JP2018126313A - Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container - Google Patents

Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container Download PDF

Info

Publication number
JP2018126313A
JP2018126313A JP2017021351A JP2017021351A JP2018126313A JP 2018126313 A JP2018126313 A JP 2018126313A JP 2017021351 A JP2017021351 A JP 2017021351A JP 2017021351 A JP2017021351 A JP 2017021351A JP 2018126313 A JP2018126313 A JP 2018126313A
Authority
JP
Japan
Prior art keywords
biopharmaceutical
derived
container
layer
polyamide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021351A
Other languages
Japanese (ja)
Inventor
史裕 伊東
Fumihiro Ito
史裕 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2017021351A priority Critical patent/JP2018126313A/en
Publication of JP2018126313A publication Critical patent/JP2018126313A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biopharmaceutical container that has excellent transparency even after heating, and also can keep a high drug action, and an article containing a biopharmaceutical using the same, a method for storing a biopharmaceutical and a method for producing an article containing the biopharmaceutical in a container.SOLUTION: A biopharmaceutical container 1 for storing a protein-derived medicinal component 4, has a layer (X) containing at least one of polyolefin resins as the main component and a layer (Y) containing a polyamide resin (A) as the main component, where the polyamide resin (A) has a diamine-derived constitutional unit and a dicarboxylate-derived constitutional unit, where 70 mol% or more of the diamine-derived constitutional unit is derived from m-xylylenediamine, and 30-60 mol% of the dicarboxylate-derived constitutional unit is derived from C4-20 α,ω-linear aliphatic dicarboxylate and 70-40 mol% of it is derived from isophthalic acid.SELECTED DRAWING: Figure 1

Description

本発明は、バイオ医薬品用容器、ならびに、前記バイオ医薬品用容器を用いた、バイオ医薬品を含む物品、バイオ医薬品の保存方法および容器内にあるバイオ医薬品を含む物品の製造方法に関する。   The present invention relates to a biopharmaceutical container, and an article containing the biopharmaceutical using the biopharmaceutical container, a method for storing the biopharmaceutical, and a method for producing the article containing the biopharmaceutical in the container.

従来から、医薬を密閉状態で充填し保管するための医療用包装容器として、ガラス製のアンプル、バイアル、プレフィルドシリンジ等の容器が使用されている。しかし、これらのガラス容器は、使用時にフレークスという微細なガラス物質が発生する、落下等の衝撃により割れやすい等の問題がある。また、ガラスは、比較的、比重が大きいため、容器自体が重いという問題もある。
一方、プラスチックは、ガラスに比べて軽量であり、素材によっては耐衝撃性、耐熱性、透明性等に優れることから、ガラス容器の代替品としてプラスチック容器が検討されている。例えば、特許文献1には、ポリエステル樹脂からなる医療用容器について開示されている。また、シクロオレフィンポリマー(以下、「COP」と略することがある。)は、耐衝撃性、耐熱性、透明性に優れ、医療用容器においてガラス代替材料として一般的に使用されている。
Conventionally, containers such as glass ampoules, vials, and prefilled syringes have been used as medical packaging containers for filling and storing medicines in a sealed state. However, these glass containers have a problem that a fine glass substance called flakes is generated during use, and is easily broken by an impact such as dropping. Further, since glass has a relatively large specific gravity, there is also a problem that the container itself is heavy.
On the other hand, plastics are lighter than glass and, depending on the material, are excellent in impact resistance, heat resistance, transparency, etc., plastic containers are being considered as substitutes for glass containers. For example, Patent Document 1 discloses a medical container made of a polyester resin. In addition, cycloolefin polymers (hereinafter sometimes abbreviated as “COP”) are excellent in impact resistance, heat resistance, and transparency, and are generally used as glass substitute materials in medical containers.

ガラス容器の代替容器としての、プラスチック容器としては、例えば、特許文献2には、最内層および最外層がポリオレフィン樹脂からなり、中間層がバリア性に優れた樹脂層である医療用の多層容器が開示されている。   As a plastic container as an alternative container for a glass container, for example, Patent Document 2 discloses a medical multilayer container in which an innermost layer and an outermost layer are made of a polyolefin resin, and an intermediate layer is a resin layer having excellent barrier properties. It is disclosed.

また、ポリメタキシリレンアジパミド(以下、「N−MXD6」と略することがある。)を用いたプラスチック容器も知られている(特許文献3〜6)。しかしながら、N−MXD6は、ポリオレフィン樹脂、例えば、COPの熱成形温度である250〜320℃では非常に速く結晶化するため、N−MXD6をガスバリア層とし、COPを最内層および最外層として用いた多層容器は、成形時に、N−MXD6層の破損や厚みムラ、白化がみられる。また、加熱殺菌(滅菌)処理後に白化を生じ、透明性が損なわれる場合がある。   In addition, plastic containers using polymetaxylylene adipamide (hereinafter sometimes abbreviated as “N-MXD6”) are also known (Patent Documents 3 to 6). However, since N-MXD6 crystallizes very quickly at a thermoforming temperature of polyolefin resin, for example, COP of 250 to 320 ° C., N-MXD6 was used as a gas barrier layer and COP was used as an innermost layer and an outermost layer. In the multilayer container, the N-MXD6 layer is damaged, uneven in thickness, and whitened during molding. Moreover, it may whiten after heat sterilization (sterilization) processing, and transparency may be impaired.

N−MXD6の白化を抑制する手段としては、白化防止剤として特定の脂肪酸金属塩を添加する方法や特定のジアミド化合物またはジエステル化合物を添加する方法が知られている。これら添加剤を用いた白化抑制は、水に直接晒される単層フィルムや、ポリエチレンテレフタレート(以下、「PET」と略することがある。)を用いた、例えば、PET/N−MXD6/PETの層構成からなる延伸ボトルのように、延伸される用途には効果があることが知られている。しかしながら、COP/N−MXD6/COPの層構成からなる多層容器における加熱殺菌処理後の白化抑制効果は満足できるものではない。
また、N−MXD6に対して結晶化核剤を添加する方法や、加熱殺菌処理時に結晶化核剤として作用するナイロン6等の結晶性ポリアミド樹脂をN−MXD6とブレンドする方法も知られている。しかしながら、これらの方法によっても、COP/N−MXD6/COPの層構成からなる多層容器における加熱殺菌処理後の白化抑制効果は満足できるものではない。
As means for suppressing whitening of N-MXD6, a method of adding a specific fatty acid metal salt as a whitening inhibitor and a method of adding a specific diamide compound or diester compound are known. The whitening suppression using these additives is, for example, PET / N-MXD6 / PET using a single layer film directly exposed to water or polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”). It is known that the stretched use is effective like a stretch bottle having a layer structure. However, the whitening suppression effect after the heat sterilization treatment in a multilayer container having a layer structure of COP / N-MXD6 / COP is not satisfactory.
Also known are a method of adding a crystallization nucleating agent to N-MXD6 and a method of blending with N-MXD6 a crystalline polyamide resin such as nylon 6 that acts as a crystallization nucleating agent during heat sterilization treatment. . However, even by these methods, the whitening suppression effect after the heat sterilization treatment in the multilayer container having the layer configuration of COP / N-MXD6 / COP is not satisfactory.

特開平08−127641号公報JP 08-127641 A 特開2004−229750号公報JP 2004-229750 A 特開2012−201412号公報JP 2012-201412 A 特開2012−30556号公報JP 2012-30556 A 特開2014−69829号公報JP 2014-69829 A 特開2014−68767号公報JP 2014-68767 A

ここで、近年、バイオ医薬品が活用されるようになっている。バイオ医薬品を保存するための容器には、加熱殺菌処理後においても透明性に優れること(白化抑制)に加え、薬効を高く保持できることが求められる。
本発明が解決しようとする課題は、上記課題を解決することを目的としたものであって、加熱殺菌処理後においても透明性に優れることに加え、薬効を高く保持できるバイオ医薬品用容器、ならびに、これを用いたバイオ医薬品を含む物品、バイオ医薬品の保存方法および容器内にあるバイオ医薬品を含む物品の製造方法を提供することを目的とする。
In recent years, biopharmaceuticals have been utilized. Containers for storing biopharmaceuticals are required to have a high medicinal effect in addition to excellent transparency (inhibition of whitening) even after heat sterilization.
The problem to be solved by the present invention is to solve the above-mentioned problem. In addition to being excellent in transparency even after the heat sterilization treatment, the container for biopharmaceuticals that can maintain high medicinal effect, and An object of the present invention is to provide an article containing a biopharmaceutical using the same, a method for preserving the biopharmaceutical and a method for producing an article containing the biopharmaceutical in a container.

本発明者らは、上記課題のもと、検討を行った結果、下記手段により、上記課題を解決しうることを見出した。
具体的には、下記手段<1>により、好ましくは<2>〜<18>により、上記課題は解決された。
<1>ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する、タンパク質由来の薬効成分を保存するためのバイオ医薬品用容器。
<2>前記ポリアミド樹脂(A)が、カルシウム原子を含む、<1>に記載のバイオ医薬品用容器。
<3>前記ポリアミド樹脂(A)に含まれるカルシウム原子が、次亜リン酸カルシウムに由来する、<2>に記載のバイオ医薬品用容器。
<4>前記ポリアミド樹脂(A)が、リン原子を3〜300質量ppmの割合で含む、<1>〜<3>のいずれか1つに記載のバイオ医薬品用容器。
<5>前記ポリアミド樹脂(A)が、リン原子を20〜200質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3〜0.7となる割合で含む、<1>または<3>に記載のバイオ医薬品用容器。
<6>前記ポリオレフィン樹脂が、シクロオレフィン系ポリマーおよびポリプロピレン系ポリマーからなる群より選択される少なくとも1種である、<1>〜<5>のいずれか1つに記載のバイオ医薬品用容器。
<7>前記ジカルボン酸由来の構成単位の30〜60モル%が、アジピン酸由来の構成単位である、<1>〜<6>のいずれか1つに記載のバイオ医薬品用容器。
<8>前記バイオ医薬品用容器が少なくとも3層からなり、内層および外層が、前記層(X)であり、中間層の少なくとも1層が、前記層(Y)である、<1>〜<7>のいずれか1つに記載のバイオ医薬品用容器。
<9>前記層(Y)の厚みが、バイオ医薬品用容器の総厚みに対して2〜40%である、<1>〜<8>のいずれか1つに記載のバイオ医薬品用容器。
<10>前記バイオ医薬品用容器が、バイアルである、<1>〜<9>のいずれか1つに記載のバイオ医薬品用容器。
<11>前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、<1>〜<10>のいずれか1つに記載のバイオ医薬品用容器。
<12><1>〜<11>のいずれか1つに記載のバイオ医薬品用容器と、前記バイオ医薬品用容器内にあるバイオ医薬品を含む物品。
<13>ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、
前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器を用いて、タンパク質由来の薬効成分を含むバイオ医薬品を保存することを含む、バイオ医薬品の保存方法。
<14>前記容器が<2>〜<10>のいずれか1つに記載のバイオ医薬品用容器である、<13>に記載のバイオ医薬品の保存方法。
<15>前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、<13>または<14>に記載のバイオ医薬品の保存方法。
<16>ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、
前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器に、タンパク質由来の薬効成分を含むバイオ医薬品を封入することを含む、容器内にあるバイオ医薬品を含む物品の製造方法。
<17>前記容器が<2>〜<10>のいずれか1つに記載のバイオ医薬品用容器である、<16>に記載の製造方法。
<18>前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、<16>または<17>に記載の製造方法。
As a result of investigations based on the above problems, the present inventors have found that the above problems can be solved by the following means.
Specifically, the above problem has been solved by the following means <1>, preferably <2> to <18>.
<1> It has a layer (X) mainly composed of at least one polyolefin resin and a layer (Y) mainly composed of a polyamide resin (A), and the polyamide resin (A) is a structural unit derived from diamine. And 70 mol% or more of the structural unit derived from dicarboxylic acid is derived from metaxylylenediamine, and 30 to 60 mol% of the structural unit derived from dicarboxylic acid has 4 carbon atoms. A container for biopharmaceuticals for preserving protein-derived medicinal ingredients derived from -20 α, ω-linear aliphatic dicarboxylic acids and 70-40 mol% derived from isophthalic acid.
<2> The biopharmaceutical container according to <1>, wherein the polyamide resin (A) contains a calcium atom.
<3> The biopharmaceutical container according to <2>, wherein the calcium atom contained in the polyamide resin (A) is derived from calcium hypophosphite.
<4> The biopharmaceutical container according to any one of <1> to <3>, wherein the polyamide resin (A) contains phosphorus atoms in a proportion of 3 to 300 ppm by mass.
<5> The polyamide resin (A) contains phosphorus atoms in a proportion of 20 to 200 ppm by mass, and contains calcium atoms in a proportion of a molar ratio of phosphorus atoms to calcium atoms of 1: 0.3 to 0.7. The container for biopharmaceuticals according to <1> or <3>.
<6> The biopharmaceutical container according to any one of <1> to <5>, wherein the polyolefin resin is at least one selected from the group consisting of a cycloolefin polymer and a polypropylene polymer.
<7> The biopharmaceutical container according to any one of <1> to <6>, wherein 30 to 60 mol% of the structural unit derived from dicarboxylic acid is a structural unit derived from adipic acid.
<8> The biopharmaceutical container is composed of at least three layers, the inner layer and the outer layer are the layer (X), and at least one of the intermediate layers is the layer (Y), <1> to <7 > The container for biopharmaceuticals as described in any one of>.
<9> The biopharmaceutical container according to any one of <1> to <8>, wherein the thickness of the layer (Y) is 2 to 40% with respect to the total thickness of the biopharmaceutical container.
<10> The biopharmaceutical container according to any one of <1> to <9>, wherein the biopharmaceutical container is a vial.
<11> The biopharmaceutical container according to any one of <1> to <10>, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these.
<12> An article comprising the biopharmaceutical container according to any one of <1> to <11> and the biopharmaceutical in the biopharmaceutical container.
<13> It has a layer (X) mainly composed of at least one kind of polyolefin resin and a layer (Y) mainly composed of polyamide resin (A),
The polyamide resin (A) is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 70 mol% or more of the structural unit derived from the diamine is derived from metaxylylenediamine, and derived from the dicarboxylic acid. 30 to 60 mol% of the structural unit is derived from an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid, using a protein derived from protein A method for preserving a biopharmaceutical comprising storing the biopharmaceutical containing the ingredient.
<14> The method for storing a biopharmaceutical according to <13>, wherein the container is the biopharmaceutical container according to any one of <2> to <10>.
<15> The method for preserving a biopharmaceutical according to <13> or <14>, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these.
<16> It has a layer (X) mainly composed of at least one polyolefin resin and a layer (Y) mainly composed of polyamide resin (A),
The polyamide resin (A) is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 70 mol% or more of the structural unit derived from the diamine is derived from metaxylylenediamine, and derived from the dicarboxylic acid. 30 to 60 mol% of the structural unit is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid, and a protein-derived medicinal component is added to the container. A method for producing an article containing a biopharmaceutical in a container, comprising enclosing the biopharmaceutical containing.
<17> The production method according to <16>, wherein the container is the biopharmaceutical container according to any one of <2> to <10>.
<18> The method according to <16> or <17>, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these.

本発明により、加熱処理後においても透明性に優れることに加え、薬効を高く保持できるバイオ医薬品用容器、ならびに、これを用いたバイオ医薬品を含む物品、バイオ医薬品の保存方法および容器内にあるバイオ医薬品を含む物品の製造方法を提供可能になった。   According to the present invention, in addition to being excellent in transparency even after heat treatment, a biopharmaceutical container that can maintain a high medicinal effect, an article containing a biopharmaceutical using the same, a biopharmaceutical storage method, and a bio in the container It has become possible to provide a method for manufacturing an article including a pharmaceutical product.

