安定させ、降雨によるリン溶脱が少なく、しかも植物が利用可能な形態で保持され、さらに、リンを吸着・回収した吸着剤をそのまま肥料として使用できる。さらに、吸着・回収したリンは、希薄な酸溶液で脱着もできる。   Further, the pH is stabilized within the range of the reference value, phosphorus leaching due to rainfall is small, the plant is retained in a usable form, and the adsorbent that has adsorbed and recovered phosphorus can be used as it is as a fertilizer. Further, the adsorbed / recovered phosphorus can be desorbed with a dilute acid solution.

さらに、本発明のリン吸着材の製造方法は、従来技術の炭化物からなるリン吸着材生成設備に比べて、高額な生成設備を不要にすると共に該生成設備を稼働するランニングコストの低減ができて、安価で製造できる。   Furthermore, the method for producing a phosphorus adsorbent according to the present invention eliminates the need for expensive production equipment and reduces the running cost of operating the production equipment compared to the conventional phosphorus adsorbent production equipment made of carbide. Can be manufactured at low cost.

Claims (10)

焼却灰を主原料にして生成した発泡水熱固化体からなり、前記発泡水熱固化体は、少なくともカルシウム及びアルミニウムを含有していることを特徴とするリン吸着材。   A phosphorus adsorbent, comprising a foamed hydrothermal solidified body produced from incinerated ash as a main raw material, wherein the foamed hydrothermal solidified body contains at least calcium and aluminum. 前記発泡水熱固化体は、さらに鉄を含有していることを特徴とする請求項1に記載のリン吸着材。   The phosphorus adsorbent according to claim 1, wherein the foamed hydrothermal solidified body further contains iron. 前記発泡水熱固化体は、X線回析でピーク位置を示すケイ酸カルシウム水和物を含有していることを特徴とする請求項1に記載のリン吸着材。   The phosphorus adsorbent according to claim 1, wherein the foamed hydrothermal solidified body contains calcium silicate hydrate that exhibits a peak position by X-ray diffraction. 前記カルシウムの含有量は、前記発泡水熱固化体100質量%に対して、30以上50質量%以下、前記アルミニウムの含有量は0.4以上9.5質量%以下であることを特徴とする請求項1または2に記載のリン吸着材。   The content of calcium is 30 to 50% by mass with respect to 100% by mass of the foamed hydrothermal solidified body, and the content of aluminum is 0.4 to 9.5% by mass. The phosphorus adsorbent according to claim 1 or 2. 前記発泡水熱固化体は、表面発泡率は5以上30%以下で、かつ比表面積率は30以上130m/g以下であることを特徴とする請求項1〜4のいずれかに記載のリン吸着材。 The foam hydrothermal solidified body has a surface foaming ratio of 5 to 30% and a specific surface area ratio of 30 to 130 m 2 / g or less. Adsorbent. 前記発泡水熱固化体は、平均粒径が0.5mmを超えていることを特徴とする請求項1〜5のいずれかに記載のリン吸着材。   The phosphorus adsorbent according to any one of claims 1 to 5, wherein the foamed hydrothermal solidified body has an average particle size exceeding 0.5 mm. 以下の工程(a)〜(d)を含むことを特徴とするリン吸着材の製造方法。
(a)両性金属を含有する焼却灰100質量%にセメントを5以上25質量%以下加えて混合する混合工程、
(b)前記混合工程の後、前記焼却灰及びセメントの混合物に混練水を投入して混練することで、前記焼却灰及びセメントに含まれる生石灰を水和させてファニキュラー状態の混練物を得る混練工程、
