WO2023233984A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2023233984A1
WO2023233984A1 PCT/JP2023/018075 JP2023018075W WO2023233984A1 WO 2023233984 A1 WO2023233984 A1 WO 2023233984A1 JP 2023018075 W JP2023018075 W JP 2023018075W WO 2023233984 A1 WO2023233984 A1 WO 2023233984A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
container
polyester compound
resin composition
oxygen
Prior art date
Application number
PCT/JP2023/018075
Other languages
French (fr)
Japanese (ja)
Inventor
俊 小川
康明 吉村
弘毅 長谷川
翔太 荒川
喜子 佐久間
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022090838A external-priority patent/JP2023177883A/en
Priority claimed from JP2022090852A external-priority patent/JP2023177894A/en
Priority claimed from JP2022090836A external-priority patent/JP2023177881A/en
Priority claimed from JP2022090856A external-priority patent/JP2023177896A/en
Priority claimed from JP2022090833A external-priority patent/JP2023177878A/en
Priority claimed from JP2022090857A external-priority patent/JP2023177897A/en
Priority claimed from JP2022090859A external-priority patent/JP2023177899A/en
Priority claimed from JP2022090877A external-priority patent/JP2023177910A/en
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023233984A1 publication Critical patent/WO2023233984A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • a first embodiment of the present invention relates to a resin composition, and particularly to a resin composition containing at least a polyester compound having a predetermined structure and a transition metal catalyst.
  • a second embodiment of the present invention relates to a multilayer injection molded article and a container containing the multilayer injection molded article.
  • a third embodiment of the invention relates to a multilayer body and a container containing the multilayer body.
  • a fourth embodiment of the present invention relates to a multilayer medical container.
  • a fifth embodiment of the present invention relates to a prefill syringe.
  • the sixth embodiment of the present invention relates to a method for preserving a biopharmaceutical in which the biopharmaceutical is stored in a multilayer container having oxygen barrier performance and oxygen absorption performance.
  • a seventh embodiment of the present invention relates to a method for preserving an adrenaline-containing drug solution.
  • the eighth embodiment of the present invention relates to a modified polyester, and particularly to a modified polyester obtained by subjecting a polyester compound having a predetermined structure to radiation irradiation treatment.
  • Oxygen absorbers are used.
  • an oxygen absorbent containing iron powder as the main reaction agent is generally used from the viewpoint of oxygen absorption capacity, ease of handling, and safety.
  • this iron-based oxygen absorbent is sensitive to metal detectors, it has been difficult to use metal detectors for foreign object inspection.
  • a package enclosing an iron-based oxygen absorber cannot be heated in a microwave oven due to the risk of ignition.
  • moisture is essential for the oxidation reaction of iron powder, the oxygen absorption effect could only be achieved if the object to be preserved had a high moisture content.
  • an oxygen absorbent that uses an organic substance as the main reaction agent is desired.
  • an oxygen absorbent using an organic substance as a main reaction agent an oxygen absorbent using ascorbic acid as a main agent is known (see Patent Document 2).
  • oxygen-absorbing resin compositions that are composed of a resin and a transition metal catalyst and have oxygen-scavenging properties are known.
  • a resin composition comprising polyamide, particularly xylylene group-containing polyamide, and a transition metal catalyst as an oxidizing organic component is known (see Patent Document 3).
  • this Patent Document 3 also exemplifies oxygen absorbers, packaging materials, and multilayer laminated films for packaging obtained by molding this resin composition.
  • an oxygen-absorbing resin composition that does not require moisture for oxygen absorption
  • an oxygen-absorbing resin composition consisting of a resin having a carbon-carbon unsaturated bond and a transition metal catalyst is known (see Patent Document 4). .
  • composition for scavenging oxygen a composition consisting of a transition metal and a polymer containing a substituted cyclohexene functional group or a low molecular weight substance to which the cyclohexene ring is bonded is known (see Patent Document 5).
  • the applicant has proposed an oxygen-absorbing resin composition having a tetralin ring (see Patent Document 6).
  • injection molding can produce molded bodies with complex shapes and has high productivity, so it is widely used in the production of mechanical parts, automobile parts, electrical/electronic parts, food/medicine containers, etc.
  • various plastic containers have been used as packaging containers because they have advantages such as being lightweight, transparent, and easily moldable.
  • Typical plastic containers include, for example, containers for beverages, etc., which are injection-molded bodies (hereinafter also referred to as "injection-molded bodies") with a screw-shaped spout formed to allow the lid to be sufficiently tightened. is frequently used.
  • Materials used for the injection molded article include general-purpose thermoplastic resins such as polyolefins (polyethylene, polypropylene, etc.), polyester, and polystyrene.
  • general-purpose thermoplastic resins such as polyolefins (polyethylene, polypropylene, etc.), polyester, and polystyrene.
  • injection molded products mainly made of polyester such as polyethylene terephthalate (PET) are widely used as plastic containers for beverages such as tea, fruit juice drinks, carbonated drinks, and alcoholic drinks.
  • PET polyethylene terephthalate
  • injection molded products made mainly of thermoplastic resin are excellent as packaging materials, but unlike glass bottles and metal containers, they have the property of allowing oxygen to pass through from the outside, and the contents filled and sealed are There are still problems with storage.
  • multilayer injection molded products having a gas barrier layer as an intermediate layer have been put into practical use.
  • glass ampoules, vials, prefilled syringes, etc. have traditionally been used as medical packaging containers for filling and storing drug solutions in a sealed state (note that a prefilled syringe is a container in which the drug is prefilled in the barrel).
  • This syringe is a syringe that can be sealed in a sealed state and released from the sealed state to dispense the drug, and is widely used because of its ease of use.
  • sodium ions, etc. may be eluted into the liquid inside the container, minute substances called flakes may be generated, and colored light-shielding glass containers may not be used.
  • Plastics are lighter than glass, and polycarbonate, polypropylene, and cycloolefin polymers, for example, are being considered as plastic substitutes for glass, but their oxygen barrier properties, water vapor barrier properties, and chemical adsorption properties do not meet the requirements. The current situation is that no progress has been made in replacing them. Unlike glass and metal containers, plastic has the property of permeating oxygen, which poses a problem in the storage stability of chemical solutions. In order to impart gas barrier properties to containers made of such plastics, multilayer containers having a gas barrier layer as an intermediate layer have been proposed.
  • Patent Document 7 proposes a prefilled syringe with improved oxygen barrier properties, in which the innermost and outermost layers of the barrel are made of polyolefin resin, and the intermediate layer is made of a resin with excellent oxygen barrier properties. .
  • gas barrier layers include polyamide obtained from metaxylylene diamine and adipic acid (hereinafter sometimes referred to as "nylon MXD6”), ethylene-vinyl alcohol copolymer, polyacrylonitrile, and polyamide.
  • Methods of laminating gas barrier layers such as vinylidene chloride, aluminum foil, carbon coat, and inorganic oxide vapor deposition as constituent materials have been used, but the gas in the head space that exists above the contents after filling the molded body is It is not possible to remove residual oxygen.
  • oxygen-absorbing resin compositions that are composed of a resin and a transition metal catalyst and have oxygen-scavenging properties are known.
  • resin compositions having an oxygen-trapping function oxygen absorbers obtained by molding the resin compositions, packaging materials, multilayer laminated films for packaging, and multilayer containers (see Patent Document 9 below).
  • adrenaline also known as “epinephrine”
  • Adrenaline is released into the blood when the action of the sympathetic nervous system increases, causing increases in blood pressure and blood sugar levels, increased heart rate, and bronchodilation. Utilizing this effect, it is used as a cardiotonic agent and a blood pressure increasing agent, as well as a vasoconstrictor and a bronchodilator during bronchial asthma attacks.
  • Epinephrine is available in a variety of formulations suitable for routes of administration by injection, inhalation, or topical use.
  • prefilled syringe preparations a preparation in which a "prefill syringe" is prefilled with epinephrine
  • epinephrine is easily oxidized when exposed to air, when used as a prefilled syringe preparation, a glass prefilled syringe is used.
  • Japanese Patent Application Publication No. 09-234832 Japanese Unexamined Patent Publication No. 51-136845 Japanese Patent Application Publication No. 2001-252560 Japanese Patent Application Publication No. 05-115776 Special Publication No. 2003-521552 Patent No. 6124114 Japanese Patent Application Publication No. 2004-229750 Japanese Patent Application Publication No. 2-500846 Japanese Patent Application Publication No. 2009-108153
  • Patent Document 2 has the problems that its oxygen absorption performance is low to begin with, that it is effective only when the object to be preserved is a high moisture type, and that it is relatively expensive.
  • Patent Documents 3 and 8 express oxygen absorption function by containing a transition metal catalyst and oxidizing the xylylene group-containing polyamide resin, so that after oxygen absorption, polymers due to oxidative deterioration of the resin There is a problem in that chain breakage occurs and the strength of the packaging container itself decreases.
  • Patent Document 9 describes a method for improving delamination, but the effect is limited. Furthermore, this resin composition has the problem that its oxygen absorption performance is still insufficient, and the effect is only exhibited when the preserved material is of high moisture content.
  • Patent Document 5 still has the problem that it is necessary to use a special material containing a cyclohexene functional group, and this material is relatively likely to generate odor.
  • the oxygen-absorbing resin composition having a tetralin ring disclosed in Patent Document 6 does not generate any odor after absorbing oxygen and has excellent oxygen-absorbing performance under a wide range of humidity conditions from low humidity to high humidity. There is a problem that it turns yellow and its appearance deteriorates when used as a packaging material.
  • Patent Document 7 has insufficient oxygen barrier properties to completely block out oxygen, and is also unable to remove residual oxygen in the gas in the head space above the contents of the container. The problem was that it was possible
  • a first embodiment of the present invention aims to provide a resin composition that exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
  • a second embodiment of the present invention provides a multilayer injection molded article and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
  • the task is to
  • a third embodiment of the present invention aims to provide a multilayer body and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. shall be.
  • the fourth embodiment of the present invention provides a medical multilayer container that has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape retention, and has a good color tone after storage (after oxygen absorption). The challenge is to provide.
  • the fifth embodiment of the present invention has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape maintenance properties, has little elution from the container, and has little change in color of the container after storage.
  • An object of the present invention is to provide a prefill syringe with good visibility.
  • the sixth embodiment of the present invention prevents biopharmaceuticals from deterioration, decrease in efficacy, and contamination with impurities, and also uses containers that have little color change after storage and good visibility of contents.
  • the challenge is to provide a preservation method.
  • the seventh embodiment of the present invention can prevent adrenaline from being oxidized, reduce components eluted from the container, and reduce color change of the container after storage when storing an adrenaline-containing drug solution.
  • An object of the present invention is to provide a method for preserving an adrenaline-containing drug solution.
  • the eighth embodiment of the present invention aims to provide a modified polyester that exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
  • a layer (A) containing a resin composition containing a polyester compound (a) having a predetermined structure and a transition metal catalyst and a layer (A) containing a resin composition containing a polyester compound (a) having a predetermined structure and a transition metal catalyst;
  • the problem of the third embodiment is solved by a multilayer body containing at least three layers, in which a layer (B) containing a thermoplastic resin (b) different from a) is laminated on both sides of the layer (A). They discovered this and completed the present invention.
  • polyester compound (a) a transition metal catalyst; A resin composition containing,
  • the polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a), 30 to 55 mol% of the structural unit represented by the following formula (1), 15 to 40 mol% of the structural unit represented by the following formula (2), 20 to 40 mol% of the structural unit represented by the following formula (3), A resin composition containing.
  • n represents the amount of repeating unit, and the structural unit represented by the above formula (1), the structural unit shown by the above formula (2), and the above formula ( Corresponds to the composition ratio of the constituent units expressed in 3).)
  • the polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a), 40 to 50 mol% of the structural unit represented by the above formula (1), 20 to 35 mol% of the structural unit represented by the formula (2), 25 to 35 mol% of the structural unit represented by the formula (3), Contains The resin composition according to [1], wherein the total of the structural units represented by formulas (1) to (3) is 95 mol% or more with respect to 100 mol% of the total structural units of the polyester compound (a).
  • a container comprising the multilayer body according to [9].
  • a method for storing biopharmaceuticals in containers comprising:
  • the container includes an oxygen absorbing layer (layer A) made of the resin composition according to any one of [1] to [4], and a resin layer (layer A) containing polyolefin (b) laminated on both sides of the layer A.
  • B) A method for preserving a biopharmaceutical, the container having a multilayer structure containing at least three layers.
  • the polyolefin (b) is a cycloolefin copolymer or a cycloolefin polymer.
  • a multilayer injection molded article and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. can do.
  • a multilayer body and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. I can do it.
  • the medical multilayer has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape maintenance properties, and has a good color tone after storage (after oxygen absorption).
  • a container can be provided.
  • the fifth embodiment of the present invention has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape maintenance properties, has little elution from the container, and has little change in color tone of the container after storage. It is possible to provide a prefill syringe with good visibility of contents.
  • a method for preserving biopharmaceuticals which prevents deterioration of biopharmaceuticals, decreases in efficacy, and contamination with impurities, and also allows for minimal change in color of containers after storage and good visibility of contents. can be provided.
  • this embodiment is an example for explaining the present invention, and is not intended to limit the present invention to the following content.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the resin composition of the first embodiment contains at least a polyester compound (a) and a transition metal catalyst, and the polyester compound (a) is represented by the following formula (1), formula (2), and formula (3).
  • the polyester compound (a) is represented by the following formula (1), formula (2), and formula (3).
  • the total 100 mol% of the structural units represented 30 to 55 mol% of the structural unit represented by the following formula (1), 15 to 40 mol% of the structural unit represented by the following formula (2), Contains 20 to 40 mol% of the structural unit represented by the following formula (3).
  • n represents the amount of repeating unit
  • the structural unit represented by the above formula (1), the structural unit shown by the above formula (2), and the above formula Corresponds to the composition ratio of the constituent units expressed in 3).
  • the resin composition according to the first embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
  • the resin composition according to the first embodiment preferably has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and absorbs oxygen regardless of the presence or absence of moisture in the object to be preserved. It can be used in a wide range of applications, such as foods, cooked foods, beverages, medicines, and health foods, as it can absorb oxygen and does not cause odor or yellowing after absorbing oxygen. can.
  • this resin composition it is possible to realize an oxygen-absorbing film or the like in which the decrease in strength after oxygen absorption is extremely small and the deterioration of strength over time is suppressed.
  • the polyester compound (a) contained in the resin composition of the first embodiment contains structural units represented by the above formulas (1) to (3).
  • "containing a structural unit” means having one or more such structural units in the compound.
  • the above-mentioned structural unit may be either a random copolymer of the above-mentioned structural unit and other structural units, or a block copolymer of the above-mentioned structural unit.
  • the polyester compound (a) contains a structural unit represented by the above formula (1) based on a total of 100 mol% of the structural units represented by the above formula (1), the above formula (2), and the above formula (3). 15 to 40 mol% of the structural unit represented by the above formula (2), and 20 to 40 mol% of the structural unit represented by the above formula (3).
  • the structural unit represented by the above formula (1) is It is preferable that the amount of the structural unit represented by the above formula (2) is 20 to 35 mol%, and the amount of the structural unit represented by the above formula (3) is 25 to 35 mol%.
  • the total of the structural units represented by the above formulas (1) to (3) is 95 mol% or more based on 100 mol% of all the structural units of the polyester compound (a).
  • the content of the structural units represented by formulas (1) to (3) can be measured by 1H-NMR in deuterated chloroform.
  • the content of the structural unit of the above formula (1) is less than 30 mol%, the oxygen barrier properties of the polyester compound (a) will decrease. Moreover, when the structural unit of the above formula (1) exceeds 55 mol%, the oxygen absorption performance of the polyester compound (a) decreases.
  • the content of the structural unit of formula (2) is less than 15 mol%, the oxygen absorption performance of the polyester compound (a) decreases. Furthermore, if the content of the structural unit of the above formula (2) exceeds 40 mol %, deterioration of appearance due to yellowing will be accelerated.
  • the content of the structural unit of the above formula (3) is less than 20 mol%, the oxygen barrier properties of the polyester compound (a) will decrease. Moreover, if the structural unit of the above formula (3) exceeds 40 mol %, the low molecular weight component will increase, causing bleeding during molding and occurrence of mold deposits.
  • the method for producing the polyester compound (a) containing the structural units represented by the above formulas (1) to (3) in the first embodiment is not particularly limited, and any conventionally known method for producing polyester may be applied. be able to.
  • methods for producing polyester include melt polymerization methods such as transesterification and direct esterification, and solution polymerization.
  • the transesterification method or the direct esterification method is preferred from the viewpoint of easy availability of raw materials, in which 2,6-naphthalene dicarboxylic acid or its derivative (I) and 2,6-tetraline dicarboxylic acid or It can be obtained by polycondensing its derivative (II), isophthalic acid or its derivative (III), and ethylene glycol or its derivative (IV).
  • Various catalysts such as transesterification catalysts, esterification catalysts, and polycondensation catalysts, various stabilizers such as etherification inhibitors, heat stabilizers, and light stabilizers, and polymerization modifiers used in the production of polyester compound (a) are also conventionally known. Any of these can be used, and these are appropriately selected depending on the reaction rate, color tone of the polyester compound (a), safety, thermal stability, weather resistance, dissolution properties of the polyester compound (a), and the like.
  • the various catalysts mentioned above include compounds of metals such as zinc, lead, cerium, cadmium, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum, titanium, tin (e.g. fatty acid salts, carbonates, Examples include phosphates, hydroxides, chlorides, oxides, alkoxides) and metal magnesium, and these can be used alone or in combination.
  • the intrinsic viscosity (value measured at 25°C using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane in a mass ratio of 6:4) of the polyester compound (a) of the first embodiment is particularly limited. However, in terms of moldability of the polyester compound (a), it is preferably 0.5 to 1.5 dL/g, more preferably 0.8 to 1.2 dL/g.
  • the polyester resin in the first embodiment may contain any structural units other than the structural units represented by formulas (1) to (3) above, as long as it does not affect its performance.
  • Specific examples of such arbitrary structural units include, but are not limited to, units derived from dicarboxylic acids or derivatives thereof and diols or derivatives thereof other than the units described above.
  • the content of arbitrary structural units in the polyester resin is not particularly limited, it is preferably less than 5 mol% with respect to 100 mol% of all structural units of the polyester resin.
  • Diols or derivatives thereof as arbitrary structural units include, but are not limited to, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane.
  • Diols aliphatic diols such as neopentyl glycol; 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-decahydronaphthalene dimethanol, 1,3-decahydronaphthalene dimethanol, 1, Alicyclic diols such as 4-decahydronaphthalene dimethanol, 1,5-decahydronaphthalene dimethanol, 1,6-decahydronaphthalene dimethanol, 2,7-decahydronaphthalene dimethanol, tetralin dimethanol, or These derivatives can be mentioned.
  • the above diols or derivatives thereof can be used alone or in combination of two or more.
  • dicarboxylic acids or derivatives thereof as arbitrary structural units include, but are not limited to, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, aliphatic dicarboxylic acids such as dodecanedioic acid, phthalic acid, Examples include benzenedicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acids such as 1,5-naphthalene dicarboxylic acid and 2,7-naphthalene dicarboxylic acid, and derivatives thereof.
  • One kind of dicarboxylic acid or its derivative can be used alone or two or more kinds can be used in combination.
  • the transition metal catalyst used in the resin composition of the first embodiment may be appropriately selected from known catalysts as long as it can function as a catalyst for the oxidation reaction of the polyester compound (a). can. Oxygen barrier properties can be improved through oxygen absorption by the oxidation reaction of the polyester compound (a).
  • the transition metal contained in the transition metal catalyst is preferably a metal from groups 4 and 8 to 11 of the periodic table. In order to exhibit the effect with a small amount, metals from groups 8 to 11 of the periodic table are more preferable.
  • transition metal catalysts include organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides, and hydroxides of transition metals.
  • examples of the transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, cobalt, nickel, and copper are preferred.
  • Examples of organic acids include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, tolic acid, oleic acid, Examples include, but are not limited to, capric acid and naphthenic acid.
  • the transition metal catalyst is preferably a combination of these transition metals and an organic acid, where the transition metal is cobalt, nickel or copper, and the organic acid is acetic acid, stearic acid, 2-ethylhexanoic acid, oleic acid or naphthenic acid. More preferred is a combination. Note that the transition metal catalyst can be used alone or in combination of two or more.
  • the blending amount of the transition metal catalyst can be appropriately set depending on the type of the polyester compound (a) and transition metal catalyst used and the desired performance, and is not particularly limited.
  • the amount of transition metal preferably a metal from Groups 8 to 11 of the periodic table, more preferably cobalt, nickel or copper
  • total amount thereof is preferably 0.5 to 10 ppm, more preferably 1 to 5 ppm, and most preferably 1.5 to 3 ppm, based on the mass of the polyester compound (a).
  • the amount of the transition metal contained in the remaining catalyst is also included in the above numerical range.
  • the amount and type of transition metal can be determined by inductively coupled plasma mass spectrometry.
  • the amount of transition metal is 0.5 ppm or more, oxygen absorption performance tends to be further improved.
  • the amount of transition metal is 10 ppm or less, yellowing tends to be further suppressed.
  • the polyester compound (a) and the transition metal catalyst can be mixed by a known method, but preferably by kneading with an extruder, it can be used as a resin composition with good dispersibility.
  • the resin composition may contain additives such as desiccants, pigments, dyes, antioxidants, slip agents, antistatic agents, stabilizers, calcium carbonate, clay, etc., to the extent that the effects of the first embodiment are not impaired.
  • fillers such as mica and silica, deodorants, etc. may be added, but the material is not limited to those shown above, and various materials can be mixed.
  • the resin composition of the first embodiment may further contain a radical generator or a photoinitiator, if necessary, in order to promote the oxygen absorption reaction.
  • radical generators include various N-hydroxyimide compounds, such as N-hydroxysuccinimide, N-hydroxymaleimide, N,N'-dihydroxycyclohexanetetracarboxylic acid diimide, N-hydroxyphthalimide, N-hydroxytetrachlorophthalimide, N-hydroxytetrabromophthalimide, N-hydroxyhexahydrophthalimide, 3-sulfonyl-N-hydroxyphthalimide, 3-methoxycarbonyl-N-hydroxyphthalimide, 3-methyl-N-hydroxyphthalimide, 3 -Hydroxy-N-hydroxyphthalimide, 4-nitro-N-hydroxyphthalimide, 4-chloro-N-hydroxyphthalimide, 4-methoxy-N-hydroxyphthalimide, 4-dimethylamino-N-hydroxyphthalimide, 4-carboxy-N -
  • photoinitiators examples include, but are not particularly limited to.
  • specific examples of photoinitiators include benzophenone and its derivatives, thiazine dyes, metal porphyrin derivatives, anthraquinone derivatives, etc., but are not particularly limited thereto.
  • these radical generators and photoinitiators can be used individually or in combination of two or more types.
  • thermoplastic resins used for kneading include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear very low density polyethylene, polypropylene, poly-1-butene, and poly-4-methyl.
  • thermoplastic resins used for kneading include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear very low density polyethylene, polypropylene, poly-1-butene, and poly-4-methyl.
  • - Polyolefins such as random or block copolymers of ⁇ -olefins such as -1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, etc.
  • ethylene-Ethylene-vinyl compound copolymers such as methyl methacrylate copolymer, styrene resins such as polystyrene, acrylonitrile-styrene copolymer, ⁇ -methylstyrene-styrene copolymer, polymethyl acrylate, polymethyl methacrylate, etc.
  • polyvinyl compounds nylon 6, nylon 66, nylon 610, nylon 12, polyamides such as polymethaxylylene adipamide (MXD6), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), Polyesters such as polyethylene naphthalate (PEN), glycol-modified polyethylene terephthalate (PETG), polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxyalkanoate, polycarbonate, Examples include polyethers such as polyethylene oxide, and mixtures thereof.
  • MXD6 polymethaxylylene adipamide
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • Polyesters such as polyethylene naphthalate (PEN), glycol-modified polyethylene terephthalate (PETG), poly
  • the resin composition of the first embodiment is used in the form of a powder, granules, pellets, film, or other small pieces, which is then filled into an air-permeable packaging material to form an oxygen absorbent bag.
  • it can be formed into a film and used as an oxygen absorber in the form of labels, cards, packing, etc.
  • the resin composition of the first embodiment can of course be used as a packaging material and packaging container in the form of a single layer, and can also be used as a laminate of at least one layer made of the resin composition and at least one layer made of another resin. It can be used as multi-layer packaging material and multi-layer packaging containers.
  • the resin composition of the first embodiment is preferably provided inside the outer surface of the container, etc. so as not to be exposed to the outer surface of the container, etc., and for the purpose of avoiding direct contact with the contents. , it is preferable to provide it outside the inner surface of the container or the like.
  • a resin composition as at least one intermediate layer of the multilayer.
  • the multilayer injection molded article according to the second embodiment includes a layer (A) containing the resin composition according to the first embodiment (hereinafter also referred to as "layer A”), and a layer (A) containing the resin composition according to the first embodiment, and a layer (hereinafter also referred to as "layer A") that is heated to a temperature different from that of the polyester compound (a). It contains at least a layer (B) (hereinafter also referred to as "layer B”) containing a plastic resin (b). Note that in the second embodiment, descriptions of other embodiments can be cited as appropriate.
  • the multilayer injection molded article and container according to the second embodiment exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
  • the multilayer injection molded article and the container according to the second embodiment preferably have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and can be used regardless of the presence or absence of moisture in the stored material. Because it can absorb oxygen without causing any odor or yellowing after absorbing oxygen, it can be used for a wide range of purposes, such as food, cooked foods, beverages, pharmaceuticals, health foods, etc. can do.
  • the second embodiment that does not contain iron powder or the like, it is also possible to realize a multilayer injection molded body and a container that are not sensitive to metal detectors. Further, according to a preferred aspect of the second embodiment, it is possible to realize a multilayer injection molded article and a container that have extremely low strength loss after oxygen absorption, maintain strength even during long-term use, and are less likely to cause delamination. You can also do it.
  • the layer structure in the multilayer injection molded article and container of the second embodiment is not particularly limited, and the number and type of layers A and B are not particularly limited.
  • it may be an A/B configuration consisting of one layer A and one layer B, or a three-layer configuration of B1/A/B2 consisting of one layer A and two layers B1 and B2. It may be.
  • layer B1 and layer B2 may be the same layer or different layers.
  • it may have a five-layer structure of B1/B2/A/B2/B1, which is composed of one layer A and two types of four layers B1 and B2.
  • both layers B1 may have the same composition or different compositions
  • both layer B2 may have the same composition or different compositions.
  • the multilayer injection molded article and container of the second embodiment may include an arbitrary layer such as an adhesive layer (layer AD) as necessary, for example, B1/AD/B2/A/B2/AD/ A seven-layer structure of B1 may be used.
  • layer AD adhesive layer
  • both layers B1 may have the same composition or different compositions
  • both layers B2 may have the same composition or different compositions
  • both layers AD may have the same composition. may be different.
  • the multilayer injection molded article and container of 2nd Embodiment when it has multiple layers B, it may have layer A between the layers B.
  • the thickness of layer A is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and even more preferably 100 to 500 ⁇ m. By setting it as this range, it tends to be possible to further improve the oxygen barrier performance of layer A and to prevent economic efficiency from being impaired.
  • the ⁇ polyester compound> of the second embodiment is as described in the section of the ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the second embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • the resin composition and layer A of the second embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the second embodiment.
  • thermoplastic resins are as described as "thermoplastic resin" in the first embodiment.
  • resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
  • the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
  • Layer B of the second embodiment contains thermoplastic resin (b).
  • the thermoplastic resin (b) is not particularly limited as long as it is different from the polyester compound (a).
  • the content of the thermoplastic resin (b) in layer B is not particularly limited, but the content of the thermoplastic resin (b) with respect to the total amount of layer B is preferably 70 to 100% by mass, and 80 to 100% by mass. is more preferable, and even more preferably 90 to 100% by mass. By setting it as the said range, the transparency and moldability of layer B can be improved.
  • the thermoplastic resin (b) can be used alone or in combination of two or more.
  • the multilayer injection molded article and container of the second embodiment may have a plurality of layers B together with the layer A, and the configurations of the plurality of layers B may be the same or different from each other.
  • the thickness of layer B can be determined as appropriate depending on the application, and from the viewpoint of ensuring various physical properties such as strength such as drop resistance and flexibility required for multilayer injection molded bodies and containers, it is preferably 30 mm. -1000 ⁇ m, more preferably 50-800 ⁇ m, still more preferably 100-600 ⁇ m. In addition, it shows better oxygen barrier performance, has a better color tone after oxygen absorption, has better strength and shape retention, and has a better appearance. is preferably 100 to 300 ⁇ m, the thickness of the intermediate layer (layer A) is preferably 200 to 400 ⁇ m, and the thickness of the outer container layer (layer B) is preferably 400 to 600 ⁇ m.
  • thermoplastic resin can be used as the thermoplastic resin (b) in the second embodiment, and is not particularly limited. Examples include polyolefins, polyesters, polyamides, ethylene-vinyl alcohol copolymers, plant-derived resins, and chlorine-based resins.
  • the thermoplastic resin (b) preferably contains at least one selected from the group consisting of these resins. These resins can be used alone or in combination of two or more.
  • polyolefins include polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, ethylene and Known copolymers such as copolymers with ⁇ -olefins, propylene and ⁇ -olefin copolymers, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymers, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid ester copolymers, etc.
  • the resins are preferably ring-opening polymers of cycloolefins such as norbornene or tetracyclododecene or derivatives thereof, hydrogenated products thereof, cycloolefins such as norbornene or tetracyclododecene or derivatives thereof, and ethylene or propylene. It is a copolymer resin in which a cyclopentyl residue or a substituted cyclopentyl residue is inserted into the molecular chain by polymerization with
  • cycloolefins include monocyclic and polycyclic ones.
  • Preferred are thermoplastic norbornene resins or thermoplastic tetracyclododecene resins.
  • thermoplastic norbornene resins include ring-opening polymers of norbornene monomers, hydrogenated products thereof, addition polymers of norbornene monomers, and addition polymers of norbornene monomers and olefins. It will be done.
  • Thermoplastic tetracyclododecene resins include ring-opening polymers of tetracyclododecene monomers, hydrogenated products thereof, addition polymers of tetracyclododecene monomers, and tetracyclododecene monomers. Examples include addition polymers of polymers and olefins.
  • Thermoplastic norbornene resins are described in, for example, JP-A-3-14882, JP-A-3-122137, and JP-A-4-63807.
  • One kind of polyolefin can be used alone or two or more kinds can be used in combination.
  • norbornene and Copolymers made from olefins such as ethylene, cycloolefin copolymers (COC), which are copolymers made from tetracyclododecene and olefins such as ethylene, and ring-opening polymerization of norbornene and hydrogenation.
  • COC cycloolefin copolymers
  • COCs and COPs are described in, for example, Japanese Patent Laid-Open No. 5-300939 or Japanese Patent Laid-Open No. 5-317411.
  • COC is, for example, manufactured by Mitsui Chemicals Co., Ltd. and is commercially available as APEL (registered trademark)
  • COP is, for example, manufactured by Nippon Zeon Co., Ltd., as ZEONEX (registered trademark) or ZEONOR (registered trademark), or Daikyo Co., Ltd. It is manufactured by Seiko and is commercially available as Daikyo Resin CZ (registered trademark).
  • ZEONEX (registered trademark) manufactured by Zeon Corporation include ZEONEX (registered trademark) 690R (trade name).
  • COC and COP exhibit better oxygen barrier performance, have better color tone after oxygen absorption, have better strength and shape retention, and can provide multilayer injection molded products and containers with better appearance. Therefore, chemical properties such as heat resistance and light resistance and chemical resistance exhibit the characteristics of a polyolefin resin, while physical properties such as mechanical properties, melting, flow characteristics, and dimensional accuracy exhibit characteristics of an amorphous resin. Therefore, it is particularly preferable.
  • the polyester described here is a polyester that can be used as the thermoplastic resin (b), and is different from the polyester compound (a) of the second embodiment.
  • the polyester is one or more selected from polyhydric carboxylic acids including dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols including glycol. or hydroxycarboxylic acids and their ester-forming derivatives, or cyclic esters.
  • Ethylene terephthalate thermoplastic polyester has ethylene terephthalate units occupying most of the ester repeating units, generally 70 mol% or more, and has a glass transition point (Tg) of 50 to 90°C and a melting point (Tm) of 200 to 275. C.
  • polyethylene terephthalate-based thermoplastic polyester polyethylene terephthalate is particularly excellent in terms of pressure resistance, heat resistance, heat pressure resistance, etc., but in addition to ethylene terephthalate units, dibasic acids such as isophthalic acid and naphthalene dicarboxylic acid and diols such as propylene glycol Copolymerized polyesters containing small amounts of ester units consisting of can also be used.
  • dibasic acids such as isophthalic acid and naphthalene dicarboxylic acid and diols such as propylene glycol Copolymerized polyesters containing small amounts of ester units consisting of can also be used.
  • One kind of polyester can be used alone or two or more kinds can be used in combination.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Examples include cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • saturated aliphatic dicarboxylic acids or their ester-forming derivatives unsaturated aliphatic dicarboxylic acids such as fumaric acid, maleic acid, itaconic acid, or their ester-forming derivatives, orthophthalic acid, isophthalic acid, terephthalic acid , 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, Aromatic dicarboxylic acids exemplified by 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, anthracene dicarboxylic acid,
  • terephthalic acid terephthalic acid, isophthalic acid, and naphthalene dicarboxylic acid are particularly preferred in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
  • Polycarboxylic acids other than these dicarboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3',4'-biphenyltetracarboxylic acid, and ester-forming derivatives thereof.
  • Glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol , 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethylene glycol, polytetramethylene Aliphatic glycols such as glycols, hydroquinon
  • glycols it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as the main components.
  • Polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like.
  • hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these. Examples include ester-forming derivatives of.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, and lactide.
  • ester-forming derivatives of polyhydric carboxylic acids and hydroxycarboxylic acids include their alkyl esters, acid chlorides, and acid anhydrides.
  • the polyester used in the second embodiment is preferably a polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalenedicarboxylic acid or its ester-forming derivative, and whose main glycol component is alkylene glycol.
  • the polyester whose main acid component is terephthalic acid or its ester-forming derivative is preferably a polyester containing 70 mol% or more of terephthalic acid or its ester-forming derivative based on the total acid component, and more preferably Preferably it is a polyester containing 80 mol% or more, and more preferably a polyester containing 90 mol% or more.
  • the polyester whose main acid component is naphthalene dicarboxylic acid or its ester-forming derivative preferably contains 70 mol% or more in total of naphthalene dicarboxylic acid or its ester-forming derivative, more preferably 80 mol% or more. It is a polyester containing mol% or more, more preferably 90 mol% or more.
  • Naphthalene dicarboxylic acid or its ester-forming derivative used in the second embodiment includes 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, and 1,5-naphthalene dicarboxylic acid, which are exemplified in the dicarboxylic acids mentioned above. , 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, or ester-forming derivatives thereof are preferred.
  • the polyester whose main glycol component is alkylene glycol is preferably a polyester containing 70 mol% or more, more preferably 80 mol% or more of alkylene glycol based on all glycol components, More preferably, it is a polyester containing 90 mol% or more.
  • the alkylene glycol mentioned here may contain a substituent or an alicyclic structure in its molecular chain.
  • Copolymerization components other than the above terephthalic acid/ethylene glycol include isophthalic acid, 2,6-naphthalene dicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. At least one selected from the group consisting of diol and 2-methyl-1,3-propanediol is preferable in order to achieve both transparency and moldability, and in particular, isophthalic acid, diethylene glycol, neopentyl glycol, More preferably, it is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.
  • a preferable example of the polyester used in the second embodiment is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and even more preferably a linear polyester containing ethylene terephthalate units in an amount of 70 mol% or more.
  • a linear polyester containing 80 mol% or more of terephthalate units is particularly preferred, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferred.
  • polyester used in the second embodiment is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, more preferably 70 moles of ethylene-2,6-naphthalate units. % or more, more preferably linear polyesters containing 80 mol% or more of ethylene-2,6-naphthalate units, particularly preferably 90 mol% or more of ethylene-2,6-naphthalate units. It is a linear polyester containing
  • polyester used in the second embodiment include a linear polyester containing 70 mol% or more of propylene terephthalate units, a linear polyester containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexane.
  • the combination of terephthalic acid/isophthalic acid//ethylene glycol, the combination of terephthalic acid//ethylene glycol/1,4-cyclohexanedimethanol, and the combination of terephthalic acid//ethylene glycol/neopentyl glycol are transparent. This is preferable in terms of achieving both properties and moldability. It goes without saying that a small amount (5 mol % or less) of diethylene glycol produced by dimerization of ethylene glycol may be included during the esterification (transesterification) reaction and polycondensation reaction.
  • polyester used in the second embodiment include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate, or ring-opening polycondensation of glycolide.
  • This polyglycolic acid may be copolymerized with other components such as lactide.
  • the polyamide used in the second embodiment is a polyamide whose main constitutional unit is a unit derived from a lactam or an aminocarboxylic acid, or a polyamide whose main constitutional unit is a unit derived from an aliphatic diamine and an aliphatic dicarboxylic acid.
  • One kind of polyamide can be used alone or two or more kinds can be used in combination.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid
  • aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid, etc.
  • an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used.
  • an alicyclic diamine may be used.
  • the aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine.
  • linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine.
  • alicyclic diamine include cyclohexane diamine, 1,3-bis(aminomethyl)cyclohexane, and 1,4-bis(aminomethyl)cyclohexane.
  • linear aliphatic dicarboxylic acids and alicyclic dicarboxylic acids are preferable, and linear aliphatic dicarboxylic acids having an alkylene group having 4 to 12 carbon atoms are particularly preferable.
  • linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadionic acid, dodecanedioic acid, dimer acid and their functional Derivatives etc. can be mentioned.
  • alicyclic dicarboxylic acid examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • aromatic diamine examples include metaxylylene diamine, para-xylylene diamine, para-bis(2-aminoethyl)benzene, and the like.