本発明におけるバイオ医薬品用容器の一例を示す概略図である。It is the schematic which shows an example of the container for biopharmaceuticals in this invention.

以下において、本発明の内容について詳細に説明する。尚、本明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。   Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.

本発明のバイオ医薬品用容器は、タンパク質由来の薬効成分を保存するためのバイオ医薬品用容器であって、ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来することを特徴とする。
上記ポリアミド樹脂(A)は、通常、非晶性ポリアミド樹脂であるが、このようなポリアミド樹脂を用いることにより、加熱殺菌処理後も、優れたガスバリア性および透明性を有するバイオ医薬品用容器とすることができる。さらに、タンパク質由来の薬効成分を有する医薬品の薬効を高く維持することができる。
ここで、非晶性ポリアミド樹脂とは、明確な融点を持たない樹脂であり、具体的には、結晶融解エンタルピーΔHmが5J/g未満であることをいい、3J/g以下が好ましく、1J/g以下がより好ましい。
The biopharmaceutical container of the present invention is a biopharmaceutical container for storing protein-derived medicinal ingredients, and mainly comprises a layer (X) mainly composed of at least one polyolefin resin and a polyamide resin (A). It has a layer (Y) as a component, and the polyamide resin (A) is composed of a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 70 mol% or more of the structural unit derived from diamine is metaxylline. 30-60 mol% of the structural unit derived from range amine is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70-40 mol% is derived from isophthalic acid. It is derived from.
The polyamide resin (A) is usually an amorphous polyamide resin. By using such a polyamide resin, a biopharmaceutical container having excellent gas barrier properties and transparency even after heat sterilization treatment is used. be able to. Furthermore, it is possible to maintain a high medicinal effect of a pharmaceutical product having a protein-derived medicinal component.
Here, the amorphous polyamide resin is a resin having no clear melting point. Specifically, it means that the crystal melting enthalpy ΔHm is less than 5 J / g, preferably 3 J / g or less, preferably 1 J / g. g or less is more preferable.

<層構成>
本発明のバイオ医薬品用容器における層構成は特に限定されず、層(X)および層(Y)の数や種類は特に限定されない。
バイオ医薬品用容器を構成する層の数は、少なくとも3層からなることが好ましく、3〜10層がより好ましく、3〜5層がさらに好ましい。
バイオ医薬品用容器における、層(X)の数は、1〜5層が好ましく、2層〜4層がより好ましい。バイオ医薬品用容器における、層(Y)の数は、1層〜3層が好ましく、1層または2層がより好ましい。
例えば、バイオ医薬品用容器が、1層の層(X)および1層の層(Y)からなるX/Y構成(層(X)が内層である)またはY/X構成(層(Y)が内層である)であってもよく、2層の層(X)および1層の層(Y)からなるX/Y/Xの3層構成であってもよい。さらに、本発明のバイオ医薬品用容器は、層(X)および層(Y)が互いに接していてもよいが、接着層(AD)等の任意の層を含んでもよい。
本発明のバイオ医薬品用容器は、内層および外層が、前記層(X)であり、中間層の少なくとも1層が、前記層(Y)であること(X/Y/X構成)が好ましい。本実施形態においては、内層および外層である、前記層(X)がそれぞれ中間層である(Y)層に接していてもよいし(X/Y/X)、前記層(Y)と前記層(X)とがそれぞれ接着層(AD)を介して接着していてもよい(X/AD/Y/AD/X)。また、本発明では、これらに限らず、目的に応じて様々な熱可塑性樹脂層をさらに有することが可能である。
ここでの内層とは、バイオ医薬品用容器を構成する層のうち、1つの中間層である(Y)層よりも内側に位置する層をいい、外層とは、バイオ医薬品用容器を構成する層のうち、1つの中間層である(Y)層よりも外側に位置する層をいう。内層および外層は、それぞれ、最内層および最外層であってもよいし、別途、最内層および最外層を有していてもよい。
<Layer structure>
The layer structure in the biopharmaceutical container of the present invention is not particularly limited, and the number and type of layers (X) and layers (Y) are not particularly limited.
The number of layers constituting the biopharmaceutical container is preferably composed of at least three layers, more preferably 3 to 10 layers, and even more preferably 3 to 5 layers.
The number of layers (X) in the biopharmaceutical container is preferably 1 to 5 layers, and more preferably 2 to 4 layers. The number of layers (Y) in the biopharmaceutical container is preferably 1 to 3 layers, more preferably 1 layer or 2 layers.
For example, a biopharmaceutical container has an X / Y configuration (layer (X) is an inner layer) or Y / X configuration (layer (Y) is composed of one layer (X) and one layer (Y). It may be an inner layer) or may be a three-layer structure of X / Y / X composed of two layers (X) and one layer (Y). Furthermore, in the biopharmaceutical container of the present invention, the layer (X) and the layer (Y) may be in contact with each other, but may include any layer such as an adhesive layer (AD).
In the biopharmaceutical container of the present invention, the inner layer and the outer layer are preferably the layer (X), and at least one of the intermediate layers is preferably the layer (Y) (X / Y / X configuration). In the present embodiment, the layer (X) that is the inner layer and the outer layer may be in contact with the (Y) layer that is an intermediate layer (X / Y / X), or the layer (Y) and the layer (X) may be bonded to each other via an adhesive layer (AD) (X / AD / Y / AD / X). Moreover, in this invention, it is possible to further have various thermoplastic resin layers according to the purpose, not limited to these.
Here, the inner layer refers to a layer located inside the (Y) layer that is one intermediate layer among the layers constituting the biopharmaceutical container, and the outer layer refers to a layer that constitutes the biopharmaceutical container. Among these, the layer located outside the (Y) layer which is one intermediate layer is said. The inner layer and the outer layer may be the innermost layer and the outermost layer, respectively, or may have an innermost layer and an outermost layer separately.

本発明の多層容器は、外層の少なくとも1層の厚みが、内層の少なくとも1層の厚みよりも厚いことが好ましい。前記外層と内層の厚さの差は、200μm以上であることが好ましく、300μm以上であることがより好ましく、300〜900μmであることがより好ましい。
本発明の多層容器の総厚みは、下限値が、0.5mm以上が好ましく、0.8mm以上がより好ましく、1.0mm以上がさらに好ましい。前記総厚みは、2.5mm以下が好ましく、2.0mm以下がより好ましい。
In the multilayer container of the present invention, it is preferable that the thickness of at least one outer layer is thicker than the thickness of at least one inner layer. The difference in thickness between the outer layer and the inner layer is preferably 200 μm or more, more preferably 300 μm or more, and more preferably 300 to 900 μm.
The lower limit of the total thickness of the multilayer container of the present invention is preferably 0.5 mm or more, more preferably 0.8 mm or more, and further preferably 1.0 mm or more. The total thickness is preferably 2.5 mm or less, and more preferably 2.0 mm or less.

<層(X)>
本発明のバイオ医薬品用容器を構成する層(X)は、ポリオレフィン樹脂の少なくとも1種を主成分とする層であり、通常は、水蒸気バリア層として働く。ここで、「主成分とする」とは、層(X)中に、ポリオレフィン樹脂(水蒸気バリア性ポリマー)を層(X)中に70質量%以上、好ましくは80質量%以上、より好ましくは90〜100質量%含まれることを意味する。層(X)は、ポリオレフィン樹脂を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、ポリオレフィン樹脂の合計量が、上記範囲となる。
層(X)は、ポリオレフィン樹脂に加えて、所望する性能等に応じて、本発明の効果を損なわない範囲で酸化防止剤や艶消剤、耐候安定剤、紫外線吸収剤、結晶化核剤、可塑剤、難燃剤、帯電防止剤等の添加剤を含んでいてもよい。
本発明のバイオ医薬品用容器は、層(X)を複数有していてもよく、複数の層(X)の構成は互いに同一であっても異なっていてもよい。層(X)の厚みは特に限定されないが、強度およびコストの観点から、20〜2000μmが好ましく、50〜1500μmがより好ましい。
<Layer (X)>
The layer (X) constituting the biopharmaceutical container of the present invention is a layer mainly composed of at least one polyolefin resin, and usually functions as a water vapor barrier layer. Here, “main component” means that the layer (X) contains a polyolefin resin (water vapor barrier polymer) in the layer (X) of 70% by mass or more, preferably 80% by mass or more, more preferably 90%. It means that -100 mass% is contained. Layer (X) may contain only 1 type of polyolefin resin, or may contain 2 or more types. When 2 or more types are included, the total amount of the polyolefin resin falls within the above range.
In addition to the polyolefin resin, the layer (X) includes an antioxidant, a matting agent, a weather resistance stabilizer, an ultraviolet absorber, a crystallization nucleating agent, and the like within a range that does not impair the effects of the present invention, depending on the desired performance and the like. Additives such as plasticizers, flame retardants and antistatic agents may be included.
The biopharmaceutical container of the present invention may have a plurality of layers (X), and the configurations of the plurality of layers (X) may be the same or different. Although the thickness of layer (X) is not specifically limited, From a viewpoint of intensity | strength and cost, 20-2000 micrometers is preferable and 50-1500 micrometers is more preferable.

<<ポリオレフィン樹脂>>
本発明で用いるポリオレフィン樹脂は、特に定めるものではなく、公知のポリオレフィン樹脂を用いることができる。
<< Polyolefin resin >>
The polyolefin resin used in the present invention is not particularly defined, and a known polyolefin resin can be used.

ポリオレフィン樹脂は、シクロオレフィン系ポリマーおよびポリプロピレン系ポリマー(PP)からなる群より選択される少なくとも1種であることが好ましく、シクロオレフィン系ポリマーの少なくとも1種であることがより好ましい。シクロオレフィン系ポリマーは、シクロオレフィンポリマー(COP)であってもよいし、シクロオレフィンコポリマー(COC)であってもよい。COPおよびCOCは、耐熱性や耐光性などの化学的性質や耐薬品性はポリオレフィン樹脂としての特徴を示し、かつ、機械特性、溶融、流動特性、寸法精度などの物理的性質は非晶性樹脂としての特徴を示すことから好ましい。一方、PPは、耐油性の観点から好ましい。   The polyolefin resin is preferably at least one selected from the group consisting of a cycloolefin polymer and a polypropylene polymer (PP), and more preferably at least one cycloolefin polymer. The cycloolefin polymer may be a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). COP and COC have chemical properties such as heat resistance and light resistance and chemical resistance, which are characteristic of polyolefin resins, and physical properties such as mechanical properties, melting, flow properties, and dimensional accuracy are amorphous resins. It is preferable because it shows the characteristics as follows. On the other hand, PP is preferable from the viewpoint of oil resistance.

COPとは、例えば、ノルボルネンを開環重合し水素添加した重合物である。COPは、例えば、特開平5−317411号公報に記載されており、また、日本ゼオン(株)製のZEONEX(登録商標)またはZEONOR(登録商標)や(株)大協精工製のDaikyo Resin CZ(登録商標)として市販されている。   COP is, for example, a polymer obtained by ring-opening polymerization of norbornene and hydrogenation. COP is described in, for example, Japanese Patent Application Laid-Open No. 5-317411, and ZEONEX (registered trademark) or ZEONOR (registered trademark) manufactured by Nippon Zeon Co., Ltd. or Daikyo Resin CZ manufactured by Daikyo Seiko Co., Ltd. It is marketed as (registered trademark).

COCとは、例えば、ノルボルネンとエチレン等のオレフィンを原料とした共重合体、およびテトラシクロドデセンとエチレン等のオレフィンを原料とした共重合体である。COCは、例えば三井化学(株)製、アペル(登録商標)として市販されている。   COC is, for example, a copolymer made from olefins such as norbornene and ethylene, and a copolymer made from olefins such as tetracyclododecene and ethylene. COC is commercially available, for example, as Apel (registered trademark) manufactured by Mitsui Chemicals.

PPとしては、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等の公知のポリマーを使用することができる。市販品としては、BOREALIS社製、Bormed RB845MOなどが挙げられる。   As PP, well-known polymers, such as a propylene homopolymer, a propylene-ethylene block copolymer, a propylene-ethylene random copolymer, can be used. As a commercial item, Boredalis company make, Bormed RB845MO etc. are mentioned.

上記の他、特開2014−068767号公報の段落0101〜0103に記載のポリオレフィン樹脂、なども用いることができ、これらの内容は本明細書に組み込まれる。   In addition to the above, polyolefin resins described in paragraphs 0101 to 0103 of JP-A-2014-068767 can also be used, and the contents thereof are incorporated herein.

<層(Y)>
本発明のバイオ医薬品用容器を構成する層(Y)は、所定のポリアミド樹脂(A)の少なくとも1種を主成分とする層であり、通常は、ガスバリア層として働く。
層(Y)は、通常、容器外部から進入する酸素を遮断し、容器内の内容物の酸化劣化を防止する役割を有する。良好なガスバリア性の観点から、層(Y)の23℃、相対湿度60%の環境下における酸素透過係数が1.0mL・mm/(m2・day・atm)以下であることが好ましく、0.05〜0.8mL・mm/(m2・day・atm)であることがより好ましい。酸素透過係数は、ASTM D3985に準じて測定することができ、例えば「OX−TRAN(登録商標) 2/61」(MOCON社製)を使用して測定することができる。
<Layer (Y)>
The layer (Y) constituting the biopharmaceutical container of the present invention is a layer mainly composed of at least one kind of the predetermined polyamide resin (A), and usually functions as a gas barrier layer.
The layer (Y) usually has a role of blocking oxygen entering from the outside of the container and preventing oxidative deterioration of the contents in the container. From the viewpoint of good gas barrier properties, the oxygen permeability coefficient of the layer (Y) in an environment of 23 ° C. and a relative humidity of 60% is preferably 1.0 mL · mm / (m 2 · day · atm) or less. It is more preferable that it is 0.05-0.8mL * mm / (m < 2 > * day * atm). The oxygen permeability coefficient can be measured according to ASTM D3985, and can be measured using, for example, “OX-TRAN (registered trademark) 2/61” (manufactured by MOCON).