(c)前記混練工程の後、前記焼却灰及びセメントの混合物と混練水との混練物を成形型枠に移すと共に所定の圧縮力を加えながら水熱固化させて水熱固化体を得る養生工程、
(d)前記混練工程の後、養生を終了した固化体は成形枠体の大きさの成形塊物になっているので、これを所定の粒径に破砕する破砕工程。
The manufacturing method of the phosphorus adsorption material characterized by including the following processes (a)-(d).
(A) A mixing step of adding 5 to 25% by mass of cement to 100% by mass of incinerated ash containing amphoteric metals and mixing,
(B) After the mixing step, kneaded water is added to the mixture of the incinerated ash and cement to knead to hydrate the quick lime contained in the incinerated ash and cement to obtain a kneaded product in a funicular state. Kneading process,
(C) After the kneading step, the curing step of transferring the kneaded mixture of the incinerated ash and cement and the kneading water to a forming mold and hydrothermally solidifying the mixture while applying a predetermined compressive force to obtain a hydrothermal solidified body. ,
(D) A crushing step of crushing the solidified body that has been cured after the kneading step into a predetermined particle size because the solidified body is a molded lump of the size of the molding frame.
前記焼却灰は、都市ごみ、木材チップ・タイヤチップ、製紙スラッジ、下水汚泥、バイオマスなどの廃棄物焼却灰、或いは、石炭、ゴミ固形化燃料、紙・プラスチック固形化燃料等の焼却灰のいずれか又はこれらをミックスしたものであることを特徴とする請求項7に記載のリン吸着材の製造方法。   The incineration ash is any one of incineration ash such as municipal waste, wood chips / tire chips, paper sludge, sewage sludge, biomass, or incineration ash such as coal, garbage solidified fuel, paper / plastic solidified fuel, etc. Alternatively, the method for producing a phosphorus adsorbent according to claim 7, wherein these are mixed. 前記焼却灰中の両性金属の含有量が、0.5以上10質量%以下であることを特徴とする請求項7に記載のリン吸着材の製造方法。   The method for producing a phosphorus adsorbent according to claim 7, wherein the content of the amphoteric metal in the incinerated ash is 0.5 or more and 10 mass% or less. 前記(a)の混合工程において、前記混合物に対して石灰を添加混合し、その割合を全混合物の30以上50質量%以下にしたことを特徴とする請求項7に記載のリン吸着材の製造方法。   In the mixing step of (a), lime is added to and mixed with the mixture, and the proportion thereof is set to 30 to 50% by mass of the total mixture. Method.
JP2017020932A 2017-02-08 2017-02-08 Phosphorus adsorbent and its manufacturing method Active JP7193067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017020932A JP7193067B2 (en) 2017-02-08 2017-02-08 Phosphorus adsorbent and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020932A JP7193067B2 (en) 2017-02-08 2017-02-08 Phosphorus adsorbent and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018126683A true JP2018126683A (en) 2018-08-16
JP7193067B2 JP7193067B2 (en) 2022-12-20