  • aromatic dicarboxylic acids examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It will be done.
  • polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4,6, polyamide 6,6, polyamide 6,10, polyamide 6T, polyamide 9T, polyamide 6IT, and polymethaxylylene azide.
  • a copolymerization component of the polyamide a polyether having a number average molecular weight of 2,000 to 20,000 and having at least one terminal amino group or a terminal carboxyl group, or an organic carboxylate of the polyether having the terminal amino group, or Amino salts of polyethers having the aforementioned terminal carboxyl groups can also be used.
  • a specific example is bis(aminopropyl)poly(ethylene oxide) (polyethylene glycol having a number average molecular weight of 2,000 to 20,000).
  • the partially aromatic polyamide may contain a substantially linear structural unit derived from a polyhydric carboxylic acid having three or more bases, such as trimellitic acid and pyromellitic acid.
  • the ethylene-vinyl alcohol copolymer used in the second embodiment is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, and more preferably 29 to 44 mol%. %, and the degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the ethylene-vinyl alcohol copolymer may further include a small amount of ⁇ -olefin such as propylene, isobutene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, etc., within a range that does not adversely affect the effects of the second embodiment. It may contain comonomers such as unsaturated carboxylic acids or salts thereof, partial alkyl esters, complete alkyl esters, nitriles, amides, anhydrides, unsaturated sulfonic acids or salts thereof.
  • the ethylene-vinyl alcohol copolymer can be used alone or in combination of two or more.
  • the plant-derived resin used in the second embodiment may be any resin that contains a plant-derived substance as a raw material, and the plant-derived substance used as a raw material is not particularly limited. Specific examples include aliphatic polyester biodegradable resins. Examples of aliphatic polyester biodegradable resins include poly( ⁇ -hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES), etc. Examples include polyalkylene alkanoate. One type of plant-derived resin can be used alone or two or more types can be used in combination.
  • the chlorine-based resin used in the second embodiment may be any resin containing chlorine in its structural unit, and any known resin may be used. Specific examples include polyvinyl chloride, polyvinylidene chloride, and copolymers of these with vinyl acetate, maleic acid derivatives, higher alkyl vinyl ethers, and the like. One type of chlorine-based resin can be used alone or two or more types can be used in combination.
  • the multilayer injection molded article and container of the second embodiment may include other layers depending on desired performance and the like.
  • the other layers may have the same composition as or different from the compositions of layers A and B, as long as they are laminated so that they can be distinguished from layers A and B in the multilayer injection molded article and container.
  • Examples of other layers include an adhesive layer and the like.
  • an adhesive layer is provided between the two layers. It is preferable.
  • the adhesive layer preferably contains a thermoplastic resin having adhesive properties.
  • adhesive thermoplastic resins include acid-modified polyolefins obtained by modifying polyolefin resins such as polyethylene or polypropylene with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, and itaconic acid.
  • polyester thermoplastic elastomers whose main components are resins and polyester block copolymers.
  • the adhesive layer from the viewpoint of adhesiveness, it is preferable to use a modified resin of the same type as the thermoplastic resin (b) used as layer B.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m, from the viewpoint of ensuring moldability while exhibiting practical adhesive strength.
  • the manufacturing method and layer structure of the multilayer injection molded article of the second embodiment are not particularly limited, and the multilayer injection molded article can be manufactured by a normal injection molding method. For example, using a molding machine and an injection mold equipped with two or more injection machines, the material constituting layer A and the material constituting layer B are passed from the respective injection cylinders through the mold hot runner and into the cavity. A multilayer injection molded article corresponding to the shape of the injection mold can be manufactured by injecting the resin into a mold.
  • the material constituting layer B is injected from an injection cylinder, then the material constituting layer A is injected from another injection cylinder simultaneously with the resin constituting layer B, and then the resin constituting layer B is injected.
  • the material constituting layer B is injected from an injection cylinder, then the material constituting layer A is injected from another injection cylinder simultaneously with the resin constituting layer B, and then the resin constituting layer B is injected.
  • a multilayer injection molded article having a five-layer configuration B/A/B/A/B can be produced.
  • the material constituting layer B1 is injected from an injection cylinder, then the material constituting layer B2 is injected from another injection cylinder simultaneously with the resin constituting layer B1, and then the resin constituting layer A is injected. is injected simultaneously with the resins constituting layers B1 and B2, and then the required amount of resin constituting layer B1 is injected to fill the cavity, resulting in multilayer injection of a five-layer configuration B1/B2/A/B2/B1. Molded objects can be produced.
  • the mouth and neck portion may be crystallized by heat treatment at this stage.
  • the degree of crystallinity is preferably 30-50%, more preferably 35-45%. Note that crystallization may be performed after performing secondary processing, which will be described later.
  • the container of the second embodiment includes the multilayer injection molded body of the second embodiment.
  • the container has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance.
  • the multilayer injection molded article of the second embodiment itself is a container, it has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance. Furthermore, in addition to the slight amount of oxygen that enters from outside the container, it can also absorb oxygen within the container to prevent the stored contents from deteriorating due to oxygen.
  • the shapes of the multilayer injection molded body and container of the second embodiment are not particularly limited, and can be made into any shape depending on the mold. Considering that the multilayer injection molded article of the second embodiment can exhibit oxygen barrier performance, the multilayer injection molded article of the second embodiment and the container can be used as storage containers such as cup-shaped containers and bottle-shaped containers. It is preferable that there be. Further, for secondary processing such as blow molding, which will be described later, such as a PET bottle, the multilayer injection molded article of the second embodiment is preferably a test tube-shaped preform (parison).
  • the container of the second embodiment can also be obtained by further processing (that is, secondary processing) the multilayer injection molded product of the second embodiment.
  • the container has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance. Furthermore, in addition to the slight amount of oxygen that enters from outside the container, it can also absorb oxygen within the container to prevent the stored contents from deteriorating due to oxygen. Examples of secondary processing methods include injection blow molding and stretch blow molding. Containers obtained through secondary processing include bottles and vials.
  • a test tube-shaped preform (parison) is first molded as the multilayer injection molded article of the second embodiment, and then the mouth of the heated preform is fixed with a jig, and the preform is shaped into the final shape.
  • the preform can be molded into a bottle by fitting it into a mold, blowing air through the mouth, inflating the preform, bringing it into close contact with the mold, and cooling and solidifying it.
  • injection stretch blow molding the mouth of a heated preform is fixed with a jig, the preform is fitted into a final shape mold, and air is blown into the preform while stretching it with a stretching rod from the mouth. It can be molded into a bottle by blow-stretching it, bringing it into close contact with a mold, and cooling and solidifying it.
  • Injection stretch blow molding methods can be broadly classified into hot parison methods and cold parison methods. In the former method, the preform is blow molded in a softened state without being completely cooled.
  • the preform is formed as a supercooled bottomed preform that is considerably smaller than the dimensions of the final shape and the resin is amorphous, and this preform is preheated to the drawing temperature to form the final shape. It is suitable for mass production because it is stretched in the axial direction in a mold and blow-stretched in the circumferential direction.
  • this multilayer preform is heated to a stretching temperature higher than the glass transition point (Tg), and then stretched by stretch blow molding in a final shape mold heated to a heat setting temperature. It is stretched in the machine direction and also stretched in the cross direction with blow air.
  • the stretching ratio of the final blow molded product is preferably 1.2 to 6 times in the machine direction and 1.2 to 4.5 times in the transverse direction.
  • the final shape mold described above is heated to a temperature that promotes crystallization of the resin, for example, 120 to 230 °C for PET resin, preferably 130 to 210 °C, and during blowing, the outside of the vessel wall of the molded body is heated to a temperature that promotes crystallization of the resin.
  • Heat treatment is performed by contacting the inner surface for a predetermined period of time. After heat treatment for a predetermined time, the blowing fluid is switched to an internal cooling fluid to cool the inner layer.
  • the heat treatment time varies depending on the thickness and temperature of the blow molded product, but is generally 1.5 to 30 seconds, preferably 2 to 20 seconds in the case of PET resin.
  • the cooling time also varies depending on the heat treatment temperature and the type of cooling fluid, but is generally 0.1 to 30 seconds, preferably 0.2 to 20 seconds. Through this heat treatment, each part of the molded body is crystallized.
  • Cooling fluids include air at room temperature, various cooled gases such as -40°C to +10°C nitrogen, air, and carbon dioxide, as well as chemically inert liquefied gases such as liquefied nitrogen gas and liquefied gas.
  • Carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, etc. can be used.
  • This cooling fluid may also contain a liquid mist having a large heat of vaporization, such as water.
  • two molds are used for stretch blow molding, and the first mold is heat-treated within a predetermined temperature and time range, and then the blow molded product is transferred to the second mold for cooling, and then again.
  • the blow molded article may be cooled at the same time as blowing.
  • the outer layer of the blow-molded product taken out from the mold is cooled by standing to cool or by blowing cold air.
  • the multilayer preform is made into a primary blow molded body with a size larger than the final blow molded body using a primary stretch blow mold, and then this primary blow molded body is heated and shrunk, and then a second blow molded body is formed.
  • One example is two-stage blow molding in which stretch blow molding is performed using a subsequent mold to obtain a final blow molded product. According to this method for producing a blow molded body, the bottom of the blow molded body is sufficiently thinned by stretching, and a blow molded body with excellent resistance to deformation and impact at the bottom during hot filling and heat sterilization can be obtained. .
  • the multilayer injection molded product of the second embodiment, the container obtained from the multilayer injection molded product, and the container obtained by secondary processing the multilayer injection molded product may be coated with a vapor-deposited film of an inorganic substance or inorganic oxide, or an amorphous carbon film.
  • Examples of the inorganic substance or inorganic oxide include aluminum, alumina, silicon oxide, and the like.
  • a vapor-deposited film of an inorganic substance or an inorganic oxide can shield eluted substances such as acetaldehyde and formaldehyde from a multilayer injection molded article, a container, and the like.
  • the method for forming the deposited film is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating, and chemical vapor deposition methods such as PECVD.
  • the thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoint of gas barrier properties, light shielding properties, bending resistance, etc.
  • the amorphous carbon film is a diamond-like carbon film, and is a hard carbon film also called an i-carbon film or a hydrogenated amorphous carbon film.
  • a method for forming the film a method is exemplified in which the inside of the hollow molded body is evacuated by evacuation, a carbon source gas is supplied thereto, and the carbon source gas is turned into plasma by supplying energy for plasma generation. Thereby, an amorphous carbon film can be formed on the inner surface of a multilayer injection molded body, a container, etc.
  • the amorphous carbon film can not only significantly reduce the permeability of low-molecular-weight inorganic gases such as oxygen and carbon dioxide, but also suppress the sorption of various low-molecular-weight organic compounds that have odors.
  • the thickness of the amorphous carbon film is preferably 50 to 5000 nm from the viewpoints of suppressing the sorption of low-molecular-weight organic compounds, improving gas barrier properties, adhesion to plastics, durability, transparency, and the like.
  • Multilayer injection molded products, containers, etc. exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
  • multilayer injection molded products and containers do not require moisture to absorb oxygen, so they have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and they also have excellent flavor retention of the contents. . Therefore, multilayer injection molded bodies, containers, etc. are suitable for packaging various articles.
  • beverages such as milk, juice, coffee, tea, and alcoholic beverages
  • liquid seasonings such as sauces, soy sauce, and dressings
  • prepared foods such as soups, stews, and curries; and jams, mayonnaise, etc.
  • Paste-like foods Marine products such as tuna and fish and shellfish; Processed milk products such as cheese and butter; Processed meat products such as meat, salami, sausage, and ham; Vegetables such as carrots and potatoes; Eggs; Noodles; Before cooking Processed rice products such as rice, cooked rice, and rice porridge; powdered seasonings, powdered coffee, powdered milk for infants, cooked foods for infants, powdered diet foods, nursing care foods, dried vegetables, dried foods such as rice crackers, etc. Chemicals such as pesticides and insecticides; Pharmaceutical products; Pet food; Detergents, and various other products can be mentioned, but are not particularly limited thereto.
  • contents that are susceptible to deterioration in the presence of oxygen such as beverages such as beer, wine, fruit juice, carbonated soft drinks, etc., and foods such as fruits, nuts, vegetables, meat products, infant foods, coffee, jam, mayonnaise, and ketchup.
  • beverages such as beer, wine, fruit juice, carbonated soft drinks, etc.
  • foods such as fruits, nuts, vegetables, meat products, infant foods, coffee, jam, mayonnaise, and ketchup.
  • packaging materials such as edible oils, dressings, sauces, tsukudani foods, dairy products, and other products such as pharmaceuticals and cosmetics.
  • the multilayer injection molded body, container, etc., and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • Sterilization methods include heat sterilization such as hot water treatment at 100°C or lower, pressurized hot water treatment at 100°C or higher, ultra-high temperature heat treatment at 130°C or higher, electromagnetic wave sterilization such as ultraviolet rays, microwaves, and gamma rays, and ethylene oxide.
  • gas treatment such as sterilization, chemical sterilization using hydrogen peroxide and hypochlorous acid, etc.
  • the multilayer body of the third embodiment includes a layer (A) containing the resin composition according to the first embodiment (hereinafter also referred to as "layer A”) and a thermoplastic resin different from the polyester compound (a). It contains at least three layers in which layer (B) containing (b) (hereinafter also referred to as "layer B") is laminated on both sides of layer A. Note that in the third embodiment, descriptions of other embodiments can be cited as appropriate.
  • the multilayer body and container according to the third embodiment exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
  • the multilayer body and container according to the third embodiment preferably have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and can absorb oxygen regardless of the presence or absence of moisture in the stored material. Moreover, it does not generate odor or deteriorate appearance due to yellowing after absorbing oxygen, so it can be used in a wide range of applications regardless of the target, such as food, cooked foods, beverages, medicines, health foods, etc. I can do it.
  • the third embodiment that does not contain iron powder or the like, it is also possible to realize a multilayer body and a container that are not sensitive to metal detectors. Further, according to a preferred aspect of the third embodiment, it is possible to realize a multilayer body and a container that have extremely low strength loss after oxygen absorption, maintain strength even during long-term use, and are less likely to cause delamination. .
  • the multilayer body and container of the third embodiment has at least three layers: layer A and layer B laminated on both sides of layer A.
  • the multilayer body and container of the third embodiment only need to have a layer B/layer A/layer B configuration, and any other layer may be provided.
  • the layers B stacked on both sides of the layer A may be the same layer or different layers.
  • the number and type of the multilayer body and container are not particularly limited as long as they include one or more layers of layer A and two or more layers of layer B. For example, it may have a five-layer structure of B1/B2/A/B2/B1, which includes one layer A and four layers B of two types, layer B1 and layer B2.
  • both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions.
  • the multilayer body and container of the third embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B, for example, B1/AD/B2.
  • layer AD adhesive layer
  • a seven-layer structure of /A/B2/AD/B1 may be used.
  • both layers B1 may have the same composition or different compositions
  • both layers B2 may have the same composition or different compositions
  • both layers AD may have the same composition. may be different.
  • the multilayer body and container of 3rd Embodiment when it has multiple layers B, it may have layer A between the layers B.
  • Layer B is laminated on both sides of layer A and layer A because it is easier to mold, has a better color tone after oxygen absorption, and can provide a multilayer injection molded article and container with a better appearance.
  • a three-layer structure of B/A/B is preferable.
  • the multilayer injection molded body and container are suitable for medical use because the multilayer injection molded body and container have a better color tone after oxygen absorption and a better appearance.
  • the thickness of layer A is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and even more preferably 100 to 500 ⁇ m. By setting it as this range, it tends to be possible to further improve the oxygen barrier performance of layer A and to prevent economic efficiency from being impaired.
  • the ⁇ polyester compound> of the third embodiment is as described in the section of the ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the third embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • the resin composition and layer A of the third embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the third embodiment.
  • thermoplastic resins are as described as "thermoplastic resin" in the first embodiment.
  • resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
  • the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
  • [Method for manufacturing multilayer body] [Method for manufacturing a multilayer body] in the third embodiment is the same as described in the section [Method for manufacturing a multilayer injection molded body] in the second embodiment.
  • [container] [Container] in the third embodiment is as described in the [Container] section of the second embodiment.
  • ⁇ Injection blow molding> of the third embodiment is as described in the ⁇ injection blow molding> section of the second embodiment.
  • the medical multilayer container according to the fourth embodiment includes a layer A containing the resin composition according to the first embodiment and a layer B containing the polyolefin (b), and the layer A includes the layer A containing the polyolefin (b).
  • Layer B has a laminated multilayer structure including at least three layers. Note that in the fourth embodiment, descriptions of other embodiments can be cited as appropriate.
  • the fourth embodiment it is possible to realize an oxygen-absorbing medical multilayer container that has excellent oxygen-absorbing performance under a wide range of humidity conditions, preferably from low humidity to high humidity. Furthermore, the present invention has excellent oxygen barrier performance, excellent water vapor barrier performance, excellent drop strength, maintains strength even during long-term storage, and has low odor generation and elution of impurities after oxygen absorption. It is also possible to realize an oxygen-absorbing multilayer medical container that does not deteriorate in appearance due to yellowing. Furthermore, since the medical multilayer container of the fourth embodiment uses an oxygen-absorbing resin composition containing a polyester compound (A) and a fiber metal catalyst, continuous molding may be performed when layer A is formed by injection molding.
  • A polyester compound
  • mold deposits It is difficult for deposits (hereinafter sometimes referred to as “mold deposits") to remain on the mold. As described above, since the medical multilayer container of the fourth embodiment has excellent moldability, there is no need to frequently clean the mold even when molding is performed continuously, resulting in excellent productivity.
  • the medical multilayer container of the fourth embodiment is a multilayer structure having at least three layers, including layer A and layer B laminated on both sides of layer A.
  • the medical multilayer container of the fourth embodiment only needs to have a layer B/layer A/layer B configuration, and any other layers may be provided.
  • the layers B stacked on both sides of the layer A may be the same layer or different layers.
  • the number and type of the medical multilayer container are not particularly limited as long as it includes one or more layers A and two or more layers B. For example, it may have a five-layer structure of layer B1/layer B2/layer A/layer B2/layer B1, which includes one layer A and two types of four layers B1 and B2.
  • both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions.
  • the medical multilayer container of the fourth embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B as necessary.
  • layer AD adhesive layer
  • layer B1/layer AD It may have a seven-layer structure: /layer B2/layer A/layer B2/layer AD/layer B1.
  • both layers B1 may have the same composition or different compositions
  • both layers B2 may have the same composition or different compositions
  • both layers AD may have the same composition. may be different.
  • the medical multilayer container of 4th Embodiment when it has multiple layers B, it may have layer A between the layers B.
  • the thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and particularly preferably 100 to 500 ⁇ m. By setting it as this range, it becomes possible to further improve the ability of the oxygen absorbing layer (layer A) to absorb oxygen, and to prevent economic efficiency from being impaired.
  • ⁇ Polyester compound (a)> The ⁇ polyester compound (a)> of the fourth embodiment is as described in the section of ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the fourth embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • layer A in the fourth embodiment may contain other thermoplastic resins within a range that does not impede the purpose of the fourth embodiment.
  • These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment.
  • resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
  • Layer B in the fourth embodiment is a resin layer containing polyolefin (b).
  • the content of polyolefin (b) in layer B is not particularly limited, but the content of polyolefin (b) relative to the total amount of layer B is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, Particularly preferred is 90 to 100% by weight. By setting it as the said range, the transparency, moldability, and water vapor barrier property of layer B can be improved.
  • the thermoplastic resin (b) can be used alone or in combination of two or more.
  • the medical multilayer container of the fourth embodiment may have a plurality of layers B, and the configurations of the plurality of layers B may be the same or different.
  • the thickness of layer B can be determined as appropriate depending on the application, and is preferably 30 to 1500 ⁇ m from the viewpoint of ensuring various physical properties such as strength and flexibility such as drop resistance required for medical multilayer containers. , more preferably 50 to 1000 ⁇ m, still more preferably 100 to 700 ⁇ m. In addition, it shows better oxygen barrier performance, has a better color tone after oxygen absorption, has better strength and shape retention, and has a better appearance. is preferably 100 to 300 ⁇ m, the thickness of the intermediate layer (layer A) is preferably 200 to 400 ⁇ m, and the thickness of the outer container layer (layer B) is preferably 400 to 600 ⁇ m.
  • ⁇ Polyolefin> of the fourth embodiment is as described in the ⁇ polyolefin> column of the second embodiment.
  • [Method for manufacturing multilayer medical containers] [Method for manufacturing multilayer medical container] of the fourth embodiment is the same as described in the section [Method for manufacturing multilayer injection molded product] of the second embodiment.
  • the shape of the medical multilayer container of the fourth embodiment is not particularly limited, examples thereof include a vial, an ampoule, a prefill syringe, and a vacuum blood collection tube.
  • the structure of the vial of the fourth embodiment is no different from a general vial, and is composed of a bottle, a rubber stopper, and a cap. After filling a bottle with a medicinal solution, a rubber stopper is placed on the bottle, and then a cap is wrapped over the top to seal the bottle.
  • the bottle portion is a medical multilayer molded container according to the fourth embodiment, wherein at least one of the intermediate layers is an oxygen absorption layer (layer A) that can be formed using an oxygen absorption resin composition, and the innermost layer is an oxygen absorption layer (layer A) that can be formed using an oxygen absorption resin composition. and the outermost layer is a resin layer (layer B) containing polyolefin.
  • the bottle portion of the vial of the fourth embodiment is manufactured, for example, by injection blow molding or extrusion blow molding.
  • an injection blow molding method for a multilayer molded body constituting a vial is shown below.
  • the material constituting layer A and the material constituting layer B are passed from the respective injection cylinders through the mold hot runner and into the cavity.
  • a multilayer molded body corresponding to the shape of the injection mold can be manufactured by injection.
  • the material constituting layer B is injected from an injection cylinder, then the material constituting layer A is injected from another injection cylinder simultaneously with the resin constituting layer B, and then the resin constituting layer B is injected.
  • a multilayer molded product having a three-layer structure can be manufactured by injecting the required amount of the mixture to fill the cavity. Also, by first injecting the material constituting layer B, then injecting the material constituting layer A alone, and finally injecting the required amount of material constituting layer B to fill the mold cavity, A multilayer molded body having a five-layer structure (layer B/layer A/layer B/layer A/layer B) can be produced. In addition, first, the material constituting layer B1 is injected from an injection cylinder, then the material constituting layer B2 is injected from another injection cylinder simultaneously with the material constituting layer B1, and then the material constituting layer A is injected.
  • the multilayer molded product obtained by the above method is fitted into a final shape mold (blow mold) while keeping it heated to a certain extent, air is blown into it, it is inflated and brought into close contact with the mold, and then cooled and solidified. By doing so, it can be formed into a bottle shape.
  • the configuration of the ampoule of the fourth embodiment is similar to that of a general ampoule, and may be a small container with a narrow neck. After filling the ampoule with a medicinal solution, the end of the neck is sealed to seal it.
  • the above-mentioned ampoule is a medical multilayer molded container according to the fourth embodiment, in which at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed from an oxygen absorbing resin composition, and the innermost layer and the outermost layer is a resin layer (layer B) containing polyolefin.
  • the ampoule of the fourth embodiment is manufactured, for example, by injection blow molding or extrusion blow molding.
  • the configuration of the prefill syringe of the fourth embodiment is the same as that of a general prefill syringe, and includes at least a barrel for filling a drug solution, a joint for joining a syringe needle to one end of the barrel, and a joint for connecting a drug solution during use. Consists of a plunger for extrusion.
  • the above-mentioned barrel is a medical multilayer molded container according to the fourth embodiment, in which at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed using an oxygen absorbing resin composition, and the innermost layer, The outermost layer is a resin layer (layer B) containing polyolefin.
  • the prefill syringe of the fourth embodiment is manufactured, for example, by an injection molding method.
  • a certain amount of material forming layer B is injected into the cavity, then a certain amount of material forming layer A is injected, and a certain amount of material forming layer B is injected again.
  • the barrel and the joint may be molded as one piece, or they may be molded separately and then joined. It is necessary to seal the tip of the joint, which can be done by heating the resin at the tip of the joint to a molten state, and then pinching it with pliers or the like to fuse it.
  • the thickness of the barrel may be about 0.5 to 5 mm, depending on the purpose of use and size. Furthermore, the thickness may be uniform or may vary. Further, another gas barrier film or light shielding film may be formed on the surface (untreated) for the purpose of long-term storage stability. As such a film and its formation method, the method described in Japanese Patent Application Laid-open No. 2004-323058, etc. can be adopted.
  • the configuration of the vacuum blood collection tube of the fourth embodiment is similar to that of a general vacuum blood collection tube, and is composed of a tubular body and a stopper.
  • the tubular body is a medical multilayer molded container according to the fourth embodiment, wherein at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed from an oxygen absorbing resin composition, and the innermost layer and the outermost layer is a resin layer (layer B) containing polyolefin.
  • the vacuum blood collection tube of the fourth embodiment is manufactured, for example, by an injection molding method. To make a tubular body that will become a multilayer molded container for medical use, first a certain amount of the material forming layer B is injected into the cavity, then a certain amount of material forming layer A is injected, and then a certain amount of material forming layer B is injected again. Manufactured by mass injection.
  • the medical multilayer container of the fourth embodiment does not require moisture for oxygen absorption, so it has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity (relative humidity 0% to 100%). Suitable for packaging various items.
  • a typical example of something to be preserved is biopharmaceuticals, which tend to deteriorate in the presence of oxygen.
  • the biopharmaceutical is not particularly defined as long as it contains a protein-derived medicinal ingredient, and a wide variety of biopharmaceuticals known to those skilled in the art can be used. Specifically, it is preferably a biopharmaceutical selected from the group consisting of antibodies, hormones, enzymes, and complexes containing these.
  • biopharmaceuticals include adrenergic antagonists, analgesics, anesthetics, angiotensin antagonists, anti-inflammatory drugs, anxiolytics, antiarrhythmics, anticholinergics, anticoagulants, antiepileptics, antidiarrheals, and antidiarrheals.
  • Drugs hormones, hematopoietic growth factors, interferons, interleukin products, vaccines, monoclonal antibodies, tumor necrosis factors, therapeutic enzymes, antibody-drug conjugates, biosimilars, erythropoietin, immunoglobulins, somatic cells, gene therapy, tissue, and therapeutic recombinant proteins.
  • medical multilayer containers and objects to be preserved can be sterilized in a form suitable for the objects to be preserved.
  • Sterilization methods include heat sterilization such as hot water treatment at 100°C or lower, pressurized hot water treatment at 100°C or higher, high-temperature heat treatment at 121°C or higher, electromagnetic wave sterilization such as ultraviolet rays, microwaves, and gamma rays, ethylene oxide, etc. gas treatment, and chemical sterilization using hydrogen peroxide, hypochlorous acid, etc.
  • the prefill syringe of the fifth embodiment is a prefill syringe that can accommodate a drug in a sealed state and that can release the sealed state and pour out the drug when used, A layer A containing the resin composition according to the first embodiment; and a layer B containing polyolefin (b), and the layer B is laminated on both sides of the layer A, and has a multilayer structure including at least three layers. Note that in the fifth embodiment, descriptions of other embodiments can be cited as appropriate.
  • an oxygen-absorbing prefill syringe that preferably has excellent oxygen absorption performance and water vapor barrier performance.
  • the prefill syringe since the generation of low molecular weight compounds after oxygen absorption is suppressed, it is possible to prevent the low molecular weight compounds from being mixed into the contents. Further, even after oxygen absorption, the strength of the polyester compound decreases very little, and the strength of the oxygen-absorbing layer is maintained even during long-term use, so it is possible to provide a prefill syringe that is less prone to delamination. Furthermore, it is also possible to realize a prefill syringe that does not deteriorate in appearance due to yellowing.
  • the prefill syringe of the fifth embodiment uses an oxygen-absorbing resin composition containing a polyester compound (A) and a fiber metal catalyst, even when continuous molding is performed when layer A is formed by injection molding, there is no metallurgy. It is difficult for deposits (hereinafter sometimes referred to as "mold deposits") to remain on the mold. As described above, since the prefill syringe of the fifth embodiment has excellent moldability, there is no need to frequently clean the mold even when molding is performed continuously, resulting in excellent productivity.
  • the prefill syringe of the fifth embodiment is a multilayer structure having at least three layers, in which layer A and layer B are laminated on both sides of layer A.
  • the prefill syringe of the fifth embodiment only needs to have a layer B/layer A/layer B structure as its layer structure, and any other layers may be provided.
  • the layers B stacked on both sides of the layer A may be the same layer or different layers.
  • the number and type of prefill syringes are not particularly limited as long as they include one or more layers of layer A and two or more layers of layer B.
  • it may have a five-layer structure of layer B1/layer B2/layer A/layer B2/layer B1, which includes one layer A and two types of four layers B1 and B2.
  • both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions.
  • the prefill syringe of the fifth embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B as necessary.
  • layer AD adhesive layer
  • layer B1/layer AD/ It may have a seven-layer structure of layer B2/layer A/layer B2/layer AD/layer B1.
  • both layers B1 may have the same composition or different compositions
  • both layers B2 may have the same composition or different compositions
  • both layers AD may have the same composition. may be different.
  • the prefill syringe of the fifth embodiment when it has a plurality of layers B, it may have a layer A between the layers B.
  • the thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and particularly preferably 100 to 500 ⁇ m. By setting it as this range, it becomes possible to further improve the ability of the oxygen absorbing layer (layer A) to absorb oxygen, and to prevent economic efficiency from being impaired.
  • ⁇ Polyester compound (a)> The ⁇ polyester compound (a)> of the fifth embodiment is as described in the section of the ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the fifth embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • layer A in the fifth embodiment may contain other thermoplastic resins within a range that does not impede the purpose of the fifth embodiment.
  • thermoplastic resins are as described as "thermoplastic resin" in the first embodiment.
  • resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
  • ⁇ Polyolefin> of the fifth embodiment is as described in the ⁇ polyolefin> column of the second embodiment.
  • Method for manufacturing prefill syringe [Method for manufacturing a prefill syringe] of the fifth embodiment is the same as described in the section [Method for manufacturing a multilayer injection molded body] of the second embodiment.
  • [Drug] [Drug] in the fifth embodiment is as described in the [Medicine] column of the fourth embodiment.
  • the method for producing a biopharmaceutical according to the sixth embodiment includes: A method for storing biopharmaceuticals in containers, the method comprising: The container includes an oxygen absorbing layer (layer A) made of the resin composition according to the first embodiment, and a resin layer (layer B) containing polyolefin (b) laminated on both sides of the layer A. , a multi-layered container containing at least three layers. Note that in the sixth embodiment, descriptions of other embodiments can be cited as appropriate.
  • biopharmaceuticals can be stored under low oxygen concentrations, so deterioration of biopharmaceuticals and decrease in efficacy can be suppressed. Furthermore, in the container used in the sixth embodiment, the generation of low-molecular organic substances after oxygen absorption is suppressed, so that it is possible to prevent impurities from being mixed into the contents. Further, in the container according to the sixth embodiment, the polyester compound undergoes extremely little deterioration due to oxidation even after oxygen absorption, and the strength of the container is maintained even during long-term use, so biopharmaceuticals can be stored for a long period of time. Furthermore, since the color change of the container after storage is small, visibility of the contents is also good.
  • the thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and particularly preferably 100 to 500 ⁇ m. By setting the thickness of layer A within the above range, it tends to be possible to further improve the oxygen absorbing performance and to prevent economic efficiency from being impaired.
  • ⁇ Polyester compound> The ⁇ polyester compound> of the sixth embodiment is as described in the section of ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the sixth embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • the resin composition constituting layer A of the sixth embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the sixth embodiment.
  • thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. From the viewpoint of effectively exhibiting the oxygen absorption effect, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymer are more preferable.
  • layer A contains a polyolefin, it can be distinguished from layer B, which will be described later, depending on whether or not it contains the polyester compound (a).
  • ⁇ Polyolefin (b)> ⁇ Polyolefin (b)> in the sixth embodiment is as described in the column of ⁇ polyolefin> in the second embodiment.
  • [Container manufacturing method] [Method for manufacturing a container] in the sixth embodiment is the same as described in the section "Method for manufacturing a multilayer injection molded body" in the second embodiment.
  • [Container shape] of the sixth embodiment is as described in the section of [Medical multilayer container type] of the fourth embodiment.
  • a method for storing an adrenaline-containing drug solution according to a seventh embodiment is a method for storing an adrenaline-containing drug solution in a container, wherein the container includes an oxygen-absorbing layer A (containing the resin composition according to the first embodiment). (hereinafter also referred to as "layer A”); and a resin layer B (hereinafter also referred to as "layer B") disposed on both sides of the oxygen absorbing layer A and containing polyolefin (b). , is the method. Note that in the seventh embodiment, descriptions of other embodiments can be cited as appropriate.
  • the method for storing an adrenaline-containing drug solution according to the seventh embodiment is configured as described above, when storing the adrenaline-containing drug solution, oxidation of adrenaline can be prevented and components eluted from the container can be reduced. In addition, it is possible to reduce the color change of the container after storage. As described above, the method for preserving an adrenaline-containing drug solution according to the seventh embodiment allows the adrenaline-containing drug solution to be stored under a low oxygen concentration. Therefore, deterioration of adrenaline and decrease in drug efficacy are suppressed. Furthermore, when carrying or using adrenaline-containing medicinal solutions, there is less risk of breakage compared to glass, and it is also lightweight, making it highly convenient.
  • the thickness of layer A is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 700 ⁇ m, and particularly preferably 100 to 500 ⁇ m. By setting it as this range, the oxygen absorption performance of layer A tends to be further improved, and it becomes possible to prevent economic efficiency from being impaired.
  • ⁇ Polyester compound> of the seventh embodiment is as described in the section of ⁇ polyester compound> of the first embodiment.
  • ⁇ Transition metal catalyst> of the seventh embodiment is as described in the section of ⁇ transition metal catalyst> of the first embodiment.
  • the layer (A) may contain a thermoplastic resin other than the polyester compound (a).
  • thermoplastic resins are as described as "thermoplastic resin" in the first embodiment.
  • resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
  • the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
  • [Layer B] of the seventh embodiment is as described in the section of [Layer B (resin layer containing polyolefin (b))] of the fourth embodiment.
  • ⁇ Polyolefin (b)> ⁇ Polyolefin (b)> in the seventh embodiment is as described in the column of ⁇ polyolefin> in the second embodiment.
  • [Container manufacturing method] [Method for manufacturing a container] in the seventh embodiment is the same as described in the section "Method for manufacturing a multilayer injection molded body" in the second embodiment.
  • [Container shape] in the seventh embodiment is as described in the section [Type of medical multilayer container] in the fourth embodiment.
  • the adrenaline concentration of the adrenaline-containing drug solution in the seventh embodiment is not particularly limited and can be appropriately determined depending on the application, and is preferably 0.01 to 10 mg/mL, more preferably 0.02 to 9 mg/mL. mL, more preferably 0.05 to 8 mg/mL. Additionally, the adrenaline-containing drug solution may contain additives such as sodium pyrosulfite, sodium hydrogensulfite, chlorobutanol, hydrochloric acid, sodium hydroxide, and sodium chloride.
  • the storage conditions for the adrenaline-containing drug solution in the seventh embodiment are not particularly limited, and may be the same as the storage conditions for general adrenaline-containing drug solutions.
  • the adrenaline-containing drug solution in the seventh embodiment is preferably stored at a temperature of 1 to 30° C. and a humidity of 75% RH or less.
  • the modified polyester according to the eighth embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
  • the modified polyester according to the eighth embodiment preferably has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and absorbs oxygen regardless of the presence or absence of moisture in the preserved material. It can be used in a wide range of applications, such as foods, cooked foods, beverages, medicines, and health foods, as it can absorb oxygen and does not cause odor or yellowing after absorbing oxygen. can.
  • this modified polyester it is possible to realize an oxygen-absorbing film or the like in which the decrease in strength after oxygen absorption is extremely small and the deterioration of strength over time is suppressed.
  • ⁇ Polyester compound> The ⁇ polyester compound> of the eighth embodiment is as described in the section of ⁇ polyester compound> of the first embodiment.
  • the radiation treatment examples include ultraviolet ray treatment, X-ray treatment, ⁇ -ray treatment, and electron beam treatment. More preferred are gamma ray treatment and electron beam treatment.
  • the mechanism by which oxygen barrier performance is developed by these treatments is not clear, it is speculated that the oxidation reaction mechanism is caused by the extraction of hydrogen at the benzylic position of the tetralin ring to generate radicals. It is not easy to identify the structure of modified polyester obtained by radiation treatment.
  • the radiation dose in the radiation treatment is preferably 5 kGy or more and less than 60 kGy, more preferably 10 kGy or more and less than 50 kGy.
  • ⁇ Usage mode> of the eighth embodiment is as described in the ⁇ Usage mode> column of the first embodiment.
  • Oxygen barrier property was evaluated by the oxygen permeability of the vial obtained by the method described below.
  • the oxygen permeability was measured using OX-TRAN2/21 manufactured by MOCON under measurement conditions of 23° C. and 65% RH. A sample whose oxygen permeability was less than 0.0005 cc/package/day, which is the lower detection limit of the device, was judged to have good oxygen barrier properties.
  • the color change ( ⁇ YI) of the container was determined by using a vial obtained by the method described below, filled with 10 cc of distilled water, and sealed with a rubber stopper and an aluminum seal. It was calculated from the difference between the initial yellowness (YI) measured using a color measuring device COH-300A and the yellowness (YI) after storage for 3 months at 40° C. and 20% RH. When ⁇ YI did not exceed 2, it was judged that the color tone change was small.
  • Moldability Moldability was confirmed by visually observing the mold after 1000 shot molding of the vial obtained by the method described below. Those with no adhesion of mold deposits were judged to have passed.
  • a vial having a three-layer structure of layer B/layer A/layer B from the outside was obtained, having an inner volume of 10 cc, an overall height of 45 mm, an outer diameter of 24 mm ⁇ , and a wall thickness of 1 mm, and having a shape according to ISO 8362-1.