また、上記「主成分とする」とは、層(Y)中に、ポリアミド樹脂(A)(ガスバリア性ポリマー)が70〜100質量%、好ましくは80〜100質量%、より好ましくは90〜100質量%、さらに好ましくは95〜100質量%、一層好ましくは98〜100質量%含まれることを意味する。層(Y)は、ポリアミド樹脂(A)を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、ポリアミド樹脂(A)の合計量が、上記範囲となる。
本発明のバイオ医薬品用容器は、層(Y)を複数有していてもよく、複数の層(Y)の構成は互いに同一であっても異なっていてもよい。層(Y)の厚みは特に限定されないが、ガスバリア性、透明性およびコストの観点から、1〜800μmが好ましく、100〜700μmがより好ましい。また、本発明のバイオ医薬品用容器における層(Y)の厚みは、ガスバリア性、透明性およびコストの観点から、バイオ医薬品用容器の総厚みに対して2〜40%の範囲であることが好ましく、より好ましくは5〜38%であり、さらに好ましくは10〜35%である。バイオ医薬品用容器における層(Y)の厚みは、容器を切断し、層(X)から剥離することによって測定できる。尚、層(Y)が2層以上ある場合は、その合計を層(Y)の厚みとして算出する。
層(Y)は、ポリアミド樹脂(A)に加えて、所望する性能等に応じて、本発明の効果を損なわない範囲で、添加剤を含有してもよい。具体的には、顔料(無機顔料など)、滑剤(ステアリン酸ナトリウム、ステアリン酸カルシウムなど)、艶消剤、耐熱安定剤(酸化防止剤、より好ましくはリン系酸化防止剤など)、耐候安定剤、紫外線吸収剤、結晶化核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等が例示される。添加剤は1種であってもよいし、2種以上の組合せであってもよい。層(Y)中における添加剤の含有量は、添加剤の種類にもよるが、10質量%以下が好ましく、5質量%以下がより好ましい。添加剤の詳細としては、特開2014−068767号公報の段落0071〜0099の記載を参酌でき、これらの内容は本明細書に組み込まれる。
本発明における層(Y)の好ましい実施形態として、以下のものが例示される。
(1)実質的に、1種または2種以上のポリアミド樹脂(A)のみからなる層
(2)実質的に、1種または2種以上のポリアミド樹脂(A)とポリアミド樹脂(A)以外のポリアミド樹脂のみからなる層
(3)実質的に、1種または2種以上のポリアミド樹脂(A)と酸化防止剤のみからなる層
(4)1種または2種以上のポリアミド樹脂(A)とポリアミド樹脂(A)以外のポリアミド樹脂と酸化防止剤のみからなる層
(5)1種または2種以上のポリアミド樹脂(A)と滑剤のみからなる層
(6)1種または2種以上のポリアミド樹脂(A)とポリアミド樹脂(A)以外のポリアミド樹脂と滑剤のみからなる層
(7)1種または2種以上のポリアミド樹脂(A)と酸化防止剤と滑剤のみからなる層
(8)1種または2種以上のポリアミド樹脂(A)とポリアミド樹脂(A)以外のポリアミド樹脂と酸化防止剤と滑剤のみからなる層
(9)上記において、ポリアミド樹脂(A)以外のポリアミド樹脂が、非晶性ポリアミド樹脂である層
In addition, the above “main component” means that the polyamide resin (A) (gas barrier polymer) in the layer (Y) is 70 to 100% by mass, preferably 80 to 100% by mass, more preferably 90 to 100%. It means that it is contained by mass%, more preferably 95-100 mass%, and still more preferably 98-100 mass%. The layer (Y) may contain only 1 type of polyamide resin (A), or may contain 2 or more types. When 2 or more types are included, the total amount of the polyamide resin (A) falls within the above range.
The biopharmaceutical container of the present invention may have a plurality of layers (Y), and the configurations of the plurality of layers (Y) may be the same as or different from each other. Although the thickness of a layer (Y) is not specifically limited, 1-800 micrometers is preferable from a viewpoint of gas barrier property, transparency, and cost, and 100-700 micrometers is more preferable. In addition, the thickness of the layer (Y) in the biopharmaceutical container of the present invention is preferably in the range of 2 to 40% with respect to the total thickness of the biopharmaceutical container from the viewpoint of gas barrier properties, transparency, and cost. More preferably, it is 5-38%, More preferably, it is 10-35%. The thickness of the layer (Y) in the biopharmaceutical container can be measured by cutting the container and peeling it from the layer (X). In addition, when there are two or more layers (Y), the total is calculated as the thickness of the layer (Y).
In addition to the polyamide resin (A), the layer (Y) may contain additives in a range that does not impair the effects of the present invention, depending on the desired performance and the like. Specifically, pigments (such as inorganic pigments), lubricants (such as sodium stearate and calcium stearate), matting agents, heat stabilizers (such as antioxidants, more preferably phosphorous antioxidants), weathering stabilizers, Examples thereof include ultraviolet absorbers, crystallization nucleating agents, plasticizers, flame retardants, antistatic agents, anti-coloring agents, and anti-gelling agents. One type of additive may be used, or a combination of two or more types may be used. The content of the additive in the layer (Y) is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive. Details of the additive can be referred to the descriptions in paragraphs 0071 to 0099 of JP-A-2014-068767, the contents of which are incorporated herein.
The following are illustrated as preferable embodiment of the layer (Y) in this invention.
(1) A layer consisting essentially of only one or two or more polyamide resins (A) (2) Substantially other than one or two or more polyamide resins (A) and a polyamide resin (A) Layer consisting only of polyamide resin (3) Layer consisting essentially of one or more polyamide resins (A) and antioxidants (4) One or more polyamide resins (A) and polyamide A layer consisting only of a polyamide resin other than the resin (A) and an antioxidant (5) One or two or more types of polyamide resins (A) and a layer consisting only of a lubricant (6) One or more types of polyamide resins ( A layer consisting only of a polyamide resin and a lubricant other than A) and the polyamide resin (A) (7) A layer consisting of only one or more polyamide resins (A), an antioxidant and a lubricant (8) One or two More than species polya A layer consisting only of a polyamide resin (A) and a polyamide resin (A), an antioxidant and a lubricant. (9) In the above, a layer wherein the polyamide resin other than the polyamide resin (A) is an amorphous polyamide resin.

<ポリアミド樹脂(A)>
本発明で用いるポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する。本発明で用いるポリアミド樹脂(A)は非晶性樹脂である。非晶性樹脂を用いることにより、透明性を向上させることができる。さらに、本発明で用いるポリアミド樹脂(A)は、加熱殺菌処理後のバリア性にも優れる。
本発明で用いるポリアミド樹脂(A)は、カルシウム原子を含むことが好ましい。カルシウム原子を含むことにより、加熱処理後の透明性をより向上させることができる。
本発明で用いるポリアミド樹脂(A)は、リン原子を20〜200質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3〜0.7となる割合で含むことがより好ましい。このような構成とすることにより、加熱処理後の透明性がより高く、加熱処理後のYI値(黄色度)がより低いバイオ医薬品用容器が得られる。カルシウム原子は、次亜リン酸カルシウムに由来することが好ましい。
<Polyamide resin (A)>
The polyamide resin (A) used in the present invention is composed of a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 70 mol% or more of the structural unit derived from diamine is derived from metaxylylenediamine, Of the structural unit derived from acid, 30 to 60 mol% is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid. The polyamide resin (A) used in the present invention is an amorphous resin. Transparency can be improved by using an amorphous resin. Furthermore, the polyamide resin (A) used in the present invention is also excellent in barrier properties after the heat sterilization treatment.
The polyamide resin (A) used in the present invention preferably contains calcium atoms. By including calcium atoms, the transparency after the heat treatment can be further improved.
The polyamide resin (A) used in the present invention contains phosphorus atoms in a proportion of 20 to 200 ppm by mass, and contains calcium atoms in a proportion such that the molar ratio of phosphorus atoms: calcium atoms is 1: 0.3 to 0.7. It is more preferable. With such a configuration, a biopharmaceutical container having higher transparency after heat treatment and lower YI value (yellowness) after heat treatment can be obtained. The calcium atom is preferably derived from calcium hypophosphite.

メタキシリレンジアミンと、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸と、イソフタル酸とから合成されるポリアミド樹脂を用いると、黄色度が高くなってしまう場合がある。そこで、重縮合時に着色防止剤であるリン含有化合物を添加することが考えられる。しかしながら、ジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸の割合が40モル%以上と多くなると、リン含有化合物として一般的に用いられている、次亜リン酸ナトリウムを用いた場合、黄色度は改善されるものの透明性が劣る場合があることがわかった。さらに次亜リン酸ナトリウムを用いた場合、得られたポリアミド樹脂は透明であっても、浸水処理等を行うと透明性が悪化する場合があることがわかった。そして、さらに検討を行った結果、リン含有化合物として、次亜リン酸ナトリウムの代わりに、次亜リン酸カルシウムを添加することにより、より透明性(ヘイズ)を向上させ、浸水処理後もより透明性を向上させることが可能であることを見出した。しかしながら、次亜リン酸カルシウムのようなカルシウム塩は、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸やイソフタル酸に対する溶解性が低く、カルシウム塩の添加量が多くなると白色の異物が発生してしまう場合があることが分かった。本発明は、以上の知見に基づき、ポリアミド樹脂のリン原子とカルシウム原子の割合を上記のように設定することにより、より透明性に優れたポリアミド樹脂の提供に成功し、バイオ医薬品用容器の透明性をより向上させることに成功したものである。   When a polyamide resin synthesized from metaxylylenediamine, an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and isophthalic acid is used, the yellowness may increase. Therefore, it is conceivable to add a phosphorus-containing compound that is a coloring inhibitor during polycondensation. However, when the proportion of isophthalic acid in all dicarboxylic acids constituting the structural unit derived from dicarboxylic acid increases to 40 mol% or more, sodium hypophosphite, which is generally used as a phosphorus-containing compound, was used. In this case, it was found that although the yellowness is improved, the transparency may be inferior. Furthermore, when sodium hypophosphite was used, even if the obtained polyamide resin was transparent, it was found that transparency may deteriorate when subjected to water immersion treatment or the like. As a result of further investigation, by adding calcium hypophosphite instead of sodium hypophosphite as the phosphorus-containing compound, the transparency (haze) is further improved and the transparency is further improved after the water immersion treatment. It was found that it can be improved. However, calcium salts such as calcium hypophosphite have low solubility in α, ω-linear aliphatic dicarboxylic acids and isophthalic acids having 4 to 20 carbon atoms, and white foreign matter is generated when the amount of calcium salt added increases. It turns out that it may end up. Based on the above knowledge, the present invention succeeded in providing a polyamide resin with higher transparency by setting the ratio of the phosphorus atom and the calcium atom of the polyamide resin as described above. It has succeeded in improving sex.

本発明では、ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する。ジアミン由来の構成単位は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、一層好ましくは98モル%以上、より一層好ましくは99モル%以上が、メタキシリレンジアミンに由来する。
メタキシリレンジアミン以外のジアミンとしては、パラフェニレンジアミン、パラキシリレンジアミン等の芳香族ジアミン等、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミンが例示される。これらの他のジアミンは、1種のみでも2種以上であってもよい。
In the present invention, 70 mol% or more of the structural unit derived from diamine is derived from metaxylylenediamine. The structural unit derived from diamine is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, still more preferably 98 mol% or more, and even more preferably 99 mol% or more. Derived from range amine.
Examples of diamines other than metaxylylenediamine include aromatic diamines such as paraphenylenediamine and paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and tetramethylenediamine. And aliphatic diamines such as pentamethylenediamine, hexamethylenediamine, octamethylenediamine, and nonamethylenediamine. These other diamines may be used alone or in combination of two or more.

本発明では、ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する。
ジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸の割合の下限値は、41モル%以上が好ましく、43モル%以上がより好ましく、45モル%以上がさらに好ましい。前記イソフタル酸の割合の上限値は、68モル%以下が好ましく、66モル%以下がより好ましい。このような範囲とすることにより、バイオ医薬品用容器の加熱処理後のヘイズがより低下する傾向にあり好ましい。
In the present invention, 30 to 60 mol% of the structural unit derived from dicarboxylic acid is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid.
Of all dicarboxylic acids constituting the structural unit derived from dicarboxylic acid, the lower limit of the proportion of isophthalic acid is preferably 41 mol% or more, more preferably 43 mol% or more, and even more preferably 45 mol% or more. The upper limit of the proportion of isophthalic acid is preferably 68 mol% or less, and more preferably 66 mol% or less. By setting it as such a range, it exists in the tendency for the haze after the heat processing of the container for biopharmaceuticals to fall more, and it is preferable.

ジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸の割合の下限値は、32モル%以上が好ましく、34モル%以上がより好ましい。炭素数4〜20の直鎖脂肪族ジカルボン酸の割合の上限値は、59モル%以下が好ましく、57モル%以下がより好ましく、55モル%以下がさらに好ましい。このような範囲とすることにより、バイオ医薬品用容器の酸素バリア性、特に、加熱処理後の酸素バリア性がより向上する傾向にある。
炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示され、アジピン酸およびセバシン酸が好ましく、アジピン酸がより好ましい。炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸は、1種であってもよいし、2種以上であってもよい。
Of all dicarboxylic acids constituting the structural unit derived from dicarboxylic acid, the lower limit of the proportion of α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is preferably 32 mol% or more, and 34 mol% or more. More preferred. 59 mol% or less is preferable, as for the upper limit of the ratio of a C4-C20 linear aliphatic dicarboxylic acid, 57 mol% or less is more preferable, and 55 mol% or less is more preferable. By setting it as such a range, it exists in the tendency for the oxygen barrier property of the container for biopharmaceuticals, especially the oxygen barrier property after heat processing to improve more.
Examples of the α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms include fats such as succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid. Adipic acid and sebacic acid are preferable, and adipic acid is more preferable. The α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms may be one type or two or more types.

ジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸と炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸の合計の割合は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98モル%以上であることがさらに好ましく、100モル%であってもよい。このような割合とすることにより、バイオ医薬品用容器の透明性がより向上し、黄色度がより低下する傾向にある。   Of all dicarboxylic acids constituting the structural unit derived from dicarboxylic acid, the total proportion of isophthalic acid and α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is preferably 90 mol% or more, More preferably, it is 95 mol% or more, More preferably, it is 98 mol% or more, and 100 mol% may be sufficient. By setting it as such a ratio, it exists in the tendency for the transparency of the container for biopharmaceuticals to improve, and for yellowness to fall more.

イソフタル酸と炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸以外のジカルボン酸としては、テレフタル酸や2,6−ナフタレンジカルボン酸、炭素数6〜12の脂環式ジカルボン酸等が例示される。これらの具体例としては、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等が例示される。   Examples of dicarboxylic acids other than isophthalic acid and α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms include terephthalic acid, 2,6-naphthalenedicarboxylic acid, and alicyclic dicarboxylic acids having 6 to 12 carbon atoms. Illustrated. Specific examples thereof include 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid.

尚、本発明で用いるポリアミド樹脂(A)は、ジカルボン酸由来の構成単位とジアミン由来の構成単位から構成されるが、ジカルボン酸由来の構成単位およびジアミン由来の構成単位以外の構成単位や、末端基等の他の部位を含みうる。他の構成単位としては、ε−カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタム、11−アミノウンデカン酸、12−アミノドデカン酸等のアミノカルボン酸等由来の構成単位が例示できるが、これらに限定されるものではない。さらに、本発明で用いるポリアミド樹脂(A)は、合成に用いた添加剤等の微量成分が含まれる。本発明で用いるポリアミド樹脂(A)は、通常、95質量%以上、好ましくは98質量%以上が、ジカルボン酸由来の構成単位またはジアミン由来の構成単位である。   In addition, although the polyamide resin (A) used by this invention is comprised from the structural unit derived from dicarboxylic acid and the structural unit derived from diamine, structural units other than the structural unit derived from dicarboxylic acid and the structural unit derived from diamine, and the terminal Other sites such as groups may be included. Examples of other structural units include structural units derived from lactams such as ε-caprolactam, valerolactam, laurolactam, and undecanalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. It is not limited to these. Furthermore, the polyamide resin (A) used in the present invention contains trace components such as additives used in the synthesis. The polyamide resin (A) used in the present invention is usually 95% by mass or more, preferably 98% by mass or more of a structural unit derived from a dicarboxylic acid or a structural unit derived from a diamine.