Family

ID=63171754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020932A Active JP7193067B2 (en) 2017-02-08 2017-02-08 Phosphorus adsorbent and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7193067B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231842A (en) * 2018-10-22 2019-01-18 深圳市优力凯环保生物技术有限公司 A kind of foamed glass material and preparation method thereof reducing water quality total phosphorus index
CN111644144A (en) * 2020-06-16 2020-09-11 四川时代绿洲环境修复股份有限公司 Water body dephosphorization magnetic material and preparation method and application thereof
CN113200580A (en) * 2021-03-29 2021-08-03 江苏省中国科学院植物研究所 Water body phosphorus removal material based on biomass power plant ash and preparation method and application thereof
CN113244880A (en) * 2021-06-16 2021-08-13 南通大学 Sintered ceramsite capable of efficiently removing phosphorus, preparation method and regeneration method thereof
KR20220023631A (en) * 2020-08-21 2022-03-02 (주)동부그린 apparatus for treating wastewater produced from manufacture process of oxydianiline and treating mothed using the same
CN116116378A (en) * 2023-03-15 2023-05-16 湖北富邦科技股份有限公司 Preparation method for preparing phosphorus adsorption material by utilizing phosphate rock tailings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574227A (en) * 1980-06-09 1982-01-09 Ebara Infilco Co Ltd Manufacture of dephosphorizing agent
JPH0220315A (en) * 1988-07-08 1990-01-23 Fanuc Ltd Injection control system for motor-driven injection molding machine
JP2002114556A (en) * 2000-10-03 2002-04-16 Hokukon Co Ltd Functional cement hardened body
JP2013123691A (en) * 2011-12-15 2013-06-24 Daikyogumi:Kk Hydrothermally solidified foam made mainly of incineration ash, and method for producing the same
JP2015145337A (en) * 2015-04-17 2015-08-13 株式会社大協組 Method for manufacturing foaming hydrothermal solidified body with burned ash as main raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574227A (en) * 1980-06-09 1982-01-09 Ebara Infilco Co Ltd Manufacture of dephosphorizing agent
JPH0220315A (en) * 1988-07-08 1990-01-23 Fanuc Ltd Injection control system for motor-driven injection molding machine
JP2002114556A (en) * 2000-10-03 2002-04-16 Hokukon Co Ltd Functional cement hardened body
JP2013123691A (en) * 2011-12-15 2013-06-24 Daikyogumi:Kk Hydrothermally solidified foam made mainly of incineration ash, and method for producing the same
JP2015145337A (en) * 2015-04-17 2015-08-13 株式会社大協組 Method for manufacturing foaming hydrothermal solidified body with burned ash as main raw material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231842A (en) * 2018-10-22 2019-01-18 深圳市优力凯环保生物技术有限公司 A kind of foamed glass material and preparation method thereof reducing water quality total phosphorus index
CN111644144A (en) * 2020-06-16 2020-09-11 四川时代绿洲环境修复股份有限公司 Water body dephosphorization magnetic material and preparation method and application thereof
CN111644144B (en) * 2020-06-16 2023-05-02 四川时代绿洲环境修复股份有限公司 Water dephosphorization magnetic material and preparation method and application thereof
KR20220023631A (en) * 2020-08-21 2022-03-02 (주)동부그린 apparatus for treating wastewater produced from manufacture process of oxydianiline and treating mothed using the same
KR102548062B1 (en) * 2020-08-21 2023-06-27 (주)동부그린 apparatus for treating wastewater produced from manufacture process of oxydianiline and treating mothed using the same
CN113200580A (en) * 2021-03-29 2021-08-03 江苏省中国科学院植物研究所 Water body phosphorus removal material based on biomass power plant ash and preparation method and application thereof
CN113200580B (en) * 2021-03-29 2023-08-18 江苏省中国科学院植物研究所 Water body phosphorus removal material based on biomass power plant ash and preparation method and application thereof
CN113244880A (en) * 2021-06-16 2021-08-13 南通大学 Sintered ceramsite capable of efficiently removing phosphorus, preparation method and regeneration method thereof
CN116116378A (en) * 2023-03-15 2023-05-16 湖北富邦科技股份有限公司 Preparation method for preparing phosphorus adsorption material by utilizing phosphate rock tailings

Also Published As

Publication number Publication date
JP7193067B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP7193067B2 (en) Phosphorus adsorbent and its manufacturing method
Cheng et al. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands
JP5905953B2 (en) Composition and method for sealing flue gas mercury in concrete
Bertos et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2
Yue et al. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal
CA2829213C (en) Compositions and methods to sequester flue gas mercury in concrete
KR101289825B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
KR101055317B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
WO2007069351A1 (en) Adsorbent-containing cold-setting composition, adsorbent-containing molded object, and building material and impregnant for paving both containing adsorbent
KR101235251B1 (en) Cement using waterworks sludge and mathod for manufacturing the same
JP5665071B2 (en) Method for producing soil amendment for repairing contaminated soil containing fluorine, soil amendment, and method for repairing contaminated soil using the same
JP6391142B2 (en) Method for producing phosphate fertilizer
CN108435126A (en) A kind of dregs composite decoloration dephosphorization material and its forming method
JP5879171B2 (en) Phosphorus recovery material, phosphorus recovery method and fertilizer manufacturing method
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR101200278B1 (en) Sewage sludge solidified agent and menufacturing method of artificial soil usign the same
KR100948658B1 (en) Method for solidifying sewage sludge
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
KR101068008B1 (en) The construction material utilizing sludge and its manufacturing method
CN103073258B (en) Filler prepared by using P1-type coal ash molecular sieve and preparation method
JP2007204294A (en) Solidifying material and solidified body utilizing the solidifying material
JP3420081B2 (en) Method for producing adsorbent from refuse incineration ash
WO2015170999A1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
CN107759175A (en) A kind of preparation technology of non-sintered chemical industry organic sludge ecological brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7193067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150