  • layer B a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 690R") was used, and for layer A, the resin compositions of Examples and Comparative Examples were used.
  • ZEONEX registered trademark
  • polyester compound (Manufacturing example 1) 8,668.9 g of dimethyl 2,6-naphthalene dicarboxylate was placed in a 30 L polyester resin manufacturing equipment equipped with a packed column type rectification column, partial condenser, total condenser, cold trap, stirrer, heating device, and nitrogen introduction tube. , 4895.5 g of dimethyl tetralin-2,6-dicarboxylate, 4594.6 g of dimethyl isophthalate, 8811.8 g of ethylene glycol, 0.559 g of potassium titanium oxalate dihydrate, and 1.519 g of zinc acetate were charged, and the mixture was heated in a nitrogen atmosphere.
  • the temperature was raised to 230°C to carry out the transesterification reaction.
  • the reaction conversion rate of the dicarboxylic acid component was 95% or more, 1039.6 g of germanium oxide 0.5 wt% ethylene glycol solution and 154.6 g of phosphoric acid ethylene glycol solution were added, and the temperature was gradually increased and the pressure was reduced to 270%.
  • Polycondensation was carried out at 133 Pa or less at a temperature of 133 Pa or less, and after reaching a predetermined torque, the product was taken out in the form of a strand from the bottom of the production apparatus and cut with a pelletizer to obtain a polyester compound (1) in the form of pellets.
  • the mol% of the structural units represented by formulas (1) to (3) shown in Table 1 is a value calculated from the amount of the corresponding monomer charged.
  • a polyester compound (6) was prepared in the same manner as in Production Example 1, except that dimethyl 2,6-naphthalenedicarboxylate and dimethyl isophthalate were not used, and dimethyl tetralin-2,6-dicarboxylate was 18147.3 g and ethylene glycol was 8166.1 g. I got it.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm.
  • a resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer.
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 2 A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 3 A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 1 A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1).
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 2 A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1).
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 3 A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1).
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • Example 4 A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1).
  • the resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
  • the resin composition of the first embodiment exhibits good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and excellent moldability. This was confirmed.
  • Shape/strength retention was determined by storing samples at 40°C, 100% RH, using a vial obtained by the method described below, filled with 10 cc of distilled water, and sealed with a rubber stopper and an aluminum seal. It was stored for 3 months. Thereafter, the vial was disassembled, the intermediate layer (A) was taken out, and the condition of the intermediate layer (A) was visually confirmed. Those in which the shape and strength of the intermediate layer (A) were maintained were considered to be passed.
  • a vial having a three-layer structure of layer B/layer A/layer B from the outside was obtained, having an inner volume of 10 cc, an overall height of 45 mm, an outer diameter of 24 mm ⁇ , and a wall thickness of 1 mm, and having a shape according to ISO 8362-1.
  • the material constituting layer B is injected from the injection cylinders, and then the layer The material constituting A is injected simultaneously with the resin constituting layer B from another injection cylinder, and then the required amount of resin constituting layer B is injected to fill the cavity in the injection mold, thereby forming the inner layer of the container.
  • a multilayer injection molded product with a three-layer structure of B/A/B was obtained, in which the thickness of (layer B) was 200 ⁇ m, the thickness of the intermediate layer (layer A) was 300 ⁇ m, and the thickness of the outer layer of the container (layer B) was 500 ⁇ m.
  • the obtained multilayer injection molded product was cooled to a predetermined temperature, transferred to a blow mold, and then blow molded to produce a vial (bottle part).
  • a cycloolefin polymer manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 690R" was used as layer B, and layer A of the example and comparative example.
  • a resin composition was used. (Injection and blow conditions) Injection cylinder temperature for layer B: 325°C Injection cylinder temperature for layer A: 220°C Temperature of resin flow path in injection mold: 285°C Injection mold temperature: 80°C Blow mold temperature: 20°C Primary blow pressure: 1.0MPa Secondary blow pressure: 3.0MPa
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm.
  • a resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer.
  • a multilayer injection molded product (1) (vial) is molded by the method described above, and the multilayer injection molded product (1) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in.
  • Example 2 A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (2) (vial) is molded by the method described above, and the multilayer injection molded product (2) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Example 3 A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. Using the obtained resin composition, a multilayer injection molded product (3) (vial) is molded by the method described above, and the multilayer injection molded product (3) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Example 1 A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (4) (vial) is molded by the method described above, and the multilayer injection molded product (4) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Example 2 A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (5) (vial) is molded by the method described above, and the multilayer injection molded product (5) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Example 3 A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (6) (vial) is molded by the method described above, and the multilayer injection molded product (6) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Example 4 A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (7) (vial) is molded by the method described above, and the multilayer injection molded product (7) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • Nylon MXD6 manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon S7007
  • cobalt (II) stearate was blended to a cobalt content of 20 ppm
  • a vial was prepared.
  • a resin composition (8) was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer A during production was 260°C.
  • a multilayer injection molded product (8) (vial) is molded by the method described above, and the multilayer injection molded product (8) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
  • the multilayer injection molded article of the second embodiment exhibited good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and good moldability. It was confirmed that it is excellent.
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm.
  • a resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer.
  • a multilayer body (1) (vial) is molded by the method described above, and the multilayer body (1) is tested by the method described above for oxygen barrier properties, color change of the container, moldability, and shape. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 2 A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (2) (vial) is molded by the method described above, and the multilayer body (2) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 3 A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. Using the obtained resin composition, a multilayer body (3) (vial) is molded by the method described above, and the multilayer body (3) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 1 A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (4) (vial) is molded by the method described above, and the multilayer body (4) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 2 A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (5) (vial) is molded by the method described above, and the multilayer body (5) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 3 A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (6) (vial) is molded by the method described above, and the multilayer body (6) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Example 4 A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (7) (vial) is molded by the method described above, and the multilayer body (7) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • Nylon MXD6 manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon S7007
  • cobalt (II) stearate was blended to a cobalt content of 20 ppm
  • a vial was prepared.
  • a resin composition (8) was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer A during production was 260°C.
  • a multilayer body (8) (vial) is molded by the method described above, and the multilayer body (8) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above. ⁇ Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
  • the multilayer body of the third embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability. was confirmed.
  • Drop test A sample obtained by the method described below was filled with 10 cc of distilled water and sealed with a rubber stopper and an aluminum seal, and was used as a measurement sample. After being stored for 1 day at 23°C and 65% RH, it was dropped to 150 cm. The product was dropped from a height of If there was no damage in all 20 samples, it was judged as "passed".
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm.
  • a resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer.
  • the obtained resin composition was molded into a vial using the method described above, and the oxygen barrier property, water vapor barrier property, color change of the container, moldability, drop strength, and shape/strength maintenance were evaluated. The evaluation results are shown in Table 4.
  • Example 2 A vial was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 3 A vial was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to give a cobalt content of 20 ppm.
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 1 A vial was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 2 A vial was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 3 A vial was obtained in the same manner as in Example 1, except that polyester compound (5) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 4 A vial was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 5 A vial was obtained in the same manner as in Example 1, except that the resin for layer B was polycarbonate (Lexan 144R manufactured by Sabic) and the injection cylinder temperature for layer B was 280°C.
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • Example 6 Comparative example 6 Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm.
  • a resin composition was obtained in the same manner as in Example 1.
  • a vial was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for the intermediate layer (layer A) was 260° C. for the obtained resin composition.
  • the obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
  • the medical multilayer container of the fourth embodiment has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape retention, and has excellent It was confirmed that the color tone of (after) was good.
  • Oxygen barrier property was evaluated by the oxygen permeability of the syringe obtained by the method described below. The oxygen permeability was measured using OX-TRAN2/21 manufactured by MOCON under measurement conditions of 23° C. and 65% RH. A sample whose oxygen permeability was less than 0.0005 cc/package/day, which is the lower detection limit of the device, was judged to have good oxygen barrier properties.
  • the water vapor barrier property was measured by using a syringe obtained by the method described below filled with 5 cc of distilled water and sealed with a top cap and a stopper as a measurement sample, and comparing the initial mass and 40°C 20%. It was calculated from the difference from the mass after being stored for 3 months under RH storage conditions. The water vapor barrier property was judged to be good if it was less than 0.03 cc/package/3 months.
  • Container color change ( ⁇ YI) color change after oxygen absorption
  • ⁇ YI color change after oxygen absorption
  • the color tone change ( ⁇ YI) of the container was measured by using a syringe obtained by the method described below filled with 5 cc of distilled water and sealed with a top cap and a stopper as a measurement sample. It was calculated from the difference between the initial yellowness index (YI) measured using a temperature measuring device COH-300A and the yellowness index (YI) after storage for 3 months in an air atmosphere at 40° C. and 20% RH. A sample whose ⁇ YI did not exceed 1 was judged to have a small change in color tone.
  • Shape/strength retention was determined by storing the sample at 40°C, 100% RH, using a syringe obtained by the method described below, filled with 5 cc of distilled water, and sealed with a top cap and stopper. Stored for months. Thereafter, the syringe was disassembled and the state of the intermediate layer (layer A) taken out was visually confirmed. If the intermediate layer (layer A) did not collapse or the like and maintained its shape, it was considered that the shape and strength were maintained and it was judged as "passed”.
  • a syringe having a three-layer structure of layer B/layer A/layer B from the outside and having an internal volume of 5 mL in accordance with ISO 11040-6 was obtained.
  • an injection molding machine manufactured by Sodick Corporation, model: GL-150
  • the material constituting layer B is injected from the injection cylinder, and then the material constituting layer A is injected into another injection molding machine.
  • the material constituting layer B is simultaneously injected, and then the required amount of material constituting layer B is injected to fill the cavity in the injection mold, thereby forming the three layers of layer B/layer A/layer B.
  • a syringe with a layered structure was obtained. Note that, for layer B, a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 5000”) was used, and for layer A, the resin compositions of Examples and Comparative Examples were used.
  • Injection cylinder temperature for layer B 315°C Injection cylinder temperature for layer A: 265°C Injection mold inner layer B resin flow path temperature: 320°C Injection mold inner layer A resin flow path temperature: 280°C Injection mold temperature: 30°C
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm.
  • a resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer.
  • the resulting resin composition was molded into a syringe using the method described above, and evaluated for oxygen barrier properties, water vapor barrier properties, color change in the container, moldability, shape/strength maintenance, and elution test. The evaluation results are shown in Table 5.
  • Example 2 A syringe was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 3 A syringe was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm.
  • the obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 1 A syringe was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1).
  • the obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 2 A syringe was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 3 A syringe was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1).
  • the obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 4 A syringe was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 5 A syringe was obtained in the same manner as in Example 1, except that the resin for layer B was polycarbonate (Lexan 144R manufactured by Sabic) and the injection cylinder temperature for layer B was 280°C. The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • Example 6 Comparative example 6 Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm.
  • a resin composition was obtained in the same manner as in Example 1.
  • a syringe was obtained using the obtained resin composition in the same manner as in Example 1.
  • the obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
  • the prefill syringe of the fifth embodiment has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape retention, and has little elution from the container. It was confirmed that the visibility of the contents was good because the color change of the container after storage was small.
  • TOC measurement Equipment: TOC-VCPH manufactured by Shimadzu Corporation Combustion furnace temperature: 720°C Gas/Flow rate: High purity air, TOC meter 150ml/min Injection volume: 150 ⁇ L Detection limit: 1 ⁇ g/mL
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) so that the amount of cobalt was 2.5 ppm, and the resulting oxygen-absorbing resin composition was transferred to a twin-screw machine with two screws each having a diameter of 20 mm.
  • the oxygen-absorbing resin composition (1) was extruded in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer to obtain an oxygen-absorbing resin composition (1) in the form of pellets.
  • the obtained oxygen-absorbing resin composition was molded into a vial using the method described above, and the antibody activity retention rate, elution test, and container color change were evaluated. The evaluation results are shown in Table 6.
  • Example 2 A vial was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • Example 3 An oxygen-absorbing resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm.
  • the obtained oxygen-absorbing resin composition was molded into a vial using the method described above, and the obtained vial was evaluated for antibody activity retention, elution test, and color change of the container using the method described above. The evaluation results are shown in Table 6.
  • Example 1 A vial was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1).
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • Example 2 A vial was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1).
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • Example 3 A vial was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1).
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • Example 4 A vial was obtained in the same manner as in Example 1, except that polyester compound (6) was used instead of polyester compound (1).
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • Example 5 Comparative example 5 Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm.
  • An oxygen-absorbing resin composition (6) was obtained in the same manner as in Example 1.
  • a vial was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer (A) was 260° C. for the obtained oxygen-absorbing resin composition.
  • the obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
  • the biopharmaceuticals preserved by the preservation method of the sixth embodiment have a high activity retention rate, little elution from the container, and little change in color of the container after storage. Therefore, it was confirmed that the visibility of the contents was also good.
  • a prefill syringe (inner capacity 1 mL (long)) having a three-layer structure of layer B/layer A/layer B from the outside was obtained as follows.
  • an injection molding machine manufactured by Sodick Corporation, model: GL-150
  • the material constituting layer B is injected from the injection cylinder, and then the material constituting layer A is injected into another injection molding machine.
  • the resin constituting layer B is simultaneously injected, and then the required amount of resin constituting layer B is injected to fill the cavity in the injection mold, thereby forming three layers: layer B/layer A/layer B.
  • Injection and blow conditions Injection cylinder temperature for layer (B): 315°C Injection cylinder temperature for layer (A): 265°C Injection mold inner layer (B) resin flow path temperature: 320°C Injection mold inner layer (A) resin flow path temperature: 280°C Injection mold temperature: 30°C
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 Cobalt (II) stearate was blended with the polyester compound (1) so that the amount of cobalt was 2.5 ppm, and the resulting oxygen-absorbing resin composition was passed through a twin-screw machine with two screws each having a diameter of 20 mm. Using an extruder, the oxygen-absorbing resin composition (1) was extruded in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer to obtain an oxygen-absorbing resin composition (1) in the form of pellets.
  • the obtained oxygen-absorbing resin composition was molded into a prefill syringe using the method described above, and a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color tone change of the container were performed.
  • the evaluation results are shown in Table 7.
  • Example 2 A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • Example 3 An oxygen-absorbing resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm.
  • the obtained oxygen-absorbing resin composition was molded into a prefill syringe using the method described above, and the obtained prefill syringe was subjected to a storage test, an elution test, and an evaluation of color tone change of the container for the adrenaline-containing drug solution using the method described above. did.
  • the evaluation results are shown in Table 7.
  • Example 1 A prefill syringe was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1).
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • Example 2 A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1).
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • Example 3 A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1).
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • Example 4 A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1).
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • Example 5 Example except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm.
  • An oxygen-absorbing resin composition (6) was obtained in the same manner as in Example 1.
  • a prefill syringe was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer (A) was 260° C. for the obtained oxygen-absorbing resin composition.
  • the obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
  • the adrenaline-containing drug solution stored by the method for preserving an adrenaline-containing drug solution according to the seventh embodiment did not undergo yellowing (that is, did not undergo oxidation). ), it was confirmed that there was little elution from the container, and the color change of the container after storage was small, so the visibility of the contents was also good.
  • Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
  • Example 1 After molding a vial using the polyester compound (1) by the method described above, the vial was irradiated with 20 kGy of gamma rays to obtain a vial in which the modified polyester was the intermediate layer. The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (1), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • Example 2 A vial having a modified polyester as an intermediate layer was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (2), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • Example 3 A vial in which the intermediate layer was made of modified polyester was obtained in the same manner as in Example 1 except that the ⁇ -ray irradiation amount was 40 kGy. The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (1), the film obtained by the above method was irradiated with 40 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • Example 1 A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (3), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • Example 2 A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (4) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (4), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate the shape and strength retention properties. The evaluation results are shown in Table 8.
  • Example 3 A vial in which the modified polyester was used as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (5) was used instead of polyester compound (1).
  • the obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (5), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate the shape and strength retention properties. The evaluation results are shown in Table 8.
  • Example 4 A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (6) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (6), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • Example 5 A vial was obtained in the same manner as in Example 1, except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of the polyester compound (1), with the nylon MXD6 modified product serving as the intermediate layer. Ta.
  • the obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using nylon MXD6, the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
  • the vial has an intermediate layer made of unmodified polyester that does not irradiate the vial with gamma rays. Oxygen barrier properties, color change of the container, and formability An evaluation was conducted. Further, using polyester compound (1), the shape and strength maintenance properties of unmodified polyester, which was not irradiated with gamma rays, were evaluated for the film obtained by the method described above. The evaluation results are shown in Table 8.
  • the modified polyester of the eighth embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability. This was confirmed.

Abstract

The present invention addresses the problem of providing a resin composition or the like that exhibits favorable oxygen barrier performance and a favorable color tone after oxygen absorption, and that is excellent in strength and shape retention as well as moldability. The problem can be solved by a resin composition containing a transition metal catalyst and a polyester compound having a prescribed structure.

Description

樹脂組成物resin composition
<<第1の実施形態>>
 本発明の第1の実施形態は、樹脂組成物に関し、特に、所定の構造を有するポリエステル化合物と遷移金属触媒とを少なくとも含有する樹脂組成物に関する。
<<First embodiment>>
A first embodiment of the present invention relates to a resin composition, and particularly to a resin composition containing at least a polyester compound having a predetermined structure and a transition metal catalyst.
<<第2の実施形態>>
 本発明の第2の実施形態は、多層射出成形体、及び該多層射出成形体を含む容器に関する。
<<Second embodiment>>
A second embodiment of the present invention relates to a multilayer injection molded article and a container containing the multilayer injection molded article.
<<第3の実施形態>>
 本発明の第3の実施形態は、多層体、及び該多層体を含む容器に関する。
<<Third embodiment>>
A third embodiment of the invention relates to a multilayer body and a container containing the multilayer body.
<<第4の実施形態>>
 本発明の第4の実施形態は、医療用多層容器に関する。
<<Fourth embodiment>>
A fourth embodiment of the present invention relates to a multilayer medical container.
<<第5の実施形態>>
 本発明の第5の実施形態は、プレフィル用シリンジに関する。
<<Fifth embodiment>>
A fifth embodiment of the present invention relates to a prefill syringe.
<<第6の実施形態>>
 本発明の第6の実施形態は、バイオ医薬品を、酸素バリア性能および酸素吸収性能を有する多層容器内に保存するバイオ医薬品の保存方法に関する。
<<Sixth embodiment>>
The sixth embodiment of the present invention relates to a method for preserving a biopharmaceutical in which the biopharmaceutical is stored in a multilayer container having oxygen barrier performance and oxygen absorption performance.
<<第7の実施形態>>
 本発明の第7の実施形態は、アドレナリン含有薬液の保存方法に関する。
<<Seventh embodiment>>
A seventh embodiment of the present invention relates to a method for preserving an adrenaline-containing drug solution.
<<第8の実施形態>>
 本発明の第8の実施形態は、改質ポリエステルに関し、特に、所定の構造を有するポリエステル化合物に放射線照射処理を行った改質ポリエステルに関する。
<<Eighth embodiment>>
The eighth embodiment of the present invention relates to a modified polyester, and particularly to a modified polyester obtained by subjecting a polyester compound having a predetermined structure to radiation irradiation treatment.
 食品、飲料、医薬品、化粧品に代表される、酸素の影響を受けて変質或いは劣化しやすい各種物品の酸素酸化を防止し、長期に保存する目的で、これらを収納した包装体内の酸素除去を行う酸素吸収剤が使用されている。 To prevent oxygen oxidation of various products such as foods, beverages, pharmaceuticals, and cosmetics that are susceptible to deterioration or deterioration due to the influence of oxygen, and to preserve them for long periods of time, we remove oxygen from the packaging that contains these products. Oxygen absorbers are used.
 酸素吸収剤としては、酸素吸収能力、取り扱い易さ、安全性の点から、鉄粉を反応主剤とする酸素吸収剤が一般的に用いられている。しかし、この鉄系酸素吸収剤は、金属探知機に感応するために、異物検査に金属探知機を使用することが困難であった。また、鉄系酸素吸収剤を同封した包装体は、発火の恐れがある為に電子レンジによる加熱ができない。さらに、鉄粉の酸化反応には水分が必須であるため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。 As the oxygen absorbent, an oxygen absorbent containing iron powder as the main reaction agent is generally used from the viewpoint of oxygen absorption capacity, ease of handling, and safety. However, since this iron-based oxygen absorbent is sensitive to metal detectors, it has been difficult to use metal detectors for foreign object inspection. Furthermore, a package enclosing an iron-based oxygen absorber cannot be heated in a microwave oven due to the risk of ignition. Furthermore, since moisture is essential for the oxidation reaction of iron powder, the oxygen absorption effect could only be achieved if the object to be preserved had a high moisture content.
 また、熱可塑性樹脂に鉄系酸素吸収剤を配合した酸素吸収性樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成することにより、容器のガスバリア性の向上を図るとともに容器自体に酸素吸収機能を付与した包装容器の開発が行われている(特許文献1参照)。しかし、これも同様に、金属探知機に感応するため当該用途で使用できない、電子レンジによる加熱ができない、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。さらに、不透明性の問題により内部視認性が不足するといった課題を有している。 In addition, by constructing the container using a multilayer material with an oxygen-absorbing layer made of an oxygen-absorbing resin composition containing thermoplastic resin and an iron-based oxygen absorber, we aim to improve the gas barrier properties of the container and improve the effectiveness of the container itself. BACKGROUND ART A packaging container with an oxygen absorption function is being developed (see Patent Document 1). However, this method also has the same problems, such as being sensitive to metal detectors and therefore not being able to be used for that purpose, not being able to be heated in a microwave oven, and being effective only for high-moisture materials. Furthermore, there is a problem of insufficient internal visibility due to the problem of opacity.
 上記のような事情から、有機系の物質を反応主剤とする酸素吸収剤が望まれている。有機系の物質を反応主剤とする酸素吸収剤としては、アスコルビン酸を主剤とする酸素吸収剤が知られている(特許文献2参照)。 Due to the above-mentioned circumstances, an oxygen absorbent that uses an organic substance as the main reaction agent is desired. As an oxygen absorbent using an organic substance as a main reaction agent, an oxygen absorbent using ascorbic acid as a main agent is known (see Patent Document 2).
 他方、樹脂と遷移金属触媒からなり、酸素捕捉特性を有する酸素吸収性樹脂組成物が知られている。例えば、酸化性有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属触媒からなる樹脂組成物が知られている(特許文献3参照)。さらに、この特許文献3には、この樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムも例示されている。 On the other hand, oxygen-absorbing resin compositions that are composed of a resin and a transition metal catalyst and have oxygen-scavenging properties are known. For example, a resin composition comprising polyamide, particularly xylylene group-containing polyamide, and a transition metal catalyst as an oxidizing organic component is known (see Patent Document 3). Furthermore, this Patent Document 3 also exemplifies oxygen absorbers, packaging materials, and multilayer laminated films for packaging obtained by molding this resin composition.
 また、酸素吸収に水分を必要としない酸素吸収性樹脂組成物として、炭素-炭素不飽和結合を有する樹脂と遷移金属触媒からなる酸素吸収性樹脂組成物が知られている(特許文献4参照)。 Furthermore, as an oxygen-absorbing resin composition that does not require moisture for oxygen absorption, an oxygen-absorbing resin composition consisting of a resin having a carbon-carbon unsaturated bond and a transition metal catalyst is known (see Patent Document 4). .
 さらに、酸素を捕集する組成物として、置換されたシクロヘキセン官能基を含むポリマーまたは該シクロヘキセン環が結合した低分子量物質と遷移金属とからなる組成物が知られている(特許文献5参照)。 Further, as a composition for scavenging oxygen, a composition consisting of a transition metal and a polymer containing a substituted cyclohexene functional group or a low molecular weight substance to which the cyclohexene ring is bonded is known (see Patent Document 5).
 出願人はテトラリン環を有する酸素吸収性樹脂組成物を提案している(特許文献6参照)。 The applicant has proposed an oxygen-absorbing resin composition having a tetralin ring (see Patent Document 6).
 ところで、射出成形は、複雑な形状を有する成形体を作製可能であり、生産性も高いため、機械部品、自動車部品、電気・電子部品、食品・医薬用容器等に広く普及している。近年、包装容器としては、軽量で透明且つ易成形性等の利点を有するため、各種プラスチック容器が使用されている。代表的なプラスチック容器としては、例えば、飲料等の容器については、蓋を十分に締めることができるように口栓にネジ形状が形成された射出成形体(以下、「インジェクション成形体」とも言う)が多用されている。 Incidentally, injection molding can produce molded bodies with complex shapes and has high productivity, so it is widely used in the production of mechanical parts, automobile parts, electrical/electronic parts, food/medicine containers, etc. In recent years, various plastic containers have been used as packaging containers because they have advantages such as being lightweight, transparent, and easily moldable. Typical plastic containers include, for example, containers for beverages, etc., which are injection-molded bodies (hereinafter also referred to as "injection-molded bodies") with a screw-shaped spout formed to allow the lid to be sufficiently tightened. is frequently used.
 射出成形体に用いられる材料としては、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル、ポリスチレン等の汎用性熱可塑性樹脂が挙げられる。特に、ポリエチレンテレフタレート(PET)等のポリエステルを主体とするインジェクション成形体が、お茶、果汁飲料、炭酸飲料、アルコール飲料等の飲料用プラスチック容器として広く利用されている。しかし、熱可塑性樹脂を主体としたインジェクション成形体は包装材料として優れているが、ガラス瓶や金属製容器と異なり、外部から酸素が透過してしまう性質があり、それに充填され密閉された内容物の保存性に問題が残っている。このような汎用性樹脂からなるインジェクション成形体にガスバリア性を付与するために、ガスバリア層を中間層として有する多層インジェクション成形体が実用化されている。 Materials used for the injection molded article include general-purpose thermoplastic resins such as polyolefins (polyethylene, polypropylene, etc.), polyester, and polystyrene. In particular, injection molded products mainly made of polyester such as polyethylene terephthalate (PET) are widely used as plastic containers for beverages such as tea, fruit juice drinks, carbonated drinks, and alcoholic drinks. However, injection molded products made mainly of thermoplastic resin are excellent as packaging materials, but unlike glass bottles and metal containers, they have the property of allowing oxygen to pass through from the outside, and the contents filled and sealed are There are still problems with storage. In order to impart gas barrier properties to injection molded products made of such general-purpose resins, multilayer injection molded products having a gas barrier layer as an intermediate layer have been put into practical use.
 ところで、従来、薬液を密閉状態で充填、保管する為の医療用包装容器として、ガラス製のアンプル、バイアル、プレフィルドシリンジ等が使用されてきた(なお、プレフィル用シリンジとは、予めバレル内に薬剤を密封状態に収容しておき、使用に際し密封状態を解除して前記薬剤を注出し得る注射器であり、その使用簡便性のために広く用いられている。)。しかしながら、ガラス製容器は、薬剤等が充填された状態での保管中に容器の内容液にナトリウムイオン等が溶出したり、フレークスという微細な物質を発生したり、着色した遮光性ガラス製容器を使用する場合に着色用の金属が内容物に混入する、割れやすい、などの問題があった。また、充填後の容器内部に残存する酸素により薬剤が劣化する問題があった。更に、比重が大きい為に医療用包装容器が重くなってしまうという問題点があり、代替材料の開発が期待されていた。 By the way, glass ampoules, vials, prefilled syringes, etc. have traditionally been used as medical packaging containers for filling and storing drug solutions in a sealed state (note that a prefilled syringe is a container in which the drug is prefilled in the barrel). This syringe is a syringe that can be sealed in a sealed state and released from the sealed state to dispense the drug, and is widely used because of its ease of use.) However, when glass containers are stored filled with drugs, etc., sodium ions, etc. may be eluted into the liquid inside the container, minute substances called flakes may be generated, and colored light-shielding glass containers may not be used. When used, there were problems such as coloring metals getting mixed into the contents and easy breakage. In addition, there was a problem in that the medicine deteriorated due to oxygen remaining inside the container after filling. Furthermore, there is a problem in that medical packaging containers become heavy due to their high specific gravity, and there have been expectations for the development of alternative materials.
 プラスチックは、ガラスに比べて軽量であり、例えば、ポリカーボネート、ポリプロピレン、シクロオレフィンポリマー等が、ガラス代替のプラスチックとして検討されているが、酸素バリア性、水蒸気バリア性、薬液吸着性が要求を満たせず、代替が進んでいないのが現状である。プラスチックは、ガラス製及び金属製容器と異なり、酸素を透過する性質があり、薬液の保存性に問題がある。このようなプラスチックからなる容器にガスバリア性を付与するために、ガスバリア層を中間層として有する多層容器が提案されている。 Plastics are lighter than glass, and polycarbonate, polypropylene, and cycloolefin polymers, for example, are being considered as plastic substitutes for glass, but their oxygen barrier properties, water vapor barrier properties, and chemical adsorption properties do not meet the requirements. The current situation is that no progress has been made in replacing them. Unlike glass and metal containers, plastic has the property of permeating oxygen, which poses a problem in the storage stability of chemical solutions. In order to impart gas barrier properties to containers made of such plastics, multilayer containers having a gas barrier layer as an intermediate layer have been proposed.
 たとえば、特許文献7においては、バレルの最内層と最外層がポリオレフィン系樹脂からなり、中間層に酸素バリア性に優れた樹脂を使用し、酸素バリア性を向上させたプレフィルドシリンジが提示されている。 For example, Patent Document 7 proposes a prefilled syringe with improved oxygen barrier properties, in which the innermost and outermost layers of the barrel are made of polyolefin resin, and the intermediate layer is made of a resin with excellent oxygen barrier properties. .
 他にも、ガスバリア層としては他に、メタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下、「ナイロンMXD6」と称することがある。)、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニリデン、アルミ箔、カーボンコート、無機酸化物蒸着等のガスバリア層を構成材料として積層する方法が行われているが、成形体内の充填後の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能である。 Other suitable gas barrier layers include polyamide obtained from metaxylylene diamine and adipic acid (hereinafter sometimes referred to as "nylon MXD6"), ethylene-vinyl alcohol copolymer, polyacrylonitrile, and polyamide. Methods of laminating gas barrier layers such as vinylidene chloride, aluminum foil, carbon coat, and inorganic oxide vapor deposition as constituent materials have been used, but the gas in the head space that exists above the contents after filling the molded body is It is not possible to remove residual oxygen.
 近年、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することで、外部から透過してくる酸素を及び容器内部に残存する酸素を吸収することにより、従来の酸素バリア性熱可塑性樹脂を利用した容器以上に内容物の保存性を高める方法が実用化されつつある(下記特許文献8参照)。 In recent years, small amounts of transition metal compounds have been added and mixed with nylon MXD6 to give it an oxygen absorption function, and this has been used as an oxygen barrier material for containers and packaging materials, thereby reducing the amount of oxygen that permeates from the outside. A method is being put into practical use that improves the preservability of the contents by absorbing oxygen remaining inside the container to a greater extent than in containers using conventional oxygen barrier thermoplastic resins (see Patent Document 8 below).
 一方、容器内の酸素を除去するため、酸素吸収剤や酸素吸収性樹脂を使用することは従来から知られている。例えば、樹脂と遷移金属触媒とからなり、酸素捕捉特性を有する酸素吸収性樹脂組成物が知られている。例えば、酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルム、多層容器の例示もある(下記特許文献9参照)。 On the other hand, it has been known for a long time to use an oxygen absorbent or an oxygen absorbing resin to remove oxygen within the container. For example, oxygen-absorbing resin compositions that are composed of a resin and a transition metal catalyst and have oxygen-scavenging properties are known. For example, there are examples of resin compositions having an oxygen-trapping function, oxygen absorbers obtained by molding the resin compositions, packaging materials, multilayer laminated films for packaging, and multilayer containers (see Patent Document 9 below).
 ところで、アドレナリン(「エピネフリン」としても知られる。)は、血圧上昇作用のあるホルモンで、神経伝達物質である。アドレナリンは交感神経の作用が高まると血中に放出され、血圧や血糖値の上昇、心拍数の増加、気管支拡張などを引き起こす。この作用を利用して、強心剤や血圧上昇剤として用いられるほか、血管収縮薬や、気管支喘息発作時の気管支拡張薬としても使用されている。 By the way, adrenaline (also known as "epinephrine") is a hormone that increases blood pressure and is a neurotransmitter. Adrenaline is released into the blood when the action of the sympathetic nervous system increases, causing increases in blood pressure and blood sugar levels, increased heart rate, and bronchodilation. Utilizing this effect, it is used as a cardiotonic agent and a blood pressure increasing agent, as well as a vasoconstrictor and a bronchodilator during bronchial asthma attacks.
 アドレナリンは、注射による、吸入による、または局所使用による投与経路に適した種々の製剤において利用可能である。中でも、アナフィラキシーショック等の救急治療の緊急注射用として使用される場合、プレフィルドシリンジ製剤(「プレフィル用シリンジ」にアドレナリンが事前充填された製剤)が使用されている。また、アドレナリンは、空気に曝されると容易に酸化するため、プレフィルドシリンジ製剤として用いられる場合には、ガラス製のプレフィル用シリンジが使用されている。
 
 
Epinephrine is available in a variety of formulations suitable for routes of administration by injection, inhalation, or topical use. Among these, prefilled syringe preparations (a preparation in which a "prefill syringe" is prefilled with epinephrine) are used for emergency injections for emergency treatment such as anaphylactic shock. Further, since epinephrine is easily oxidized when exposed to air, when used as a prefilled syringe preparation, a glass prefilled syringe is used.

特開平09-234832号公報Japanese Patent Application Publication No. 09-234832 特開昭51-136845号公報Japanese Unexamined Patent Publication No. 51-136845 特開2001-252560号公報Japanese Patent Application Publication No. 2001-252560 特開平05-115776号公報Japanese Patent Application Publication No. 05-115776 特表2003-521552号公報Special Publication No. 2003-521552 特許第6124114号Patent No. 6124114 特開2004-229750号公報Japanese Patent Application Publication No. 2004-229750 特開平2-500846号公報Japanese Patent Application Publication No. 2-500846 特開2009-108153号公報Japanese Patent Application Publication No. 2009-108153
 しかしながら、特許文献2の酸素吸収剤は、そもそも酸素吸収性能が低く、また、被保存物が高水分系のものしか効果を発現しない、比較的に高価である、といった課題を有している。 However, the oxygen absorbent of Patent Document 2 has the problems that its oxygen absorption performance is low to begin with, that it is effective only when the object to be preserved is a high moisture type, and that it is relatively expensive.
 また、特許文献3及び8の樹脂組成物は、遷移金属触媒を含有させキシリレン基含有ポリアミド樹脂を酸化させることで酸素吸収機能を発現させるものであるため、酸素吸収後に樹脂の酸化劣化による高分子鎖の切断が発生し、包装容器そのものの強度が低下するという問題を有している。特許文献9では層間剥離の改善方法が記載されているが、効果は限定的である。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。 In addition, the resin compositions of Patent Documents 3 and 8 express oxygen absorption function by containing a transition metal catalyst and oxidizing the xylylene group-containing polyamide resin, so that after oxygen absorption, polymers due to oxidative deterioration of the resin There is a problem in that chain breakage occurs and the strength of the packaging container itself decreases. Patent Document 9 describes a method for improving delamination, but the effect is limited. Furthermore, this resin composition has the problem that its oxygen absorption performance is still insufficient, and the effect is only exhibited when the preserved material is of high moisture content.
 さらに、特許文献4の酸素吸収性樹脂組成物は、上記と同様に樹脂の酸化にともなう高分子鎖の切断により臭気成分となる低分子量の有機化合物が生成し、酸素吸収後に臭気が発生するという問題がある。 Furthermore, in the oxygen-absorbing resin composition of Patent Document 4, low-molecular-weight organic compounds that become odor components are generated due to cleavage of polymer chains accompanying oxidation of the resin, and odor is generated after oxygen absorption. There's a problem.
 一方、特許文献5の組成物は、シクロヘキセン官能基を含む特殊な材料を用いる必要があり、また、この材料は比較的に臭気が発生しやすい、という課題が依然として存在する。 On the other hand, the composition of Patent Document 5 still has the problem that it is necessary to use a special material containing a cyclohexene functional group, and this material is relatively likely to generate odor.
 特許文献6のテトラリン環を有する酸素吸収性樹脂組成物は酸素吸収後の臭気発生が無く、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有するが、酸素吸収後に著しく黄色化し、包装材料として使用した際に外観が悪化するという課題がある。 The oxygen-absorbing resin composition having a tetralin ring disclosed in Patent Document 6 does not generate any odor after absorbing oxygen and has excellent oxygen-absorbing performance under a wide range of humidity conditions from low humidity to high humidity. There is a problem that it turns yellow and its appearance deteriorates when used as a packaging material.
 特許文献7のプレフィルドシリンジでは、酸素を完全に遮断するには酸素バリア性は不十分であり、また、容器の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能であるという問題があった The prefilled syringe of Patent Document 7 has insufficient oxygen barrier properties to completely block out oxygen, and is also unable to remove residual oxygen in the gas in the head space above the contents of the container. The problem was that it was possible
<<第1の実施形態>>
 本発明の第1の実施形態は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる樹脂組成物を提供することを課題とする。
<<First embodiment>>
A first embodiment of the present invention aims to provide a resin composition that exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
<<第2の実施形態>>
 本発明の第2の実施形態は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する多層射出成形体、及び容器を提供することを課題とする。
<<Second embodiment>>
A second embodiment of the present invention provides a multilayer injection molded article and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. The task is to
<<第3の実施形態>>
 本発明の第3の実施形態は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する多層体、及び容器を提供することを課題とする。
<<Third embodiment>>
A third embodiment of the present invention aims to provide a multilayer body and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. shall be.
<<第4の実施形態>>
 本発明の第4の実施形態は、酸素バリア性、水蒸気バリア性、成形性、落下強度、強度・形状維持性に優れ、保管後(酸素吸収後)の色調が良好である医療用多層容器を提供することを課題とする。
<<Fourth embodiment>>
The fourth embodiment of the present invention provides a medical multilayer container that has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape retention, and has a good color tone after storage (after oxygen absorption). The challenge is to provide.