上述のとおり、本発明で用いるポリアミド樹脂(A)は、リン原子を3〜300質量ppmの割合で含むことが好ましく、4〜250質量ppmの割合で含むことがより好ましく、20〜200質量ppmの割合で含むことがさらに好ましい。また、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3〜0.7となる割合で含むことが好ましい。
本発明で用いるポリアミド樹脂(A)におけるリン原子濃度は、下限値は、3質量ppm以上が好ましく、4質量ppm以上であることがより好ましく、20質量ppm以上であることがさらに好ましく、22質量ppm以上であることが一層好ましく、50質量ppm以上であってもよく、さらには100質量ppm以上であってもよく、特には150質量ppm以上であってもよい。ポリアミド樹脂(A)中のリン原子濃度を高くすることにより、黄色度(YI値)をより効果的に低下させることが可能になるリン原子濃度の上限値は、300質量ppm以下であることが好ましく、250質量ppm以下であることがより好ましく、230質量ppm以下であることがさらに好ましく、200質量ppm以下であることが一層好ましく、190質量ppm以下であることがより一層好ましく、180質量ppm以下であることがさらに一層好ましい。ポリアミド樹脂におけるリン原子濃度を下限値以上とすることにより、バイオ医薬品用容器の黄色度をより低くでき、色調がより向上する。また、ポリアミド樹脂におけるリン原子濃度を上限値以下とすることにより、得られるバイオ医薬品用容器の透明性がより向上する傾向にある。
本発明で用いるポリアミド樹脂(A)におけるリン原子:カルシウム原子のモル比は1:0.3〜0.7となる割合であることが好ましく、1:0.4〜0.6となる割合がより好ましく、1:0.45〜0.55となる割合であることがさらに好ましく、1:0.48〜0.52となる割合であることが特に好ましい。本発明で用いるポリアミド樹脂(A)に含まれるリン原子およびカルシウム原子は、それぞれ、次亜リン酸カルシウムに由来することが好ましい。ポリアミド樹脂におけるリン原子:カルシウム原子のモル比を下限値以上とすることにより、得られるバイオ医薬品用容器のヘイズがより低くなる傾向にある。また、ポリアミド樹脂におけるリン原子:カルシウム原子のモル比を上限値以下とすることにより、得られるバイオ医薬品用容器のヘイズがより低くなる傾向にある。
リン原子濃度およびカルシウム原子濃度の測定方法は、それぞれ、後述する実施例に記載の方法に従う。但し、実施例で使用する機器等が廃番等の場合、他の同様の性能を有する機器等を用いることができる。以下、他の測定方法についても同様である。
As described above, the polyamide resin (A) used in the present invention preferably contains phosphorus atoms at a rate of 3 to 300 ppm by mass, more preferably 4 to 250 ppm by mass, and more preferably 20 to 200 ppm by mass. More preferably, it is contained at a ratio of Moreover, it is preferable to contain a calcium atom in the ratio from which the molar ratio of a phosphorus atom: calcium atom will be 1: 0.3-0.7.
The lower limit of the phosphorus atom concentration in the polyamide resin (A) used in the present invention is preferably 3 mass ppm or more, more preferably 4 mass ppm or more, further preferably 20 mass ppm or more, and 22 mass. More preferably, it is more than ppm, 50 mass ppm or more may be sufficient, 100 mass ppm or more may be sufficient, and especially 150 mass ppm or more may be sufficient. By increasing the phosphorus atom concentration in the polyamide resin (A), the upper limit of the phosphorus atom concentration that enables the yellowness (YI value) to be more effectively reduced is 300 ppm by mass or less. Preferably, it is 250 ppm by mass or less, more preferably 230 ppm by mass or less, still more preferably 200 ppm by mass or less, still more preferably 190 ppm by mass or less, and 180 ppm by mass. It is even more preferable that: By setting the phosphorus atom concentration in the polyamide resin to the lower limit value or more, the yellowness of the biopharmaceutical container can be lowered, and the color tone is further improved. Moreover, it exists in the tendency which the transparency of the container for biopharmaceuticals obtained improves more by making the phosphorus atom concentration in a polyamide resin below into an upper limit.
The molar ratio of phosphorus atom: calcium atom in the polyamide resin (A) used in the present invention is preferably a ratio of 1: 0.3 to 0.7, and a ratio of 1: 0.4 to 0.6 is preferred. More preferably, the ratio is 1: 0.45 to 0.55, and particularly preferably the ratio is 1: 0.48 to 0.52. The phosphorus atom and calcium atom contained in the polyamide resin (A) used in the present invention are preferably derived from calcium hypophosphite, respectively. By setting the molar ratio of phosphorus atom: calcium atom in the polyamide resin to the lower limit value or more, the haze of the resulting biopharmaceutical container tends to be lower. Moreover, it exists in the tendency for the haze of the biopharmaceutical container obtained to become lower by making the molar ratio of the phosphorus atom: calcium atom in a polyamide resin below an upper limit.
The measurement method of a phosphorus atom concentration and a calcium atom concentration follows the method as described in the Example mentioned later, respectively. However, when the device used in the embodiment is an abandoned number or the like, other devices having the same performance can be used. Hereinafter, the same applies to other measurement methods.

<<ポリアミド樹脂(A)の物性>>
ポリアミド樹脂の重合度の指標としては、相対粘度が一般的に使われる。本発明に用いられるポリアミド樹脂(A)の相対粘度は、層(X)の溶融粘度および共射出成形性の観点から、好ましくは1.5〜3.0である。相対粘度の下限値は、1.6以上がより好ましく、1.8以上がさらに好ましく、1.9以上が特に好ましい。相対粘度の上限値としては、2.8以下がより好ましく、2.5以下がさらに好ましく、2.3以下が一層好ましく、2.0以下がより一層好ましい。このような範囲とすることにより、共射出成形性が向上し、層間密着性の高いバイオ医薬品用容器が得られるという効果が発揮される。
尚、ここでいう相対粘度とは、ポリアミド樹脂0.2gを精秤し、96質量%の硫酸水溶液20mLに25℃で撹拌溶解し、完全に溶解した後、速やかに、粘度計に溶液5mLを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定する。また、96質量%の硫酸水溶液そのものの落下時間(t0)も同様に測定する。tおよびt0から次式により相対粘度を算出する。より詳しくは、実施例に記載の方法に従う。
相対粘度=t/t0
<< Physical properties of polyamide resin (A) >>
Relative viscosity is generally used as an index of the degree of polymerization of polyamide resin. The relative viscosity of the polyamide resin (A) used in the present invention is preferably 1.5 to 3.0 from the viewpoint of the melt viscosity of the layer (X) and the co-injection moldability. The lower limit of the relative viscosity is more preferably 1.6 or more, further preferably 1.8 or more, and particularly preferably 1.9 or more. The upper limit value of the relative viscosity is more preferably 2.8 or less, further preferably 2.5 or less, still more preferably 2.3 or less, and even more preferably 2.0 or less. By setting it as such a range, co-injection moldability improves and the effect that the container for biopharmaceuticals with high interlayer adhesiveness is obtained is exhibited.
The relative viscosity referred to here means that 0.2 g of polyamide resin is precisely weighed, dissolved in 20 mL of 96 mass% sulfuric acid aqueous solution at 25 ° C. with stirring, completely dissolved, and immediately, 5 mL of the solution is immediately added to the viscometer. Take the sample for 10 minutes in a constant temperature bath at 25 ° C., and then measure the drop time (t). Further, the dropping time (t0) of the 96% by mass sulfuric acid aqueous solution itself is measured in the same manner. The relative viscosity is calculated from t and t0 according to the following equation. More specifically, the method described in the examples is followed.
Relative viscosity = t / t0

<ポリアミド樹脂(A)の製造方法>
次に、本発明で用いるポリアミド樹脂(A)の製造方法の一例について述べる。本発明で用いるポリアミド樹脂(A)は、以下に述べる方法で製造されたポリアミド樹脂であることが好ましいが、これに限定されるものではないことは言うまでもない。
<Method for producing polyamide resin (A)>
Next, an example of the manufacturing method of the polyamide resin (A) used by this invention is described. The polyamide resin (A) used in the present invention is preferably a polyamide resin produced by the method described below, but it goes without saying that the present invention is not limited to this.

本発明で用いるポリアミド樹脂(A)の製造方法は、ジアミンとジカルボン酸を次亜リン酸塩(例えば、次亜リン酸ナトリウムおよび/または次亜リン酸カルシウム、好ましくは、次亜リン酸カルシウム)の存在下で重縮合することを含み、前記ジアミンの70モル%以上がメタキシリレンジアミンであり、前記ジカルボン酸の30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸であり、70〜40モル%がイソフタル酸であることを特徴とする。
特に、次亜リン酸カルシウムの存在下で合成することにより、得られるポリアミド樹脂中のリン原子濃度を所定の値とでき、黄色度をより低下させることができ、かつ、カルシウム原子濃度を所定範囲とすることができ、透明性をより向上させることができる。尚、次亜リン酸塩の一部または全部は、重縮合時や二次加工時の酸化により、亜リン酸塩(例えば、亜リン酸カルシウム)、リン酸塩(例えば、リン酸カルシウム)、ポリリン酸塩(例えば、ポリリン酸カルシウム)等に変化する。また、その比率は、重縮合条件や重縮合時の酸素濃度等によって変化する。従って、例えば、本発明で用いるポリアミド樹脂(A)がカルシウム原子やリン原子を含んでいても、次亜リン酸カルシウムが全く存在しない場合もあろう。
重縮合は、通常、溶融重縮合法であり、溶融させた原料ジカルボン酸に原料ジアミンを滴下しつつ加圧下で昇温し、縮合水を除きながら重合させる方法、もしくは、原料ジアミンと原料ジカルボン酸から構成される塩を水の存在下で、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法が好ましい。
本発明では、次亜リン酸塩(例えば、次亜リン酸ナトリウムおよび/または次亜リン酸カルシウム、好ましくは、次亜リン酸カルシウム)を、ポリアミド樹脂(A)に含まれるリン原子濃度が、3〜300質量ppmとなる割合で添加することが好ましい。より好ましい範囲は、上述のポリアミド樹脂(A)に含まれるリン原子の割合の好ましい範囲と同様の割合となる範囲である。
In the method for producing the polyamide resin (A) used in the present invention, a diamine and a dicarboxylic acid are used in the presence of hypophosphite (for example, sodium hypophosphite and / or calcium hypophosphite, preferably calcium hypophosphite). Including 70% by mole of the diamine is metaxylylenediamine, and 30 to 60% by mole of the dicarboxylic acid is an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms. 70 to 40 mol% is isophthalic acid.
In particular, by synthesizing in the presence of calcium hypophosphite, the phosphorus atom concentration in the obtained polyamide resin can be set to a predetermined value, the yellowness can be further reduced, and the calcium atom concentration is set to a predetermined range. And transparency can be further improved. In addition, a part or all of hypophosphite is phosphite (for example, calcium phosphite), phosphate (for example, calcium phosphate), polyphosphate (due to oxidation during polycondensation or secondary processing) For example, it changes to calcium polyphosphate). The ratio varies depending on the polycondensation conditions, the oxygen concentration during the polycondensation, and the like. Therefore, for example, even if the polyamide resin (A) used in the present invention contains a calcium atom or a phosphorus atom, calcium hypophosphite may not exist at all.
The polycondensation is usually a melt polycondensation method, in which a raw material diamine is added dropwise to a molten raw material dicarboxylic acid, the temperature is increased under pressure, and polymerization is performed while removing condensed water, or the raw material diamine and the raw material dicarboxylic acid. A method is preferred in which a salt composed of is heated in the presence of water under pressure and polymerized in a molten state while removing added water and condensed water.
In the present invention, hypophosphorous acid salt (for example, sodium hypophosphite and / or calcium hypophosphite, preferably calcium hypophosphite), and the concentration of phosphorus atoms contained in the polyamide resin (A) is 3 to 300 masses. It is preferable to add at a ratio of ppm. A more preferable range is a range in which the ratio is the same as the preferable range of the ratio of phosphorus atoms contained in the polyamide resin (A).

また、重縮合時には、次亜リン酸塩(例えば、次亜リン酸ナトリウムおよび/または次亜リン酸カルシウム、好ましくは、次亜リン酸カルシウム)と併用して他のアルカリ金属化合物を添加してもよい。アルカリ金属化合物を添加することにより、アミド化反応速度を調整することが可能になる。アルカリ金属化合物としては、酢酸ナトリウムが例示される。アルカリ金属化合物を配合する場合、アルカリ金属化合物/次亜リン酸塩(例えば、次亜リン酸ナトリウムおよび/または次亜リン酸カルシウム、好ましくは、次亜リン酸カルシウム)のモル比は0.5〜2.0であることが好ましい。
その他重合条件については、特開2015−098669号公報や国際公開WO2012/140785号パンフレットの記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、ジアミン、ジカルボン酸等の詳細は、上述のポリアミド樹脂の所で述べたものと同義であり、好ましい範囲も同様である。
Further, at the time of polycondensation, another alkali metal compound may be added in combination with hypophosphite (for example, sodium hypophosphite and / or calcium hypophosphite, preferably calcium hypophosphite). By adding an alkali metal compound, it becomes possible to adjust the amidation reaction rate. An example of the alkali metal compound is sodium acetate. When blending an alkali metal compound, the molar ratio of alkali metal compound / hypophosphite (for example, sodium hypophosphite and / or calcium hypophosphite, preferably calcium hypophosphite) is 0.5 to 2.0. It is preferable that
Regarding other polymerization conditions, descriptions in JP-A-2015-098669 and International Publication WO2012 / 140785 can be referred to, and the contents thereof are incorporated in the present specification.
The details of diamine, dicarboxylic acid and the like are the same as those described in the above-mentioned polyamide resin, and the preferred ranges are also the same.

本発明における層(Y)は、上記ポリアミド樹脂(A)以外のポリアミド樹脂を含んでいてもよい、上記ポリアミド樹脂(A)以外のポリアミド樹脂としては、非晶性樹脂であっても、結晶性樹脂であってもよいが、非晶性樹脂が好ましい。
また、本発明における層(Y)は、上記ポリアミド樹脂(A)以外のポリアミド樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、層(Y)におけるポリアミド樹脂(A)以外のポリアミド樹脂の量がポリアミド樹脂(A)の1質量%以下であることをいう。
The layer (Y) in the present invention may contain a polyamide resin other than the polyamide resin (A). The polyamide resin other than the polyamide resin (A) may be an amorphous resin or crystalline. A resin may be used, but an amorphous resin is preferred.
Moreover, the layer (Y) in this invention can also be set as the structure which does not contain polyamide resins other than the said polyamide resin (A) substantially. “Substantially free” means, for example, that the amount of the polyamide resin other than the polyamide resin (A) in the layer (Y) is 1% by mass or less of the polyamide resin (A).

<任意の層>
本発明のバイオ医薬品用容器は、前記層(X)および層(Y)に加えて、所望する性能等に応じて任意の層を含んでいてもよい。そのような任意の層としては、例えば、上述の接着層等が挙げられる。
<Arbitrary layer>
In addition to the layer (X) and the layer (Y), the biopharmaceutical container of the present invention may contain any layer depending on the desired performance and the like. Examples of such an arbitrary layer include the above-mentioned adhesive layer.

<<接着層>>
本発明のバイオ医薬品用容器において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、前記隣接する2つの層の間に接着層を設けることが好ましい。
接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレンまたはポリプロピレン等のポリオレフィン樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリエステル系ブロック共重合体を主成分とした、ポリエステル系熱可塑性エラストマーが挙げられる。接着層としては、接着性の観点から、層(X)として用いられているポリオレフィン樹脂と同種の樹脂を変性したものを用いることが好ましい。
接着層の厚みは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2〜100μm、より好ましくは5〜90μm、さらに好ましくは10〜80μmである。
<< Adhesive layer >>
In the biopharmaceutical container of the present invention, when a practical interlayer adhesive strength cannot be obtained between two adjacent layers, it is preferable to provide an adhesive layer between the two adjacent layers.
The adhesive layer preferably contains a thermoplastic resin having adhesiveness. Examples of the thermoplastic resin having adhesiveness include an acid-modified polyolefin obtained by modifying a polyolefin resin such as polyethylene or polypropylene with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, and itaconic acid. Examples thereof include polyester-based thermoplastic elastomers mainly composed of a resin and a polyester-based block copolymer. As the adhesive layer, it is preferable to use a modified resin of the same type as the polyolefin resin used as the layer (X) from the viewpoint of adhesiveness.
The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 to 80 μm, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength.

<バイオ医薬品用容器の物性>
本発明のバイオ医薬品用容器は、ヘイズ、全光線透過率、YI、酸素透過率(OTR)の各物性について以下に示す範囲であることが好ましく、特に、これらの各物性を併せ持つことが好ましい。
<Physical properties of containers for biopharmaceuticals>
The container for biopharmaceuticals of the present invention preferably has the following ranges for the physical properties of haze, total light transmittance, YI, and oxygen transmission rate (OTR), and particularly preferably has both of these physical properties.

<<ヘイズ>>
本発明のバイオ医薬品用容器は、121℃、30分間加熱処理後のヘイズ(Haze)(%)が6%以下であることが好ましく、5%以下であることがより好ましく、4%以下であることがさらに好ましい。前記ヘイズの下限値については、0%が好ましいが、2%以上、さらには3%以上であっても十分実用レベルである。121℃、30分間加熱処理後のヘイズ(%)の測定方法は、後述する実施例に記載の方法に従って測定される。
<< Haze >>
In the biopharmaceutical container of the present invention, the haze (%) after heat treatment at 121 ° C. for 30 minutes is preferably 6% or less, more preferably 5% or less, and more preferably 4% or less. More preferably. The lower limit of the haze is preferably 0%, but even if it is 2% or more, and further 3% or more, it is a practical level. The method for measuring haze (%) after heat treatment at 121 ° C. for 30 minutes is measured according to the method described in the examples described later.

<<全光線透過率>>
本発明のバイオ医薬品用容器の、121℃、30分間加熱処理後の全光線透過率(%)は、71%以上であることが好ましく、73%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが一層好ましく、85%以上であることがより一層好ましい。前記全光線透過率の上限値については、100%が好ましいが、95%以下、さらには93%以下、特には90%以下でも十分実用レベルである。121℃、30分間加熱処理後の全光線透過率(%)の測定方法は、後述する実施例に記載の方法に従って測定される。
<< Total light transmittance >>
The total light transmittance (%) after heat treatment at 121 ° C. for 30 minutes of the biopharmaceutical container of the present invention is preferably 71% or more, more preferably 73% or more, and 75% or more. More preferably, it is 80% or more, more preferably 85% or more. The upper limit of the total light transmittance is preferably 100%, but is 95% or less, more preferably 93% or less, and particularly 90% or less is a practical level. The measuring method of the total light transmittance (%) after the heat treatment at 121 ° C. for 30 minutes is measured according to the method described in Examples described later.

<<YI>>
本発明のバイオ医薬品用容器は、121℃、30分間加熱処理後のYI値が8以下であることが好ましく、6以下であることがより好ましく、5以下であることがさらに好ましい。前記YI値の下限値については、0が好ましいが、2以上、さらには3以上、特には4以上であっても十分実用レベルである。121℃、30分間加熱処理後のYI値の測定方法は、後述する実施例に記載の方法に従って測定される。
<< YI >>
In the biopharmaceutical container of the present invention, the YI value after heat treatment at 121 ° C. for 30 minutes is preferably 8 or less, more preferably 6 or less, and even more preferably 5 or less. The lower limit value of the YI value is preferably 0, but is 2 or more, further 3 or more, and particularly 4 or more is sufficiently practical. The measurement method of the YI value after the heat treatment at 121 ° C. for 30 minutes is measured according to the method described in Examples described later.

<<酸素透過率(OTR)>>
本発明のバイオ医薬品用容器の、23℃、バイオ医薬品用容器の内部の相対湿度100%、バイオ医薬品用容器の外部の相対湿度50%における酸素透過率(OTR)は、0.00030mL/(0.21atm・day・package)以下であることが好ましい。前記酸素透過率の下限値については、0mL/(0.21atm・day・package)が好ましいが、0.00025mL/(0.21atm・day・package)以上であっても十分に実用レベルである。前記酸素透過率の測定方法は、後述する実施例に記載の方法に従って測定される。
本発明のバイオ医薬品用容器の、121℃、30分間加熱処理後の酸素透過率(mL/(0.21atm・day・package))は、0.00030mL/(0.21atm・day・package)以下であることが好ましく、0.00028mL/(0.21atm・day・package)以下であることがより好ましい。前記酸素透過率の下限値については、0mL/(0.21atm・day・package)が好ましいが、0.00025mL/(0.21atm・day・package)以上であっても十分に実用レベルである。前記加熱処理後の酸素透過率の測定方法は、後述する実施例に記載の方法に従って測定される。
また、本発明のバイオ医薬品用容器の、23℃、バイオ医薬品用容器の内部の相対湿度100%、バイオ医薬品用容器の外部の相対湿度50%における酸素透過率と、本発明のバイオ医薬品用容器の、121℃、30分間加熱処理後の酸素透過率の差は、0.00005mL/(0.21atm・day・package)以下であることが好ましく、0.00003mL/(0.21atm・day・package)以下であることがより好ましく、0.00002mL/(0.21atm・day・package)以下であることがさらに好ましい。
<< Oxygen transmission rate (OTR) >>
The oxygen permeability (OTR) of the biopharmaceutical container of the present invention at 23 ° C., 100% relative humidity inside the biopharmaceutical container, and 50% relative humidity outside the biopharmaceutical container is 0.00030 mL / (0.21 atm · day · package) or less. The lower limit value of the oxygen permeability is preferably 0 mL / (0.21 atm · day · package), but it is sufficiently practical even at 0.00025 mL / (0.21 atm · day · package) or more. The measuring method of the said oxygen permeability is measured according to the method as described in the Example mentioned later.
The oxygen permeability (mL / (0.21 atm · day · package)) after heat treatment at 121 ° C. for 30 minutes of the biopharmaceutical container of the present invention is 0.00030 mL / (0.21 atm · day · package) or less. It is preferably 0.00028 mL / (0.21 atm · day · package) or less. The lower limit value of the oxygen permeability is preferably 0 mL / (0.21 atm · day · package), but it is sufficiently practical even at 0.00025 mL / (0.21 atm · day · package) or more. The method for measuring the oxygen transmission rate after the heat treatment is measured according to the method described in Examples described later.
In addition, the oxygen permeability of the biopharmaceutical container of the present invention at 23 ° C., relative humidity of 100% inside the biopharmaceutical container and 50% relative humidity outside the biopharmaceutical container, and the biopharmaceutical container of the present invention The difference in oxygen permeability after heat treatment at 121 ° C. for 30 minutes is preferably 0.00005 mL / (0.21 atm · day · package) or less, and 0.00003 mL / (0.21 atm · day · package) or less. More preferably, it is 0.00002 mL / (0.21 atm · day · package) or less.

<バイオ医薬品用容器の製造方法>
本発明のバイオ医薬品用容器は、用途に応じて好ましい成形方法が選択され、射出(インジェクション)成形または射出ブロー(インジェクションブロー)成形により製造されることが好ましい。
射出ブロー(インジェクションブロー)成形を行うことにより、得られるバイオ医薬品用容器(射出ブロー成形品)について、高圧蒸気下で殺菌しても変形しにくくでき、白化を効果的に抑制し、さらに、バリア性を高く維持することができる。インジェクションブロー成形では、まず射出成形により試験管状のプリフォーム(パリソン)を成形し、次いでプリフォームをある程度加熱された状態を保ったまま最終形状金型(ブロー金型)に嵌め、口部から空気を吹込み、プリフォームを膨らませて金型に密着させ、冷却固化させることでボトル状に成形することができる。
<Method for producing biopharmaceutical container>
For the biopharmaceutical container of the present invention, a preferable molding method is selected depending on the use, and it is preferably produced by injection (injection) molding or injection blow (injection blow) molding.
By performing injection blow (injection blow) molding, the resulting biopharmaceutical container (injection blow molded product) can be hardly deformed even when sterilized under high-pressure steam, effectively suppressing whitening, and further barriering Sex can be kept high. In injection blow molding, a test tubular preform (parison) is first molded by injection molding, and then the preform is fitted in a final mold (blow mold) while being heated to some extent, and air is passed through the mouth. Can be formed into a bottle shape by inflating the preform, inflating the preform, closely contacting the mold, and solidifying by cooling.

プリフォームの成形には、通常の射出成形方法を適用することができる。
例えば、2台以上の射出機を備えた成形機および射出用金型を用いて、層(X)を構成する材料および層(Y)を構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層プリフォームを製造することができる。
また、先ず、層(X)を構成する材料を射出シリンダーから射出し、次いで、層(Y)を構成する材料を別の射出シリンダーから層(X)を構成する樹脂と同時に射出し、層(X)を構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造X/Y/Xの多層プリフォームを製造できる。
あるいは、先ず、層(X)を構成する材料を射出し、次いで、層(Y)を構成する材料を単独で射出し、最後に、層(X)を構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造X/Y/X/Y/Xの多層プリフォームを製造できる。
本発明で用いるバイオ医薬品用容器は、延伸されていてもよいが、通常は未延伸体である。
A normal injection molding method can be applied to the preform molding.
For example, using a molding machine equipped with two or more injection machines and an injection mold, the material constituting the layer (X) and the material constituting the layer (Y) are passed from each injection cylinder through a mold hot runner. By injecting into the cavity, a multilayer preform corresponding to the shape of the injection mold can be manufactured.
First, the material constituting the layer (X) is injected from the injection cylinder, and then the material constituting the layer (Y) is injected simultaneously from the resin constituting the layer (X) from another injection cylinder. A multilayer preform having a three-layer structure X / Y / X can be manufactured by injecting a necessary amount of the resin constituting X) to fill the cavity.
Alternatively, first, the material constituting the layer (X) is injected, then the material constituting the layer (Y) is injected alone, and finally the necessary amount of the material constituting the layer (X) is injected. By filling the mold cavity, a multilayer preform with a five-layer structure X / Y / X / Y / X can be produced.
The biopharmaceutical container used in the present invention may be stretched, but is usually an unstretched body.

上述した最終形状に対応した金型を好ましくは120〜170℃、より好ましくは130〜160℃に加熱してブロー時に、成形体の器壁の外側を金型内面に所定時間接触させる。   The mold corresponding to the final shape described above is preferably heated to 120 to 170 ° C., more preferably 130 to 160 ° C., and at the time of blowing, the outer wall of the molded body is brought into contact with the inner surface of the mold for a predetermined time.

他のブロー成形体の製造方法としては、前記多層プリフォームを、一次ストレッチブロー金型を用いて最終ブロー成形体よりも大きい寸法の一次ブロー成形体とし、次いでこの一次ブロー成形体を加熱収縮させた後、二次金型を用いてストレッチブロー成形を行って最終ブロー成形体とする二段ブロー成形を採用してもよい。このブロー成形体の製造方法によれば、ブロー成形体の底部が十分に延伸薄肉化され、熱間充填、加熱殺菌時の底部の変形、耐衝撃性に優れたブロー成形体を得ることができる。   As another method for producing a blow molded article, the multilayer preform is formed into a primary blow molded article having a size larger than that of the final blow molded article using a primary stretch blow mold, and then the primary blow molded article is heated and shrunk. Then, a two-stage blow molding may be employed in which a stretch blow molding is performed using a secondary mold to obtain a final blow molded body. According to this blow molded article manufacturing method, the bottom of the blow molded article is sufficiently stretched and thinned to obtain a blow molded article excellent in hot filling, deformation of the bottom during heat sterilization, and impact resistance. .

本発明のバイオ医薬品用容器には、無機物または無機酸化物の蒸着膜や、アモルファスカーボン膜をコーティングしてもよい。
無機物または無機酸化物としては、アルミニウムやアルミナ、酸化珪素等が挙げられる。無機物または無機酸化物の蒸着膜は、本発明のバイオ医薬品用容器から、アセトアルデヒドやホルムアルデヒド等の溶出物を遮蔽できる。蒸着膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が挙げられる。蒸着膜の厚みは、ガスバリア性、遮光性および耐屈曲性等の観点から、好ましくは5〜500nm、より好ましくは5〜200nmである。
アモルファスカーボン膜はダイヤモンド状炭素膜で、iカーボン膜または水素化アモルファスカーボン膜とも呼ばれる硬質炭素膜である。膜の形成法としては、排気により中空成形体の内部を真空にし、そこへ炭素源ガスを供給し、プラズマ発生用エネルギーを供給することにより、その炭素源ガスをプラズマ化させる方法が例示され、これにより、バイオ医薬品用容器の内側面にアモルファスカーボン膜を形成させることができる。アモルファスカーボン膜は酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることができるだけでなく、臭いを有する各種の低分子有機化合物の収着を抑制することができる。アモルファスカーボン膜の厚みは、低分子有機化合物の収着抑制効果、ガスバリア性の向上効果、プラスチックとの接着性、耐久性および透明性等の観点から、50〜5000nmが好ましい。
The biopharmaceutical container of the present invention may be coated with an inorganic or inorganic oxide vapor-deposited film or an amorphous carbon film.
Examples of the inorganic substance or inorganic oxide include aluminum, alumina, silicon oxide, and the like. The vapor deposition film of an inorganic substance or an inorganic oxide can shield eluents such as acetaldehyde and formaldehyde from the biopharmaceutical container of the present invention. The formation method of a vapor deposition film is not specifically limited, For example, physical vapor deposition methods, such as a vacuum evaporation method, sputtering method, and an ion plating method, Chemical vapor deposition methods, such as PECVD, etc. are mentioned. The thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
The amorphous carbon film is a diamond-like carbon film, which is a hard carbon film also called i-carbon film or hydrogenated amorphous carbon film. Examples of the method for forming the film include a method in which the inside of the hollow molded body is evacuated by evacuation, a carbon source gas is supplied thereto, and plasma generating energy is supplied by supplying plasma generating energy, Thereby, an amorphous carbon film can be formed on the inner surface of the biopharmaceutical container. The amorphous carbon film not only can remarkably reduce the permeability of low-molecular inorganic gases such as oxygen and carbon dioxide, but can also suppress the sorption of various low-molecular organic compounds having an odor. The thickness of the amorphous carbon film is preferably 50 to 5000 nm from the viewpoint of the effect of suppressing the sorption of the low-molecular organic compound, the effect of improving the gas barrier property, the adhesion to plastic, the durability and the transparency.

<バイオ医薬品用容器の具体例>
本発明のバイオ医薬品用容器の種類については、特に定めるものではなく、バイアル、シリンジ、アンプル等公知のものとすることができる。本発明におけるバイオ医薬品用容器は、バイアルであることが好ましい。
<Specific examples of biopharmaceutical containers>
The type of the biopharmaceutical container of the present invention is not particularly defined, and may be a known one such as a vial, a syringe, an ampoule or the like. The biopharmaceutical container in the present invention is preferably a vial.

次に、バイオ医薬品用容器の構造について、バイアルを例にとって、図1に基づき説明する。本発明におけるバイオ医薬品用容器が図1に示されるものに限定されるものではないことは言うまでもない。
図1は、本発明の容器の一例としての、バイアルの構造を示す概略図であって、1はバイアルを、2はパッキンを、3はキャップを、4は医薬品を示している。本発明では、バイアル1に、上述の層構成の容器を用いることにより、医薬品を保存して一定期間保存した後でも、白化しにくくすることができ、保存する医薬品の薬効を高く維持することができる。
本発明のバイアル1の高さ(H)は、10〜80mmであることが好ましく、20〜60mmであることがより好ましい。本発明におけるバイアルの長さ(H)は、例えば、図1で示すように、底部から開口部までの高さをいう。
本発明のバイアル1の本体(医薬品が保存される部分)は、円筒状であることが好ましい。本発明のバイアル1の本体が円筒状である場合の外径(D)は、2〜40mmであることが好ましく、5〜30mmであることがより好ましい。本発明におけるバイアルの外径(D)は、例えば、ボディが円筒状である場合、円筒の外径をいう。
本発明のバイオ医薬品用容器の医薬品以外の部分には、窒素が充填されていることが好ましい。
パッキン2は、バイアルを封止できるものであれば、特に定めるものではない。材料としては、ゴムなどが挙げられる。
キャップ3は、パッキンを保持するものであり、通常、金属から形成される。また、バルブシール構造を採用することにより、パッキンを用いない構造とすることもできる。
また、本発明のバイオ医薬品用容器は、バイアルの開口部にねじ口を有する構造を設け、対応するキャップを用いてもよい。
Next, the structure of the biopharmaceutical container will be described with reference to FIG. 1, taking a vial as an example. It goes without saying that the biopharmaceutical container in the present invention is not limited to that shown in FIG.
FIG. 1 is a schematic view showing the structure of a vial as an example of the container of the present invention, wherein 1 is a vial, 2 is a packing, 3 is a cap, and 4 is a pharmaceutical product. In the present invention, by using the container having the above-described layer configuration for the vial 1, it is possible to prevent whitening even after the medicine is stored and stored for a certain period of time, and the medicinal effect of the stored medicine can be maintained high. it can.
The height (H) of the vial 1 of the present invention is preferably 10 to 80 mm, and more preferably 20 to 60 mm. The length (H) of the vial in the present invention refers to the height from the bottom to the opening as shown in FIG.
It is preferable that the main body of the vial 1 of the present invention (portion where the pharmaceutical product is stored) is cylindrical. When the main body of the vial 1 of the present invention is cylindrical, the outer diameter (D) is preferably 2 to 40 mm, and more preferably 5 to 30 mm. The outer diameter (D) of the vial in the present invention refers to the outer diameter of a cylinder when the body is cylindrical, for example.
The portion of the biopharmaceutical container of the present invention other than the pharmaceutical is preferably filled with nitrogen.
The packing 2 is not particularly defined as long as it can seal the vial. Examples of the material include rubber.
The cap 3 holds the packing and is usually formed from metal. Further, by adopting a valve seal structure, it is possible to adopt a structure that does not use packing.
In addition, the biopharmaceutical container of the present invention may be provided with a structure having a screw opening at the opening of the vial, and a corresponding cap may be used.