<<第5の実施形態>>
 本発明の第5の実施形態は、酸素バリア性、水蒸気バリア性、成形性、強度・形状維持性に優れ、容器からの溶出が少なく、また、保管後の容器の色調変化が小さいため内容物視認性も良好であるプレフィル用シリンジを提供することを課題とする。
<<Fifth embodiment>>
The fifth embodiment of the present invention has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape maintenance properties, has little elution from the container, and has little change in color of the container after storage. An object of the present invention is to provide a prefill syringe with good visibility.
<<第6の実施形態>>
 本発明の第6の実施形態は、バイオ医薬品の変質・薬効低下や不純物混入を阻止し、また、保管後の容器の色調変化が小さく内容物視認性の良好な容器を用いた、バイオ医薬品の保存方法を提供することを課題とする。
<<Sixth embodiment>>
The sixth embodiment of the present invention prevents biopharmaceuticals from deterioration, decrease in efficacy, and contamination with impurities, and also uses containers that have little color change after storage and good visibility of contents. The challenge is to provide a preservation method.
<<第7の実施形態>>
 本発明の第7の実施形態は、アドレナリン含有薬液の保存に際して、アドレナリンの酸化を防止でき、かつ、容器からの溶出成分を少なくすることができ、かつ、保管後の容器の色調変化を小さくすることができる、アドレナリン含有薬液の保存方法を提供することを課題とする。
<<Seventh embodiment>>
The seventh embodiment of the present invention can prevent adrenaline from being oxidized, reduce components eluted from the container, and reduce color change of the container after storage when storing an adrenaline-containing drug solution. An object of the present invention is to provide a method for preserving an adrenaline-containing drug solution.
<<第8の実施形態>>
 本発明の第8の実施形態は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる改質ポリエステルを提供することを課題とする。
<<Eighth embodiment>>
The eighth embodiment of the present invention aims to provide a modified polyester that exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
<<第1の実施形態>>
 本発明者らは、樹脂組成物について鋭意検討を進めた結果、所定の構造を有するポリエステル化合物と遷移金属触媒とを含む樹脂組成物により、第1の実施形態の課題が解決されることを見出し、本発明を完成した。
<<First embodiment>>
As a result of intensive studies on resin compositions, the present inventors discovered that the problems of the first embodiment can be solved by a resin composition containing a polyester compound having a predetermined structure and a transition metal catalyst. , completed the invention.
<<第2の実施形態>>
 本発明者らは、多層射出成形体について鋭意検討を進めた結果、所定の構造を有するポリエステル化合物(a)と遷移金属触媒とを含有する樹脂組成物を含有する層(A)と、前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)と、を含有する多層射出成形体により、第2の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Second embodiment>>
As a result of intensive studies on multilayer injection molded products, the present inventors discovered that a layer (A) containing a resin composition containing a polyester compound (a) having a predetermined structure and a transition metal catalyst, The inventors have discovered that the problems of the second embodiment can be solved by a multilayer injection molded article containing a layer (B) containing a thermoplastic resin (b) different from the compound (a), and have completed the present invention. .
<<第3の実施形態>>
 本発明者らは、多層体について鋭意検討を進めた結果、所定の構造を有するポリエステル化合物(a)と遷移金属触媒とを含有する樹脂組成物を含有する層(A)と、前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)を前記層(A)の両側に積層した、少なくとも3層を含有する多層体により、第3の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Third embodiment>>
As a result of intensive studies on multilayer bodies, the present inventors found that a layer (A) containing a resin composition containing a polyester compound (a) having a predetermined structure and a transition metal catalyst, and a layer (A) containing a resin composition containing a polyester compound (a) having a predetermined structure and a transition metal catalyst; The problem of the third embodiment is solved by a multilayer body containing at least three layers, in which a layer (B) containing a thermoplastic resin (b) different from a) is laminated on both sides of the layer (A). They discovered this and completed the present invention.
<<第4の実施形態>>
 本発明者らは、医療用多層成形容器について鋭意検討を進めた結果、所定の構造を有するポリエステル化合物と遷移金属触媒を用い、多層成形容器を製造することにより、第4の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Fourth embodiment>>
As a result of intensive studies on multilayer molded containers for medical use, the inventors of the present invention solved the problems of the fourth embodiment by manufacturing a multilayer molded container using a polyester compound having a predetermined structure and a transition metal catalyst. They have found a solution to the problem and have completed the present invention.
<<第5の実施形態>>
 本発明者らは、プレフィル用シリンジについて鋭意検討を進めた結果、所定の構造を有するポリエステル化合物と遷移金属触媒を用い、多層成形容器を製造することにより、第5の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Fifth embodiment>>
As a result of intensive studies on prefill syringes, the inventors of the present invention solved the problems of the fifth embodiment by manufacturing a multilayer molded container using a polyester compound having a predetermined structure and a transition metal catalyst. The present invention was completed based on this discovery.
<<第6の実施形態>>
 本発明者らは、バイオ医薬品の保存方法について鋭意検討を進めた結果、バイオ医薬品を、所定の構造を有するポリエステル化合物と遷移金属触媒を含む多層構造容器に保存することにより、第6の実施形態の課題が解決されることを見出し、本発明を完成させた。
<<Sixth embodiment>>
As a result of intensive studies on storage methods for biopharmaceuticals, the present inventors have developed the sixth embodiment by storing biopharmaceuticals in a multilayer structure container containing a polyester compound having a predetermined structure and a transition metal catalyst. The inventors have discovered that the above problems can be solved, and have completed the present invention.
<<第7の実施形態>>
 本発明者らは、アドレナリン含有薬液の保存方法について鋭意検討を進めた結果、アドレナリン含有薬液を、所定の容器に保存することにより、第7の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Seventh embodiment>>
As a result of intensive studies on storage methods for adrenaline-containing medicinal solutions, the present inventors discovered that the problems of the seventh embodiment can be solved by storing adrenaline-containing medicinal solutions in a predetermined container. Completed the invention.
<<第8の実施形態>>
 本発明者らは、所定の構造を有するポリエステル化合物に放射線処理を行って得られた改質ポリエステルにより、第8の実施形態の課題が解決されることを見出し、本発明を完成した。
<<Eighth embodiment>>
The present inventors have discovered that the problems of the eighth embodiment can be solved by a modified polyester obtained by subjecting a polyester compound having a predetermined structure to radiation treatment, and have completed the present invention.
 すなわち、本発明は、以下の態様を包含する。
[1]
 ポリエステル化合物(a)と、
 遷移金属触媒と、
を含有する樹脂組成物であって、
 前記ポリエステル化合物(a)が、前記ポリエステル化合物(a)における下記式(1)、式(2)及び式(3)で表される構成単位の合計100モル%に対して、
  下記式(1)で表される構成単位を30~55モル%、
  下記式(2)で表される構成単位を15~40モル%、
  下記式(3)で表される構成単位を20~40モル%、
含有する、樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
(上記式(1)~(3)中、nは繰り返し単位の量を表し、それぞれ、前記式(1)で表される構成単位、前記式(2)で表される構成単位及び前記式(3)で表される構成単位の組成比に対応する。)
[2]
 前記ポリエステル化合物(a)が、前記ポリエステル化合物(a)における下記式(1)、式(2)及び式(3)で表される構成単位の合計100モル%に対して、
 前記式(1)で表される構成単位を40~50モル%、
 前記式(2)で表される構成単位を20~35モル%、
 前記式(3)で表される構成単位を25~35モル%、
含有し、
 前記ポリエステル化合物(a)の全構成単位100モル%に対して、前記式(1)~(3)で表される構成単位の合計が95モル%以上である、[1]に記載の樹脂組成物。
[3]
 前記遷移金属触媒が、コバルト、ニッケル及び銅からなる群より選択される少なくとも1種の遷移金属を含む、[1]又は[2]に記載の樹脂組成物。
[4]
 前記遷移金属触媒が、前記ポリエステル化合物(a)の質量を基準として、遷移金属量として0.5~10ppm含まれる、[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 [1]~[4]のいずれかに記載の樹脂組成物を含有する層(A)と、
 前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)と、を含有する、多層射出成形体。
[6]
 [5]に記載の多層射出成形体を含む、容器。
[7]
 [5]に記載の多層射出成形体を、更に加工して得られる、容器。
[8]
 射出ブロー成形又は延伸ブロー成形により得られる、[7]に記載の容器。

[9]
 [1]~[4]のいずれかに記載の樹脂組成物を含有する層(A)と、
 前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)を前記層(A)の両側に積層した、少なくとも3層を含有する多層体。[10]
 [9]に記載の多層体を含む、容器。
[11]
 [1]~[4]のいずれかに記載の樹脂組成物を含有する層(A)と、
 ポリオレフィン(b)を含有する層(B)と、を含み、
 前記層(A)の両側に前記層(B)が積層された、少なくとも3層を含む多層構造を有する、
医療用多層成形容器。
[12]
 前記ポリオレフィン(b)が、シクロオレフィンコポリマー又はシクロオレフィンポリマーである、[11]に記載の医療用多層成形容器。
[13]
 前記医療用多層成形容器が、薬剤を密封状態で収容可能であり、使用に際し前記密封状態を解除して前記薬剤を注出可能なプレフィル用シリンジである、[11]又は[12]に記載の医療用多層成形容器。

[14]
 バイオ医薬品を容器に保存する方法であって、
 前記容器は、[1]~[4]のいずれかに記載の樹脂組成物からなる酸素吸収層(層A)と、前記層Aの両側に積層したポリオレフィン(b)を含有する樹脂層(層B)と、を含む、少なくとも3層を含有する多層構造の容器である、バイオ医薬品の保存方法。
[15]
 前記ポリオレフィン(b)が、シクロオレフィンコポリマー又はシクロオレフィンポリマーである、[14]に記載のバイオ医薬品の保存方法。
[16]
 前記バイオ医薬品が、アドレナリン含有薬液である、[14]又は[15]に記載の保存方法。
[17]
 前記容器が、プレフィル用シリンジである、[14]~[16]のいずれかに記載の保存方法。
[18]
 [1]~[4]のいずれかで定義されるポリエステル化合物(a)に放射線を照射することによって得られる改質ポリエステル。
[19]
 前記放射線が、γ線または電子線である、[18]に記載の改質ポリエステル。
[20]
 前記放射線の照射量が、5kGy以上60kGy未満である、[18]又は[19]に記載の改質ポリエステル。
[21]
 [1]~[4]のいずれかで定義されるポリエステル化合物(a)に放射線を照射する工程を含む、改質ポリエステルの製造方法。
That is, the present invention includes the following aspects.
[1]
polyester compound (a);
a transition metal catalyst;
A resin composition containing,
The polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a),
30 to 55 mol% of the structural unit represented by the following formula (1),
15 to 40 mol% of the structural unit represented by the following formula (2),
20 to 40 mol% of the structural unit represented by the following formula (3),
A resin composition containing.
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

(In the above formulas (1) to (3), n represents the amount of repeating unit, and the structural unit represented by the above formula (1), the structural unit shown by the above formula (2), and the above formula ( Corresponds to the composition ratio of the constituent units expressed in 3).)
[2]
The polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a),
40 to 50 mol% of the structural unit represented by the above formula (1),
20 to 35 mol% of the structural unit represented by the formula (2),
25 to 35 mol% of the structural unit represented by the formula (3),
Contains
The resin composition according to [1], wherein the total of the structural units represented by formulas (1) to (3) is 95 mol% or more with respect to 100 mol% of the total structural units of the polyester compound (a). thing.
[3]
The resin composition according to [1] or [2], wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of cobalt, nickel, and copper.
[4]
The resin composition according to any one of [1] to [3], wherein the transition metal catalyst is contained in an amount of 0.5 to 10 ppm as a transition metal amount based on the mass of the polyester compound (a).
[5]
A layer (A) containing the resin composition according to any one of [1] to [4],
and a layer (B) containing a thermoplastic resin (b) different from the polyester compound (a).
[6]
A container comprising the multilayer injection molded article according to [5].
[7]
A container obtained by further processing the multilayer injection molded article according to [5].
[8]
The container according to [7], which is obtained by injection blow molding or stretch blow molding.

[9]
A layer (A) containing the resin composition according to any one of [1] to [4],
A multilayer body comprising at least three layers, in which a layer (B) containing a thermoplastic resin (b) different from the polyester compound (a) is laminated on both sides of the layer (A). [10]
A container comprising the multilayer body according to [9].
[11]
A layer (A) containing the resin composition according to any one of [1] to [4],
A layer (B) containing polyolefin (b),
having a multilayer structure including at least three layers, in which the layer (B) is laminated on both sides of the layer (A);
Medical multilayer molded container.
[12]
The medical multilayer molded container according to [11], wherein the polyolefin (b) is a cycloolefin copolymer or a cycloolefin polymer.
[13]
[11] or [12], wherein the medical multilayer molded container is a prefill syringe that can house a drug in a sealed state and, in use, can release the sealed state and pour out the drug. Medical multilayer molded container.

[14]
A method for storing biopharmaceuticals in containers, the method comprising:
The container includes an oxygen absorbing layer (layer A) made of the resin composition according to any one of [1] to [4], and a resin layer (layer A) containing polyolefin (b) laminated on both sides of the layer A. B) A method for preserving a biopharmaceutical, the container having a multilayer structure containing at least three layers.
[15]
The method for preserving a biopharmaceutical according to [14], wherein the polyolefin (b) is a cycloolefin copolymer or a cycloolefin polymer.
[16]
The preservation method according to [14] or [15], wherein the biopharmaceutical is an adrenaline-containing drug solution.
[17]
The preservation method according to any one of [14] to [16], wherein the container is a prefill syringe.
[18]
A modified polyester obtained by irradiating the polyester compound (a) defined in any one of [1] to [4] with radiation.
[19]
The modified polyester according to [18], wherein the radiation is a gamma ray or an electron beam.
[20]
The modified polyester according to [18] or [19], wherein the radiation dose is 5 kGy or more and less than 60 kGy.
[21]
A method for producing a modified polyester, comprising a step of irradiating the polyester compound (a) defined in any one of [1] to [4] with radiation.
<<第1の実施形態>>
 本発明の第1の実施形態によれば、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる樹脂組成物を提供することができる。
<<First embodiment>>
According to the first embodiment of the present invention, it is possible to provide a resin composition that exhibits good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and excellent moldability.
<<第2の実施形態>>
 本発明の第2の実施形態によれば、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する多層射出成形体、及び容器を提供することができる。
<<Second embodiment>>
According to the second embodiment of the present invention, there is provided a multilayer injection molded article and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. can do.
<<第3の実施形態>>
 本発明の第3の実施形態によれば、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する多層体、及び容器を提供することができる。
<<Third embodiment>>
According to a third embodiment of the present invention, there is provided a multilayer body and a container that exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. I can do it.
<<第4の実施形態>>
 本発明の第4の実施形態によれば、酸素バリア性、水蒸気バリア性、成形性、落下強度、強度・形状維持性に優れ、保管後(酸素吸収後)の色調が良好である医療用多層容器を提供することができる。
<<Fourth embodiment>>
According to the fourth embodiment of the present invention, the medical multilayer has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape maintenance properties, and has a good color tone after storage (after oxygen absorption). A container can be provided.
<<第5の実施形態>>
 本発明の第5の実施形態によれば、酸素バリア性、水蒸気バリア性、成形性、強度・形状維持性に優れ、容器からの溶出が少なく、また、保管後の容器の色調変化が小さいため内容物視認性も良好であるプレフィル用シリンジを提供することができる。
<<Fifth embodiment>>
According to the fifth embodiment of the present invention, it has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape maintenance properties, has little elution from the container, and has little change in color tone of the container after storage. It is possible to provide a prefill syringe with good visibility of contents.
<<第6の実施形態>>
 本発明の第6の実施形態によれば、バイオ医薬品の変質・薬効低下や不純物混入を阻止し、また、保管後の容器の色調変化が小さく内容物視認性も良好なバイオ医薬品の保存方法を提供することができる。
<<Sixth embodiment>>
According to the sixth embodiment of the present invention, a method for preserving biopharmaceuticals is provided which prevents deterioration of biopharmaceuticals, decreases in efficacy, and contamination with impurities, and also allows for minimal change in color of containers after storage and good visibility of contents. can be provided.
<<第7の実施形態>>
 本発明の第7の実施形態によれば、アドレナリン含有薬液の保存に際して、アドレナリンの酸化を防止でき、かつ、容器からの溶出成分を少なくすることができ、かつ、保管後の容器の色調変化を小さくすることができる、アドレナリン含有薬液の保存方法を提供することができる。
<<Seventh embodiment>>
According to the seventh embodiment of the present invention, when storing an adrenaline-containing drug solution, oxidation of adrenaline can be prevented, components eluted from the container can be reduced, and color change of the container after storage can be prevented. A method for storing an adrenaline-containing drug solution that can be made smaller can be provided.
<<第8の実施形態>>
 本発明の第8の実施形態によれば、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる改質ポリエステルを提供することができる。
<<Eighth embodiment>>
According to the eighth embodiment of the present invention, it is possible to provide a modified polyester that exhibits good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and excellent moldability.
 以下、本発明の実施の形態(以下、「本実施形態」という。)について説明する。なお、本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。また、本明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. Note that this embodiment is an example for explaining the present invention, and is not intended to limit the present invention to the following content. Furthermore, in this specification, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
<<第1の実施形態>>
[樹脂組成物]
 第1の実施形態の樹脂組成物は、ポリエステル化合物(a)と遷移金属触媒とを少なくとも含有し、前記ポリエステル化合物(a)は、下記式(1)、式(2)及び式(3)で表される構成単位の合計100モル%に対して、下記式(1)で表される構成単位を30~55モル%、下記式(2)で表される構成単位を15~40モル%、下記式(3)で表される構成単位を20~40モル%、含有する。
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
(上記式(1)~(3)中、nは繰り返し単位の量を表し、それぞれ、前記式(1)で表される構成単位、前記式(2)で表される構成単位及び前記式(3)で表される構成単位の組成比に対応する。)
<<First embodiment>>
[Resin composition]
The resin composition of the first embodiment contains at least a polyester compound (a) and a transition metal catalyst, and the polyester compound (a) is represented by the following formula (1), formula (2), and formula (3). With respect to the total 100 mol% of the structural units represented, 30 to 55 mol% of the structural unit represented by the following formula (1), 15 to 40 mol% of the structural unit represented by the following formula (2), Contains 20 to 40 mol% of the structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009

(In the above formulas (1) to (3), n represents the amount of repeating unit, and the structural unit represented by the above formula (1), the structural unit shown by the above formula (2), and the above formula ( Corresponds to the composition ratio of the constituent units expressed in 3).)
 第1の実施形態に係る樹脂組成物は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる。
 第1の実施形態に係る樹脂組成物は、好適には、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、被保存物の水分の有無によらず酸素を吸収することができ、しかも酸素吸収後の臭気発生や黄色化による外観悪化が無いので、例えば、食品、調理食品、飲料、医薬品、健康食品等、対象物を問わず幅広い用途で使用することができる。また、好適には、この樹脂組成物を用いることにより、酸素吸収後の強度低下が極めて小さく、強度の経時的劣化が抑制された酸素吸収性フィルム等を実現することができる。さらに、鉄粉等を含有しない本発明の好適態様によれば、金属探知機に感応しない酸素吸収性樹脂組成物を実現することもできる。
The resin composition according to the first embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
The resin composition according to the first embodiment preferably has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and absorbs oxygen regardless of the presence or absence of moisture in the object to be preserved. It can be used in a wide range of applications, such as foods, cooked foods, beverages, medicines, and health foods, as it can absorb oxygen and does not cause odor or yellowing after absorbing oxygen. can. Moreover, by suitably using this resin composition, it is possible to realize an oxygen-absorbing film or the like in which the decrease in strength after oxygen absorption is extremely small and the deterioration of strength over time is suppressed. Furthermore, according to a preferred embodiment of the present invention that does not contain iron powder or the like, it is also possible to realize an oxygen-absorbing resin composition that is not sensitive to metal detectors.
<ポリエステル化合物>
 第1の実施形態の樹脂組成物に含まれるポリエステル化合物(a)は、上記式(1)~(3)で表される構成単位を含有するものである。ここで「構成単位を含有する」とは、化合物中に当該構成単位を1以上有することを意味する。上記構成単位は上記構成単位と他の構成単位のランダムコポリマー、上記構成単位のブロックコポリマーのいずれであっても構わない。
<Polyester compound>
The polyester compound (a) contained in the resin composition of the first embodiment contains structural units represented by the above formulas (1) to (3). Here, "containing a structural unit" means having one or more such structural units in the compound. The above-mentioned structural unit may be either a random copolymer of the above-mentioned structural unit and other structural units, or a block copolymer of the above-mentioned structural unit.
 ポリエステル化合物(a)は、上記式(1)、上記式(2)及び上記式(3)で表される構成単位の合計100モル%に対して、上記式(1)で表される構成単位を30~55モル%、上記式(2)で表される構成単位を15~40モル%、上記式(3)で表される構成単位を20~40モル%含有する。前記範囲とすることで優れた酸素バリア性能を有し、黄色化による外観悪化を抑制することができる。上記同様の観点から、上記式(1)、上記式(2)及び上記式(3)で表される構成単位の合計100モル%に対して、上記式(1)で表される構成単位が40~50モル%、上記式(2)で表される構成単位が20~35モル%、前記式(3)で表される構成単位が25~35モル%であることが好ましい。また、ポリエステル化合物(a)の全構成単位100モル%に対して、上記式(1)~(3)で表される構成単位の合計が95モル%以上であることがより好ましい。式(1)~(3)で表される構成単位の含有量は、重クロロホルム中、1H-NMRによって測定することができる。 The polyester compound (a) contains a structural unit represented by the above formula (1) based on a total of 100 mol% of the structural units represented by the above formula (1), the above formula (2), and the above formula (3). 15 to 40 mol% of the structural unit represented by the above formula (2), and 20 to 40 mol% of the structural unit represented by the above formula (3). By setting it within the above range, it is possible to have excellent oxygen barrier performance and suppress deterioration of appearance due to yellowing. From the same viewpoint as above, the structural unit represented by the above formula (1) is It is preferable that the amount of the structural unit represented by the above formula (2) is 20 to 35 mol%, and the amount of the structural unit represented by the above formula (3) is 25 to 35 mol%. Further, it is more preferable that the total of the structural units represented by the above formulas (1) to (3) is 95 mol% or more based on 100 mol% of all the structural units of the polyester compound (a). The content of the structural units represented by formulas (1) to (3) can be measured by 1H-NMR in deuterated chloroform.
 上記式(1)の構成単位が30モル%未満であるとポリエステル化合物(a)の酸素バリア性が低下する。また、上記式(1)の構成単位が55モル%を超えるとポリエステル化合物(a)の酸素吸収性能が低下する。 If the content of the structural unit of the above formula (1) is less than 30 mol%, the oxygen barrier properties of the polyester compound (a) will decrease. Moreover, when the structural unit of the above formula (1) exceeds 55 mol%, the oxygen absorption performance of the polyester compound (a) decreases.
 上記式(2)の構成単位が15モル%未満であるとポリエステル化合物(a)の酸素吸収性能が低下する。また、上記式(2)の構成単位が40モル%を超えると黄色化による外観悪化が促進される。 If the content of the structural unit of formula (2) is less than 15 mol%, the oxygen absorption performance of the polyester compound (a) decreases. Furthermore, if the content of the structural unit of the above formula (2) exceeds 40 mol %, deterioration of appearance due to yellowing will be accelerated.
 上記式(3)の構成単位が20モル%未満であるとポリエステル化合物(a)の酸素バリア性が低下する。また、上記式(3)の構成単位が40モル%を超えると低分子成分が増加し、成形時のブリードやモールドデポ発生の原因となる。 If the content of the structural unit of the above formula (3) is less than 20 mol%, the oxygen barrier properties of the polyester compound (a) will decrease. Moreover, if the structural unit of the above formula (3) exceeds 40 mol %, the low molecular weight component will increase, causing bleeding during molding and occurrence of mold deposits.
 第1の実施形態における上記式(1)~(3)で表される構成単位を含有するポリエステル化合物(a)の製造方法は特に制限されず、従来公知のポリエステルの製造方法をいずれも適用することができる。ポリエステルの製造方法としては、例えば、エステル交換法、直接エステル化法等の溶融重合法、または溶液重合法等が挙げられる。これらの中でも、原料入手の容易さの点から、エステル交換法、または直接エステル化法が好適であり、2,6-ナフタレンジカルボン酸またはその誘導体(I)と、2,6-テトラリンジカルボン酸またはその誘導体(II)と、イソフタル酸またはその誘導体(III)と、エチレングリコールまたはその誘導体(IV)とを重縮合することによって得ることができる。 The method for producing the polyester compound (a) containing the structural units represented by the above formulas (1) to (3) in the first embodiment is not particularly limited, and any conventionally known method for producing polyester may be applied. be able to. Examples of methods for producing polyester include melt polymerization methods such as transesterification and direct esterification, and solution polymerization. Among these, the transesterification method or the direct esterification method is preferred from the viewpoint of easy availability of raw materials, in which 2,6-naphthalene dicarboxylic acid or its derivative (I) and 2,6-tetraline dicarboxylic acid or It can be obtained by polycondensing its derivative (II), isophthalic acid or its derivative (III), and ethylene glycol or its derivative (IV).
 ポリエステル化合物(a)の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等の各種触媒、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等も従来公知のものをいずれも用いることができ、これらは反応速度やポリエステル化合物(a)の色調、安全性、熱安定性、耐候性、自身の溶出性などに応じて適宜選択される。例えば上記各種触媒としては、亜鉛、鉛、セリウム、カドミウム、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウムなどが挙げられ、これらは単独で用いることもできるし、複数のものを組み合わせて用いることもできる。 Various catalysts such as transesterification catalysts, esterification catalysts, and polycondensation catalysts, various stabilizers such as etherification inhibitors, heat stabilizers, and light stabilizers, and polymerization modifiers used in the production of polyester compound (a) are also conventionally known. Any of these can be used, and these are appropriately selected depending on the reaction rate, color tone of the polyester compound (a), safety, thermal stability, weather resistance, dissolution properties of the polyester compound (a), and the like. For example, the various catalysts mentioned above include compounds of metals such as zinc, lead, cerium, cadmium, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum, titanium, tin (e.g. fatty acid salts, carbonates, Examples include phosphates, hydroxides, chlorides, oxides, alkoxides) and metal magnesium, and these can be used alone or in combination.
 第1の実施形態のポリエステル化合物(a)の極限粘度(フェノールと1,1,2,2-テトラクロロエタンとの質量比6:4の混合溶媒を用いた25℃での測定値)は特に限定されないが、ポリエステル化合物(a)の成形性の面から、0.5~1.5dL/gが好ましく、0.8~1.2dL/gがより好ましい。 The intrinsic viscosity (value measured at 25°C using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane in a mass ratio of 6:4) of the polyester compound (a) of the first embodiment is particularly limited. However, in terms of moldability of the polyester compound (a), it is preferably 0.5 to 1.5 dL/g, more preferably 0.8 to 1.2 dL/g.
 第1の実施形態におけるポリエステル樹脂は、その性能に影響しない程度であれば、上記式(1)~(3)で表される構成単位以外の任意の構成単位を含んでいてもよい。そのような任意の構成単位の具体例としては、以下に限定されないが、前述した単位以外のジカルボン酸又はその誘導体及びジオール又はその誘導体に由来する単位が挙げられる。ポリエステル樹脂における任意の構成単位の含有量としては、特に限定されないが、前記ポリエステル樹脂の全構成単位100モル%に対して、5モル%未満であることが好ましい。 The polyester resin in the first embodiment may contain any structural units other than the structural units represented by formulas (1) to (3) above, as long as it does not affect its performance. Specific examples of such arbitrary structural units include, but are not limited to, units derived from dicarboxylic acids or derivatives thereof and diols or derivatives thereof other than the units described above. Although the content of arbitrary structural units in the polyester resin is not particularly limited, it is preferably less than 5 mol% with respect to 100 mol% of all structural units of the polyester resin.
 任意の構成単位としてのジオール又はその誘導体としては、以下に限定されないが、例えば、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等の脂肪族ジオール類;1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール等の脂環式ジオール類、又はこれらの誘導体等が挙げられる。上記ジオール又はその誘導体は、1種を単独で又は2種以上を組み合わせて用いることができる。 Diols or derivatives thereof as arbitrary structural units include, but are not limited to, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane. Diols, aliphatic diols such as neopentyl glycol; 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-decahydronaphthalene dimethanol, 1,3-decahydronaphthalene dimethanol, 1, Alicyclic diols such as 4-decahydronaphthalene dimethanol, 1,5-decahydronaphthalene dimethanol, 1,6-decahydronaphthalene dimethanol, 2,7-decahydronaphthalene dimethanol, tetralin dimethanol, or These derivatives can be mentioned. The above diols or derivatives thereof can be used alone or in combination of two or more.
 任意の構成単位としてのジカルボン酸又はその誘導体としては、以下に限定されないが、例えば、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸類、フタル酸、テレフタル酸等のベンゼンジカルボン酸類、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸類、又はこれらの誘導体等が挙げられる。ジカルボン酸又はその誘導体は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of dicarboxylic acids or derivatives thereof as arbitrary structural units include, but are not limited to, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, aliphatic dicarboxylic acids such as dodecanedioic acid, phthalic acid, Examples include benzenedicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acids such as 1,5-naphthalene dicarboxylic acid and 2,7-naphthalene dicarboxylic acid, and derivatives thereof. One kind of dicarboxylic acid or its derivative can be used alone or two or more kinds can be used in combination.
<遷移金属触媒>
 第1の実施形態の樹脂組成物において使用される遷移金属触媒としては、上記ポリエステル化合物(a)の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができる。ポリエステル化合物(a)の酸化反応による酸素吸収を介して、酸素バリア性を向上させることができる。特に限定するものではないが、遷移金属触媒に含まれる遷移金属は、周期表の4及び8~11族の金属であることが好ましい。少量で効果を発揮するためには、周期表の8~11族の金属であることがより好ましい。
<Transition metal catalyst>
The transition metal catalyst used in the resin composition of the first embodiment may be appropriately selected from known catalysts as long as it can function as a catalyst for the oxidation reaction of the polyester compound (a). can. Oxygen barrier properties can be improved through oxygen absorption by the oxidation reaction of the polyester compound (a). Although not particularly limited, the transition metal contained in the transition metal catalyst is preferably a metal from groups 4 and 8 to 11 of the periodic table. In order to exhibit the effect with a small amount, metals from groups 8 to 11 of the periodic table are more preferable.
 かかる遷移金属触媒の具体例としては、例えば、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2-エチルヘキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸が挙げられるが、これらに限定されない。遷移金属触媒は、これらの遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がコバルト、ニッケル又は銅であり、有機酸が酢酸、ステアリン酸、2-エチルヘキサン酸、オレイン酸又はナフテン酸である組み合わせがより好ましい。なお、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。 Specific examples of such transition metal catalysts include organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides, and hydroxides of transition metals. Here, examples of the transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, cobalt, nickel, and copper are preferred. Examples of organic acids include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, tolic acid, oleic acid, Examples include, but are not limited to, capric acid and naphthenic acid. The transition metal catalyst is preferably a combination of these transition metals and an organic acid, where the transition metal is cobalt, nickel or copper, and the organic acid is acetic acid, stearic acid, 2-ethylhexanoic acid, oleic acid or naphthenic acid. More preferred is a combination. Note that the transition metal catalyst can be used alone or in combination of two or more.
 遷移金属触媒の配合量は、使用する前記ポリエステル化合物(a)や遷移金属触媒の種類及び所望の性能に応じて適宜設定でき、特に限定されない。樹脂組成物の酸素吸収量及び外観の観点から、遷移金属(好ましくは周期表の8~11族の金属、より好ましくはコバルト、ニッケル又は銅)の量(2種以上の遷移金属を使用する場合にはそれらの合計量)は、前記ポリエステル化合物(a)の質量を基準として、0.5~10ppmであることが好ましく、さらに好ましくは1~5ppm、最も好ましくは1.5~3ppmである。なお、ポリエステル化合物(a)の製造に遷移金属触媒を使用し、これが樹脂組成物に残存している場合には、残存触媒に含まれる遷移金属の量も前記数値範囲に包含される。遷移金属の量及び種類は、誘導結合プラズマ質量分析法によって測定することができる。 The blending amount of the transition metal catalyst can be appropriately set depending on the type of the polyester compound (a) and transition metal catalyst used and the desired performance, and is not particularly limited. From the viewpoint of oxygen absorption amount and appearance of the resin composition, the amount of transition metal (preferably a metal from Groups 8 to 11 of the periodic table, more preferably cobalt, nickel or copper) (if two or more transition metals are used) (total amount thereof) is preferably 0.5 to 10 ppm, more preferably 1 to 5 ppm, and most preferably 1.5 to 3 ppm, based on the mass of the polyester compound (a). In addition, when a transition metal catalyst is used in the production of the polyester compound (a) and remains in the resin composition, the amount of the transition metal contained in the remaining catalyst is also included in the above numerical range. The amount and type of transition metal can be determined by inductively coupled plasma mass spectrometry.
 遷移金属の量が0.5ppm以上であると、酸素吸収性能がより向上する傾向にある。遷移金属の量が10ppm以下であると、黄色化がより抑制される傾向にある。 When the amount of transition metal is 0.5 ppm or more, oxygen absorption performance tends to be further improved. When the amount of transition metal is 10 ppm or less, yellowing tends to be further suppressed.
 ポリエステル化合物(a)及び遷移金属触媒は、公知の方法で混合する事が出来るが、好ましくは押出機により混練することにより、分散性の良い樹脂組成物として使用することができる。また、樹脂組成物には、第1の実施形態の効果を損なわない範囲で、乾燥剤、顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良いが、以上に示したものに限定されることなく、種々の材料を混合することができる。 The polyester compound (a) and the transition metal catalyst can be mixed by a known method, but preferably by kneading with an extruder, it can be used as a resin composition with good dispersibility. In addition, the resin composition may contain additives such as desiccants, pigments, dyes, antioxidants, slip agents, antistatic agents, stabilizers, calcium carbonate, clay, etc., to the extent that the effects of the first embodiment are not impaired. , fillers such as mica and silica, deodorants, etc. may be added, but the material is not limited to those shown above, and various materials can be mixed.
 なお、第1の実施形態の樹脂組成物は、酸素吸収反応を促進させるために、必要に応じて、さらにラジカル発生剤や光開始剤を含有していてもよい。ラジカル発生剤の具体例としては、各種のN-ヒドロキシイミド化合物が挙げられ、例えば、N-ヒドロキシコハクイミド、N-ヒドロキシマレイミド、N,N’-ジヒドロキシシクロヘキサンテトラカルボン酸ジイミド、N-ヒドロキシフタルイミド、N-ヒドロキシテトラクロロフタルイミド、N-ヒドロキシテトラブロモフタルイミド、N-ヒドロキシヘキサヒドロフタルイミド、3-スルホニル-N-ヒドロキシフタルイミド、3-メトキシカルボニル-N-ヒドロキシフタルイミド、3-メチル-N-ヒドロキシフタルイミド、3-ヒドロキシ-N-ヒドロキシフタルイミド、4-ニトロ-N-ヒドロキシフタルイミド、4-クロロ-N-ヒドロキシフタルイミド、4-メトキシ-N-ヒドロキシフタルイミド、4-ジメチルアミノ-N-ヒドロキシフタルイミド、4-カルボキシ-N-ヒドロキシヘキサヒドロフタルイミド、4-メチル-N-ヒドロキシヘキサヒドロフタルイミド、N-ヒドロキシヘット酸イミド、N-ヒドロキシハイミック酸イミド、N-ヒドロキシトリメリット酸イミド、N,N-ジヒドロキシピロメリット酸ジイミド等が挙げられるが、これらに特に限定されない。また、光開始剤の具体例としては、ベンゾフェノンとその誘導体、チアジン染料、金属ポルフィリン誘導体、アントラキノン誘導体等が挙げられるが、これらに特に限定されない。なお、これらのラジカル発生剤及び光開始剤は、1種を単独で或いは2種以上を組み合わせて用いることができる。 Note that the resin composition of the first embodiment may further contain a radical generator or a photoinitiator, if necessary, in order to promote the oxygen absorption reaction. Specific examples of radical generators include various N-hydroxyimide compounds, such as N-hydroxysuccinimide, N-hydroxymaleimide, N,N'-dihydroxycyclohexanetetracarboxylic acid diimide, N-hydroxyphthalimide, N-hydroxytetrachlorophthalimide, N-hydroxytetrabromophthalimide, N-hydroxyhexahydrophthalimide, 3-sulfonyl-N-hydroxyphthalimide, 3-methoxycarbonyl-N-hydroxyphthalimide, 3-methyl-N-hydroxyphthalimide, 3 -Hydroxy-N-hydroxyphthalimide, 4-nitro-N-hydroxyphthalimide, 4-chloro-N-hydroxyphthalimide, 4-methoxy-N-hydroxyphthalimide, 4-dimethylamino-N-hydroxyphthalimide, 4-carboxy-N -Hydroxyhexahydrophthalimide, 4-methyl-N-hydroxyhexahydrophthalimide, N-hydroxyhettyl imide, N-hydroxyhimic acid imide, N-hydroxytrimellitic acid imide, N,N-dihydroxypyromellitic acid diimide, etc. Examples include, but are not particularly limited to. Further, specific examples of photoinitiators include benzophenone and its derivatives, thiazine dyes, metal porphyrin derivatives, anthraquinone derivatives, etc., but are not particularly limited thereto. In addition, these radical generators and photoinitiators can be used individually or in combination of two or more types.