本発明のバイオ医薬品用容器は、殺菌処理を行うことが好ましい。殺菌処理は、高エネルギー放射線(例えば、ガンマ線と電子線)による殺菌処理や、エチレンオキサイドガス(EOG)を用いた殺菌処理が好ましい。また、本発明のバイオ医薬品用容器は、加熱殺菌処理をすることも好ましい。
加熱殺菌処理温度としては、100℃以上であることが好ましく、110℃以上がより好ましい。前記加熱殺菌処理温度の上限は、例えば、150℃以下であってもよい。また、加熱殺菌処理としては、10分〜1時間が好ましい。
The biopharmaceutical container of the present invention is preferably sterilized. The sterilization treatment is preferably a sterilization treatment using high energy radiation (for example, gamma rays and electron beams) or a sterilization treatment using ethylene oxide gas (EOG). In addition, the biopharmaceutical container of the present invention is preferably subjected to a heat sterilization treatment.
The heat sterilization temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher. The upper limit of the heat sterilization temperature may be, for example, 150 ° C. or less. The heat sterilization treatment is preferably 10 minutes to 1 hour.

<バイオ医薬品>
本発明におけるバイオ医薬品は、タンパク質由来の薬効成分を含む限り特に定めるものではなく、当業者に公知のバイオ医薬品を広く用いることができる。具体的には、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、バイオ医薬品であることが好ましい。
バイオ医薬品の具体例としては、アドレナリン拮抗薬、鎮痛薬、麻酔薬、アンジオテンシン拮抗薬、抗炎症薬、抗不安薬、抗不整脈薬、抗コリン薬、抗凝固薬、抗てんかん薬、止瀉薬、抗ヒスタミン薬、抗新生物薬および代謝拮抗薬、抗新生物薬および代謝拮抗薬、抗塑性薬、抗潰瘍薬、ビスホスホネート、気管支拡張薬、強心薬、心臓血管薬、中枢作用α2刺激薬、造影剤、変換酵素阻害薬、外皮用薬、利尿薬、勃起不全用薬物、乱用薬物、エンドセリン拮抗薬、ホルモン薬およびサイトカイン、血糖降下薬、尿酸排泄促進薬および痛風に用いられる薬物、免疫抑制薬、脂質降下薬、種々の薬品、精神治療薬、レニン阻害薬、セロトニン拮抗薬、ステロイド、交感神経興奮薬、甲状腺薬および抗甲状腺薬、および血管拡張薬、バソペプチダーゼ阻害薬、インスリン、血液因子、血栓溶解薬、ホルモン、造血成長因子、インターフェロン、インターロイキン系生成物、ワクチン、モノクローナル抗体、腫瘍壊死因子、治療用酵素、抗体−薬物複合体、バイオシミラー、エリスロポエチン、免疫グロブリン、体細胞、遺伝子治療、組織、および治療用組換タンパク質が含まれる。
バイオ医薬品は、液体であっても固体であっても、液体と固体の混合物であってもよい。
<Biopharmaceuticals>
The biopharmaceutical in the present invention is not particularly defined as long as it contains protein-derived medicinal ingredients, and biopharmaceuticals known to those skilled in the art can be widely used. Specifically, it is preferably a biopharmaceutical selected from the group consisting of antibodies, hormones, enzymes, and complexes containing these.
Specific examples of biopharmaceuticals include adrenergic antagonists, analgesics, anesthetics, angiotensin antagonists, anti-inflammatory drugs, anxiolytics, antiarrhythmic drugs, anticholinergics, anticoagulants, antiepileptics, antipruritics, anti Histamine, anti-neoplastic and antimetabolite, anti-neoplastic and antimetabolite, antiplastic, anti-ulcer, bisphosphonate, bronchodilator, cardiotonic, cardiovascular, centrally acting α2 stimulant, contrast agent , Converting enzyme inhibitors, skin drugs, diuretics, drugs for erectile dysfunction, drugs for abuse, endothelin antagonists, hormones and cytokines, hypoglycemic drugs, drugs for promoting uric acid excretion and gout, immunosuppressants, lipids Descent drugs, various drugs, psychotherapeutic drugs, renin inhibitors, serotonin antagonists, steroids, sympathomimetics, thyroid and antithyroid drugs, and vasodilators, vasopeptida Inhibitor, insulin, blood factor, thrombolytic drug, hormone, hematopoietic growth factor, interferon, interleukin product, vaccine, monoclonal antibody, tumor necrosis factor, therapeutic enzyme, antibody-drug complex, biosimilar, Erythropoietin, immunoglobulins, somatic cells, gene therapy, tissues, and therapeutic recombinant proteins are included.
The biopharmaceutical may be liquid, solid, or a mixture of liquid and solid.

<バイオ医薬品の保存方法>
本発明は、また、ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器を用いて、タンパク質由来の薬効成分を含むバイオ医薬品を保存することを含む、バイオ医薬品の保存方法を開示する。
上記容器の詳細は、上述のバイオ医薬品用容器と同様である。また、バイオ医薬品の詳細も上述と同様である。
<Preservation method of biopharmaceuticals>
The present invention also includes a layer (X) mainly composed of at least one polyolefin resin and a layer (Y) mainly composed of a polyamide resin (A), wherein the polyamide resin (A) is derived from a diamine. And 70 mol% or more of the structural unit derived from dicarboxylic acid is derived from metaxylylenediamine, and 30 to 60 mol% of the structural unit derived from dicarboxylic acid is composed of Using a container derived from an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms and 70 to 40 mol% derived from isophthalic acid, storing a biopharmaceutical containing a protein-derived medicinal component A method for preserving biopharmaceuticals is disclosed.
The details of the container are the same as those of the biopharmaceutical container described above. The details of the biopharmaceutical are the same as described above.

バイオ医薬品は、容器に充填率が0体積%を超え70体積%以下となるように充填して保存することが好ましい。また、容器には、バイオ医薬品と共に窒素を充填することが好ましい。バイオ医薬品の保存温度は、バイオ医薬品の種類によって適宜定めることができるが、例えば、2〜8℃とすることができる。   The biopharmaceutical is preferably filled and stored in a container so that the filling rate is more than 0% by volume and 70% by volume or less. The container is preferably filled with nitrogen together with the biopharmaceutical. The storage temperature of the biopharmaceutical can be appropriately determined depending on the type of the biopharmaceutical, but can be set to 2 to 8 ° C., for example.

<バイオ医薬品用容器内にあるバイオ医薬品を含む物品>
本発明は、また、本発明のバイオ医薬品用容器と、前記バイオ医薬品用容器内にあるバイオ医薬品を含む物品を開示する。容器内にあるとは、容器内にバイオ医薬品が保存や封入されている状態をいう。バイオ医薬品用容器およびバイオ医薬品の詳細は上述と同様である。容器には、バイオ医薬品と共に窒素を充填することが好ましい。バイオ医薬品は、容器において、バイオ医薬品の量が0体積%を超え70体積%以下となるように封入されていることが好ましい。
<Articles containing biopharmaceuticals in containers for biopharmaceuticals>
The present invention also discloses a biopharmaceutical container of the present invention and an article containing the biopharmaceutical in the biopharmaceutical container. Being in a container means a state in which a biopharmaceutical is stored or enclosed in the container. The details of the biopharmaceutical container and the biopharmaceutical are the same as described above. The container is preferably filled with nitrogen along with the biopharmaceutical. The biopharmaceutical is preferably sealed in the container so that the amount of the biopharmaceutical is more than 0% by volume and 70% by volume or less.

<容器内にあるバイオ医薬品を含む物品の製造方法>
本発明は、また、ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器に、タンパク質由来の薬効成分を含むバイオ医薬品を封入することを含む、容器内にあるバイオ医薬品を含む物品の製造方法を開示する。
<Production method for articles containing biopharmaceuticals in containers>
The present invention also includes a layer (X) mainly composed of at least one polyolefin resin and a layer (Y) mainly composed of a polyamide resin (A), wherein the polyamide resin (A) is derived from a diamine. And 70 mol% or more of the structural unit derived from dicarboxylic acid is derived from metaxylylenediamine, and 30 to 60 mol% of the structural unit derived from dicarboxylic acid is composed of Encapsulating a biopharmaceutical containing a protein-derived medicinal ingredient in a container derived from an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms and 70 to 40 mol% derived from isophthalic acid, Disclosed is a method for manufacturing an article containing a biopharmaceutical in a container.

上記容器の詳細は、上述のバイオ医薬品用容器と同様である。また、バイオ医薬品の詳細も上述と同様である。   The details of the container are the same as those of the biopharmaceutical container described above. The details of the biopharmaceutical are the same as described above.

バイオ医薬品を容器に封入する際、バイオ医薬品の量が0体積%を超え70体積%以下となるように封入することが好ましい。また、容器には、バイオ医薬品と共に窒素を充填することが好ましい。バイオ医薬品の封入時の温度は、バイオ医薬品の種類によって適宜定めることができるが、例えば、2〜8℃とすることができる。バイオ医薬品を容器に封入する際、無菌条件下で行うことが好ましい。また、バイオ医薬品を容器に封入する前に、容器を殺菌することが好ましい。
さらに、本発明における容器内にあるバイオ医薬品を含む物品は、物品ごとケースに入れて保存してもよい。ケースとしては、紙製やプラスチック製の箱が挙げられる。また、ケースとしては、保冷ケースや恒温ケースなど、外部と異なる温度で保存するためのケースも好ましく用いられる。
When enclosing the biopharmaceutical in the container, it is preferable to enclose the biopharmaceutical so that the amount of the biopharmaceutical is more than 0% by volume and 70% by volume or less. The container is preferably filled with nitrogen together with the biopharmaceutical. The temperature at the time of encapsulating the biopharmaceutical can be appropriately determined depending on the type of the biopharmaceutical, but can be set to 2 to 8 ° C., for example. When encapsulating the biopharmaceutical in the container, it is preferably performed under aseptic conditions. In addition, it is preferable to sterilize the container before enclosing the biopharmaceutical in the container.
Furthermore, the article containing the biopharmaceutical in the container according to the present invention may be stored in the case together with the article. Cases include paper and plastic boxes. As the case, a case for storing at a temperature different from the outside, such as a cold insulation case or a constant temperature case, is also preferably used.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

(1)相対粘度
ポリアミド樹脂0.2gを精秤し、96質量%の硫酸水溶液20mLに25℃で撹拌溶解した。ポリアミド樹脂を完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mLを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96質量%の硫酸水溶液そのものの落下時間(t0)も同様に測定した。tおよびt0から次式により相対粘度を算出した。
相対粘度=t/t0
(1) Relative viscosity 0.2 g of polyamide resin was precisely weighed and dissolved in 20 mL of 96 mass% sulfuric acid aqueous solution at 25 ° C with stirring. After the polyamide resin was completely dissolved, 5 mL of the solution was quickly taken into a Cannon Fenceke viscometer, and allowed to stand in a constant temperature bath at 25 ° C. for 10 minutes, and then the drop time (t) was measured. The drop time (t0) of the 96 mass% sulfuric acid aqueous solution itself was also measured in the same manner. The relative viscosity was calculated from t and t0 according to the following formula.
Relative viscosity = t / t0

(2)加熱処理
オートクレーブ((株)トミー精工製、製品名:「SR−240」)を用いてバイオ医薬品用容器を121℃、30分間加熱処理(レトルト)処理した。なお、前記加熱処理時間には、昇温時間および冷却時間は含まれない。
(2) Heat treatment The container for biopharmaceuticals was heat-treated (retort) at 121 ° C. for 30 minutes using an autoclave (product name: “SR-240” manufactured by Tommy Seiko Co., Ltd.). The heat treatment time does not include the temperature raising time and the cooling time.

(3)バイオ医薬品用容器の酸素透過率(OTR)
上記加熱処理前のバイオ医薬品用容器について、23℃、バイオ医薬品用容器の内部の相対湿度100%、バイオ医薬品用容器の外部の相対湿度50%における酸素透過率(OTR)を、ASTM D3985に準じて、酸素透過率測定装置(MOCON社製、製品名:「OX−TRAN(登録商標) 2/61」)を使用して測定した。測定値が低いほど、酸素バリア性が良好であることを示す。
上記加熱処理後のバイオ医薬品用容器についても、酸素透過率を測定した。
(3) Oxygen permeability (OTR) of biopharmaceutical containers
For the biopharmaceutical container before the heat treatment, the oxygen transmission rate (OTR) at 23 ° C., relative humidity 100% inside the biopharmaceutical container, and relative humidity 50% outside the biopharmaceutical container is in accordance with ASTM D3985. The oxygen permeability was measured using an oxygen permeability measuring device (manufactured by MOCON, product name: “OX-TRAN (registered trademark) 2/61”). It shows that oxygen barrier property is so favorable that a measured value is low.
The oxygen permeability of the biopharmaceutical container after the heat treatment was also measured.

(4)バイオ医薬品用容器の透明性(ヘイズおよび全光線透過率)
上記加熱処理後のバイオ医薬品用容器の側面部を切り出してヘイズ(HAZE)および全光線透過率を測定した。ヘイズの測定は、JIS K7136に準じて行った。また、全光線透過率の測定は、JIS K7375に準じて行った。測定装置は、色彩・濁度測定器(日本電色工業(株)製、製品名:「COH−300A」)を使用した。測定箇所におけるバイオ医薬品用容器の側面部の厚さを測定し、厚さ300μmに換算した値として示した。
(4) Transparency of biopharmaceutical containers (haze and total light transmittance)
The side part of the biopharmaceutical container after the heat treatment was cut out to measure haze and total light transmittance. The haze was measured according to JIS K7136. Moreover, the measurement of the total light transmittance was performed according to JIS K7375. A color / turbidity measuring device (manufactured by Nippon Denshoku Industries Co., Ltd., product name: “COH-300A”) was used as a measuring device. The thickness of the side part of the biopharmaceutical container at the measurement location was measured and shown as a value converted to a thickness of 300 μm.

(5)加熱処理後のバイオ医薬品用容器の色調
上記加熱処理後のバイオ医薬品用容器の側面部を切り出して黄色度(YI値)を測定した。測定装置は、色彩・濁度測定器(日本電色工業(株)製、製品名:「COH−300A」)を使用した。
(5) Color tone of the biopharmaceutical container after the heat treatment The side part of the biopharmaceutical container after the heat treatment was cut out to measure the yellowness (YI value). A color / turbidity measuring device (manufactured by Nippon Denshoku Industries Co., Ltd., product name: “COH-300A”) was used as a measuring device.