 また、第1の実施形態の樹脂組成物は、第1の実施形態の目的を阻害しない範囲で他の熱可塑性樹脂と押出機で混練することも出来る。混練に用いられる熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、あるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムまたはブロック共重合体等のポリオレフィン、無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等の酸変性ポリオレフィン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-塩化ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等のエチレン-ビニル化合物共重合体、ポリスチレン、アクリロニトリル-スチレン共重合体、α-メチルスチレン-スチレン共重合体等のスチレン系樹脂、ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ポリメタキシリレンアジパミド(MXD6)等のポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等のポリエステル、ポリカーボネート、ポリエチレンオキサイド等のポリエーテル等あるいはこれらの混合物等が挙げられる。 Furthermore, the resin composition of the first embodiment can be kneaded with other thermoplastic resins in an extruder to the extent that the purpose of the first embodiment is not impaired. Examples of thermoplastic resins used for kneading include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear very low density polyethylene, polypropylene, poly-1-butene, and poly-4-methyl. - Polyolefins such as random or block copolymers of α-olefins such as -1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, etc. acid-modified polyolefin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene-(meth)acrylic acid copolymer and its ionic crosslinked product (ionomer), ethylene- Ethylene-vinyl compound copolymers such as methyl methacrylate copolymer, styrene resins such as polystyrene, acrylonitrile-styrene copolymer, α-methylstyrene-styrene copolymer, polymethyl acrylate, polymethyl methacrylate, etc. polyvinyl compounds, nylon 6, nylon 66, nylon 610, nylon 12, polyamides such as polymethaxylylene adipamide (MXD6), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), Polyesters such as polyethylene naphthalate (PEN), glycol-modified polyethylene terephthalate (PETG), polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxyalkanoate, polycarbonate, Examples include polyethers such as polyethylene oxide, and mixtures thereof.
<使用態様>
 第1の実施形態の樹脂組成物の使用形態は、粉体状、顆粒状、ペレット状、フィルム状またはその他の小片状に加工し、通気性包装材料に充填し、小袋状の酸素吸収剤包装体として使用することができる。また、フィルム状に成形して、ラベル、カード、パッキング等の形態の酸素吸収体として用いることができる。
<How to use>
The resin composition of the first embodiment is used in the form of a powder, granules, pellets, film, or other small pieces, which is then filled into an air-permeable packaging material to form an oxygen absorbent bag. Can be used as a package. Furthermore, it can be formed into a film and used as an oxygen absorber in the form of labels, cards, packing, etc.
 第1の実施形態の樹脂組成物は、単層の形で包装材料および包装容器として使用できるのは勿論のこと、樹脂組成物から成る少なくとも一層と、他の樹脂からなる少なくとも一層の積層物の形で多層包装材料および多層包装容器として使用できる。一般に、第1の実施形態の樹脂組成物は、容器等の外表面に露出しないように容器等の外表面よりも内側に設けるのが好ましく、また内容物との直接的な接触を避ける目的で、容器等の内表面より外側に設けるのが好ましい。このように、多層の少なくとも1つの中間層として、樹脂組成物を用いることが好ましい。 The resin composition of the first embodiment can of course be used as a packaging material and packaging container in the form of a single layer, and can also be used as a laminate of at least one layer made of the resin composition and at least one layer made of another resin. It can be used as multi-layer packaging material and multi-layer packaging containers. Generally, the resin composition of the first embodiment is preferably provided inside the outer surface of the container, etc. so as not to be exposed to the outer surface of the container, etc., and for the purpose of avoiding direct contact with the contents. , it is preferable to provide it outside the inner surface of the container or the like. Thus, it is preferable to use a resin composition as at least one intermediate layer of the multilayer.
<<第2の実施形態>>
[多層射出成形体]
 第2の実施形態の多層射出成形体は、第1の実施形態に係る樹脂組成物を含有する層(A)(以下、「層A」とも称する)と、前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)(以下、「層B」とも称する)とを少なくとも含有する。
 なお、第2の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Second embodiment>>
[Multilayer injection molded product]
The multilayer injection molded article according to the second embodiment includes a layer (A) containing the resin composition according to the first embodiment (hereinafter also referred to as "layer A"), and a layer (A) containing the resin composition according to the first embodiment, and a layer (hereinafter also referred to as "layer A") that is heated to a temperature different from that of the polyester compound (a). It contains at least a layer (B) (hereinafter also referred to as "layer B") containing a plastic resin (b).
Note that in the second embodiment, descriptions of other embodiments can be cited as appropriate.
 第2の実施形態に係る多層射出成形体及び容器は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。
 第2の実施形態に係る多層射出成形体及び容器は、好適には、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、被保存物の水分の有無によらず酸素を吸収することができ、しかも酸素吸収後の臭気発生や黄色化による外観悪化が無いので、例えば、食品、調理食品、飲料、医薬品、健康食品等、対象物を問わず幅広い用途で使用することができる。また、鉄粉等を含有しない第2の実施形態に係る好適態様によれば、金属探知機に感応しない多層射出成形体及び容器を実現することもできる。さらに、第2の実施形態に係る好適態様によれば、酸素吸収後の強度低下が極めて小さく、長期の利用においても強度が維持され、層間剥離が生じにくい多層射出成形体及び容器を実現することもできる。
The multilayer injection molded article and container according to the second embodiment exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
The multilayer injection molded article and the container according to the second embodiment preferably have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and can be used regardless of the presence or absence of moisture in the stored material. Because it can absorb oxygen without causing any odor or yellowing after absorbing oxygen, it can be used for a wide range of purposes, such as food, cooked foods, beverages, pharmaceuticals, health foods, etc. can do. Further, according to a preferred aspect of the second embodiment that does not contain iron powder or the like, it is also possible to realize a multilayer injection molded body and a container that are not sensitive to metal detectors. Further, according to a preferred aspect of the second embodiment, it is possible to realize a multilayer injection molded article and a container that have extremely low strength loss after oxygen absorption, maintain strength even during long-term use, and are less likely to cause delamination. You can also do it.
 第2の実施形態の多層射出成形体及び容器における層構成は特に限定されず、層A及び層Bの数や種類は特に限定されない。例えば、1層の層A及び1層の層BからなるA/B構成であってもよく、1層の層A並びに2層の層B1及び層B2からなるB1/A/B2の3層構成であってもよい。本明細書において、層B1と層B2とは、互いに同一の層であっても、異なる層であってもよい。また、1層の層A並びに層B1及び層B2の2種4層の層BからなるB1/B2/A/B2/B1の5層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよい。さらに、第2の実施形態の多層射出成形体及び容器は、必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/AD/B2/A/B2/AD/B1の7層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよく、層ADは両層とも同一の組成であっても異なってもよい。なお、第2の実施形態の多層射出成形体及び容器において、層Bを複数有する場合、その層Bの間に層Aを有していてもよい。 The layer structure in the multilayer injection molded article and container of the second embodiment is not particularly limited, and the number and type of layers A and B are not particularly limited. For example, it may be an A/B configuration consisting of one layer A and one layer B, or a three-layer configuration of B1/A/B2 consisting of one layer A and two layers B1 and B2. It may be. In this specification, layer B1 and layer B2 may be the same layer or different layers. Alternatively, it may have a five-layer structure of B1/B2/A/B2/B1, which is composed of one layer A and two types of four layers B1 and B2. In this specification, both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions. Furthermore, the multilayer injection molded article and container of the second embodiment may include an arbitrary layer such as an adhesive layer (layer AD) as necessary, for example, B1/AD/B2/A/B2/AD/ A seven-layer structure of B1 may be used. In this specification, both layers B1 may have the same composition or different compositions, both layers B2 may have the same composition or different compositions, and both layers AD may have the same composition. may be different. In addition, in the multilayer injection molded article and container of 2nd Embodiment, when it has multiple layers B, it may have layer A between the layers B.
 成形が容易であり、酸素吸収後の色調がより良好であり、より良好な外観を有する多層射出成形体及び容器が得られることから、1層の層A並びに2層の層B1及び層B2からなるB1/A/B2の3層構成であることが好ましい。 From one layer A and two layers B1 and B2, it is easier to mold, the color tone after oxygen absorption is better, and a multilayer injection molded article and container with a better appearance can be obtained. It is preferable to have a three-layer structure of B1/A/B2.
〔樹脂組成物を含有する層(A)〕
 層Aの厚さは特に制限はないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが更に好ましい。この範囲とすることで、層Aの酸素バリア性能をより高めることができるとともに経済性が損なわれることを防止することが可能となる傾向にある。
[Layer (A) containing resin composition]
The thickness of layer A is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and even more preferably 100 to 500 μm. By setting it as this range, it tends to be possible to further improve the oxygen barrier performance of layer A and to prevent economic efficiency from being impaired.
<ポリエステル化合物>
 第2の実施形態の<ポリエステル化合物>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound>
The <polyester compound> of the second embodiment is as described in the section of the <polyester compound> of the first embodiment.
<遷移金属触媒>
 第2の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the second embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、第2の実施形態の樹脂組成物及び層Aは、第2の実施形態の目的を阻害しない範囲でポリエステル化合物(a)以外の熱可塑性樹脂を含有しても良い。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素バリア性の効果を効果的に発揮するためにはポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような高酸素バリア性の樹脂がより好ましい。なお、層(A)が、ポリオレフィンを含有する場合、後述する層(B)とは、ポリエステル化合物(a)を含むか否かにより区別することができる。 Furthermore, the resin composition and layer A of the second embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the second embodiment. These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. In order to effectively exhibit oxygen barrier effects, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred. In addition, when the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
〔熱可塑性樹脂(b)を含有する層(B)〕
 第2の実施形態の層Bは、熱可塑性樹脂(b)を含有する。熱可塑性樹脂(b)は、ポリエステル化合物(a)と異なれば、特に限定されない。層Bにおける熱可塑性樹脂(b)の含有率は特に限定されないが、層Bの総量に対する熱可塑性樹脂(b)の含有率が、70~100質量%であることが好ましく、80~100質量%がより好ましく、90~100質量%が更に好ましい。前記範囲とすることで層Bの透明性や成形性を高めることができる。熱可塑性樹脂(b)は、1種を単独で又は2種以上を組み合わせて用いることができる。
[Layer (B) containing thermoplastic resin (b)]
Layer B of the second embodiment contains thermoplastic resin (b). The thermoplastic resin (b) is not particularly limited as long as it is different from the polyester compound (a). The content of the thermoplastic resin (b) in layer B is not particularly limited, but the content of the thermoplastic resin (b) with respect to the total amount of layer B is preferably 70 to 100% by mass, and 80 to 100% by mass. is more preferable, and even more preferably 90 to 100% by mass. By setting it as the said range, the transparency and moldability of layer B can be improved. The thermoplastic resin (b) can be used alone or in combination of two or more.
 第2の実施形態の多層射出成形体及び容器は、層Aと共に、層Bを複数有していてもよく、複数の層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚さは、用途に応じて適宜決定することができ、多層射出成形体及び容器に要求される落下耐性等の強度や柔軟性等の諸物性を確保するという観点から、好ましくは30~1000μm、より好ましくは50~800μm、更に好ましくは100~600μmである。また、より良好な酸素バリア性能を示し、酸素吸収後の色調がより良好かつ強度・形状維持性により優れ、より良好な外観を有することから、容器の場合、容器内層(層B)の厚さが100~300μmであることが好ましく、中間層(層A)の厚さが200~400μmであることが好ましく、容器外層(層B)の厚さが400~600μmであることが好ましい。 The multilayer injection molded article and container of the second embodiment may have a plurality of layers B together with the layer A, and the configurations of the plurality of layers B may be the same or different from each other. The thickness of layer B can be determined as appropriate depending on the application, and from the viewpoint of ensuring various physical properties such as strength such as drop resistance and flexibility required for multilayer injection molded bodies and containers, it is preferably 30 mm. -1000 μm, more preferably 50-800 μm, still more preferably 100-600 μm. In addition, it shows better oxygen barrier performance, has a better color tone after oxygen absorption, has better strength and shape retention, and has a better appearance. is preferably 100 to 300 μm, the thickness of the intermediate layer (layer A) is preferably 200 to 400 μm, and the thickness of the outer container layer (layer B) is preferably 400 to 600 μm.
 第2の実施形態の熱可塑性樹脂(b)には任意の熱可塑性樹脂を使用することができ、特に限定されない。例えば、ポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体、植物由来樹脂及び塩素系樹脂を挙げることができる。第2の実施形態において熱可塑性樹脂(b)としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。これらの樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。 Any thermoplastic resin can be used as the thermoplastic resin (b) in the second embodiment, and is not particularly limited. Examples include polyolefins, polyesters, polyamides, ethylene-vinyl alcohol copolymers, plant-derived resins, and chlorine-based resins. In the second embodiment, the thermoplastic resin (b) preferably contains at least one selected from the group consisting of these resins. These resins can be used alone or in combination of two or more.
<ポリオレフィン>
 ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、エチレンとα-オレフィンとの共重合体、プロピレンとα-オレフィン共重合体、エチレン-α,β-不飽和カルボン酸共重合体、エチレン-α,β-不飽和カルボン酸エステル共重合体等の公知の樹脂であり、好ましいのはノルボルネンもしくはテトラシクロドデセンまたはそれらの誘導体などのシクロオレフィン類開環重合体およびその水素添加物、ノルボルネンもしくはテトラシクロドデセンまたはその誘導体などのシクロオレフィンと、エチレンまたはプロピレンとの重合により分子鎖にシクロペンチル残基や置換シクロペンチル残基が挿入された共重合体である樹脂である。ここで、シクロオレフィンは単環式および多環式のものを含む。好ましいのは、熱可塑性ノルボルネン系樹脂または熱可塑性テトラシクロドデセン系樹脂である。熱可塑性ノルボルネン系樹脂としては、ノルボルネン系単量体の開環重合体、その水素添加物、ノルボルネン系単量体の付加型重合体、ノルボルネン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性テトラシクロドデセン系樹脂としては、テトラシクロドデセン系単量体の開環重合体、その水素添加物、テトラシクロドデセン系単量体の付加型重合体、テトラシクロドデセン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性ノルボルネン系樹脂は、例えば、特開平3-14882号公報、特開平3-122137号公報、特開平4-63807号公報などに記載されている。ポリオレフィンは、1種を単独で又は2種以上を組み合わせて用いることができる。
<Polyolefin>
Specific examples of polyolefins include polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, ethylene and Known copolymers such as copolymers with α-olefins, propylene and α-olefin copolymers, ethylene-α,β-unsaturated carboxylic acid copolymers, ethylene-α,β-unsaturated carboxylic acid ester copolymers, etc. The resins are preferably ring-opening polymers of cycloolefins such as norbornene or tetracyclododecene or derivatives thereof, hydrogenated products thereof, cycloolefins such as norbornene or tetracyclododecene or derivatives thereof, and ethylene or propylene. It is a copolymer resin in which a cyclopentyl residue or a substituted cyclopentyl residue is inserted into the molecular chain by polymerization with Here, cycloolefins include monocyclic and polycyclic ones. Preferred are thermoplastic norbornene resins or thermoplastic tetracyclododecene resins. Examples of thermoplastic norbornene resins include ring-opening polymers of norbornene monomers, hydrogenated products thereof, addition polymers of norbornene monomers, and addition polymers of norbornene monomers and olefins. It will be done. Thermoplastic tetracyclododecene resins include ring-opening polymers of tetracyclododecene monomers, hydrogenated products thereof, addition polymers of tetracyclododecene monomers, and tetracyclododecene monomers. Examples include addition polymers of polymers and olefins. Thermoplastic norbornene resins are described in, for example, JP-A-3-14882, JP-A-3-122137, and JP-A-4-63807. One kind of polyolefin can be used alone or two or more kinds can be used in combination.
 より良好な酸素バリア性能を示し、酸素吸収後の色調がより良好かつ強度・形状維持性により優れ、より良好な外観を有する多層射出成形体及び容器が得られることから、ポリオレフィンとしては、ノルボルネンとエチレン等のオレフィンを原料とした共重合体、およびテトラシクロドデセンとエチレン等のオレフィンを原料とした共重合体であるシクロオレフィンコポリマー(COC)、また、ノルボルネンを開環重合し、水素添加した重合物であるシクロオレフィンポリマー(COP)も好ましい。このようなCOCおよびCOPは、例えば、特開平5-300939号公報あるいは特開平5-317411号公報に記載されている。 As polyolefins, norbornene and Copolymers made from olefins such as ethylene, cycloolefin copolymers (COC), which are copolymers made from tetracyclododecene and olefins such as ethylene, and ring-opening polymerization of norbornene and hydrogenation. Also preferred is the polymeric cycloolefin polymer (COP). Such COCs and COPs are described in, for example, Japanese Patent Laid-Open No. 5-300939 or Japanese Patent Laid-Open No. 5-317411.
 COCは、例えば、三井化学株式会社製、APEL(登録商標)として市販されており、またCOPは、例えば、日本ゼオン株式会社製、ZEONEX(登録商標)又はZEONOR(登録商標)や株式会社大協精工製、Daikyo Resin CZ(登録商標)として市販されている。日本ゼオン株式会社製ZEONEX(登録商標)としては、例えば、ZEONEX(登録商標)690R(商品名)が挙げられる。 COC is, for example, manufactured by Mitsui Chemicals Co., Ltd. and is commercially available as APEL (registered trademark), and COP is, for example, manufactured by Nippon Zeon Co., Ltd., as ZEONEX (registered trademark) or ZEONOR (registered trademark), or Daikyo Co., Ltd. It is manufactured by Seiko and is commercially available as Daikyo Resin CZ (registered trademark). Examples of ZEONEX (registered trademark) manufactured by Zeon Corporation include ZEONEX (registered trademark) 690R (trade name).
 COCおよびCOPは、更に良好な酸素バリア性能を示し、酸素吸収後の色調が更に良好かつ強度・形状維持性に更に優れ、更に良好な外観を有する多層射出成形体及び容器が得られることに加えて、耐熱性や耐光性などの化学的性質や耐薬品性はポリオレフィン樹脂としての特徴を示し、機械特性、溶融、流動特性、寸法精度などの物理的性質は非晶性樹脂としての特徴を示すことから、特に好ましい。 COC and COP exhibit better oxygen barrier performance, have better color tone after oxygen absorption, have better strength and shape retention, and can provide multilayer injection molded products and containers with better appearance. Therefore, chemical properties such as heat resistance and light resistance and chemical resistance exhibit the characteristics of a polyolefin resin, while physical properties such as mechanical properties, melting, flow characteristics, and dimensional accuracy exhibit characteristics of an amorphous resin. Therefore, it is particularly preferable.
<ポリエステル>
 ここで説明するポリエステルは、熱可塑性樹脂(b)として用いることの出来るポリエステルであって、第2の実施形態のポリエステル化合物(a)とは異なる。第2の実施形態において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とから成るもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。エチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位が占めるものであり、ガラス転移点(Tg)が50~90℃、融点(Tm)が200~275℃の範囲にあるものが好適である。エチレンテレフタレート系熱可塑性ポリエステルとしてポリエチレンテレフタレートが耐圧性、耐熱性、耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等の二塩基酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用できる。ポリエステルは、1種を単独で又は2種以上を組み合わせて用いることができる。
<Polyester>
The polyester described here is a polyester that can be used as the thermoplastic resin (b), and is different from the polyester compound (a) of the second embodiment. In the second embodiment, the polyester is one or more selected from polyhydric carboxylic acids including dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols including glycol. or hydroxycarboxylic acids and their ester-forming derivatives, or cyclic esters. Ethylene terephthalate thermoplastic polyester has ethylene terephthalate units occupying most of the ester repeating units, generally 70 mol% or more, and has a glass transition point (Tg) of 50 to 90°C and a melting point (Tm) of 200 to 275. C. range is preferred. As an ethylene terephthalate-based thermoplastic polyester, polyethylene terephthalate is particularly excellent in terms of pressure resistance, heat resistance, heat pressure resistance, etc., but in addition to ethylene terephthalate units, dibasic acids such as isophthalic acid and naphthalene dicarboxylic acid and diols such as propylene glycol Copolymerized polyesters containing small amounts of ester units consisting of can also be used. One kind of polyester can be used alone or two or more kinds can be used in combination.
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5-ナトリウムスルホイソフタル酸、2-ナトリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、2-リチウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、2-カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体等が挙げられる。 Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Examples include cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. saturated aliphatic dicarboxylic acids or their ester-forming derivatives, unsaturated aliphatic dicarboxylic acids such as fumaric acid, maleic acid, itaconic acid, or their ester-forming derivatives, orthophthalic acid, isophthalic acid, terephthalic acid , 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, Aromatic dicarboxylic acids exemplified by 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, anthracene dicarboxylic acid, etc. or ester-forming derivatives thereof, 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc. Examples include metal sulfonate group-containing aromatic dicarboxylic acids or lower alkyl ester derivatives thereof.
 上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。 Among the above dicarboxylic acids, terephthalic acid, isophthalic acid, and naphthalene dicarboxylic acid are particularly preferred in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
 これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。 Polycarboxylic acids other than these dicarboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3',4'-biphenyltetracarboxylic acid, and ester-forming derivatives thereof.
 グリコールとしてはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノ-ル、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。 Glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol , 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethylene glycol, polytetramethylene Aliphatic glycols such as glycols, hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis(β-hydroxyethoxy)benzene, 1,4-bis(β-hydroxyethoxyphenyl)sulfone, Bis(p-hydroxyphenyl) ether, bis(p-hydroxyphenyl) sulfone, bis(p-hydroxyphenyl)methane, 1,2-bis(p-hydroxyphenyl)ethane, bisphenol A, bisphenol C, 2,5- Examples of aromatic glycols include naphthalene diol and glycols obtained by adding ethylene oxide to these glycols.
 上記のグリコールのなかでも、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ-ル、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。 Among the above glycols, it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as the main components. Polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like. Examples of hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these. Examples include ester-forming derivatives of.
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。 Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, and lactide.
 多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。 Examples of ester-forming derivatives of polyhydric carboxylic acids and hydroxycarboxylic acids include their alkyl esters, acid chlorides, and acid anhydrides.
 第2の実施形態で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。 The polyester used in the second embodiment is preferably a polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalenedicarboxylic acid or its ester-forming derivative, and whose main glycol component is alkylene glycol.
 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。 The polyester whose main acid component is terephthalic acid or its ester-forming derivative is preferably a polyester containing 70 mol% or more of terephthalic acid or its ester-forming derivative based on the total acid component, and more preferably Preferably it is a polyester containing 80 mol% or more, and more preferably a polyester containing 90 mol% or more. Similarly, the polyester whose main acid component is naphthalene dicarboxylic acid or its ester-forming derivative preferably contains 70 mol% or more in total of naphthalene dicarboxylic acid or its ester-forming derivative, more preferably 80 mol% or more. It is a polyester containing mol% or more, more preferably 90 mol% or more.
 第2の実施形態で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。 Naphthalene dicarboxylic acid or its ester-forming derivative used in the second embodiment includes 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, and 1,5-naphthalene dicarboxylic acid, which are exemplified in the dicarboxylic acids mentioned above. , 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, or ester-forming derivatives thereof are preferred.
 主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。 The polyester whose main glycol component is alkylene glycol is preferably a polyester containing 70 mol% or more, more preferably 80 mol% or more of alkylene glycol based on all glycol components, More preferably, it is a polyester containing 90 mol% or more. The alkylene glycol mentioned here may contain a substituent or an alicyclic structure in its molecular chain.
 上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6-ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオールおよび2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性とを両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。 Copolymerization components other than the above terephthalic acid/ethylene glycol include isophthalic acid, 2,6-naphthalene dicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. At least one selected from the group consisting of diol and 2-methyl-1,3-propanediol is preferable in order to achieve both transparency and moldability, and in particular, isophthalic acid, diethylene glycol, neopentyl glycol, More preferably, it is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.
 第2の実施形態に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。 A preferable example of the polyester used in the second embodiment is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and even more preferably a linear polyester containing ethylene terephthalate units in an amount of 70 mol% or more. A linear polyester containing 80 mol% or more of terephthalate units is particularly preferred, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferred.
 また第2の実施形態に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン-2,6-ナフタレートから構成されるポリエステルであり、より好ましくはエチレン-2,6-ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン-2,6-ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン-2,6-ナフタレート単位を90モル%以上含む線状ポリエステルである。 Another preferred example of the polyester used in the second embodiment is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, more preferably 70 moles of ethylene-2,6-naphthalate units. % or more, more preferably linear polyesters containing 80 mol% or more of ethylene-2,6-naphthalate units, particularly preferably 90 mol% or more of ethylene-2,6-naphthalate units. It is a linear polyester containing
 また第2の実施形態に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4-シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。 Further, other preferable examples of the polyester used in the second embodiment include a linear polyester containing 70 mol% or more of propylene terephthalate units, a linear polyester containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexane. A linear polyester containing 70 mol% or more of dimethylene terephthalate units, a linear polyester containing 70 mol% or more of butylene naphthalate units, or a linear polyester containing 70 mol% or more of butylene terephthalate units.
 特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4-シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。 In particular, as for the overall composition of the polyester, the combination of terephthalic acid/isophthalic acid//ethylene glycol, the combination of terephthalic acid//ethylene glycol/1,4-cyclohexanedimethanol, and the combination of terephthalic acid//ethylene glycol/neopentyl glycol are transparent. This is preferable in terms of achieving both properties and moldability. It goes without saying that a small amount (5 mol % or less) of diethylene glycol produced by dimerization of ethylene glycol may be included during the esterification (transesterification) reaction and polycondensation reaction.
 また第2の実施形態に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。 Other preferable examples of the polyester used in the second embodiment include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate, or ring-opening polycondensation of glycolide. This polyglycolic acid may be copolymerized with other components such as lactide.
<ポリアミド>
 第2の実施形態で使用するポリアミドは、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。ポリアミドは、1種を単独で又は2種以上を組み合わせて用いることができる。
<Polyamide>
The polyamide used in the second embodiment is a polyamide whose main constitutional unit is a unit derived from a lactam or an aminocarboxylic acid, or a polyamide whose main constitutional unit is a unit derived from an aliphatic diamine and an aliphatic dicarboxylic acid. Aliphatic polyamide, partially aromatic polyamide whose main constituent units are units derived from an aliphatic diamine and an aromatic dicarboxylic acid, parts whose main constituent units are units derived from an aromatic diamine and an aliphatic dicarboxylic acid. Examples include aromatic polyamides, and if necessary, monomer units other than the main structural units may be copolymerized. One kind of polyamide can be used alone or two or more kinds can be used in combination.
 前記ラクタムもしくはアミノカルボン酸としては、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ-アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。 As the lactam or aminocarboxylic acid, lactams such as ε-caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid, etc. can be used. .
 前記脂肪族ジアミンとしては、炭素数2~12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1-メチルエチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。 As the aliphatic diamine, an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used. Furthermore, an alicyclic diamine may be used. The aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine. Specific examples of the alicyclic diamine include cyclohexane diamine, 1,3-bis(aminomethyl)cyclohexane, and 1,4-bis(aminomethyl)cyclohexane.
 また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4~12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環族ジカルボン酸が挙げられる。 Further, as the aliphatic dicarboxylic acid, linear aliphatic dicarboxylic acids and alicyclic dicarboxylic acids are preferable, and linear aliphatic dicarboxylic acids having an alkylene group having 4 to 12 carbon atoms are particularly preferable. Examples of such linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadionic acid, dodecanedioic acid, dimer acid and their functional Derivatives etc. can be mentioned. Examples of the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
 また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ-ビス(2-アミノエチル)ベンゼン等が挙げられる。 Further, examples of the aromatic diamine include metaxylylene diamine, para-xylylene diamine, para-bis(2-aminoethyl)benzene, and the like.
 また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。 Examples of the aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It will be done.
 具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3-ビスアミノシクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。 Specific polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4,6, polyamide 6,6, polyamide 6,10, polyamide 6T, polyamide 9T, polyamide 6IT, and polymethaxylylene azide. Pamide (Polyamide MXD6), Isophthalic acid copolymerized polymethaxylylene adipamide (Polyamide MXD6I), Polymethaxylylene sebacamide (Polyamide MXD10), Polymethaxylylene dodecanamide (Polyamide MXD12), Poly 1,3-bis Examples include aminocyclohexane adipamide (polyamide BAC6) and polyparaxylylene sebacamide (polyamide PXD10). More preferred polyamides include polyamide 6, polyamide MXD6, and polyamide MXD6I.
 また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000~20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000~20000のポリエチレングリコール)が挙げられる。 Further, as a copolymerization component of the polyamide, a polyether having a number average molecular weight of 2,000 to 20,000 and having at least one terminal amino group or a terminal carboxyl group, or an organic carboxylate of the polyether having the terminal amino group, or Amino salts of polyethers having the aforementioned terminal carboxyl groups can also be used. A specific example is bis(aminopropyl)poly(ethylene oxide) (polyethylene glycol having a number average molecular weight of 2,000 to 20,000).
 また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。 Further, the partially aromatic polyamide may contain a substantially linear structural unit derived from a polyhydric carboxylic acid having three or more bases, such as trimellitic acid and pyromellitic acid.
<エチレン-ビニルアルコール共重合体>
 第2の実施形態で使用されるエチレン-ビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15~60モル%、更に好ましくは20~55モル%、より好ましくは29~44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
 またエチレン-ビニルアルコール共重合体には、第2の実施形態の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α-オクテン、α-ドデセン、α-オクタデセン等のα-オレフィン、不飽和カルボン酸又はその塩、部分アルキルエステル、完全アルキルエステル、ニトリル、アミド、無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。エチレン-ビニルアルコール共重合体は、1種を単独で又は2種以上を組み合わせて用いることができる。
<Ethylene-vinyl alcohol copolymer>
The ethylene-vinyl alcohol copolymer used in the second embodiment is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, and more preferably 29 to 44 mol%. %, and the degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
In addition, the ethylene-vinyl alcohol copolymer may further include a small amount of α-olefin such as propylene, isobutene, α-octene, α-dodecene, α-octadecene, etc., within a range that does not adversely affect the effects of the second embodiment. It may contain comonomers such as unsaturated carboxylic acids or salts thereof, partial alkyl esters, complete alkyl esters, nitriles, amides, anhydrides, unsaturated sulfonic acids or salts thereof. The ethylene-vinyl alcohol copolymer can be used alone or in combination of two or more.
<植物由来樹脂>
 第2の実施形態で使用される植物由来樹脂は、原料として植物由来物質を含む樹脂であれば良く、原料の植物由来物質は特に限定されない。具体例としては、脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α-ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。植物由来樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
<Plant-derived resin>
The plant-derived resin used in the second embodiment may be any resin that contains a plant-derived substance as a raw material, and the plant-derived substance used as a raw material is not particularly limited. Specific examples include aliphatic polyester biodegradable resins. Examples of aliphatic polyester biodegradable resins include poly(α-hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES), etc. Examples include polyalkylene alkanoate. One type of plant-derived resin can be used alone or two or more types can be used in combination.
<塩素系樹脂>
 第2の実施形態で使用される塩素系樹脂は、構成単位に塩素を含む樹脂であれば良く、公知の樹脂を用いることが出来る。具体例としては、ポリ塩化ビニル、ポリ塩化ビニリデン、及び、これらと酢酸ビニル、マレイン酸誘導体、高級アルキルビニルエーテル等との共重合体を挙げることができる。塩素系樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
<Chlorine resin>
The chlorine-based resin used in the second embodiment may be any resin containing chlorine in its structural unit, and any known resin may be used. Specific examples include polyvinyl chloride, polyvinylidene chloride, and copolymers of these with vinyl acetate, maleic acid derivatives, higher alkyl vinyl ethers, and the like. One type of chlorine-based resin can be used alone or two or more types can be used in combination.
〔その他の層〕
 第2の実施形態の多層射出成形体及び容器には、層A及び層Bに加えて、所望する性能等に応じてその他の層を含んでいてもよい。その他層は、多層射出成形体及び容器において、層A及び層Bと区別できるように積層されていれば、層A及び層Bの組成と同一であっても異なっていてもよい。その他の層としては、例えば、接着層等が挙げられる。
[Other layers]
In addition to layer A and layer B, the multilayer injection molded article and container of the second embodiment may include other layers depending on desired performance and the like. The other layers may have the same composition as or different from the compositions of layers A and B, as long as they are laminated so that they can be distinguished from layers A and B in the multilayer injection molded article and container. Examples of other layers include an adhesive layer and the like.
 第2の実施形態の多層射出成形体及び容器において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着層(AD)を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリエステル系ブロック共重合体を主成分とした、ポリエステル系熱可塑性エラストマーが挙げられる。接着層としては、接着性の観点から、層Bとして用いられている熱可塑性樹脂(b)と同種の樹脂を変性したものを用いることが好ましい。接着層の厚さは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2~100μm、より好ましくは5~90μm、更に好ましくは10~80μmである。 In the multilayer injection molded article and container of the second embodiment, if practical interlayer adhesive strength cannot be obtained between two adjacent layers, an adhesive layer (AD) is provided between the two layers. It is preferable. The adhesive layer preferably contains a thermoplastic resin having adhesive properties. Examples of adhesive thermoplastic resins include acid-modified polyolefins obtained by modifying polyolefin resins such as polyethylene or polypropylene with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, and itaconic acid. Examples include polyester thermoplastic elastomers whose main components are resins and polyester block copolymers. As the adhesive layer, from the viewpoint of adhesiveness, it is preferable to use a modified resin of the same type as the thermoplastic resin (b) used as layer B. The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 to 80 μm, from the viewpoint of ensuring moldability while exhibiting practical adhesive strength.
[多層射出成形体の製造方法]
 第2の実施形態の多層射出成形体の製造方法及び層構成については特に限定されず、通常の射出成形法により製造することができる。例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層Aを構成する材料及び層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層射出成形体を製造することができる。
[Method for manufacturing multilayer injection molded product]
The manufacturing method and layer structure of the multilayer injection molded article of the second embodiment are not particularly limited, and the multilayer injection molded article can be manufactured by a normal injection molding method. For example, using a molding machine and an injection mold equipped with two or more injection machines, the material constituting layer A and the material constituting layer B are passed from the respective injection cylinders through the mold hot runner and into the cavity. A multilayer injection molded article corresponding to the shape of the injection mold can be manufactured by injecting the resin into a mold.
 また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより、3層構成B/A/Bの多層射出成形体を製造することができる。 Also, first, the material constituting layer B is injected from an injection cylinder, then the material constituting layer A is injected from another injection cylinder simultaneously with the resin constituting layer B, and then the resin constituting layer B is injected. By injecting the required amount to fill the cavity, a multilayer injection molded article having a three-layer configuration B/A/B can be manufactured.
 また、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構成B/A/B/A/Bの多層射出成形体を製造することができる。 Also, by first injecting the material constituting layer B, then injecting the material constituting layer A alone, and finally injecting the required amount of material constituting layer B to fill the mold cavity, A multilayer injection molded article having a five-layer configuration B/A/B/A/B can be produced.
 また、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより5層構成B1/B2/A/B2/B1の多層射出成形体を製造することができる。得られた成形体の口頸部に耐熱性を与えるため、この段階で口頸部を熱処理により結晶化させてもよい。結晶化度は好ましくは30~50%、より好ましくは35~45%である。なお、結晶化は後述する二次加工を施した後に実施してもよい。 Also, first, the material constituting layer B1 is injected from an injection cylinder, then the material constituting layer B2 is injected from another injection cylinder simultaneously with the resin constituting layer B1, and then the resin constituting layer A is injected. is injected simultaneously with the resins constituting layers B1 and B2, and then the required amount of resin constituting layer B1 is injected to fill the cavity, resulting in multilayer injection of a five-layer configuration B1/B2/A/B2/B1. Molded objects can be produced. In order to impart heat resistance to the mouth and neck portion of the obtained molded article, the mouth and neck portion may be crystallized by heat treatment at this stage. The degree of crystallinity is preferably 30-50%, more preferably 35-45%. Note that crystallization may be performed after performing secondary processing, which will be described later.
[容器]
 第2の実施形態の容器は、第2の実施形態の多層射出成形体を含む。容器は、良好な酸素バリア性を有し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。
 第2の実施形態の多層射出成形体自体が容器である場合、良好な酸素バリア性を有し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。また、容器外からわずかに侵入する酸素のほか、容器内の酸素を吸収して、保存する内容物の酸素による変質を防止することができる。
[container]
The container of the second embodiment includes the multilayer injection molded body of the second embodiment. The container has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance.
When the multilayer injection molded article of the second embodiment itself is a container, it has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance. Furthermore, in addition to the slight amount of oxygen that enters from outside the container, it can also absorb oxygen within the container to prevent the stored contents from deteriorating due to oxygen.
 第2の実施形態の多層射出成形体及び容器の形状は特に限定されず、金型に応じて任意の形状とすることができる。第2の実施形態の多層射出成形体が酸素バリア性能を発現することができることを考慮すると、第2の実施形態の多層射出成形体及び容器は、カップ状容器やボトル状容器等の保存容器であることが好ましい。また、PETボトルのような後述するようなブロー成形等の二次加工のために、第2の実施形態の多層射出成形体は、試験管状のプリフォーム(パリソン)であることも好ましい。 The shapes of the multilayer injection molded body and container of the second embodiment are not particularly limited, and can be made into any shape depending on the mold. Considering that the multilayer injection molded article of the second embodiment can exhibit oxygen barrier performance, the multilayer injection molded article of the second embodiment and the container can be used as storage containers such as cup-shaped containers and bottle-shaped containers. It is preferable that there be. Further, for secondary processing such as blow molding, which will be described later, such as a PET bottle, the multilayer injection molded article of the second embodiment is preferably a test tube-shaped preform (parison).
 第2の実施形態の容器は、第2の実施形態の多層射出成形体を更に加工(即ち、二次加工)して得ることもできる。容器は、良好な酸素バリア性を有し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。また、容器外からわずかに侵入する酸素のほか、容器内の酸素を吸収して、保存する内容物の酸素による変質を防止することができる。二次加工の方法としては、射出ブロー成形や延伸ブロー成形等が挙げられる。二次加工して得られる容器としては、ボトルやバイアルが挙げられる。 The container of the second embodiment can also be obtained by further processing (that is, secondary processing) the multilayer injection molded product of the second embodiment. The container has good oxygen barrier properties, good color tone after oxygen absorption, excellent strength and shape retention, and has a good appearance. Furthermore, in addition to the slight amount of oxygen that enters from outside the container, it can also absorb oxygen within the container to prevent the stored contents from deteriorating due to oxygen. Examples of secondary processing methods include injection blow molding and stretch blow molding. Containers obtained through secondary processing include bottles and vials.