(6)バイオ医薬品用容器の耐油性試験
上記加熱処理前のバイオ医薬品用容器に、日清MCTオイル(成分は中鎖脂肪酸トリグリセリド100%(炭素鎖8〜12の脂肪酸グリセリド))を10mL注ぎ、40℃で6ヶ月保存した。バイオ医薬品用容器の外観に変化の無いものを○、バイオ医薬品用容器よりオイルが漏れ出たものを×とした。
(6) Oil resistance test of biopharmaceutical container 10 mL of Nissin MCT oil (100% medium chain fatty acid triglyceride (fatty acid glyceride having 8 to 12 carbon chains)) is poured into the biopharmaceutical container before the heat treatment, Stored at 40 ° C. for 6 months. The case where there was no change in the appearance of the biopharmaceutical container was marked with ○, and the case where oil leaked from the biopharmaceutical container was marked with x.

(7)リン原子濃度およびカルシウム原子濃度の測定方法
ポリアミド樹脂0.2gと35質量%硝酸水溶液8mLをTFM変性PTFE(3M社製)容器に入れ、マイルストーンゼネラル社製、ETHOS Oneを用いて内部温度230℃で30分間、マイクロウエーブ分解を行った。分解液を超純水で定容し、ICP測定溶液とした。(株)島津製作所製、ICPE−9000を用いて、リン原子濃度およびカルシウム原子濃度を測定した。
(7) Measuring method of phosphorus atom concentration and calcium atom concentration Put 0.2 g of polyamide resin and 8 mL of 35 mass% nitric acid aqueous solution in a TFM-modified PTFE (manufactured by 3M) container and use ETHOS One by Milestone General Microwave decomposition was performed at a temperature of 230 ° C. for 30 minutes. The decomposition solution was made up to volume with ultrapure water to obtain an ICP measurement solution. The phosphorus atom concentration and calcium atom concentration were measured using ICPE-9000 manufactured by Shimadzu Corporation.

(8)バイオ医薬品の保存試験(抗体活性保持率)
(結合比測定方法)
等温滴定型熱量計を用い、5μMの抗原溶液(BIOLOGICAL Industries Ltd.製、FGF1−Mouse)をセル側に充填し、抗体溶液を10μLずつセルに滴下しながら、25℃における結合比を測定した。
(保存試験)
上記加熱処理前のバイオ医薬品用容器に、抗体溶液として、50μMに調整した和光純薬工業株式会社製、ANTI FGF1, Monoclonal Antibody (mAb1)を1cc(1mL)充填し、8℃、相対湿度50%の条件下で180日間保存した。溶媒にはインビロジェン製、リン酸バッファー(pH7.4)を使用した。保存試験前および180日間保存後の抗体溶液の結合比を上記の方法で測定し、保存前後での抗体活性保持率を次の式で求めた。
抗体活性保持率(%)
=(180日間保存後の抗体溶液の結合比/保存試験前の抗体溶液の結合比)×100
(8) Biopharmaceutical storage test (antibody activity retention rate)
(Coupling ratio measurement method)
Using an isothermal titration calorimeter, 5 μM of an antigen solution (manufactured by Biologic Industries Ltd., FGF1-Mouse) was filled on the cell side, and the binding ratio at 25 ° C. was measured while 10 μL of the antibody solution was dropped into the cell.
(Preservation test)
The biopharmaceutical container before the heat treatment is filled with 1 cc (1 mL) of ANTI FGF1, Monoclonal Antibody (mAb1), manufactured by Wako Pure Chemical Industries, Ltd., adjusted to 50 μM as an antibody solution, and 8 ° C. and 50% relative humidity. The sample was stored for 180 days under the following conditions. As a solvent, a phosphate buffer (pH 7.4) manufactured by Inbiogen was used. The binding ratio of the antibody solution before storage test and after storage for 180 days was measured by the above method, and the antibody activity retention before and after storage was determined by the following formula.
Antibody activity retention rate (%)
= (Binding ratio of antibody solution after storage for 180 days / Binding ratio of antibody solution before storage test) × 100

<実施例1>
以下の方法に従って表1に示すポリアミド樹脂を合成した。
撹拌機、分縮器、全縮器、温度計、滴下ロートおよび窒素導入管、ストランドダイを備えた反応容器に、精秤したアジピン酸6,000g(41.06mol)、イソフタル酸6,821g(41.06mol)、次亜リン酸カルシウム(Ca(H2PO2)2)10.04g(ポリアミド樹脂中のリン原子濃度として175質量ppm)、酢酸ナトリウム7.26gを入れ、十分に窒素置換した後、窒素を内圧0.4MPaまで充填し、さらに少量の窒素気流下で系内を撹拌しながら190℃まで加熱した。酢酸ナトリウム/次亜リン酸カルシウムのモル比は1.50とした。
これにメタキシリレンジアミン11,185g(82.12mol)を撹拌下に滴下し、生成する縮合水を系外へ除きながら系内を連続的に昇温した。メタキシリレンジアミンの滴下終了後、内温を上昇させ、265℃に達した時点で反応容器内を減圧にし、更に内温を上昇させて270℃で10分間、溶融重縮合反応を継続した。その後、系内を窒素で加圧し、得られた重合物をストランドダイから取り出して、これをペレット化し、約21kgのポリアミド樹脂(A1)ペレットを得た。ポリアミド樹脂(A1)の相対粘度は1.95であった。
<Example 1>
A polyamide resin shown in Table 1 was synthesized according to the following method.
In a reaction vessel equipped with a stirrer, a partial condenser, a full condenser, a thermometer, a dropping funnel and a nitrogen introduction tube, and a strand die, 6,000 g (41.06 mol) of adipic acid and 6,821 g of isophthalic acid were precisely weighed ( 41.06 mol), 10.04 g of calcium hypophosphite (Ca (H 2 PO 2 ) 2 ) (175 mass ppm as the phosphorus atom concentration in the polyamide resin), 7.26 g of sodium acetate, and after sufficient nitrogen substitution, Nitrogen was charged to an internal pressure of 0.4 MPa, and the system was heated to 190 ° C. with stirring in a small amount of nitrogen. The molar ratio of sodium acetate / calcium hypophosphite was 1.50.
To this, 11,185 g (82.12 mol) of metaxylylenediamine was added dropwise with stirring, and the inside of the system was continuously heated while removing the condensed water to be produced. After the addition of metaxylylenediamine was completed, the internal temperature was raised, and when the temperature reached 265 ° C., the pressure in the reaction vessel was reduced, and the internal temperature was further raised to continue the melt polycondensation reaction at 270 ° C. for 10 minutes. Thereafter, the inside of the system was pressurized with nitrogen, and the obtained polymer was taken out from the strand die and pelletized to obtain about 21 kg of polyamide resin (A1) pellets. The relative viscosity of the polyamide resin (A1) was 1.95.

次に、下記の条件により、層(X)を構成する材料を射出シリンダーから射出し、また、層(Y)を構成する材料を別の射出シリンダーから、層(X)を構成する樹脂と同時に射出し、さらに、層(X)を構成する樹脂を必要量射出してキャビティーを満たすことにより、X/Y/Xの3層構成の多層プリフォーム(5.1g)を得た。
なお、層(X)を構成する樹脂としては、シクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)690R」)を使用した。層(Y)を構成する樹脂としては、上記ポリアミド樹脂(A1)を使用した。
得られたプリフォームを所定の温度まで冷却後、二次加工として、ブロー金型へ移行し、口部から空気を吹込み、プリフォームを膨らませて金型に密着させ、冷却固化させることでブロー成形を行い、バイオ医薬品用容器を製造した。
Next, under the following conditions, the material constituting the layer (X) is injected from the injection cylinder, and the material constituting the layer (Y) is injected from another injection cylinder simultaneously with the resin constituting the layer (X). Further, a required amount of resin constituting the layer (X) was injected to fill the cavity, thereby obtaining a multilayer preform (5.1 g) having a three-layer structure of X / Y / X.
In addition, as a resin constituting the layer (X), a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: “ZEONEX (registered trademark) 690R”) was used. As the resin constituting the layer (Y), the polyamide resin (A1) was used.
After the obtained preform is cooled to a predetermined temperature, it is transferred to a blow mold as secondary processing, air is blown from the mouth, the preform is inflated and brought into close contact with the mold, and blown by cooling and solidifying. Molding was performed to produce a biopharmaceutical container.

<<バイオ医薬品用容器の形状>>
全長45mm、外径24mmφ、肉厚(バイオ医薬品用容器の総厚み、外層(X)、内層(X)および中間層(Y)の合計厚み)1.0mm、外層(X)厚み600μm、内層(X)厚み200μm、中間層(Y)厚み200μmとした。なお、バイオ医薬品用容器の製造には、射出ブロー一体型成形機(日精エー・エス・ビー機械社製、型式:「ASB12N/10T」、4個取り)を使用して、射出ブロー成形した。
(バイオ医薬品用容器の成形条件)
層(X)用の射出シリンダー温度:300℃
層(Y)用の射出シリンダー温度:280℃
射出金型内樹脂流路温度 :300℃
ブロー温度 :150℃
ブロー金型冷却水温度 :40℃
<< Biopharmaceutical container shape >>
Total length 45mm, outer diameter 24mmφ, wall thickness (total thickness of biopharmaceutical container, outer layer (X), inner layer (X) and intermediate layer (Y) total thickness) 1.0mm, outer layer (X) thickness 600μm, inner layer ( X) The thickness was 200 μm, and the intermediate layer (Y) thickness was 200 μm. In the production of the biopharmaceutical container, injection blow molding was performed using an injection blow integrated molding machine (manufactured by Nissei ASB Machine Co., Ltd., model: “ASB12N / 10T”, 4 pieces).
(Molding conditions for biopharmaceutical containers)
Injection cylinder temperature for layer (X): 300 ° C
Injection cylinder temperature for layer (Y): 280 ° C
Injection resin flow path temperature: 300 ° C
Blow temperature: 150 ° C
Blow mold cooling water temperature: 40 ° C

<実施例2>
実施例1において、アジピン酸とイソフタル酸のモル比率が40:60となるように調整し、他は同様に行って、ポリアミド樹脂ペレット(A2)を得た。ポリアミド樹脂(A2)の相対粘度は1.94であった。
<Example 2>
In Example 1, it adjusted so that the molar ratio of adipic acid and isophthalic acid might be set to 40:60, and others performed similarly and obtained the polyamide resin pellet (A2). The relative viscosity of the polyamide resin (A2) was 1.94.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A2)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A2) was used instead of the polyamide resin (A1).

<実施例3>
実施例1において、アジピン酸とイソフタル酸のモル比率が60:40となるように調整し、他は同様に行って、ポリアミド樹脂ペレット(A3)を得た。ポリアミド樹脂(A3)の相対粘度は1.94であった。
<Example 3>
In Example 1, it adjusted so that the molar ratio of adipic acid and isophthalic acid might be set to 60:40, and others performed similarly and obtained the polyamide resin pellet (A3). The relative viscosity of the polyamide resin (A3) was 1.94.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A3)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A3) was used instead of the polyamide resin (A1).

<実施例4>
実施例1において、次亜リン酸塩として、次亜リン酸ナトリウムを用い、他は同様に行ってポリアミド樹脂(A4)ペレットを得た。ポリアミド樹脂(A4)の相対粘度は1.95であった。
<Example 4>
In Example 1, sodium hypophosphite was used as the hypophosphite, and others were performed in the same manner to obtain polyamide resin (A4) pellets. The relative viscosity of the polyamide resin (A4) was 1.95.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A4)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A4) was used instead of the polyamide resin (A1).

<実施例5>
実施例1において、次亜リン酸カルシウムの添加量を、表1に示す通りとなるように変更し、他は同様に行ってポリアミド樹脂(A5)ペレットを得た。ポリアミド樹脂(A5)の相対粘度は1.93であった。
<Example 5>
In Example 1, the amount of calcium hypophosphite added was changed as shown in Table 1, and the others were performed in the same manner to obtain polyamide resin (A5) pellets. The relative viscosity of the polyamide resin (A5) was 1.93.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A5)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A5) was used instead of the polyamide resin (A1).

<実施例6>
実施例1において、次亜リン酸カルシウムの添加量を、表1に示す通りとなるように変更し、他は同様に行ってポリアミド樹脂(A6)ペレットを得た。ポリアミド樹脂(A6)の相対粘度は1.93であった。
<Example 6>
In Example 1, the amount of calcium hypophosphite added was changed as shown in Table 1, and the others were carried out in the same manner to obtain polyamide resin (A6) pellets. The relative viscosity of the polyamide resin (A6) was 1.93.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A6)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A6) was used instead of the polyamide resin (A1).

<実施例7〜9>
層(X)を構成する樹脂として、シクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)690R」)に変えてシクロオレフィンコポリマー(TOPAS ADVANCED POLYMERS GmbH社製、製品名:「TOPAS(登録商標)6013S−04」)を用いたこと以外は、実施例1〜3と、それぞれ、同様にしてバイオ医薬品用容器を製造した。
<Examples 7 to 9>
The resin constituting the layer (X) was changed to a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: “ZEONEX (registered trademark) 690R”) and a cycloolefin copolymer (TOPAS ADVANCED POLYMERS GmbH, product name: A biopharmaceutical container was produced in the same manner as in Examples 1 to 3, except that "TOPAS (registered trademark) 6013S-04") was used.

<実施例10〜12>
層(X)を構成する樹脂として、シクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)690R」)に変えてポリプロピレン系ポリマー(BOREALIS社製、製品名:「Bormed RB845MO」)を用いたこと以外は、実施例1〜3と、それぞれ、同様にしてバイオ医薬品用容器を製造した。
<Examples 10 to 12>
The resin constituting the layer (X) was changed to a cycloolefin polymer (manufactured by ZEON Corporation, product name: “ZEONEX (registered trademark) 690R”), and a polypropylene polymer (manufactured by BOREALIS, product name: “Bormed RB845MO”). “)” Was used in the same manner as in Examples 1 to 3, except that a biopharmaceutical container was produced.

<比較例1>
実施例1において、アジピン酸とイソフタル酸のモル比率が94:6となるように調
整し、他は同様に行って、比較例1のポリアミド樹脂ペレット(A7)を得た。ポリアミド樹脂(A8)の相対粘度は2.65であった。
<Comparative Example 1>
In Example 1, it adjusted so that the molar ratio of adipic acid and isophthalic acid might be set to 94: 6, and others were performed similarly and the polyamide resin pellet (A7) of the comparative example 1 was obtained. The relative viscosity of the polyamide resin (A8) was 2.65.

ポリアミド樹脂(A1)に代えてポリアミド樹脂(A7)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。   A biopharmaceutical container was produced in the same manner as in Example 1 except that the polyamide resin (A7) was used instead of the polyamide resin (A1).

<比較例2>
ポリアミド樹脂(A1)に代えてメタキシリレンジアミン単位とアジピン酸単位とからなるN−MXD6(三菱ガス化学(株)製、製品名:「MXナイロンS6007」、相対粘度=2.65)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。
<Comparative example 2>
Instead of polyamide resin (A1), N-MXD6 (Mitsubishi Gas Chemical Co., Ltd., product name: “MX nylon S6007”, relative viscosity = 2.65) consisting of a metaxylylenediamine unit and an adipic acid unit is used. A biopharmaceutical container was produced in the same manner as in Example 1 except that.

<比較例3>
ポリアミド樹脂(A1)に代えてポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ディ・エス・エム(DSM)ジャパンエンジニアリングプラスチックス(株)製、製品名:「ノバミッド(登録商標)X21」)を用いたこと以外は、実施例1と同様にしてバイオ医薬品用容器を製造した。
<Comparative Example 3>
Polyhexamethylene isophthalamide / polyhexamethylene terephthalamide copolymer (manufactured by DSM Japan Engineering Plastics Co., Ltd., product name: “Novamid (registered trademark) X21”) instead of polyamide resin (A1) A biopharmaceutical container was produced in the same manner as in Example 1 except that was used.

<比較例4>
ポリアミド樹脂(A1)に代えてエチレン−ビニルアルコールコポリマー((株)クラレ製、製品名:「エバール(登録商標)F171B」)を用いたこと以外は、実施例11と同様にしてバイオ医薬品用容器を製造した。
<Comparative example 4>
A biopharmaceutical container in the same manner as in Example 11 except that an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., product name: “EVAL (registered trademark) F171B”) was used instead of the polyamide resin (A1). Manufactured.

<比較例5>
実施例1において、層(X)のみからなる単層のバイオ医薬品用容器を製造した。層(X)の厚さは、1000μmとした。
<Comparative Example 5>
In Example 1, a single-layer biopharmaceutical container consisting only of the layer (X) was produced. The thickness of the layer (X) was 1000 μm.

実施例1〜12および比較例1〜5で得られたバイオ医薬品用容器について、上記方法により、酸素透過率(OTR)を測定した。また、加熱処理後のヘイズ、全光線透過率、色調(YI)および酸素透過率(OTR)を測定した。さらに、得られたバイオ医薬品用容器について耐油性試験を実施した。加えて、抗体活性保持率を測定した。
結果を表1〜表3に示す。
About the biopharmaceutical container obtained in Examples 1-12 and Comparative Examples 1-5, the oxygen transmission rate (OTR) was measured by the said method. Further, haze, total light transmittance, color tone (YI), and oxygen transmittance (OTR) after the heat treatment were measured. Furthermore, the oil resistance test was implemented about the obtained container for biopharmaceuticals. In addition, antibody activity retention was measured.
The results are shown in Tables 1 to 3.

Figure 2018126313
Figure 2018126313

Figure 2018126313
Figure 2018126313

Figure 2018126313
Figure 2018126313

上記表1〜表3において、略語等は以下の通りである。
※1:ジアミン単位中の量(mol%)
※2:ジカルボン単位中の量(mol%)
COP:シクロオレフィンポリマー
COC:シクロオレフィンコポリマー
PP:ポリプロピレン系ポリマー
N−6I/6T:ポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミドコポリマー
EVOH:エチレン−ビニルアルコールコポリマー
In Tables 1 to 3, abbreviations and the like are as follows.
* 1: Amount in diamine unit (mol%)
* 2: Amount in dicarboxylic units (mol%)
COP: cycloolefin polymer COC: cycloolefin copolymer PP: polypropylene polymer N-6I / 6T: polyhexamethylene isophthalamide / polyhexamethylene terephthalamide copolymer EVOH: ethylene-vinyl alcohol copolymer

比較例1および2のバイオ医薬品用容器は、加熱処理後のヘイズが高く、かつ、全光線透過率が低く、加熱処理後の透明性に劣る結果となった。
また、ポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミドコポリマーを使用した比較例3では、バイオ医薬品を保存した場合に、保存後の薬効の低下が認められた。また、加熱処理前後共に、酸素バリア性が不十分な結果であった。
さらに、エチレン−ビニルアルコールコポリマーを使用した比較例4では、バイオ医薬品を保存した場合に、保存後の薬効の低下が認められた。また、加熱処理後の酸素バリア性が不十分な結果であった。
さらに、シクロオレフィンポリマーのみを使用した比較例5では、バイオ医薬品を保存した場合に保存後の薬効の低下が認められた。また、加熱処理前後共に、酸素バリア性が不十分な結果となり、
The biopharmaceutical containers of Comparative Examples 1 and 2 had high haze after heat treatment and low total light transmittance, resulting in poor transparency after heat treatment.
Moreover, in the comparative example 3 using a polyhexamethylene isophthalamide / polyhexamethylene terephthalamide copolymer, when a biopharmaceutical was preserve | saved, the fall of the medicinal effect after storage was recognized. Also, the oxygen barrier property was insufficient before and after the heat treatment.
Furthermore, in Comparative Example 4 using an ethylene-vinyl alcohol copolymer, when the biopharmaceutical was stored, a decrease in medicinal effect after storage was observed. In addition, the oxygen barrier property after the heat treatment was insufficient.
Furthermore, in Comparative Example 5 in which only the cycloolefin polymer was used, when the biopharmaceutical was stored, a decrease in medicinal effect after storage was observed. In addition, both before and after heat treatment results in insufficient oxygen barrier properties,

これらに対し、実施例1〜12のバイオ医薬品用容器を用いてバイオ医薬品を保存した場合、保存後の薬効の低下が抑えられていることがわかった。
さらに、実施例1〜12のバイオ医薬品用容器は、加熱処理後においても、透明性に優れるものであることがわかった。また、実施例では、酸素バリア性についても優れていた。
特に、ポリアミド樹脂が、リン原子を20〜200質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3〜0.7となる割合で含む場合、加熱処理後の透明性がより高く、加熱処理後のYI値のより低いバイオ医薬品用容器が得られた。
また、実施例10〜12は、他の実施例に比べ、加熱処理後の透明性がやや劣る結果となったが、十分に内容物が視認できるレベルであり、さらに、加熱処理後においても、酸素バリア性に優れるものであった。加えて、耐油性に優れる容器であることがわかった。
また、実施例1〜12で用いたポリアミド樹脂(A1)〜(A6)は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。
On the other hand, when biopharmaceuticals were preserve | saved using the container for biopharmaceuticals of Examples 1-12, it turned out that the fall of the medicinal effect after storage is suppressed.
Furthermore, it turned out that the container for biopharmaceuticals of Examples 1-12 is excellent in transparency also after heat processing. In the examples, oxygen barrier properties were also excellent.
In particular, when the polyamide resin contains phosphorus atoms in a proportion of 20 to 200 ppm by mass and calcium atoms in a proportion of a molar ratio of phosphorus atoms: calcium atoms of 1: 0.3 to 0.7, after heat treatment Was obtained, and a biopharmaceutical container having a lower YI value after the heat treatment was obtained.
In addition, Examples 10 to 12 resulted in slightly inferior transparency after heat treatment as compared to other examples, but the content is sufficiently visible, and even after heat treatment, It was excellent in oxygen barrier properties. In addition, the container was found to be excellent in oil resistance.
In addition, the polyamide resins (A1) to (A6) used in Examples 1 to 12 were found to be amorphous with a crystal melting enthalpy ΔHm of approximately 0 J / g during the temperature rising process.

本発明のバイオ医薬品用容器は、タンパク質由来の薬効成分を保存するためのバイオ医薬品用容器として好適な透明性を有する。さらに、バイオ医薬品を保存後の薬効の低下が抑えられている。加えてに、酸素バリア性にも優れる。従って、バイオ医薬品を長期保存することができ、しかも加熱殺菌処理後においても内容物を視認することができ、ガラス容器の代替品として顧客の利便性向上を図ることができる。   The biopharmaceutical container of the present invention has transparency suitable as a biopharmaceutical container for preserving protein-derived medicinal ingredients. In addition, a decrease in drug efficacy after storage of biopharmaceuticals is suppressed. In addition, it has excellent oxygen barrier properties. Therefore, the biopharmaceutical can be stored for a long period of time, and the contents can be visually recognized even after the heat sterilization treatment, and the convenience of the customer can be improved as a substitute for the glass container.

1 バイアル
2 パッキン
3 キャップ
4 医薬品
1 Vial 2 Packing 3 Cap 4 Pharmaceutical

Claims (18)

ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、
前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する、タンパク質由来の薬効成分を保存するためのバイオ医薬品用容器。
It has a layer (X) mainly composed of at least one kind of polyolefin resin and a layer (Y) mainly composed of polyamide resin (A),
The polyamide resin (A) is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 70 mol% or more of the structural unit derived from the diamine is derived from metaxylylenediamine, and derived from the dicarboxylic acid. Preserving protein-derived medicinal ingredients, in which 30 to 60 mol% of the structural unit is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms and 70 to 40 mol% is derived from isophthalic acid. For biopharmaceuticals.
前記ポリアミド樹脂(A)が、カルシウム原子を含む、請求項1に記載のバイオ医薬品用容器。 The container for biopharmaceuticals according to claim 1, wherein the polyamide resin (A) contains a calcium atom. 前記ポリアミド樹脂(A)に含まれるカルシウム原子が、次亜リン酸カルシウムに由来する、請求項2に記載のバイオ医薬品用容器。 The container for biopharmaceuticals according to claim 2, wherein the calcium atom contained in the polyamide resin (A) is derived from calcium hypophosphite. 前記ポリアミド樹脂(A)が、リン原子を3〜300質量ppmの割合で含む、請求項1〜3のいずれか1項に記載のバイオ医薬品用容器。 The container for biopharmaceuticals of any one of Claims 1-3 in which the said polyamide resin (A) contains a phosphorus atom in the ratio of 3-300 mass ppm. 前記ポリアミド樹脂(A)が、リン原子を20〜200質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3〜0.7となる割合で含む、請求項1または3に記載のバイオ医薬品用容器。 The said polyamide resin (A) contains a phosphorus atom in the ratio of 20-200 mass ppm, and contains a calcium atom in the ratio from which the molar ratio of a phosphorus atom: calcium atom will be 1: 0.3-0.7. The biopharmaceutical container according to 1 or 3. 前記ポリオレフィン樹脂が、シクロオレフィン系ポリマーおよびポリプロピレン系ポリマーからなる群より選択される少なくとも1種である、請求項1〜5のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container according to any one of claims 1 to 5, wherein the polyolefin resin is at least one selected from the group consisting of a cycloolefin polymer and a polypropylene polymer. 前記ジカルボン酸由来の構成単位の30〜60モル%が、アジピン酸由来の構成単位である、請求項1〜6のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container according to any one of claims 1 to 6, wherein 30 to 60 mol% of the structural unit derived from dicarboxylic acid is a structural unit derived from adipic acid. 前記バイオ医薬品用容器が少なくとも3層からなり、内層および外層が、前記層(X)であり、中間層の少なくとも1層が、前記層(Y)である、請求項1〜7のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container is composed of at least three layers, the inner layer and the outer layer are the layer (X), and at least one of the intermediate layers is the layer (Y). The biopharmaceutical container according to item. 前記層(Y)の厚みが、バイオ医薬品用容器の総厚みに対して2〜40%である、請求項1〜8のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container according to any one of claims 1 to 8, wherein a thickness of the layer (Y) is 2 to 40% with respect to a total thickness of the biopharmaceutical container. 前記バイオ医薬品用容器が、バイアルである、請求項1〜9のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container according to any one of claims 1 to 9, wherein the biopharmaceutical container is a vial. 前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、請求項1〜10のいずれか1項に記載のバイオ医薬品用容器。 The biopharmaceutical container according to any one of claims 1 to 10, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these. 請求項1〜11のいずれか1項に記載のバイオ医薬品用容器と、前記バイオ医薬品用容器内にあるバイオ医薬品を含む物品。 An article comprising the biopharmaceutical container according to any one of claims 1 to 11 and the biopharmaceutical in the biopharmaceutical container. ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、
前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器を用いて、タンパク質由来の薬効成分を含むバイオ医薬品を保存することを含む、バイオ医薬品の保存方法。
It has a layer (X) mainly composed of at least one kind of polyolefin resin and a layer (Y) mainly composed of polyamide resin (A),
The polyamide resin (A) is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 70 mol% or more of the structural unit derived from the diamine is derived from metaxylylenediamine, and derived from the dicarboxylic acid. 30 to 60 mol% of the structural unit is derived from an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid, using a protein derived from protein A method for preserving a biopharmaceutical comprising storing the biopharmaceutical containing the ingredient.
前記容器が請求項2〜10のいずれか1項に記載のバイオ医薬品用容器である、請求項13に記載のバイオ医薬品の保存方法。 The biopharmaceutical storage method according to claim 13, wherein the container is the biopharmaceutical container according to any one of claims 2 to 10. 前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、請求項13または14に記載のバイオ医薬品の保存方法。 The method for preserving a biopharmaceutical according to claim 13 or 14, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these. ポリオレフィン樹脂の少なくとも1種を主成分とする層(X)およびポリアミド樹脂(A)を主成分とする層(Y)を有し、
前記ポリアミド樹脂(A)が、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30〜60モル%が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来し、70〜40モル%がイソフタル酸に由来する容器に、タンパク質由来の薬効成分を含むバイオ医薬品を封入することを含む、容器内にあるバイオ医薬品を含む物品の製造方法。
It has a layer (X) mainly composed of at least one kind of polyolefin resin and a layer (Y) mainly composed of polyamide resin (A),
The polyamide resin (A) is composed of a structural unit derived from a diamine and a structural unit derived from a dicarboxylic acid, 70 mol% or more of the structural unit derived from the diamine is derived from metaxylylenediamine, and derived from the dicarboxylic acid. 30 to 60 mol% of the structural unit is derived from α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 40 mol% is derived from isophthalic acid, and a protein-derived medicinal component is added to the container. A method for producing an article containing a biopharmaceutical in a container, comprising enclosing the biopharmaceutical containing.
前記容器が請求項2〜10のいずれか1項に記載のバイオ医薬品用容器である、請求項16に記載の製造方法。 The manufacturing method according to claim 16, wherein the container is the biopharmaceutical container according to any one of claims 2 to 10. 前記タンパク質由来の薬効成分が、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、請求項16または17に記載の製造方法。 The production method according to claim 16 or 17, wherein the protein-derived medicinal component is selected from the group consisting of an antibody, a hormone, an enzyme, and a complex containing these.
JP2017021351A 2017-02-08 2017-02-08 Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container Pending JP2018126313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021351A JP2018126313A (en) 2017-02-08 2017-02-08 Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021351A JP2018126313A (en) 2017-02-08 2017-02-08 Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container

Publications (1)

Publication Number Publication Date
JP2018126313A true JP2018126313A (en) 2018-08-16

Family

ID=63171602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021351A Pending JP2018126313A (en) 2017-02-08 2017-02-08 Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container

Country Status (1)

Country Link
JP (1) JP2018126313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514151A (en) * 2018-10-08 2022-02-10 メルツ ファルマ ゲーエムベーハー ウント コンパニー カーゲーアーアー Neurotoxin prefilled vial

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514151A (en) * 2018-10-08 2022-02-10 メルツ ファルマ ゲーエムベーハー ウント コンパニー カーゲーアーアー Neurotoxin prefilled vial

Similar Documents

Publication Publication Date Title
TWI715725B (en) Multilayer containers, syringes, prefilled syringes, multilayer bodies, methods for manufacturing multilayer containers, articles for packaging biopharmaceuticals, methods for preserving biomedicine, and methods for manufacturing articles including biomedicine in the container
TWI719064B (en) Medical multilayer container and manufacturing method of medical multilayer container
US9840359B2 (en) Oxygen-absorbing resin composition, and multilayer body, container, injection-molded body, and medical container using same
JP6326946B2 (en) Multi-layer container
EP1977878B1 (en) Method for filling into multilayer bottle and multilayer bottle
JP2014057632A (en) Medical multilayer container
JP2018126313A (en) Biopharmaceutical container, article containing biopharmaceutical, method for storing biopharmaceutical and method for producing article containing biopharmaceutical in container
JP2018126315A (en) Multilayer container and multilayer body
JP5256615B2 (en) Multi-layer bottle manufacturing method
JP2014068767A (en) Medical multilayer container
JP2018126314A (en) Multilayer syringe barrel for prefilled syringes, syringe and prefilled syringe
JP2018126475A (en) Multilayer syringe barrel for prefilled syringes, syringe and prefilled syringe
WO2023145276A1 (en) Multilayer container and method for producing multilayer container
JP2018127258A (en) Multilayer container and multilayer body
WO2023145275A1 (en) Multilayer container and method for manufacturing multilayer container
TWI743309B (en) Method for producing sterilized oxygen-absorbent multilayer body
TW202413481A (en) Resin composition
WO2023233984A1 (en) Resin composition
JP2023177910A (en) Preservation method of biopharmaceuticals