<射出ブロー成形>
 射出ブロー成形では、まず第2の実施形態の多層射出成形体として試験管状のプリフォーム(パリソン)を成形し、次いで加熱したプリフォームの口部を治具で固定し、該プリフォームを最終形状金型に嵌め、口部から空気を吹込み、プリフォームを膨らませて金型に密着させ、冷却固化させることでボトル状に成形することができる。
<Injection blow molding>
In injection blow molding, a test tube-shaped preform (parison) is first molded as the multilayer injection molded article of the second embodiment, and then the mouth of the heated preform is fixed with a jig, and the preform is shaped into the final shape. The preform can be molded into a bottle by fitting it into a mold, blowing air through the mouth, inflating the preform, bringing it into close contact with the mold, and cooling and solidifying it.
 また、射出ストレッチブロー成形では、加熱したプリフォームの口部を治具で固定し、該プリフォームを最終形状金型に嵌め、口部から延伸ロッドで延伸しながら空気を吹込み、プリフォームをブロー延伸させて金型に密着させ、冷却固化させることでボトル状に成形することができる。
 なお、射出ストレッチブロー成形法としては、大別してホットパリソン方式とコールドパリソン方式とがある。前者はプリフォームを完全に冷却することなく、軟化状態でブロー成形する。一方、後者のコールドパリソン方式ではプリフォームを最終形状の寸法よりかなり小さく、樹脂が非晶質である過冷却有底プリフォームとして形成し、このプリフォームをその延伸温度に予備過熱し、最終形状金型中で軸方向に引張延伸するとともに、周方向にブロー延伸する方式で大量生産に向いている。いずれの方法においても、この多層プリフォームをガラス転移点(Tg)以上の延伸温度に加熱後、熱処理(ヒートセット)温度に加熱された最終形状金型内においてストレッチブロー成形法によって、延伸ロッドにより縦方向に延伸すると共にブローエアによって横方向に延伸する。最終ブロー成形体の延伸倍率は、縦方向で1.2~6倍、横方向で1.2~4.5倍が好ましい。
In addition, in injection stretch blow molding, the mouth of a heated preform is fixed with a jig, the preform is fitted into a final shape mold, and air is blown into the preform while stretching it with a stretching rod from the mouth. It can be molded into a bottle by blow-stretching it, bringing it into close contact with a mold, and cooling and solidifying it.
Injection stretch blow molding methods can be broadly classified into hot parison methods and cold parison methods. In the former method, the preform is blow molded in a softened state without being completely cooled. On the other hand, in the latter cold parison method, the preform is formed as a supercooled bottomed preform that is considerably smaller than the dimensions of the final shape and the resin is amorphous, and this preform is preheated to the drawing temperature to form the final shape. It is suitable for mass production because it is stretched in the axial direction in a mold and blow-stretched in the circumferential direction. In either method, this multilayer preform is heated to a stretching temperature higher than the glass transition point (Tg), and then stretched by stretch blow molding in a final shape mold heated to a heat setting temperature. It is stretched in the machine direction and also stretched in the cross direction with blow air. The stretching ratio of the final blow molded product is preferably 1.2 to 6 times in the machine direction and 1.2 to 4.5 times in the transverse direction.
 上述した最終形状金型を、樹脂の結晶化が促進される温度、例えばPET樹脂では120~230℃、好ましくは130~210℃に加熱してブロー時に、成形体の器壁の外側を金型内面に所定時間接触させて熱処理を行う。所定時間の熱処理後、ブロー用流体を内部冷却用流体に切換えて内層を冷却する。熱処理時間は、ブロー成形体の厚さや温度によって相違するが、一般にPET樹脂の場合、1.5~30秒、好ましくは2~20秒である。一方冷却時間も熱処理温度や冷却用流体の種類により異なるが、一般に0.1~30秒、好ましくは0.2~20秒である。この熱処理により成形体各部は結晶化される。 The final shape mold described above is heated to a temperature that promotes crystallization of the resin, for example, 120 to 230 °C for PET resin, preferably 130 to 210 °C, and during blowing, the outside of the vessel wall of the molded body is heated to a temperature that promotes crystallization of the resin. Heat treatment is performed by contacting the inner surface for a predetermined period of time. After heat treatment for a predetermined time, the blowing fluid is switched to an internal cooling fluid to cool the inner layer. The heat treatment time varies depending on the thickness and temperature of the blow molded product, but is generally 1.5 to 30 seconds, preferably 2 to 20 seconds in the case of PET resin. On the other hand, the cooling time also varies depending on the heat treatment temperature and the type of cooling fluid, but is generally 0.1 to 30 seconds, preferably 0.2 to 20 seconds. Through this heat treatment, each part of the molded body is crystallized.
 冷却用流体としては、常温の空気、冷却された各種気体、例えば-40℃~+10℃の窒素、空気、炭酸ガス等の他に、化学的に不活性な液化ガス、例えば液化窒素ガス、液化炭酸ガス、液化トリクロロフルオロメタンガス、液化ジクロロジフルオロメタンガス、他の液化脂肪族炭化水素ガス等が使用できる。この冷却用流体には、水等の気化熱の大きい液体ミストを共存させることもできる。上述した冷却用流体を使用することにより、著しく大きい冷却温度を得ることができる。また、ストレッチブロー成形に際して2個の金型を使用し、第1の金型では所定の温度及び時間の範囲内で熱処理した後、ブロー成形体を冷却用の第2の金型へ移し、再度ブローすると同時にブロー成形体を冷却してもよい。金型から取出したブロー成形体の外層は、放冷により、又は冷風を吹付けることにより冷却する。 Cooling fluids include air at room temperature, various cooled gases such as -40°C to +10°C nitrogen, air, and carbon dioxide, as well as chemically inert liquefied gases such as liquefied nitrogen gas and liquefied gas. Carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, etc. can be used. This cooling fluid may also contain a liquid mist having a large heat of vaporization, such as water. By using the cooling fluids described above, significantly higher cooling temperatures can be obtained. In addition, two molds are used for stretch blow molding, and the first mold is heat-treated within a predetermined temperature and time range, and then the blow molded product is transferred to the second mold for cooling, and then again. The blow molded article may be cooled at the same time as blowing. The outer layer of the blow-molded product taken out from the mold is cooled by standing to cool or by blowing cold air.
<延伸ブロー成形>
 延伸ブロー成形法としては、前記多層プリフォームを、一次ストレッチブロー金型を用いて最終ブロー成形体よりも大きい寸法の一次ブロー成形体とし、次いでこの一次ブロー成形体を加熱収縮させた後、二次金型を用いてストレッチブロー成形を行って最終ブロー成形体とする二段ブロー成形が挙げられる。このブロー成形体の製造方法によれば、ブロー成形体の底部が十分に延伸薄肉化され、熱間充填、加熱滅菌時の底部の変形、耐衝撃性に優れたブロー成形体を得ることができる。
<Stretch blow molding>
In the stretch blow molding method, the multilayer preform is made into a primary blow molded body with a size larger than the final blow molded body using a primary stretch blow mold, and then this primary blow molded body is heated and shrunk, and then a second blow molded body is formed. One example is two-stage blow molding in which stretch blow molding is performed using a subsequent mold to obtain a final blow molded product. According to this method for producing a blow molded body, the bottom of the blow molded body is sufficiently thinned by stretching, and a blow molded body with excellent resistance to deformation and impact at the bottom during hot filling and heat sterilization can be obtained. .
[その他]
 第2の実施形態の多層射出成形体、多層射出成形体から得られる容器、及び多層射出成形体を二次加工して得られる容器(以下、「多層射出成形体及び容器等」とも称する)には、無機物又は無機酸化物の蒸着膜や、アモルファスカーボン膜をコーティングしてもよい。
[others]
The multilayer injection molded product of the second embodiment, the container obtained from the multilayer injection molded product, and the container obtained by secondary processing the multilayer injection molded product (hereinafter also referred to as "multilayer injection molded product, container, etc.") may be coated with a vapor-deposited film of an inorganic substance or inorganic oxide, or an amorphous carbon film.
 無機物又は無機酸化物としては、アルミニウムやアルミナ、酸化珪素等が挙げられる。無機物又は無機酸化物の蒸着膜は、多層射出成形体及び容器等から、アセトアルデヒドやホルムアルデヒド等の溶出物を遮蔽できる。蒸着膜の形成法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が挙げられる。蒸着膜の厚さは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは5~500nm、より好ましくは5~200nmである。 Examples of the inorganic substance or inorganic oxide include aluminum, alumina, silicon oxide, and the like. A vapor-deposited film of an inorganic substance or an inorganic oxide can shield eluted substances such as acetaldehyde and formaldehyde from a multilayer injection molded article, a container, and the like. The method for forming the deposited film is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating, and chemical vapor deposition methods such as PECVD. The thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoint of gas barrier properties, light shielding properties, bending resistance, etc.
 アモルファスカーボン膜はダイヤモンド状炭素膜で、iカーボン膜または水素化アモルファスカーボン膜とも呼ばれる硬質炭素膜である。膜の形成法としては、排気により中空成形体の内部を真空にし、そこへ炭素源ガスを供給し、プラズマ発生用エネルギーを供給することにより、その炭素源ガスをプラズマ化させる方法が例示され、これにより、多層射出成形体及び容器等の内面にアモルファスカーボン膜を形成させることができる。アモルファスカーボン膜は酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることができるだけでなく、臭いを有する各種の低分子有機化合物の収着を抑制することができる。アモルファスカーボン膜の厚さは、低分子有機化合物の収着抑制効果、ガスバリア性の向上効果、プラスチックとの密着性、耐久性および透明性等の観点から、50~5000nmが好ましい。 The amorphous carbon film is a diamond-like carbon film, and is a hard carbon film also called an i-carbon film or a hydrogenated amorphous carbon film. As a method for forming the film, a method is exemplified in which the inside of the hollow molded body is evacuated by evacuation, a carbon source gas is supplied thereto, and the carbon source gas is turned into plasma by supplying energy for plasma generation. Thereby, an amorphous carbon film can be formed on the inner surface of a multilayer injection molded body, a container, etc. The amorphous carbon film can not only significantly reduce the permeability of low-molecular-weight inorganic gases such as oxygen and carbon dioxide, but also suppress the sorption of various low-molecular-weight organic compounds that have odors. The thickness of the amorphous carbon film is preferably 50 to 5000 nm from the viewpoints of suppressing the sorption of low-molecular-weight organic compounds, improving gas barrier properties, adhesion to plastics, durability, transparency, and the like.
 多層射出成形体及び容器等は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。また、多層射出成形体及び容器等は、酸素吸収に水分を必要としないので、低湿度から高湿度までの広範な湿度条件下での酸素吸収性能に優れ、かつ内容物の風味保持性に優れる。そのため、多層射出成形体及び容器等は、種々の物品の包装に適している。 Multilayer injection molded products, containers, etc. exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance. In addition, multilayer injection molded products and containers do not require moisture to absorb oxygen, so they have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and they also have excellent flavor retention of the contents. . Therefore, multilayer injection molded bodies, containers, etc. are suitable for packaging various articles.
 被保存物の具体例としては、牛乳、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、ドレッシング等の液体調味料、スープ、シチュー、カレー等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター等の乳加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも等の野菜類;卵;麺類;調理前の米類、調理された炊飯米、米粥等の加工米製品;粉末調味料、粉末コーヒー、乳幼児用粉末ミルク、乳幼児用調理食品、粉末ダイエット食品、介護調理食品、乾燥野菜、せんべい等の乾燥食品;農薬、殺虫剤等の化学品;医薬品;ペットフード;洗剤等、種々の物品を挙げることができるが、これらに特に限定されない。特に、酸素存在下で劣化を起こしやすい内容品、例えば、飲料ではビール、ワイン、フルーツジュース、炭酸ソフトドリンク等、食品では果物、ナッツ、野菜、肉製品、幼児食品、コーヒー、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、佃煮類、乳製品類等、その他では医薬品、化粧品等の包装材料に好適である。 Specific examples of things to be preserved include beverages such as milk, juice, coffee, tea, and alcoholic beverages; liquid seasonings such as sauces, soy sauce, and dressings; prepared foods such as soups, stews, and curries; and jams, mayonnaise, etc. Paste-like foods; Marine products such as tuna and fish and shellfish; Processed milk products such as cheese and butter; Processed meat products such as meat, salami, sausage, and ham; Vegetables such as carrots and potatoes; Eggs; Noodles; Before cooking Processed rice products such as rice, cooked rice, and rice porridge; powdered seasonings, powdered coffee, powdered milk for infants, cooked foods for infants, powdered diet foods, nursing care foods, dried vegetables, dried foods such as rice crackers, etc. Chemicals such as pesticides and insecticides; Pharmaceutical products; Pet food; Detergents, and various other products can be mentioned, but are not particularly limited thereto. In particular, contents that are susceptible to deterioration in the presence of oxygen, such as beverages such as beer, wine, fruit juice, carbonated soft drinks, etc., and foods such as fruits, nuts, vegetables, meat products, infant foods, coffee, jam, mayonnaise, and ketchup. It is suitable for packaging materials such as edible oils, dressings, sauces, tsukudani foods, dairy products, and other products such as pharmaceuticals and cosmetics.
 また、これらの被保存物の充填前後に、被保存物に適した形で、多層射出成形体及び容器等や、被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、130℃以上の超高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。 Furthermore, before and after filling these objects to be preserved, the multilayer injection molded body, container, etc., and the objects to be preserved can be sterilized in a form suitable for the objects to be preserved. Sterilization methods include heat sterilization such as hot water treatment at 100℃ or lower, pressurized hot water treatment at 100℃ or higher, ultra-high temperature heat treatment at 130℃ or higher, electromagnetic wave sterilization such as ultraviolet rays, microwaves, and gamma rays, and ethylene oxide. Examples include gas treatment such as sterilization, chemical sterilization using hydrogen peroxide and hypochlorous acid, etc.
<<第3の実施形態>>
[多層体]
 第3の実施形態の多層体は、第1の実施形態に係る樹脂組成物を含有する層(A)(以下、「層A」とも称する)と、前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)(以下、「層B」とも称する)を前記層Aの両側に積層した、少なくとも3層を含有する。
 なお、第3の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Third embodiment>>
[Multilayer body]
The multilayer body of the third embodiment includes a layer (A) containing the resin composition according to the first embodiment (hereinafter also referred to as "layer A") and a thermoplastic resin different from the polyester compound (a). It contains at least three layers in which layer (B) containing (b) (hereinafter also referred to as "layer B") is laminated on both sides of layer A.
Note that in the third embodiment, descriptions of other embodiments can be cited as appropriate.
 第3の実施形態に係る多層体及び容器は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、良好な外観を有する。
 第3の実施形態に係る多層体及び容器は、好適には、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、被保存物の水分の有無によらず酸素を吸収することができ、しかも酸素吸収後の臭気発生や黄色化による外観悪化が無いので、例えば、食品、調理食品、飲料、医薬品、健康食品等、対象物を問わず幅広い用途で使用することができる。また、鉄粉等を含有しない第3の実施形態に係る好適態様によれば、金属探知機に感応しない多層体及び容器を実現することもできる。さらに、第3の実施形態に係る好適態様によれば、酸素吸収後の強度低下が極めて小さく、長期の利用においても強度が維持され、層間剥離が生じにくい多層体及び容器を実現することもできる。
The multilayer body and container according to the third embodiment exhibit good oxygen barrier performance, have a good color tone after oxygen absorption, have excellent strength and shape retention, and have a good appearance.
The multilayer body and container according to the third embodiment preferably have excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and can absorb oxygen regardless of the presence or absence of moisture in the stored material. Moreover, it does not generate odor or deteriorate appearance due to yellowing after absorbing oxygen, so it can be used in a wide range of applications regardless of the target, such as food, cooked foods, beverages, medicines, health foods, etc. I can do it. Further, according to a preferred aspect of the third embodiment that does not contain iron powder or the like, it is also possible to realize a multilayer body and a container that are not sensitive to metal detectors. Further, according to a preferred aspect of the third embodiment, it is possible to realize a multilayer body and a container that have extremely low strength loss after oxygen absorption, maintain strength even during long-term use, and are less likely to cause delamination. .
 第3の実施形態の多層体及び容器は、層Aと、層Aの両側に層Bが積層された、少なくとも3層を有する。第3の実施形態の多層体及び容器は、その層構成として、層B/層A/層Bの構成を有していれば良く、この他に任意の層を設けることが出来る。また、本明細書において、層Aの両側に積層される層Bは、互いに同一の層であっても、異なる層であってもよい。また、多層体及び容器は、層Aを1層以上、層Bを2層以上含めば、数や種類は特に限定されない。例えば、1層の層A並びに層B1及び層B2の2種4層の層BからなるB1/B2/A/B2/B1の5層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよい。さらに、第3の実施形態の多層体及び容器は、層Aと層Bとの間に必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/AD/B2/A/B2/AD/B1の7層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよく、層ADは両層とも同一の組成であっても異なってもよい。なお、第3の実施形態の多層体及び容器において、層Bを複数有する場合、その層Bの間に層Aを有していてもよい。 The multilayer body and container of the third embodiment has at least three layers: layer A and layer B laminated on both sides of layer A. The multilayer body and container of the third embodiment only need to have a layer B/layer A/layer B configuration, and any other layer may be provided. Further, in this specification, the layers B stacked on both sides of the layer A may be the same layer or different layers. Further, the number and type of the multilayer body and container are not particularly limited as long as they include one or more layers of layer A and two or more layers of layer B. For example, it may have a five-layer structure of B1/B2/A/B2/B1, which includes one layer A and four layers B of two types, layer B1 and layer B2. In this specification, both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions. Furthermore, the multilayer body and container of the third embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B, for example, B1/AD/B2. A seven-layer structure of /A/B2/AD/B1 may be used. In this specification, both layers B1 may have the same composition or different compositions, both layers B2 may have the same composition or different compositions, and both layers AD may have the same composition. may be different. In addition, in the multilayer body and container of 3rd Embodiment, when it has multiple layers B, it may have layer A between the layers B.
 成形が容易であり、酸素吸収後の色調がより良好であり、より良好な外観を有する多層射出成形体及び容器が得られることから、層Aと層Aの両側に層Bが積層された、B/A/Bの3層構成であることが好ましい。 Layer B is laminated on both sides of layer A and layer A because it is easier to mold, has a better color tone after oxygen absorption, and can provide a multilayer injection molded article and container with a better appearance. A three-layer structure of B/A/B is preferable.
 酸素吸収後の色調がより良好であり、より良好な外観を有する多層射出成形体及び容器が得られることから、多層体及び容器は、医療用に好適である。 The multilayer injection molded body and container are suitable for medical use because the multilayer injection molded body and container have a better color tone after oxygen absorption and a better appearance.
〔樹脂組成物を含有する層(A)〕
 層Aの厚さは特に制限はないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが更に好ましい。この範囲とすることで、層Aの酸素バリア性能をより高めることができるとともに経済性が損なわれることを防止することが可能となる傾向にある。
[Layer (A) containing resin composition]
The thickness of layer A is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and even more preferably 100 to 500 μm. By setting it as this range, it tends to be possible to further improve the oxygen barrier performance of layer A and to prevent economic efficiency from being impaired.
<ポリエステル化合物>
 第3の実施形態の<ポリエステル化合物>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound>
The <polyester compound> of the third embodiment is as described in the section of the <polyester compound> of the first embodiment.
<遷移金属触媒>
 第3の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the third embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、第3の実施形態の樹脂組成物及び層Aは、第3の実施形態の目的を阻害しない範囲でポリエステル化合物(a)以外の熱可塑性樹脂を含有しても良い。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素バリア性の効果を効果的に発揮するためにはポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような高酸素バリア性の樹脂がより好ましい。なお、層(A)が、ポリオレフィンを含有する場合、後述する層(B)とは、ポリエステル化合物(a)を含むか否かにより区別することができる。 Furthermore, the resin composition and layer A of the third embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the third embodiment. These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. In order to effectively exhibit oxygen barrier effects, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred. In addition, when the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
〔熱可塑性樹脂(b)を含有する層(B)〕
 第3の実施形態の〔熱可塑性樹脂(b)を含有する層(B)〕は、第2の実施形態の〔熱可塑性樹脂(b)を含有する層(B)〕の欄で説明したとおりである。
[Layer (B) containing thermoplastic resin (b)]
[Layer (B) containing thermoplastic resin (b)] in the third embodiment is as explained in the section [Layer (B) containing thermoplastic resin (b)] in the second embodiment. It is.
〔その他の層〕
 第3の実施形態の〔その他の層〕は、第2の実施形態の〔その他の層〕の欄で説明したとおりである。
[Other layers]
[Other layers] in the third embodiment are as described in the [Other layers] section of the second embodiment.
[多層体の製造方法]
 第3の実施形態の[多層体の製造方法]は、第2の実施形態の[多層射出成形体の製造方法]の欄で説明したとおりである。
[Method for manufacturing multilayer body]
[Method for manufacturing a multilayer body] in the third embodiment is the same as described in the section [Method for manufacturing a multilayer injection molded body] in the second embodiment.
[容器]
 第3の実施形態の[容器]は、第2の実施形態の[容器]の欄で説明したとおりである。
[container]
[Container] in the third embodiment is as described in the [Container] section of the second embodiment.
<射出ブロー成形>
 第3の実施形態の<射出ブロー成形>は、第2の実施形態の<射出ブロー成形>の欄で説明したとおりである。
<Injection blow molding>
The <injection blow molding> of the third embodiment is as described in the <injection blow molding> section of the second embodiment.
<延伸ブロー成形>
 第3の実施形態の<延伸ブロー成形>は、第2の実施形態の<延伸ブロー成形>の欄で説明したとおりである。
<Stretch blow molding>
<Stretch blow molding> in the third embodiment is as described in the section <Stretch blow molding> in the second embodiment.
[その他]
 第3の実施形態の[その他]は、第2の実施形態の[その他]の欄で説明したとおりである。
[others]
[Others] in the third embodiment is as described in the [Others] column of the second embodiment.
<<第4の実施形態>>
[医療用多層容器(酸素吸収性医療用多層容器)]
 第4の実施形態の医療用多層容器は、第1の実施形態に係る樹脂組成物を含有する層Aと、ポリオレフィン(b)を含有する層Bと、を含み、前記層Aの両側に前記層Bが積層された、少なくとも3層を含む多層構造を有する。
 なお、第4の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Fourth embodiment>>
[Medical multilayer container (oxygen-absorbing medical multilayer container)]
The medical multilayer container according to the fourth embodiment includes a layer A containing the resin composition according to the first embodiment and a layer B containing the polyolefin (b), and the layer A includes the layer A containing the polyolefin (b). Layer B has a laminated multilayer structure including at least three layers.
Note that in the fourth embodiment, descriptions of other embodiments can be cited as appropriate.
 第4の実施形態によれば、好適には低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する酸素吸収性医療用多層容器を実現することができる。さらに本発明では、優れた酸素バリア性能、優れた水蒸気バリア性能を有し、落下強度に優れるとともに、長期保存時でも強度が維持され、且つ、酸素吸収後の臭気発生や不純物の溶出量が少なく、黄色化による外観悪化の無い酸素吸収性医療用多層容器を実現することもできる。
 さらに第4の実施形態の医療用多層容器は、ポリエステル化合物(A)及び繊維金属触媒を含む酸素吸収性樹脂組成物を用いるため、層Aを射出成形によって形成する際に連続成形を行っても金型に付着物(以下、「モールドデポ」と称することがある)が残りづらい。このように、第4の実施形態の医療用多層容器は成形性に優れるため、連続して成形する場合であっても頻繁に金型の清掃などを行う必要がなく、生産性に優れる。
According to the fourth embodiment, it is possible to realize an oxygen-absorbing medical multilayer container that has excellent oxygen-absorbing performance under a wide range of humidity conditions, preferably from low humidity to high humidity. Furthermore, the present invention has excellent oxygen barrier performance, excellent water vapor barrier performance, excellent drop strength, maintains strength even during long-term storage, and has low odor generation and elution of impurities after oxygen absorption. It is also possible to realize an oxygen-absorbing multilayer medical container that does not deteriorate in appearance due to yellowing.
Furthermore, since the medical multilayer container of the fourth embodiment uses an oxygen-absorbing resin composition containing a polyester compound (A) and a fiber metal catalyst, continuous molding may be performed when layer A is formed by injection molding. It is difficult for deposits (hereinafter sometimes referred to as "mold deposits") to remain on the mold. As described above, since the medical multilayer container of the fourth embodiment has excellent moldability, there is no need to frequently clean the mold even when molding is performed continuously, resulting in excellent productivity.
 第4の実施形態の医療用多層容器は、層Aと、層Aの両側に層Bが積層された、少なくとも3層を有する多層構造体である。第4の実施形態の医療用多層容器は、その層構成として、層B/層A/層Bの構成を有していればよく、この他に任意の層を設けることが出来る。また、本明細書において、層Aの両側に積層される層Bは、互いに同一の層であっても、異なる層であってもよい。また、医療用多層容器は、層Aを1層以上、層Bを2層以上含めば、数や種類は特に限定されない。例えば、1層の層A並びに層B1及び層B2の2種4層の層Bからなる層B1/層B2/層A/層B2/層B1の5層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよい。さらに、第4の実施形態の医療用多層容器は、層Aと層Bとの間に必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、層B1/層AD/層B2/層A/層B2/層AD/層B1の7層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよく、層ADは両層とも同一の組成であっても異なってもよい。なお、第4の実施形態の医療用多層容器において、層Bを複数有する場合、その層Bの間に層Aを有していてもよい。 The medical multilayer container of the fourth embodiment is a multilayer structure having at least three layers, including layer A and layer B laminated on both sides of layer A. The medical multilayer container of the fourth embodiment only needs to have a layer B/layer A/layer B configuration, and any other layers may be provided. Further, in this specification, the layers B stacked on both sides of the layer A may be the same layer or different layers. Further, the number and type of the medical multilayer container are not particularly limited as long as it includes one or more layers A and two or more layers B. For example, it may have a five-layer structure of layer B1/layer B2/layer A/layer B2/layer B1, which includes one layer A and two types of four layers B1 and B2. In this specification, both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions. Furthermore, the medical multilayer container of the fourth embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B as necessary. For example, layer B1/layer AD It may have a seven-layer structure: /layer B2/layer A/layer B2/layer AD/layer B1. In this specification, both layers B1 may have the same composition or different compositions, both layers B2 may have the same composition or different compositions, and both layers AD may have the same composition. may be different. In addition, in the medical multilayer container of 4th Embodiment, when it has multiple layers B, it may have layer A between the layers B.
〔層A(酸素吸収層)〕 [Layer A (oxygen absorption layer)]
 酸素吸収層(層A)の厚みは特に制限はないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが特に好ましい。この範囲とすることで酸素吸収層(層A)が酸素を吸収する性能をより高めることができるとともに経済性が損なわれることを防止することが可能となる。 The thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and particularly preferably 100 to 500 μm. By setting it as this range, it becomes possible to further improve the ability of the oxygen absorbing layer (layer A) to absorb oxygen, and to prevent economic efficiency from being impaired.
<ポリエステル化合物(a)>
 第4の実施形態の<ポリエステル化合物(a)>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound (a)>
The <polyester compound (a)> of the fourth embodiment is as described in the section of <polyester compound> of the first embodiment.
<遷移金属触媒>
 第4の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the fourth embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、第4の実施形態における層Aは、第4の実施形態の目的を阻害しない範囲で他の熱可塑性樹脂を含有してもよい。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素バリア効果を効果的に発揮するためにはポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような高酸素バリア性の樹脂がより好ましい。 Furthermore, layer A in the fourth embodiment may contain other thermoplastic resins within a range that does not impede the purpose of the fourth embodiment. These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. In order to effectively exhibit the oxygen barrier effect, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
〔層B(ポリオレフィン(b)を含有する樹脂層)〕
 第4の実施形態における層Bは、ポリオレフィン(b)を含有する樹脂層である。層Bにおけるポリオレフィン(b)の含有率は特に限定されないが、層Bの総量に対するポリオレフィン(b)の含有率が、70~100質量%であることが好ましく、80~100質量%がより好ましく、90~100質量%が特に好ましい。前記範囲とすることで層Bの透明性、成形性、水蒸気バリア性を高めることができる。熱可塑性樹脂(b)は、1種を単独で又は2種以上を組み合わせて用いることができる。
[Layer B (resin layer containing polyolefin (b))]
Layer B in the fourth embodiment is a resin layer containing polyolefin (b). The content of polyolefin (b) in layer B is not particularly limited, but the content of polyolefin (b) relative to the total amount of layer B is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, Particularly preferred is 90 to 100% by weight. By setting it as the said range, the transparency, moldability, and water vapor barrier property of layer B can be improved. The thermoplastic resin (b) can be used alone or in combination of two or more.
 第4の実施形態の医療用多層容器は、層Bを複数有していてもよく、複数の層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚みは、用途に応じて適宜決定することができ、医療用多層容器に要求される落下耐性等の強度や柔軟性等の諸物性を確保するという観点からは、好ましくは30~1500μm、より好ましくは50~1000μm、更に好ましくは100~700μmである。また、より良好な酸素バリア性能を示し、酸素吸収後の色調がより良好かつ強度・形状維持性により優れ、より良好な外観を有することから、容器の場合、容器内層(層B)の厚さが100~300μmであることが好ましく、中間層(層A)の厚さが200~400μmであることが好ましく、容器外層(層B)の厚さが400~600μmであることが好ましい。 The medical multilayer container of the fourth embodiment may have a plurality of layers B, and the configurations of the plurality of layers B may be the same or different. The thickness of layer B can be determined as appropriate depending on the application, and is preferably 30 to 1500 μm from the viewpoint of ensuring various physical properties such as strength and flexibility such as drop resistance required for medical multilayer containers. , more preferably 50 to 1000 μm, still more preferably 100 to 700 μm. In addition, it shows better oxygen barrier performance, has a better color tone after oxygen absorption, has better strength and shape retention, and has a better appearance. is preferably 100 to 300 μm, the thickness of the intermediate layer (layer A) is preferably 200 to 400 μm, and the thickness of the outer container layer (layer B) is preferably 400 to 600 μm.
<ポリオレフィン>
 第4の実施形態の<ポリオレフィン>は、第2の実施形態の<ポリオレフィン>の欄で説明したとおりである。
<Polyolefin>
The <polyolefin> of the fourth embodiment is as described in the <polyolefin> column of the second embodiment.
〔他の層〕
 第4の実施形態の〔他の層〕は、第2の実施形態の〔その他の層〕の欄で説明したとおりである。
[Other layers]
[Other layers] in the fourth embodiment are as described in the [Other layers] section of the second embodiment.
[医療用多層容器の製造方法]
 第4の実施形態の[医療用多層容器の製造方法]は、第2の実施形態の[多層射出成形体の製造方法]の欄で説明したとおりである。
[Method for manufacturing multilayer medical containers]
[Method for manufacturing multilayer medical container] of the fourth embodiment is the same as described in the section [Method for manufacturing multilayer injection molded product] of the second embodiment.
[医療用多層容器の種類]
 第4の実施形態の医療用多層容器の形状は特に限定されるものではないが、例えば、バイアル、アンプル、プレフィル用シリンジ、真空採血管が挙げられる。
[Types of medical multilayer containers]
Although the shape of the medical multilayer container of the fourth embodiment is not particularly limited, examples thereof include a vial, an ampoule, a prefill syringe, and a vacuum blood collection tube.
<バイアル>
 第4の実施形態のバイアルの構成は、一般的なバイアルとなんら変わるものではなく、ボトル、ゴム栓、キャップから構成される。薬液をボトルに充填後、ゴム栓をして、更にその上からキャップを巻締めることで密閉して用いられる。前記ボトル部分が、第4の実施形態の医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物を用いて形成可能な酸素吸収層(層A)であり、最内層及び最外層がポリオレフィンを含有する樹脂層(層B)である。
<Vial>
The structure of the vial of the fourth embodiment is no different from a general vial, and is composed of a bottle, a rubber stopper, and a cap. After filling a bottle with a medicinal solution, a rubber stopper is placed on the bottle, and then a cap is wrapped over the top to seal the bottle. The bottle portion is a medical multilayer molded container according to the fourth embodiment, wherein at least one of the intermediate layers is an oxygen absorption layer (layer A) that can be formed using an oxygen absorption resin composition, and the innermost layer is an oxygen absorption layer (layer A) that can be formed using an oxygen absorption resin composition. and the outermost layer is a resin layer (layer B) containing polyolefin.
 第4の実施形態のバイアルのボトル部分は、例えば、射出ブロー成形、押出しブロー成形にて製造される。例としてバイアルを構成する多層成形体の射出ブロー成形方法を以下に示す。
 例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層Aを構成する材料及び層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層成形体を製造することができる。また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造(層B/層A/層B)の多層成形体が製造できる。
 また、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造(層B/層A/層B/層A/層B)の多層成形体が製造できる。
 また、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する材料と同時に射出し、次に層Aを構成する材料を層B1、層B2を構成する材料と同時に射出し、次に層B1を構成する材料を必要量射出してキャビティーを満たすことにより5層構造(層B1/層B2/層A/層B2/層B1)の多層インジェクション成形体が製造できる。
 射出ブロー成形では前記方法により得られた多層成形体をある程度加熱された状態を保ったまま最終形状金型(ブロー金型)に嵌め、空気を吹込み、膨らませて金型に密着させ、冷却固化させることでボトル状に成形することができる。
The bottle portion of the vial of the fourth embodiment is manufactured, for example, by injection blow molding or extrusion blow molding. As an example, an injection blow molding method for a multilayer molded body constituting a vial is shown below.
For example, using a molding machine and an injection mold equipped with two or more injection machines, the material constituting layer A and the material constituting layer B are passed from the respective injection cylinders through the mold hot runner and into the cavity. A multilayer molded body corresponding to the shape of the injection mold can be manufactured by injection. Also, first, the material constituting layer B is injected from an injection cylinder, then the material constituting layer A is injected from another injection cylinder simultaneously with the resin constituting layer B, and then the resin constituting layer B is injected. A multilayer molded product having a three-layer structure (layer B/layer A/layer B) can be manufactured by injecting the required amount of the mixture to fill the cavity.
Also, by first injecting the material constituting layer B, then injecting the material constituting layer A alone, and finally injecting the required amount of material constituting layer B to fill the mold cavity, A multilayer molded body having a five-layer structure (layer B/layer A/layer B/layer A/layer B) can be produced.
In addition, first, the material constituting layer B1 is injected from an injection cylinder, then the material constituting layer B2 is injected from another injection cylinder simultaneously with the material constituting layer B1, and then the material constituting layer A is injected. is simultaneously injected with the materials constituting layers B1 and B2, and then the required amount of the material constituting layer B1 is injected to fill the cavity, resulting in a five-layer structure (layer B1/layer B2/layer A/layer B2). /layer B1) multilayer injection molded body can be produced.
In injection blow molding, the multilayer molded product obtained by the above method is fitted into a final shape mold (blow mold) while keeping it heated to a certain extent, air is blown into it, it is inflated and brought into close contact with the mold, and then cooled and solidified. By doing so, it can be formed into a bottle shape.
<アンプル>
 第4の実施形態のアンプルの構成は、一般的なアンプルと同様であり、頸部を細くした小容器であってもよい。アンプルは、薬液を充填後、頸部の先を熔封する事で密閉して用いられる。上述のアンプルが第4の実施形態の医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物で形成可能な酸素吸収層(層A)であり、最内層、最外層がポリオレフィンを含有する樹脂層(層B)である。第4の実施形態のアンプルは、例えば、射出ブロー成形、押出しブロー成形にて製造される。
<Ampoule>
The configuration of the ampoule of the fourth embodiment is similar to that of a general ampoule, and may be a small container with a narrow neck. After filling the ampoule with a medicinal solution, the end of the neck is sealed to seal it. The above-mentioned ampoule is a medical multilayer molded container according to the fourth embodiment, in which at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed from an oxygen absorbing resin composition, and the innermost layer and the outermost layer is a resin layer (layer B) containing polyolefin. The ampoule of the fourth embodiment is manufactured, for example, by injection blow molding or extrusion blow molding.
<プレフィル用シリンジ>
 第4の実施形態のプレフィル用シリンジの構成は一般的なプレフィル用シリンジと同様であり、少なくとも薬液を充填する為のバレル、バレルの一端に注射針を接合する為の接合部及び使用時に薬液を押出す為のプランジャーから構成される。上述のバレルが第4の実施形態の医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物を用いて形成可能な酸素吸収層(層A)であり、最内層、最外層がポリオレフィンを含有する樹脂層(層B)である。
<Prefill syringe>
The configuration of the prefill syringe of the fourth embodiment is the same as that of a general prefill syringe, and includes at least a barrel for filling a drug solution, a joint for joining a syringe needle to one end of the barrel, and a joint for connecting a drug solution during use. Consists of a plunger for extrusion. The above-mentioned barrel is a medical multilayer molded container according to the fourth embodiment, in which at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed using an oxygen absorbing resin composition, and the innermost layer, The outermost layer is a resin layer (layer B) containing polyolefin.
 第4の実施形態のプレフィル用シリンジは、例えば、射出成形法にて製造される。多層成形体となるバレルは、先ず層Bを構成する材料をキャビティー内に一定量射出し、次いで層Aを構成する材料を一定量射出し、再び層Bを構成する材料を一定量射出することにより製造される。バレルと接合部とは一体のものとして成形してもよいし、別々に成形した物を接合してもよい。接合部の先端は封をする必要があるが、その方法は接合部先端の樹脂を溶融状態に加熱、ペンチ等で挟み込んで融着させる等すればよい。 The prefill syringe of the fourth embodiment is manufactured, for example, by an injection molding method. To create a barrel that will become a multilayer molded body, first a certain amount of material forming layer B is injected into the cavity, then a certain amount of material forming layer A is injected, and a certain amount of material forming layer B is injected again. Manufactured by The barrel and the joint may be molded as one piece, or they may be molded separately and then joined. It is necessary to seal the tip of the joint, which can be done by heating the resin at the tip of the joint to a molten state, and then pinching it with pliers or the like to fuse it.
 バレルの厚さは、使用目的や大きさによるが0.5~5mm程度のものであればよい。また、厚さは均一であっても、厚さを変えたものであってもいずれでもよい。また表面(処理されない)に長期保存安定の目的で、別のガスバリア膜や遮光膜が形成されていてもよい。かかる膜及びその形成方法としては、特開2004-323058号公報に記載された方法などを採用できる。 The thickness of the barrel may be about 0.5 to 5 mm, depending on the purpose of use and size. Furthermore, the thickness may be uniform or may vary. Further, another gas barrier film or light shielding film may be formed on the surface (untreated) for the purpose of long-term storage stability. As such a film and its formation method, the method described in Japanese Patent Application Laid-open No. 2004-323058, etc. can be adopted.
<真空採血管>
 第4の実施形態の真空採血管の構成は、一般的な真空採血管と同様であり、管状体及び栓体から構成される。前記管状体が第4の実施形態の医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物で形成可能な酸素吸収層(層A)であり、最内層及び最外層がポリオレフィンを含有する樹脂層(層B)である。
<Vacuum blood collection tube>
The configuration of the vacuum blood collection tube of the fourth embodiment is similar to that of a general vacuum blood collection tube, and is composed of a tubular body and a stopper. The tubular body is a medical multilayer molded container according to the fourth embodiment, wherein at least one layer of the intermediate layer is an oxygen absorbing layer (layer A) that can be formed from an oxygen absorbing resin composition, and the innermost layer and the outermost layer is a resin layer (layer B) containing polyolefin.
 第4の実施形態の真空採血管は、例えば、射出成形法にて製造される。医療用多層成形容器となる管状体は、先ず層Bを構成する材料をキャビティー内に一定量射出し、次いで層Aを構成する材料を一定量射出し、再び層Bを構成する材料を一定量射出することにより製造される。 The vacuum blood collection tube of the fourth embodiment is manufactured, for example, by an injection molding method. To make a tubular body that will become a multilayer molded container for medical use, first a certain amount of the material forming layer B is injected into the cavity, then a certain amount of material forming layer A is injected, and then a certain amount of material forming layer B is injected again. Manufactured by mass injection.
[医薬品]
 第4の実施形態の医療用多層容器は、酸素吸収に水分を必要としないので、低湿度から高湿度までの広範な湿度条件(相対湿度0%~100%)での酸素吸収性能に優れ、種々の物品の包装に適している。被保存物の代表例として、酸素存在下で劣化を起こしやすいバイオ医薬品が挙げられる。バイオ医薬品は、タンパク質由来の薬効成分を含む限り特に定めるものではなく、当業者に公知のバイオ医薬品を広く用いることができる。具体的には、抗体、ホルモン、酵素、及びこれらを含む複合体からなる群より選ばれる、バイオ医薬品であることが好ましい。バイオ医薬品の具体例としては、アドレナリン拮抗薬、鎮痛薬、麻酔薬、アンジオテンシン拮抗薬、抗炎症薬、抗不安薬、抗不整脈薬、抗コリン薬、抗凝固薬、抗てんかん薬、止瀉薬、抗ヒスタミン薬、抗新生物薬及び代謝拮抗薬、抗新生物薬及び代謝拮抗薬、抗塑性薬、抗潰瘍薬、ビスホスホネート、気管支拡張薬、強心薬、心臓血管薬、中枢作用α2刺激薬、造影剤、変換酵素阻害薬、外皮用薬、利尿薬、勃起不全用薬物、乱用薬物、エンドセリン拮抗薬、ホルモン薬及びサイトカイン、血糖降下薬、尿酸排泄促進薬及び痛風に用いられる薬物、免疫抑制薬、脂質降下薬、種々の薬品、精神治療薬、レニン阻害薬、セロトニン拮抗薬、ステロイド、交感神経興奮薬、甲状腺薬及び抗甲状腺薬、及び血管拡張薬、バソペプチダーゼ阻害薬、インスリン、血液因子、血栓溶解薬、ホルモン、造血成長因子、インターフェロン、インターロイキン系生成物、ワクチン、モノクローナル抗体、腫瘍壊死因子、治療用酵素、抗体-薬物複合体、バイオシミラー、エリスロポエチン、免疫グロブリン、体細胞、遺伝子治療、組織、及び治療用組換タンパク質が挙げられる。
[Medicinal products]
The medical multilayer container of the fourth embodiment does not require moisture for oxygen absorption, so it has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity (relative humidity 0% to 100%). Suitable for packaging various items. A typical example of something to be preserved is biopharmaceuticals, which tend to deteriorate in the presence of oxygen. The biopharmaceutical is not particularly defined as long as it contains a protein-derived medicinal ingredient, and a wide variety of biopharmaceuticals known to those skilled in the art can be used. Specifically, it is preferably a biopharmaceutical selected from the group consisting of antibodies, hormones, enzymes, and complexes containing these. Specific examples of biopharmaceuticals include adrenergic antagonists, analgesics, anesthetics, angiotensin antagonists, anti-inflammatory drugs, anxiolytics, antiarrhythmics, anticholinergics, anticoagulants, antiepileptics, antidiarrheals, and antidiarrheals. Histamines, antineoplastics and antimetabolites, antineoplastics and antimetabolites, antiplastics, antiulcers, bisphosphonates, bronchodilators, inotropes, cardiovascular drugs, centrally acting α2 agonists, contrast media , converting enzyme inhibitors, dermal drugs, diuretics, drugs for erectile dysfunction, drugs of abuse, endothelin antagonists, hormonal drugs and cytokines, hypoglycemic drugs, uric acid excretion promoters and drugs used for gout, immunosuppressants, lipids Depressants, miscellaneous drugs, psychotherapeutics, renin inhibitors, serotonin antagonists, steroids, sympathomimetics, thyroid and antithyroid drugs, and vasodilators, vasopeptidase inhibitors, insulin, blood factors, thrombolysis. Drugs, hormones, hematopoietic growth factors, interferons, interleukin products, vaccines, monoclonal antibodies, tumor necrosis factors, therapeutic enzymes, antibody-drug conjugates, biosimilars, erythropoietin, immunoglobulins, somatic cells, gene therapy, tissue, and therapeutic recombinant proteins.
 また、これらの被保存物の充填前後に、被保存物に適した形で、医療多層容器や被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、121℃以上の高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。 Moreover, before and after filling these objects to be preserved, medical multilayer containers and objects to be preserved can be sterilized in a form suitable for the objects to be preserved. Sterilization methods include heat sterilization such as hot water treatment at 100℃ or lower, pressurized hot water treatment at 100℃ or higher, high-temperature heat treatment at 121℃ or higher, electromagnetic wave sterilization such as ultraviolet rays, microwaves, and gamma rays, ethylene oxide, etc. gas treatment, and chemical sterilization using hydrogen peroxide, hypochlorous acid, etc.
<<第5の実施形態>>
[プレフィル用シリンジ(酸素吸収性プレフィル用シリンジ)]
 第5の実施形態のプレフィル用シリンジは、薬剤を密封状態で収容可能であり、使用に際し前記密封状態を解除して前記薬剤を注出可能なプレフィル用シリンジであって、
 第1の実施形態に係る樹脂組成物を含有する層Aと、
 ポリオレフィン(b)を含有する層Bと、を含み、且つ、前記層Aの両側に前記層Bが積層された、少なくとも3層を含む多層構造を有する。
 なお、第5の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Fifth embodiment>>
[Prefill syringe (oxygen-absorbing prefill syringe)]
The prefill syringe of the fifth embodiment is a prefill syringe that can accommodate a drug in a sealed state and that can release the sealed state and pour out the drug when used,
A layer A containing the resin composition according to the first embodiment;
and a layer B containing polyolefin (b), and the layer B is laminated on both sides of the layer A, and has a multilayer structure including at least three layers.
Note that in the fifth embodiment, descriptions of other embodiments can be cited as appropriate.
 第5の実施形態によれば、好適には優れた酸素吸収性能、及び、水蒸気バリア性能を有する酸素吸収性プレフィル用シリンジを実現することができる。前記プレフィル用シリンジは、酸素吸収後の低分子量化合物の生成が抑制されているため、内容物への低分子量化合物の混入を防止することが可能である。また、酸素吸収後もポリエステル化合物の強度低下が極めて小さく、長期の利用においても酸素吸収層の強度が維持されるため、層間剥離が生じにくいプレフィル用シリンジを提供することが可能である。さらに、黄色化による外観悪化の無いプレフィル用シリンジを実現することもできる。
 さらに第5の実施形態のプレフィル用シリンジは、ポリエステル化合物(A)及び繊維金属触媒を含む酸素吸収性樹脂組成物を用いるため、層Aを射出成形によって形成する際に連続成形を行っても金型に付着物(以下、「モールドデポ」と称することがある)が残りづらい。このように、第5の実施形態のプレフィル用シリンジは成形性に優れるため、連続して成形する場合であっても頻繁に金型の清掃などを行う必要がなく、生産性に優れる。
According to the fifth embodiment, it is possible to realize an oxygen-absorbing prefill syringe that preferably has excellent oxygen absorption performance and water vapor barrier performance. In the prefill syringe, since the generation of low molecular weight compounds after oxygen absorption is suppressed, it is possible to prevent the low molecular weight compounds from being mixed into the contents. Further, even after oxygen absorption, the strength of the polyester compound decreases very little, and the strength of the oxygen-absorbing layer is maintained even during long-term use, so it is possible to provide a prefill syringe that is less prone to delamination. Furthermore, it is also possible to realize a prefill syringe that does not deteriorate in appearance due to yellowing.
Furthermore, since the prefill syringe of the fifth embodiment uses an oxygen-absorbing resin composition containing a polyester compound (A) and a fiber metal catalyst, even when continuous molding is performed when layer A is formed by injection molding, there is no metallurgy. It is difficult for deposits (hereinafter sometimes referred to as "mold deposits") to remain on the mold. As described above, since the prefill syringe of the fifth embodiment has excellent moldability, there is no need to frequently clean the mold even when molding is performed continuously, resulting in excellent productivity.
 第5の実施形態のプレフィル用シリンジは、層Aと、層Aの両側に層Bが積層された、少なくとも3層を有する多層構造体である。第5の実施形態のプレフィル用シリンジは、その層構成として、層B/層A/層Bの構成を有していればよく、この他に任意の層を設けることが出来る。また、本明細書において、層Aの両側に積層される層Bは、互いに同一の層であっても、異なる層であってもよい。また、プレフィル用シリンジは、層Aを1層以上、層Bを2層以上含めば、数や種類は特に限定されない。例えば、1層の層A並びに層B1及び層B2の2種4層の層Bからなる層B1/層B2/層A/層B2/層B1の5層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよい。さらに、第5の実施形態のプレフィル用シリンジは、層Aと層Bとの間に必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、層B1/層AD/層B2/層A/層B2/層AD/層B1の7層構成であってもよい。本明細書において、層B1は両層とも同一の組成であっても異なってもよく、層B2は両層とも同一の組成であっても異なってもよく、層ADは両層とも同一の組成であっても異なってもよい。なお、第5の実施形態のプレフィル用シリンジにおいて、層Bを複数有する場合、その層Bの間に層Aを有していてもよい。 The prefill syringe of the fifth embodiment is a multilayer structure having at least three layers, in which layer A and layer B are laminated on both sides of layer A. The prefill syringe of the fifth embodiment only needs to have a layer B/layer A/layer B structure as its layer structure, and any other layers may be provided. Further, in this specification, the layers B stacked on both sides of the layer A may be the same layer or different layers. Further, the number and type of prefill syringes are not particularly limited as long as they include one or more layers of layer A and two or more layers of layer B. For example, it may have a five-layer structure of layer B1/layer B2/layer A/layer B2/layer B1, which includes one layer A and two types of four layers B1 and B2. In this specification, both layers B1 may have the same composition or different compositions, and both layer B2 may have the same composition or different compositions. Furthermore, the prefill syringe of the fifth embodiment may include an arbitrary layer such as an adhesive layer (layer AD) between layer A and layer B as necessary. For example, layer B1/layer AD/ It may have a seven-layer structure of layer B2/layer A/layer B2/layer AD/layer B1. In this specification, both layers B1 may have the same composition or different compositions, both layers B2 may have the same composition or different compositions, and both layers AD may have the same composition. may be different. In addition, in the prefill syringe of the fifth embodiment, when it has a plurality of layers B, it may have a layer A between the layers B.
〔層A(酸素吸収層)〕 [Layer A (oxygen absorption layer)]
 酸素吸収層(層A)の厚みは特に制限はないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが特に好ましい。この範囲とすることで酸素吸収層(層A)が酸素を吸収する性能をより高めることができるとともに経済性が損なわれることを防止することが可能となる。 The thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and particularly preferably 100 to 500 μm. By setting it as this range, it becomes possible to further improve the ability of the oxygen absorbing layer (layer A) to absorb oxygen, and to prevent economic efficiency from being impaired.
<ポリエステル化合物(a)>
 第5の実施形態の<ポリエステル化合物(a)>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound (a)>
The <polyester compound (a)> of the fifth embodiment is as described in the section of the <polyester compound> of the first embodiment.
<遷移金属触媒>
 第5の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the fifth embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、第5の実施形態における層Aは、第5の実施形態の目的を阻害しない範囲で他の熱可塑性樹脂を含有してもよい。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素バリア効果を効果的に発揮するためにはポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような高酸素バリア性の樹脂がより好ましい。 Furthermore, layer A in the fifth embodiment may contain other thermoplastic resins within a range that does not impede the purpose of the fifth embodiment. These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. In order to effectively exhibit the oxygen barrier effect, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred.
〔層B(ポリオレフィン(b)を含有する樹脂層)〕
 第5の実施形態の〔層B(ポリオレフィン(b)を含有する樹脂層)〕は、第4の実施形態の〔層B(ポリオレフィン(b)を含有する樹脂層)〕の欄で説明したとおりである。
[Layer B (resin layer containing polyolefin (b))]
[Layer B (resin layer containing polyolefin (b))] in the fifth embodiment is as explained in the section [Layer B (resin layer containing polyolefin (b))] in the fourth embodiment. It is.
<ポリオレフィン>
 第5の実施形態の<ポリオレフィン>は、第2の実施形態の<ポリオレフィン>の欄で説明したとおりである。
<Polyolefin>
The <polyolefin> of the fifth embodiment is as described in the <polyolefin> column of the second embodiment.
〔他の層〕
 第5の実施形態の〔他の層〕は、第2の実施形態の〔その他の層〕の欄で説明したとおりである。
[Other layers]
[Other layers] in the fifth embodiment are as described in the [Other layers] section of the second embodiment.
[プレフィル用シリンジの製造方法]
 第5の実施形態の[プレフィル用シリンジの製造方法]は、第2の実施形態の[多層射出成形体の製造方法]の欄で説明したとおりである。
[Method for manufacturing prefill syringe]
[Method for manufacturing a prefill syringe] of the fifth embodiment is the same as described in the section [Method for manufacturing a multilayer injection molded body] of the second embodiment.
[プレフィル用シリンジの構成]
 第5の実施形態の[プレフィル用シリンジの構成]は、第4の実施形態の[医療用多層容器の種類]の欄で説明したとおりである。
[Configuration of prefill syringe]
[Configuration of prefill syringe] of the fifth embodiment is as described in the section of [Type of medical multilayer container] of the fourth embodiment.
[薬剤]
 第5の実施形態の[薬剤]は、第4の実施形態の[医薬品]の欄で説明したとおりである。
[Drug]
[Drug] in the fifth embodiment is as described in the [Medicine] column of the fourth embodiment.
<<第6の実施形態>>
[バイオ医薬品の製造方法]
 第6の実施形態のバイオ医薬品の製造方法は、
 バイオ医薬品を容器に保存する方法であって、
 前記容器は、第1の実施形態に係る樹脂組成物からなる酸素吸収層(層A)と、前記層Aの両側に積層したポリオレフィン(b)を含有する樹脂層(層B)と、を含む、少なくとも3層を含有する多層構造の容器である、方法である。
 なお、第6の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Sixth embodiment>>
[Manufacturing method for biopharmaceuticals]
The method for producing a biopharmaceutical according to the sixth embodiment includes:
A method for storing biopharmaceuticals in containers, the method comprising:
The container includes an oxygen absorbing layer (layer A) made of the resin composition according to the first embodiment, and a resin layer (layer B) containing polyolefin (b) laminated on both sides of the layer A. , a multi-layered container containing at least three layers.
Note that in the sixth embodiment, descriptions of other embodiments can be cited as appropriate.
 第6の実施形態における保存方法によれば、バイオ医薬品を低酸素濃度下で保存できるため、バイオ医薬の変質や薬効の低下を抑制することができる。また、第6の実施形態で用いる容器は、酸素吸収後の低分子の有機物の発生が抑制されているため、内容物への不純物の混入を防止することが可能である。また、第6の実施形態における容器は酸素吸収後も酸化によるポリエステル化合物の劣化が極めて小さく、長期の利用においても容器の強度が維持されるため、バイオ医薬品を長期間保存することができる。また、保管後の容器の色調変化が小さいため内容物視認性も良好である。 According to the storage method in the sixth embodiment, biopharmaceuticals can be stored under low oxygen concentrations, so deterioration of biopharmaceuticals and decrease in efficacy can be suppressed. Furthermore, in the container used in the sixth embodiment, the generation of low-molecular organic substances after oxygen absorption is suppressed, so that it is possible to prevent impurities from being mixed into the contents. Further, in the container according to the sixth embodiment, the polyester compound undergoes extremely little deterioration due to oxidation even after oxygen absorption, and the strength of the container is maintained even during long-term use, so biopharmaceuticals can be stored for a long period of time. Furthermore, since the color change of the container after storage is small, visibility of the contents is also good.
〔酸素吸収層(層A)〕 [Oxygen absorption layer (layer A)]
 酸素吸収層(層A)の厚みは特に制限はないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが特に好ましい。層Aの厚みを前記範囲とすることで、酸素を吸収する性能をより高めることができるとともに経済性が損なわれることを防止することが可能となる傾向にある。 The thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and particularly preferably 100 to 500 μm. By setting the thickness of layer A within the above range, it tends to be possible to further improve the oxygen absorbing performance and to prevent economic efficiency from being impaired.
<ポリエステル化合物>
 第6の実施形態の<ポリエステル化合物>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound>
The <polyester compound> of the sixth embodiment is as described in the section of <polyester compound> of the first embodiment.
<遷移金属触媒>
 第6の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the sixth embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、第6の実施形態の層Aを構成する樹脂組成物は、第6の実施形態の目的を阻害しない範囲で、ポリエステル化合物(a)以外の他の熱可塑性樹脂を含有してもよい。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素吸収効果を効果的に発揮する観点からは、ポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体などの高酸素バリア性の樹脂がより好ましい。なお、層Aが、ポリオレフィンを含有する場合、後述する層Bとは、ポリエステル化合物(a)を含むか否かにより区別することができる。 Furthermore, the resin composition constituting layer A of the sixth embodiment may contain thermoplastic resins other than the polyester compound (a) within a range that does not impede the purpose of the sixth embodiment. These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. From the viewpoint of effectively exhibiting the oxygen absorption effect, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymer are more preferable. In addition, when layer A contains a polyolefin, it can be distinguished from layer B, which will be described later, depending on whether or not it contains the polyester compound (a).
〔樹脂層(層B)〕
 第6の実施形態の〔樹脂層(層B)〕は、第4の実施形態の〔層B(ポリオレフィン(b)を含有する樹脂層)〕の欄で説明したとおりである。
[Resin layer (layer B)]
[Resin layer (layer B)] of the sixth embodiment is as described in the section of [layer B (resin layer containing polyolefin (b))] of the fourth embodiment.
<ポリオレフィン(b)>
 第6の実施形態の<ポリオレフィン(b)>は、第2の実施形態の<ポリオレフィン>の欄で説明したとおりである。
<Polyolefin (b)>
<Polyolefin (b)> in the sixth embodiment is as described in the column of <polyolefin> in the second embodiment.
〔他の層〕
 第6の実施形態の〔他の層〕は、第2の実施形態の〔その他の層〕の欄で説明したとおりである。
[Other layers]
[Other layers] in the sixth embodiment are as described in the [Other layers] section of the second embodiment.
[容器の製造方法]
 第6の実施形態の[容器の製造方法]は、第2の実施形態の[多層射出成形体の製造方法]の欄で説明したとおりである。
[Container manufacturing method]
[Method for manufacturing a container] in the sixth embodiment is the same as described in the section "Method for manufacturing a multilayer injection molded body" in the second embodiment.
[容器の形状]
 第6の実施形態の[容器の形状]は、第4の実施形態の[医療用多層容器の種類]の欄で説明したとおりである。
[Container shape]
[Container shape] of the sixth embodiment is as described in the section of [Medical multilayer container type] of the fourth embodiment.
[バイオ医薬品]
 第6の実施形態の[バイオ医薬品]は、第4の実施形態の[医薬品]の欄で説明したとおりである。
[Biopharmaceuticals]
[Biopharmaceutical] in the sixth embodiment is as described in the [Medicine] column of the fourth embodiment.
<<第7の実施形態>> <<Seventh embodiment>>
[アドレナリン含有薬液の保存方法]
 第7の実施形態に係るアドレナリン含有薬液の保存方法は、アドレナリン含有薬液を容器に保存する方法であって、前記容器が、第1の実施形態に係る樹脂組成物を含有する酸素吸収層A(以下、「層A」ともいう。)と、前記酸素吸収層Aの両側に配され、かつ、ポリオレフィン(b)を含有する樹脂層B(以下、「層B」ともいう。)と、を含む、方法である。
 なお、第7の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
[How to store adrenaline-containing drug solutions]
A method for storing an adrenaline-containing drug solution according to a seventh embodiment is a method for storing an adrenaline-containing drug solution in a container, wherein the container includes an oxygen-absorbing layer A (containing the resin composition according to the first embodiment). (hereinafter also referred to as "layer A"); and a resin layer B (hereinafter also referred to as "layer B") disposed on both sides of the oxygen absorbing layer A and containing polyolefin (b). , is the method.
Note that in the seventh embodiment, descriptions of other embodiments can be cited as appropriate.
 第7の実施形態に係るアドレナリン含有薬液の保存方法は、上記のように構成されているため、アドレナリン含有薬液の保存に際して、アドレナリンの酸化を防止でき、かつ、容器からの溶出成分を少なくすることができ、かつ、保管後の容器の色調変化を小さくすることができる。
 上記のとおり、第7の実施形態に係るアドレナリン含有薬液の保存方法により、アドレナリン含有薬液を低酸素濃度下で保存することができる。そのため、アドレナリンの変質や薬効の低下が抑制される。また、アドレナリン含有薬液の携帯時や使用時にガラスと比べ破損の恐れが小さく、軽量なので利便性も高いといえる。このように、アドレナリンの変質や薬効の低下を抑制すると同時に、安全性や利便性も向上する。また、保管後の容器の色調変化が小さいため、アドレナリンが酸化した場合の視認性も良好である。
Since the method for storing an adrenaline-containing drug solution according to the seventh embodiment is configured as described above, when storing the adrenaline-containing drug solution, oxidation of adrenaline can be prevented and components eluted from the container can be reduced. In addition, it is possible to reduce the color change of the container after storage.
As described above, the method for preserving an adrenaline-containing drug solution according to the seventh embodiment allows the adrenaline-containing drug solution to be stored under a low oxygen concentration. Therefore, deterioration of adrenaline and decrease in drug efficacy are suppressed. Furthermore, when carrying or using adrenaline-containing medicinal solutions, there is less risk of breakage compared to glass, and it is also lightweight, making it highly convenient. In this way, the deterioration of adrenaline and the decline in drug efficacy are suppressed, and at the same time, safety and convenience are improved. Furthermore, since the color change of the container after storage is small, the visibility when adrenaline oxidizes is also good.
〔層A〕
 層Aの厚みは特に限定されないが、10~1000μmが好ましく、50~700μmがより好ましく、100~500μmが特に好ましい。この範囲とすることで層Aの酸素吸収性能がより高まる傾向にあるとともに経済性が損なわれることを防止することが可能となる。
[Layer A]
The thickness of layer A is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 700 μm, and particularly preferably 100 to 500 μm. By setting it as this range, the oxygen absorption performance of layer A tends to be further improved, and it becomes possible to prevent economic efficiency from being impaired.
<ポリエステル化合物>
 第7の実施形態の<ポリエステル化合物>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound>
The <polyester compound> of the seventh embodiment is as described in the section of <polyester compound> of the first embodiment.
<遷移金属触媒>
 第7の実施形態の<遷移金属触媒>は、第1の実施形態の<遷移金属触媒>の欄で説明したとおりである。
<Transition metal catalyst>
The <transition metal catalyst> of the seventh embodiment is as described in the section of <transition metal catalyst> of the first embodiment.
 また、層(A)は、ポリエステル化合物(a)以外の熱可塑性樹脂を含有してもよい。これらの熱可塑性樹脂は、第1の実施形態の「熱可塑性樹脂」として説明したとおりである。酸素吸収効果を効果的に発揮するためにはポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような高酸素バリア性の樹脂がより好ましい。なお、層(A)が、ポリオレフィンを含有する場合、後述する層(B)とは、ポリエステル化合物(a)を含むか否かにより区別することができる。 Furthermore, the layer (A) may contain a thermoplastic resin other than the polyester compound (a). These thermoplastic resins are as described as "thermoplastic resin" in the first embodiment. In order to effectively exhibit the oxygen absorption effect, resins with high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymers are more preferred. In addition, when the layer (A) contains a polyolefin, it can be distinguished from the layer (B) described below depending on whether or not it contains the polyester compound (a).
〔層B〕
 第7の実施形態の〔層B〕は、第4の実施形態の〔層B(ポリオレフィン(b)を含有する樹脂層)〕の欄で説明したとおりである。
[Layer B]
[Layer B] of the seventh embodiment is as described in the section of [Layer B (resin layer containing polyolefin (b))] of the fourth embodiment.
<ポリオレフィン(b)>
 第7の実施形態の<ポリオレフィン(b)>は、第2の実施形態の<ポリオレフィン>の欄で説明したとおりである。
<Polyolefin (b)>
<Polyolefin (b)> in the seventh embodiment is as described in the column of <polyolefin> in the second embodiment.
〔任意の層〕
 第7の実施形態の〔任意の層〕は、第2の実施形態の〔その他の層〕の欄で説明したとおりである。
[Arbitrary layer]
[Arbitrary layer] in the seventh embodiment is as described in the [other layers] section of the second embodiment.
[容器の製造方法]
 第7の実施形態の[容器の製造方法]は、第2の実施形態の[多層射出成形体の製造方法]の欄で説明したとおりである。
[Container manufacturing method]
[Method for manufacturing a container] in the seventh embodiment is the same as described in the section "Method for manufacturing a multilayer injection molded body" in the second embodiment.
[容器の形状]
 第7の実施形態の[容器の形状]は、第4の実施形態の[医療用多層容器の種類]の欄で説明したとおりである。
[Container shape]
[Container shape] in the seventh embodiment is as described in the section [Type of medical multilayer container] in the fourth embodiment.
[アドレナリン含有薬液]
 第7の実施形態におけるアドレナリン含有薬液のアドレナリン濃度は特に限定されず、用途に応じて適宜決定することができ、好ましくは0.01~10mg/mLであり、より好ましくは0.02~9mg/mLであり、更に好ましくは0.05~8mg/mLである。また、アドレナリン含有薬液中に、ピロ亜硫酸ナトリウム、亜硫酸水素ナトリウム、クロロブタノール、塩酸、水酸化ナトリウム、塩化ナトリウム等の添加剤を含んでいてもよい。
[Medicinal solution containing adrenaline]
The adrenaline concentration of the adrenaline-containing drug solution in the seventh embodiment is not particularly limited and can be appropriately determined depending on the application, and is preferably 0.01 to 10 mg/mL, more preferably 0.02 to 9 mg/mL. mL, more preferably 0.05 to 8 mg/mL. Additionally, the adrenaline-containing drug solution may contain additives such as sodium pyrosulfite, sodium hydrogensulfite, chlorobutanol, hydrochloric acid, sodium hydroxide, and sodium chloride.
[保存条件]
 第7の実施形態におけるアドレナリン含有薬液の保存条件としては、特に限定されず、一般的なアドレナリン含有薬液の保存条件と同様であってもよい。例えば、第7の実施形態におけるアドレナリン含有薬液を、1~30℃、湿度75%RH以下で保存することが好ましい。
[Storage conditions]
The storage conditions for the adrenaline-containing drug solution in the seventh embodiment are not particularly limited, and may be the same as the storage conditions for general adrenaline-containing drug solutions. For example, the adrenaline-containing drug solution in the seventh embodiment is preferably stored at a temperature of 1 to 30° C. and a humidity of 75% RH or less.
<<第8の実施形態>>
[改質ポリエステル及びその製造方法]
 第8の実施形態の改質ポリエステルは、第1の実施形態に記載のポリエステル化合物に放射線を照射すること(「放射線処理」ともいう。)によって得られるものである。
 なお、第8の実施形態では、その他の実施形態の説明を適宜引用できるものとする。
<<Eighth embodiment>>
[Modified polyester and its manufacturing method]
The modified polyester of the eighth embodiment is obtained by irradiating the polyester compound described in the first embodiment with radiation (also referred to as "radiation treatment").
Note that in the eighth embodiment, descriptions of other embodiments can be cited as appropriate.
 第8の実施形態に係る改質ポリエステルは、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れる。
 第8の実施形態に係る改質ポリエステルは、好適には、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、被保存物の水分の有無によらず酸素を吸収することができ、しかも酸素吸収後の臭気発生や黄色化による外観悪化が無いので、例えば、食品、調理食品、飲料、医薬品、健康食品等、対象物を問わず幅広い用途で使用することができる。また、好適には、この改質ポリエステルを用いることにより、酸素吸収後の強度低下が極めて小さく、強度の経時的劣化が抑制された酸素吸収性フィルム等を実現することができる。さらに、鉄粉等を含有しない本発明の好適態様によれば、金属探知機に感応しない改質ポリエステルを実現することもできる。
The modified polyester according to the eighth embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability.
The modified polyester according to the eighth embodiment preferably has excellent oxygen absorption performance under a wide range of humidity conditions from low humidity to high humidity, and absorbs oxygen regardless of the presence or absence of moisture in the preserved material. It can be used in a wide range of applications, such as foods, cooked foods, beverages, medicines, and health foods, as it can absorb oxygen and does not cause odor or yellowing after absorbing oxygen. can. Moreover, by suitably using this modified polyester, it is possible to realize an oxygen-absorbing film or the like in which the decrease in strength after oxygen absorption is extremely small and the deterioration of strength over time is suppressed. Furthermore, according to a preferred embodiment of the present invention that does not contain iron powder or the like, it is also possible to realize a modified polyester that is not sensitive to metal detectors.
<ポリエステル化合物>
 第8の実施形態の<ポリエステル化合物>は、第1の実施形態の<ポリエステル化合物>の欄で説明したとおりである。
<Polyester compound>
The <polyester compound> of the eighth embodiment is as described in the section of <polyester compound> of the first embodiment.
<放射線処理>
 放射線処理としては、紫外線処理、X線処理、γ線処理、電子線処理等を挙げることができる。より好ましくは、γ線処理及び電子線処理である。これらの処理によって酸素バリア性能が発現する機構は明らかではないが、テトラリン環のベンジル位にある水素が引き抜かれてラジカルが生成することに起因する酸化反応機構が推測される。放射線処理によって得られる改質ポリエステルの構造を同定することは容易ではない。
<Radiation treatment>
Examples of the radiation treatment include ultraviolet ray treatment, X-ray treatment, γ-ray treatment, and electron beam treatment. More preferred are gamma ray treatment and electron beam treatment. Although the mechanism by which oxygen barrier performance is developed by these treatments is not clear, it is speculated that the oxidation reaction mechanism is caused by the extraction of hydrogen at the benzylic position of the tetralin ring to generate radicals. It is not easy to identify the structure of modified polyester obtained by radiation treatment.
 放射線処理における放射線照射量は、5kGy以上60kGy未満であることが好ましく、10kGy以上50kGy未満であることがより好ましい。 The radiation dose in the radiation treatment is preferably 5 kGy or more and less than 60 kGy, more preferably 10 kGy or more and less than 50 kGy.
<使用態様>
 第8の実施形態の<使用態様>は、第1の実施形態の<使用態様>の欄で説明したとおりである。
<How to use>
<Usage mode> of the eighth embodiment is as described in the <Usage mode> column of the first embodiment.
 以下に実施例と比較例を用いて本実施形態をさらに詳しく説明するが、本実施形態はこれによって限定されるものではない。 The present embodiment will be described in more detail below using Examples and Comparative Examples, but the present embodiment is not limited thereto.
<<第1の実施形態>>
<樹脂組成物の評価方法>
(1)酸素バリア性
 酸素バリア性は、後述の方法によって得られたバイアルの酸素透過率により評価した。酸素透過率はMOCON社製OX-TRAN2/21を用いて、23℃、65%RHの測定条件で測定した。酸素透過率が前記装置の検出下限である0.0005cc/package/dayを下回るものを酸素バリア性良好と判断した。
<<First embodiment>>
<Evaluation method of resin composition>
(1) Oxygen barrier property The oxygen barrier property was evaluated by the oxygen permeability of the vial obtained by the method described below. The oxygen permeability was measured using OX-TRAN2/21 manufactured by MOCON under measurement conditions of 23° C. and 65% RH. A sample whose oxygen permeability was less than 0.0005 cc/package/day, which is the lower detection limit of the device, was judged to have good oxygen barrier properties.
(2)容器の色調変化(ΔYI)
 容器の色調変化(ΔYI)は、後述の方法によって得られたバイアルに10ccの蒸留水を充填してゴム栓及びアルミシールにより密栓したサンプルを測定用試料とし、日本電色工業株式会社製色差濁度測定器COH-300Aを使用して測定した初期の黄色度(YI)と40℃20%RHの保管条件で3ヵ月保管した後の黄色度(YI)の差から算出した。ΔYIが2を超えないものを色調変化が小さいと判断した。
(2) Container color change (ΔYI)
The color change (ΔYI) of the container was determined by using a vial obtained by the method described below, filled with 10 cc of distilled water, and sealed with a rubber stopper and an aluminum seal. It was calculated from the difference between the initial yellowness (YI) measured using a color measuring device COH-300A and the yellowness (YI) after storage for 3 months at 40° C. and 20% RH. When ΔYI did not exceed 2, it was judged that the color tone change was small.
(3)成形性
 成形性は、後述の方法によって得られたバイアルを1000ショット成形した後の金型を目視により確認した。モールドデポの付着がないものを合格とした。
(3) Moldability Moldability was confirmed by visually observing the mold after 1000 shot molding of the vial obtained by the method described below. Those with no adhesion of mold deposits were judged to have passed.
(4)形状・強度維持性
 東洋精機製作所製2軸押出機ラボプラストミル2D15Wを使用して実施例及び比較例の樹脂組成物を押出成形して得た200μm厚のフィルムを試料として、40℃100%RHの保管条件で3ヵ月保管した後のフィルムの状態を目視で確認した。形状及びフィルムの強度を維持しているものを合格とした。
(4) Shape/strength retention A 200 μm thick film obtained by extrusion molding the resin compositions of Examples and Comparative Examples using a twin-screw extruder Labo Plastomill 2D15W manufactured by Toyo Seiki Seisakusho was used as a sample at 40°C. The condition of the film was visually confirmed after being stored for 3 months under 100% RH storage conditions. Those that maintained the shape and strength of the film were deemed to have passed.
<バイアルの製造>
 下記の条件により、ISO8362-1に従った形状の内容積10cc、全高45mm、外径24mmφ、肉厚1mmの、外側から層B/層A/層Bの3層構成のバイアルを得た。
 2機の射出シリンダーを備えた射出ブロー一体型成形機(日精エー・エス・ビー機械社製、型式「ASB12N―10T」)を使用し、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成の射出成形体を得た。得られた射出成形体を所定の温度まで冷却し、ブロー金型へ移行した後にブロー成形を行うことでバイアル(ボトル部)を製造した。
 なお、層Bにはシクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)690R」)、層Aには実施例及び比較例の樹脂組成物を使用した。
<Manufacture of vials>
Under the following conditions, a vial having a three-layer structure of layer B/layer A/layer B from the outside was obtained, having an inner volume of 10 cc, an overall height of 45 mm, an outer diameter of 24 mmφ, and a wall thickness of 1 mm, and having a shape according to ISO 8362-1.
Using an injection blow integrated molding machine (manufactured by Nissei ASB Machinery Co., Ltd., model "ASB12N-10T") equipped with two injection cylinders, the material constituting layer B was injected from the injection cylinders, and then By injecting the material constituting layer A from a separate injection cylinder simultaneously with the resin constituting layer B, and then injecting the required amount of resin constituting layer B to fill the cavity in the injection mold, B An injection molded article having a three-layer structure of /A/B was obtained. The obtained injection molded product was cooled to a predetermined temperature, transferred to a blow mold, and then blow molded to produce a vial (bottle portion).
Note that for layer B, a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 690R") was used, and for layer A, the resin compositions of Examples and Comparative Examples were used.
[ポリエステル化合物の製造例]
(製造例1)
 充填塔式精留塔、分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた容積30Lのポリエステル樹脂製造装置に、2,6-ナフタレンジカルボン酸ジメチル8668.9g、テトラリン-2,6-ジカルボン酸ジメチル4895.5g、イソフタル酸ジメチル4594.6g、エチレングリコール8811.8g、シュウ酸チタンカリウム二水和物0.559g、酢酸亜鉛1.519gを仕込み、窒素雰囲気で230℃まで昇温してエステル交換反応を行った。ジカルボン酸成分の反応転化率を95%以上とした後、酸化ゲルマニウム0.5wt%エチレングリコール溶液1039.6g、リン酸エチレングリコール溶液154.6gを添加し、昇温と減圧を徐々に行い、270℃、133Pa以下で重縮合を行い、所定トルクに達した後に製造装置底部からストランド状で取出し、ペレタイザーでカットしたペレット形状のポリエステル化合物(1)を得た。なお、表1に示す式(1)~(3)で表される構成単位のモル%は、対応するモノマーの仕込み量から計算した値である。
[Production example of polyester compound]
(Manufacturing example 1)
8,668.9 g of dimethyl 2,6-naphthalene dicarboxylate was placed in a 30 L polyester resin manufacturing equipment equipped with a packed column type rectification column, partial condenser, total condenser, cold trap, stirrer, heating device, and nitrogen introduction tube. , 4895.5 g of dimethyl tetralin-2,6-dicarboxylate, 4594.6 g of dimethyl isophthalate, 8811.8 g of ethylene glycol, 0.559 g of potassium titanium oxalate dihydrate, and 1.519 g of zinc acetate were charged, and the mixture was heated in a nitrogen atmosphere. The temperature was raised to 230°C to carry out the transesterification reaction. After the reaction conversion rate of the dicarboxylic acid component was 95% or more, 1039.6 g of germanium oxide 0.5 wt% ethylene glycol solution and 154.6 g of phosphoric acid ethylene glycol solution were added, and the temperature was gradually increased and the pressure was reduced to 270%. Polycondensation was carried out at 133 Pa or less at a temperature of 133 Pa or less, and after reaching a predetermined torque, the product was taken out in the form of a strand from the bottom of the production apparatus and cut with a pelletizer to obtain a polyester compound (1) in the form of pellets. Note that the mol% of the structural units represented by formulas (1) to (3) shown in Table 1 is a value calculated from the amount of the corresponding monomer charged.
(製造例2)
 2,6-ナフタレンジカルボン酸ジメチル6730.6g、テトラリン-2,6-ジカルボン酸ジメチル6841.7g、イソフタル酸ジメチル4586.5g、エチレングリコール8796.2gとした以外は製造例1と同様にしてポリエステル化合物(2)を得た。
(Manufacturing example 2)
A polyester compound was prepared in the same manner as in Production Example 1, except that 6730.6 g of dimethyl 2,6-naphthalene dicarboxylate, 6841.7 g of dimethyl tetralin-2,6-dicarboxylate, 4586.5 g of dimethyl isophthalate, and 8796.2 g of ethylene glycol were used. (2) was obtained.
(製造例3)
 2,6-ナフタレンジカルボン酸ジメチル4025.9g、テトラリン-2,6-ジカルボン酸ジメチル6138.6g、イソフタル酸ジメチル8001.6g、エチレングリコール9207.7gとした以外は製造例1と同様にしてポリエステル化合物(3)を得た。
(Manufacturing example 3)
A polyester compound was prepared in the same manner as in Production Example 1, except that 4025.9 g of dimethyl 2,6-naphthalene dicarboxylate, 6138.6 g of dimethyl tetralin-2,6-dicarboxylate, 8001.6 g of dimethyl isophthalate, and 9207.7 g of ethylene glycol were used. (3) was obtained.
(製造例4)
 2,6-ナフタレンジカルボン酸ジメチル3835.9g、テトラリン-2,6-ジカルボン酸ジメチル9748.0g、イソフタル酸ジメチル4574.4g、エチレングリコール8773.0gとした以外は製造例1と同様にしてポリエステル化合物(4)を得た。
(Manufacturing example 4)
A polyester compound was prepared in the same manner as in Production Example 1, except that 3835.9 g of dimethyl 2,6-naphthalene dicarboxylate, 9748.0 g of dimethyl tetralin-2,6-dicarboxylate, 4574.4 g of dimethyl isophthalate, and 8773.0 g of ethylene glycol were used. (4) was obtained.
(製造例5)
 2,6-ナフタレンジカルボン酸ジメチル11589.2g、テトラリン-2,6-ジカルボン酸ジメチル5622.9g、イソフタル酸ジメチル1465.9g、エチレングリコール8835.2gとした以外は製造例1と同様にしてポリエステル化合物(5)を得た。
(Manufacturing example 5)
A polyester compound was prepared in the same manner as in Production Example 1, except that 11,589.2 g of dimethyl 2,6-naphthalene dicarboxylate, 5,622.9 g of dimethyl tetralin-2,6-dicarboxylate, 1,465.9 g of dimethyl isophthalate, and 8,835.2 g of ethylene glycol were used. (5) was obtained.
(製造例6)
 2,6-ナフタレンジカルボン酸ジメチル及びイソフタル酸ジメチルを不使用、テトラリン-2,6-ジカルボン酸ジメチル18147.3g、エチレングリコール8166.1gとした以外は製造例1と同様にしてポリエステル化合物(6)を得た。
(Manufacturing example 6)
A polyester compound (6) was prepared in the same manner as in Production Example 1, except that dimethyl 2,6-naphthalenedicarboxylate and dimethyl isophthalate were not used, and dimethyl tetralin-2,6-dicarboxylate was 18147.3 g and ethylene glycol was 8166.1 g. I got it.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の樹脂組成物(1)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm. A resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer. The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(実施例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(2)を使用した以外は実施例1と同様にして樹脂組成物(2)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Example 2)
A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物(3)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Example 3)
A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(比較例1)
 ポリエステル化合物(1)に変えてポリエステル化合物(3)を使用した以外は実施例1と同様にして樹脂組成物(4)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Comparative example 1)
A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(比較例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(4)を使用した以外は実施例1と同様にして樹脂組成物(5)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Comparative example 2)
A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(比較例3)
 ポリエステル化合物(1)に変えてポリエステル化合物(5)を使用した以外は実施例1と同様にして樹脂組成物(6)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Comparative example 3)
A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(比較例4)
 ポリエステル化合物(1)に変えてポリエステル化合物(6)を使用した以外は実施例1と同様にして樹脂組成物(7)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Comparative example 4)
A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
(比較例5)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物(8)を得た。得られた樹脂組成物について前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表1に示す。
(Comparative example 5)
Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm. Resin composition (8) was obtained in the same manner as in Example 1. The resulting resin composition was evaluated for oxygen barrier properties, change in container color, moldability, and shape/strength retention using the methods described above. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 実施例1~3から明らかなように、第1の実施形態の樹脂組成物は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れることが確認された。 As is clear from Examples 1 to 3, the resin composition of the first embodiment exhibits good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and excellent moldability. This was confirmed.
<<第2の実施形態>>
<多層射出成形体の評価方法>
(1)酸素バリア性
 第1の実施形態の「(1)酸素バリア性」の評価方法にしたがった。
<<Second embodiment>>
<Evaluation method of multilayer injection molded product>
(1) Oxygen barrier property The evaluation method for "(1) Oxygen barrier property" of the first embodiment was followed.
(2)容器の色調変化(ΔYI)
 第1の実施形態の「(2)容器の色調変化(ΔYI)」の評価方法にしたがった。
(2) Container color change (ΔYI)
The evaluation method for "(2) Container color tone change (ΔYI)" of the first embodiment was followed.
(3)成形性
 第1の実施形態の「(3)成形性」の評価方法にしたがった。
(3) Moldability The evaluation method for "(3) Moldability" of the first embodiment was followed.
(4)形状・強度維持性
 形状・強度維持性は、後述の方法によって得られたバイアルに10ccの蒸留水を充填してゴム栓及びアルミシールにより密栓したサンプルを40℃100%RHの保管条件で3ヵ月保管した。その後、バイアルを解体して、中間層(A)を取り出し、その中間層(A)の状態を目視で確認した。中間層(A)の形状及び強度が、維持しているものを合格とした。
(4) Shape/strength retention Shape/strength retention was determined by storing samples at 40°C, 100% RH, using a vial obtained by the method described below, filled with 10 cc of distilled water, and sealed with a rubber stopper and an aluminum seal. It was stored for 3 months. Thereafter, the vial was disassembled, the intermediate layer (A) was taken out, and the condition of the intermediate layer (A) was visually confirmed. Those in which the shape and strength of the intermediate layer (A) were maintained were considered to be passed.
<バイアルの製造>
 下記の条件により、ISO8362-1に従った形状の内容積10cc、全高45mm、外径24mmφ、肉厚1mmの、外側から層B/層A/層Bの3層構成のバイアルを得た。
 2機の射出シリンダーを備えた射出ブロー一体型成形機(日精エー・エス・ビー機械社製、型式「ASB12N-10T」を使用し、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出して射出金型内キャビティーを満たすことにより、容器内層(層B)の厚さが200μm、中間層(層A)の厚さが300μm、容器外層(層B)の厚さが500μmのB/A/Bの3層構成の多層射出成形体を得た。得られた多層射出成形体を所定の温度まで冷却し、ブロー金型へ移行した後にブロー成形を行うことでバイアル(ボトル部)を製造した。
 なお、容器内層及び容器外層ともに、層Bとして、シクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)690R」)を使用し、層Aには実施例及び比較例の樹脂組成物を使用した。
(射出及びブロー条件)
 層B用の射出シリンダー温度:325℃
 層A用の射出シリンダー温度:220℃
 射出金型内樹脂流路温度:285℃
 射出金型温度:80℃
 ブロー金型温度:20℃
 1次ブロー圧力:1.0MPa
 2次ブロー圧力:3.0MPa
<Manufacture of vials>
Under the following conditions, a vial having a three-layer structure of layer B/layer A/layer B from the outside was obtained, having an inner volume of 10 cc, an overall height of 45 mm, an outer diameter of 24 mmφ, and a wall thickness of 1 mm, and having a shape according to ISO 8362-1.
Using an injection blow integrated molding machine (manufactured by Nissei ASB Machinery Co., Ltd., model "ASB12N-10T") equipped with two injection cylinders, the material constituting layer B is injected from the injection cylinders, and then the layer The material constituting A is injected simultaneously with the resin constituting layer B from another injection cylinder, and then the required amount of resin constituting layer B is injected to fill the cavity in the injection mold, thereby forming the inner layer of the container. A multilayer injection molded product with a three-layer structure of B/A/B was obtained, in which the thickness of (layer B) was 200 μm, the thickness of the intermediate layer (layer A) was 300 μm, and the thickness of the outer layer of the container (layer B) was 500 μm. The obtained multilayer injection molded product was cooled to a predetermined temperature, transferred to a blow mold, and then blow molded to produce a vial (bottle part).
In addition, for both the container inner layer and the container outer layer, a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 690R") was used as layer B, and layer A of the example and comparative example. A resin composition was used.
(Injection and blow conditions)
Injection cylinder temperature for layer B: 325℃
Injection cylinder temperature for layer A: 220℃
Temperature of resin flow path in injection mold: 285℃
Injection mold temperature: 80℃
Blow mold temperature: 20℃
Primary blow pressure: 1.0MPa
Secondary blow pressure: 3.0MPa
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の樹脂組成物(1)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(1)(バイアル)を成形し、多層射出成形体(1)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果をに示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm. A resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer. Using the obtained resin composition, a multilayer injection molded product (1) (vial) is molded by the method described above, and the multilayer injection molded product (1) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in.
(実施例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(2)を使用した以外は実施例1と同様にして樹脂組成物(2)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(2)(バイアル)を成形し、多層射出成形体(2)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Example 2)
A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (2) (vial) is molded by the method described above, and the multilayer injection molded product (2) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物(3)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(3)(バイアル)を成形し、多層射出成形体(3)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Example 3)
A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. Using the obtained resin composition, a multilayer injection molded product (3) (vial) is molded by the method described above, and the multilayer injection molded product (3) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(比較例1)
 ポリエステル化合物(1)に代えてポリエステル化合物(3)を使用した以外は実施例1と同様にして樹脂組成物(4)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(4)(バイアル)を成形し、多層射出成形体(4)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Comparative example 1)
A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (4) (vial) is molded by the method described above, and the multilayer injection molded product (4) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(比較例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(4)を使用した以外は実施例1と同様にして樹脂組成物(5)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(5)(バイアル)を成形し、多層射出成形体(5)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Comparative example 2)
A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (5) (vial) is molded by the method described above, and the multilayer injection molded product (5) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(比較例3)
 ポリエステル化合物(1)に代えてポリエステル化合物(5)を使用した以外は実施例1と同様にして樹脂組成物(6)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(6)(バイアル)を成形し、多層射出成形体(6)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Comparative example 3)
A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (6) (vial) is molded by the method described above, and the multilayer injection molded product (6) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(比較例4)
 ポリエステル化合物(1)に代えてポリエステル化合物(6)を使用した以外は実施例1と同様にして樹脂組成物(7)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(7)(バイアル)を成形し、多層射出成形体(7)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Comparative example 4)
A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer injection molded product (7) (vial) is molded by the method described above, and the multilayer injection molded product (7) is tested for oxygen barrier properties, color change of the container, and color change by the method described above. Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
(比較例5)
 ポリエステル化合物(1)に代えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドし、かつ、バイアル製造時の層A用の射出シリンダー温度を260℃とした以外は、実施例1と同様にして樹脂組成物(8)を得た。得られた樹脂組成物を用いて、前述の方法で多層射出成形体(8)(バイアル)を成形し、多層射出成形体(8)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表2に示す。
(Comparative example 5)
Nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon S7007) was used in place of the polyester compound (1), cobalt (II) stearate was blended to a cobalt content of 20 ppm, and a vial was prepared. A resin composition (8) was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer A during production was 260°C. Using the obtained resin composition, a multilayer injection molded product (8) (vial) is molded by the method described above, and the multilayer injection molded product (8) is tested by the method described above to improve oxygen barrier properties, color change of the container, Evaluations of moldability, shape and strength retention were conducted. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 実施例1~3から明らかなように、第2の実施形態の多層射出成形体は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れることが確認された。 As is clear from Examples 1 to 3, the multilayer injection molded article of the second embodiment exhibited good oxygen barrier performance, good color tone after oxygen absorption, excellent strength and shape retention, and good moldability. It was confirmed that it is excellent.
<<第3の実施形態>>
<多層体の評価方法>
(1)酸素バリア性
 第1の実施形態の「(1)酸素バリア性」の評価方法にしたがった。
<<Third embodiment>>
<Evaluation method of multilayer body>
(1) Oxygen barrier property The evaluation method for "(1) Oxygen barrier property" of the first embodiment was followed.
(2)容器の色調変化(ΔYI)
 第1の実施形態の「(2)容器の色調変化(ΔYI)」の評価方法にしたがった。
(2) Container color change (ΔYI)
The evaluation method for "(2) Container color tone change (ΔYI)" of the first embodiment was followed.
(3)成形性
 第1の実施形態の「(3)成形性」の評価方法にしたがった。
(3) Moldability The evaluation method for "(3) Moldability" of the first embodiment was followed.
(4)形状・強度維持性
 第2の実施形態の「(4)形状・強度維持性」の評価方法にしたがった。
(4) Shape/Strength Retention The evaluation method for "(4) Shape/Strength Retention" of the second embodiment was followed.
<バイアルの製造>
 第2の実施形態の<バイアルの製造>にしたがった。
<Manufacture of vials>
The procedure of <Manufacture of vial> of the second embodiment was followed.
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の樹脂組成物(1)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(1)(バイアル)を成形し、多層体(1)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm. A resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer. Using the obtained resin composition, a multilayer body (1) (vial) is molded by the method described above, and the multilayer body (1) is tested by the method described above for oxygen barrier properties, color change of the container, moldability, and shape.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(実施例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(2)を使用した以外は実施例1と同様にして樹脂組成物(2)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(2)(バイアル)を成形し、多層体(2)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Example 2)
A resin composition (2) was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (2) (vial) is molded by the method described above, and the multilayer body (2) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物(3)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(3)(バイアル)を成形し、多層体(3)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Example 3)
A resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. Using the obtained resin composition, a multilayer body (3) (vial) is molded by the method described above, and the multilayer body (3) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(比較例1)
 ポリエステル化合物(1)に代えてポリエステル化合物(3)を使用した以外は実施例1と同様にして樹脂組成物(4)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(4)(バイアル)を成形し、多層体(4)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Comparative example 1)
A resin composition (4) was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (4) (vial) is molded by the method described above, and the multilayer body (4) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(比較例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(4)を使用した以外は実施例1と同様にして樹脂組成物(5)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(5)(バイアル)を成形し、多層体(5)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Comparative example 2)
A resin composition (5) was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (5) (vial) is molded by the method described above, and the multilayer body (5) is evaluated for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(比較例3)
 ポリエステル化合物(1)に代えてポリエステル化合物(5)を使用した以外は実施例1と同様にして樹脂組成物(6)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(6)(バイアル)を成形し、多層体(6)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Comparative example 3)
A resin composition (6) was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (6) (vial) is molded by the method described above, and the multilayer body (6) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(比較例4)
 ポリエステル化合物(1)に代えてポリエステル化合物(6)を使用した以外は実施例1と同様にして樹脂組成物(7)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(7)(バイアル)を成形し、多層体(7)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Comparative example 4)
A resin composition (7) was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). Using the obtained resin composition, a multilayer body (7) (vial) is molded by the method described above, and the multilayer body (7) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
(比較例5)
 ポリエステル化合物(1)に代えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドし、かつ、バイアル製造時の層A用の射出シリンダー温度を260℃とした以外は、実施例1と同様にして樹脂組成物(8)を得た。得られた樹脂組成物を用いて、前述の方法で多層体(8)(バイアル)を成形し、多層体(8)について、前述の方法で酸素バリア性、容器の色調変化、成形性、形状・強度維持性の評価を実施した。評価結果を表3に示す。
(Comparative example 5)
Nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX Nylon S7007) was used in place of the polyester compound (1), cobalt (II) stearate was blended to a cobalt content of 20 ppm, and a vial was prepared. A resin composition (8) was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer A during production was 260°C. Using the obtained resin composition, a multilayer body (8) (vial) is molded by the method described above, and the multilayer body (8) is tested for oxygen barrier properties, color change of the container, moldability, and shape by the method described above.・Evaluation of strength maintenance was conducted. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 実施例1~3から明らかなように、第3の実施形態の多層体は、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れることが確認された。 As is clear from Examples 1 to 3, the multilayer body of the third embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability. was confirmed.
<<第4の実施形態>>
<医療用多層容器の評価方法>
(1)酸素バリア性
 第1の実施形態の「(1)酸素バリア性」の評価方法にしたがった。
(2)水蒸気バリア性
 水蒸気バリア性は、後述の方法によって得られたバイアルに10ccの蒸留水を充填してゴム栓及びアルミシールにより密栓したサンプルを測定用試料とし、初期の質量と40℃20%RHの保管条件で3ヵ月保管した後の質量との差から算出した。0.05cc/package/3monthを下回るものを水蒸気バリア性が良好と判断した。
<<Fourth embodiment>>
<Evaluation method for medical multilayer containers>
(1) Oxygen barrier property The evaluation method for "(1) Oxygen barrier property" of the first embodiment was followed.
(2) Water vapor barrier property The water vapor barrier property was measured by using a vial obtained by the method described below, filled with 10 cc of distilled water, and sealed tightly with a rubber stopper and an aluminum seal. It was calculated from the difference between the mass after storage for 3 months under the storage conditions of %RH. Those whose water vapor barrier properties were less than 0.05 cc/package/3 months were judged to have good water vapor barrier properties.
(3)容器の色調変化(ΔYI)(酸素吸収後の色調変化)
 第1の実施形態の「(2)容器の色調変化(ΔYI)」の評価方法にしたがった。
(3) Container color change (ΔYI) (color change after oxygen absorption)
The evaluation method for "(2) Container color tone change (ΔYI)" of the first embodiment was followed.
(4)成形性
 第1の実施形態の「(3)成形性」の評価方法にしたがった。
(4) Moldability The evaluation method for "(3) Moldability" of the first embodiment was followed.
(5)落下試験
 後述の方法によって得られたバイアルに蒸留水10ccを充填してゴム栓及びアルミシールにより密栓したサンプルを測定用試料とし、23℃65%RHの保管条件で1日保管後に150cmの高さから落下させ、落下後の破損の有無を目視で確認した。サンプル20本の全てで破損が無いものを「合格」とした。
(5) Drop test A sample obtained by the method described below was filled with 10 cc of distilled water and sealed with a rubber stopper and an aluminum seal, and was used as a measurement sample. After being stored for 1 day at 23°C and 65% RH, it was dropped to 150 cm. The product was dropped from a height of If there was no damage in all 20 samples, it was judged as "passed".
(6)形状・強度維持性
 第2の実施形態の「(4)形状・強度維持性」の評価方法にしたがった。
(6) Shape/Strength Retention The evaluation method for "(4) Shape/Strength Retention" of the second embodiment was followed.
<バイアルの製造>
 第2の実施形態の<バイアルの製造>にしたがった。
<Manufacture of vials>
The procedure of <Manufacture of vial> of the second embodiment was followed.
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の樹脂組成物(1)を得た。得られた樹脂組成物について上述の方法でバイアルを成形し、酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm. A resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer. The obtained resin composition was molded into a vial using the method described above, and the oxygen barrier property, water vapor barrier property, color change of the container, moldability, drop strength, and shape/strength maintenance were evaluated. The evaluation results are shown in Table 4.
(実施例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(2)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Example 2)
A vial was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Example 3)
A vial was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to give a cobalt content of 20 ppm. The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例1)
 ポリエステル化合物(1)に代えてポリエステル化合物(3)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 1)
A vial was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(4)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 2)
A vial was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例3)
 ポリエステル化合物(1)に代えてポリエステル化合物(5)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 3)
A vial was obtained in the same manner as in Example 1, except that polyester compound (5) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例4)
 ポリエステル化合物(1)に代えてポリエステル化合物(6)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 4)
A vial was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例5)
 層Bの樹脂をポリカーボネート(Sabic社製 レキサン144R)とし、層B用の射出シリンダー温度を280℃とした以外は実施例1と同様にしてバイアルを得た。得られたバイアルついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 5)
A vial was obtained in the same manner as in Example 1, except that the resin for layer B was polycarbonate (Lexan 144R manufactured by Sabic) and the injection cylinder temperature for layer B was 280°C. The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例6)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物を得た。得られた樹脂組成物について中間層(層A)用の射出シリンダー温度を260℃とした以外は実施例1と同様にしてバイアルを得た。得られたバイアルついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、落下強度、形状・強度維持性の評価を実施した。評価結果を表4に示す。
(Comparative example 6)
Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm. A resin composition was obtained in the same manner as in Example 1. A vial was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for the intermediate layer (layer A) was 260° C. for the obtained resin composition. The obtained vials were evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, drop strength, and shape/strength retention using the methods described above. The evaluation results are shown in Table 4.
(比較例7)
 ガラス製の容量10ccのバイアル(Wheaton社製;TypeIホウケイ酸ガラス、型番223686)について上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、落下強度の評価を実施した。評価結果を表4に示す。
(Comparative example 7)
A glass vial with a capacity of 10 cc (manufactured by Wheaton; Type I borosilicate glass, model number 223686) was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, and drop strength using the methods described above. The evaluation results are shown in Table 4.
   
 実施例1~3から明らかなように、第4の実施形態の医療用多層容器は、酸素バリア性、水蒸気バリア性、成形性、落下強度、強度・形状維持性に優れ、保管後(酸素吸収後)の色調が良好であることが確認された。 As is clear from Examples 1 to 3, the medical multilayer container of the fourth embodiment has excellent oxygen barrier properties, water vapor barrier properties, moldability, drop strength, strength and shape retention, and has excellent It was confirmed that the color tone of (after) was good.
<<第5の実施形態>>
<プレフィル用シリンジの評価方法>
(1)酸素バリア性
 酸素バリア性は、後述の方法によって得られたシリンジの酸素透過率により評価した。
 酸素透過率はMOCON社製OX-TRAN2/21を用いて、23℃、65%RHの測定条件で測定した。酸素透過率が前記装置の検出下限である0.0005cc/package/dayを下回るものを酸素バリア性良好と判断した。
(2)水蒸気バリア性
 水蒸気バリア性は、後述の方法によって得られたシリンジに5ccの蒸留水を充填してトップキャップ及びストッパーにより密栓したサンプルを測定用試料とし、初期の質量と40℃20%RHの保管条件で3ヵ月保管した後の質量との差から算出した。0.03cc/package/3monthを下回るものを水蒸気バリア性が良好と判断した。
<<Fifth embodiment>>
<Evaluation method of prefill syringe>
(1) Oxygen barrier property The oxygen barrier property was evaluated by the oxygen permeability of the syringe obtained by the method described below.
The oxygen permeability was measured using OX-TRAN2/21 manufactured by MOCON under measurement conditions of 23° C. and 65% RH. A sample whose oxygen permeability was less than 0.0005 cc/package/day, which is the lower detection limit of the device, was judged to have good oxygen barrier properties.
(2) Water vapor barrier property The water vapor barrier property was measured by using a syringe obtained by the method described below filled with 5 cc of distilled water and sealed with a top cap and a stopper as a measurement sample, and comparing the initial mass and 40°C 20%. It was calculated from the difference from the mass after being stored for 3 months under RH storage conditions. The water vapor barrier property was judged to be good if it was less than 0.03 cc/package/3 months.
(3)容器の色調変化(ΔYI)(酸素吸収後の色調変化)
 容器の色調変化(ΔYI)は、後述の方法によって得られたシリンジに5ccの蒸留水を充填してトップキャップ及びストッパーにより密栓したサンプルを測定用試料とし、日本電色工業株式会社製の色差濁度測定器COH-300Aを使用して測定した初期の黄色度(YI)と空気雰囲気下40℃20%RHの保管条件で3ヵ月保管した後の黄色度(YI)の差から算出した。ΔYIが1を超えないものを色調変化が小さいと判断した。
(3) Container color change (ΔYI) (color change after oxygen absorption)
The color tone change (ΔYI) of the container was measured by using a syringe obtained by the method described below filled with 5 cc of distilled water and sealed with a top cap and a stopper as a measurement sample. It was calculated from the difference between the initial yellowness index (YI) measured using a temperature measuring device COH-300A and the yellowness index (YI) after storage for 3 months in an air atmosphere at 40° C. and 20% RH. A sample whose ΔYI did not exceed 1 was judged to have a small change in color tone.
(4)成形性
 成形性は、後述の方法によって得られたシリンジを1000ショット成形した後の金型を目視により確認した。モールドデポの付着がないものを「合格」とした。
(4) Moldability Moldability was confirmed by visually observing the mold after 1000 shots of the syringe obtained by the method described below. Those with no adhesion of mold deposits were judged as "passed".
(5)形状・強度維持性
 形状・強度維持性は後述の方法によって得られたシリンジに5ccの蒸留水を充填してトップキャップ及びストッパーにより密栓したサンプルを40℃100%RHの保管条件で3ヵ月保管した。その後、シリンジを解体して取り出した中間層(層A)の状態を目視で確認した。中間層(層A)の崩壊などがなく形状を維持しているものを、形状及び強度を維持しているとみなして「合格」とした。
(5) Shape/strength retention Shape/strength retention was determined by storing the sample at 40°C, 100% RH, using a syringe obtained by the method described below, filled with 5 cc of distilled water, and sealed with a top cap and stopper. Stored for months. Thereafter, the syringe was disassembled and the state of the intermediate layer (layer A) taken out was visually confirmed. If the intermediate layer (layer A) did not collapse or the like and maintained its shape, it was considered that the shape and strength were maintained and it was judged as "passed".
(6)溶出試験
 後述の方法によって得られたシリンジを40℃、90%RH下にて1ヵ月保管した後、5ccの超純水を充填してトップキャップ及びストッパーにより密栓した容器を40℃、60%RH下に4ヵ月保管し、その後、超純水中のトータルカーボン量(以下、“TOC”と称する。)を測定した。
(TOC測定)
 装置;株式会社島津製作所製  TOC-VCPH
 燃焼炉温度;720℃
 ガス・流量;高純度空気、TOC計部150ml/min
 注入量;150μL
 検出限界;1μg/mL
(6) Elution test After storing the syringe obtained by the method described below for one month at 40°C and 90% RH, the container was filled with 5 cc of ultrapure water and sealed with a top cap and stopper at 40°C. It was stored for 4 months under 60% RH, and then the total carbon content (hereinafter referred to as "TOC") in ultrapure water was measured.
(TOC measurement)
Equipment: TOC-VCPH manufactured by Shimadzu Corporation
Combustion furnace temperature: 720℃
Gas/Flow rate: High purity air, TOC meter 150ml/min
Injection volume: 150μL
Detection limit: 1μg/mL
<プレフィル用シリンジの製造>
 下記の射出及びブロー条件に従い、ISO11040-6に従った内容量5mLの外側から層B/層A/層Bの3層構成のシリンジを得た。
2機の射出シリンダーを備えた射出成形機(Sodick株式会社製、型式:GL-150)を使用し、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する材料と同時に射出し、次に層Bを構成する材料を必要量射出して射出金型内キャビティーを満たすことにより、層B/層A/層Bの3層構成のシリンジを得た。なお、層Bにはシクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)5000」)、層Aには実施例及び比較例の樹脂組成物を使用した。
 (射出及びブロー条件)
 層B用の射出シリンダー温度:315℃
 層A用の射出シリンダー温度:265℃
 射出金型内層B樹脂流路温度:320℃
 射出金型内層A樹脂流路温度:280℃
 射出金型温度:30℃
<Manufacture of prefill syringe>
In accordance with the injection and blowing conditions described below, a syringe having a three-layer structure of layer B/layer A/layer B from the outside and having an internal volume of 5 mL in accordance with ISO 11040-6 was obtained.
Using an injection molding machine (manufactured by Sodick Corporation, model: GL-150) equipped with two injection cylinders, the material constituting layer B is injected from the injection cylinder, and then the material constituting layer A is injected into another injection molding machine. From the injection cylinder, the material constituting layer B is simultaneously injected, and then the required amount of material constituting layer B is injected to fill the cavity in the injection mold, thereby forming the three layers of layer B/layer A/layer B. A syringe with a layered structure was obtained. Note that, for layer B, a cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 5000") was used, and for layer A, the resin compositions of Examples and Comparative Examples were used.
(Injection and blow conditions)
Injection cylinder temperature for layer B: 315℃
Injection cylinder temperature for layer A: 265℃
Injection mold inner layer B resin flow path temperature: 320℃
Injection mold inner layer A resin flow path temperature: 280℃
Injection mold temperature: 30℃
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の樹脂組成物(1)を得た。得られた樹脂組成物について上述の方法でシリンジを成形し、酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) to give a cobalt content of 2.5 ppm, and the resulting resin composition was passed through a twin-screw extruder having two screws with a diameter of 20 mm. A resin composition (1) in the form of pellets was obtained by extrusion in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer. The resulting resin composition was molded into a syringe using the method described above, and evaluated for oxygen barrier properties, water vapor barrier properties, color change in the container, moldability, shape/strength maintenance, and elution test. The evaluation results are shown in Table 5.
(実施例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(2)を使用した以外は実施例1と同様にしてシリンジを得た。得られたシリンジについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Example 2)
A syringe was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にしてシリンジを得た。得られたシリンジについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Example 3)
A syringe was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例1)
 ポリエステル化合物(1)に代えてポリエステル化合物(3)を使用した以外は実施例1と同様にしてシリンジを得た。得られたシリンジについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 1)
A syringe was obtained in the same manner as in Example 1 except that polyester compound (3) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(4)を使用した以外は実施例1と同様にしてシリンジを得た。得られたシリンジについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 2)
A syringe was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例3)
 ポリエステル化合物(1)に代えてポリエステル化合物(5)を使用した以外は実施例1と同様にしてシリンジを得た。得られたシリンジについて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 3)
A syringe was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength maintenance, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例4)
 ポリエステル化合物(1)に代えてポリエステル化合物(6)を使用した以外は実施例1と同様にしてシリンジを得た。得られたシリンジついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 4)
A syringe was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例5)
 層Bの樹脂をポリカーボネート(Sabic社製 レキサン144R)とし、層B用の射出シリンダー温度を280℃とした以外は実施例1と同様にしてシリンジを得た。得られたシリンジついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 5)
A syringe was obtained in the same manner as in Example 1, except that the resin for layer B was polycarbonate (Lexan 144R manufactured by Sabic) and the injection cylinder temperature for layer B was 280°C. The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
(比較例6)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして樹脂組成物を得た。得られた樹脂組成物について実施例1と同様にしてシリンジを得た。得られたシリンジついて上述の方法で酸素バリア性、水蒸気バリア性、容器の色調変化、成形性、形状・強度維持性、溶出試験の評価を実施した。評価結果を表5に示す。
(Comparative example 6)
Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm. A resin composition was obtained in the same manner as in Example 1. A syringe was obtained using the obtained resin composition in the same manner as in Example 1. The obtained syringe was evaluated for oxygen barrier properties, water vapor barrier properties, color change of the container, moldability, shape/strength retention, and elution test using the methods described above. The evaluation results are shown in Table 5.
   
 実施例1~3から明らかなように、第5の実施形態のプレフィル用シリンジは、酸素バリア性、水蒸気バリア性、成形性、強度・形状維持性に優れ、容器からの溶出が少なく、また、保管後の容器の色調変化が小さいため内容物視認性も良好であることが確認された。 As is clear from Examples 1 to 3, the prefill syringe of the fifth embodiment has excellent oxygen barrier properties, water vapor barrier properties, moldability, strength and shape retention, and has little elution from the container. It was confirmed that the visibility of the contents was good because the color change of the container after storage was small.
<<第6の実施形態>>
<評価方法>
(1)抗体活性保持率
(保管試験)
 後述の方法によって得られたバイアルに、50μMに調整した和光純薬工業株式会社製ANTI FGF1, Monoclonal Antibody (mAb1)を1cc充填し、8℃50%RH条件下で180日保管した。溶媒にはインビロジェン製リン酸バッファー(PBSpH7.4)を使用した。保管試験前及び180日保管後の抗体溶液の結合比を下記の方法で測定し、保管前後での抗体活性保持率を次の式で求めた。
  抗体活性保持率(%)
   =(180日保管後の抗体溶液の結合比/保管前の抗体溶液の結合比)×100
<<Sixth embodiment>>
<Evaluation method>
(1) Antibody activity retention rate (storage test)
A vial obtained by the method described below was filled with 1 cc of ANTI FGF1, Monoclonal Antibody (mAb1) manufactured by Wako Pure Chemical Industries, Ltd., adjusted to 50 μM, and stored at 8° C. and 50% RH for 180 days. Phosphate buffer (PBS pH 7.4) manufactured by Invirogen was used as the solvent. The binding ratio of the antibody solution before the storage test and after storage for 180 days was measured by the following method, and the antibody activity retention rate before and after storage was determined by the following formula.
Antibody activity retention rate (%)
= (Binding ratio of antibody solution after 180 days storage/Binding ratio of antibody solution before storage) x 100
(結合比測定方法)
 等温滴定型熱量計を用い、5μMの抗原溶液(BIOLOGICAL Industries Ltd.社製FGF1-Mouse)をセル側に充填し、抗体溶液を10μLずつセルに滴下しながら、25℃で結合比を測定した。
(Coupling ratio measurement method)
Using an isothermal titration calorimeter, the cell side was filled with a 5 μM antigen solution (FGF1-Mouse manufactured by BIOLOGICAL Industries Ltd.), and the binding ratio was measured at 25° C. while dropping 10 μL of the antibody solution into the cell.
(2)溶出試験
 後述の方法によって得られたバイアルを40℃、90%RH下にて1ヵ月保管した後、10ccの超純水を充填してゴム栓及びアルミシールにより密栓した容器を40℃、60%RH下に4ヵ月保管し、その後、超純水中のトータルカーボン量(以下、TOC)を下記の条件で測定した。
(2) Elution test After storing the vial obtained by the method described below for one month at 40°C and 90% RH, the container was filled with 10 cc of ultrapure water and sealed with a rubber stopper and an aluminum seal at 40°C. , and stored under 60% RH for 4 months, and then the total carbon content (hereinafter referred to as TOC) in ultrapure water was measured under the following conditions.
(TOC測定)
装置;株式会社島津製作所製 TOC-VCPH
燃焼炉温度;720℃
ガス・流量;高純度空気、TOC計部150ml/min
注入量;150μL
検出限界;1μg/mL
(TOC measurement)
Equipment: TOC-VCPH manufactured by Shimadzu Corporation
Combustion furnace temperature: 720℃
Gas/Flow rate: High purity air, TOC meter 150ml/min
Injection volume: 150μL
Detection limit: 1μg/mL
(3)容器の色調変化(ΔYI)
 第1の実施形態の「(2)容器の色調変化(ΔYI)」の評価方法にしたがった。
(3) Container color change (ΔYI)
The evaluation method for "(2) Container color tone change (ΔYI)" of the first embodiment was followed.
<バイアルの製造>
 第2の実施形態の<バイアルの製造>にしたがった。
<Manufacture of vials>
The procedure of <Manufacture of vial> of the second embodiment was followed.
[ポリエステル化合物(a)の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound (a)]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた酸素吸収性樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の酸素吸収性樹脂組成物(1)を得た。得られた酸素吸収性樹脂組成物について前述の方法でバイアルを成形し、抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) so that the amount of cobalt was 2.5 ppm, and the resulting oxygen-absorbing resin composition was transferred to a twin-screw machine with two screws each having a diameter of 20 mm. Using an extruder, the oxygen-absorbing resin composition (1) was extruded in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer to obtain an oxygen-absorbing resin composition (1) in the form of pellets. The obtained oxygen-absorbing resin composition was molded into a vial using the method described above, and the antibody activity retention rate, elution test, and container color change were evaluated. The evaluation results are shown in Table 6.
(実施例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(2)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Example 2)
A vial was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして酸素吸収性樹脂組成物(3)を得た。得られた酸素吸収性樹脂組成物について前述の方法でバイアルを成形し、得られたバイアルについて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Example 3)
An oxygen-absorbing resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. The obtained oxygen-absorbing resin composition was molded into a vial using the method described above, and the obtained vial was evaluated for antibody activity retention, elution test, and color change of the container using the method described above. The evaluation results are shown in Table 6.
(比較例1)
 ポリエステル化合物(1)に変えてポリエステル化合物(3)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Comparative example 1)
A vial was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1). The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
(比較例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(4)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Comparative example 2)
A vial was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
(比較例3)
 ポリエステル化合物(1)に変えてポリエステル化合物(5)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルについて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Comparative example 3)
A vial was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
(比較例4)
 ポリエステル化合物(1)に変えてポリエステル化合物(6)を使用した以外は実施例1と同様にしてバイアルを得た。得られたバイアルついて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Comparative example 4)
A vial was obtained in the same manner as in Example 1, except that polyester compound (6) was used instead of polyester compound (1). The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
(比較例5)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして酸素吸収性樹脂組成物(6)を得た。得られた酸素吸収性樹脂組成物について層(A)用の射出シリンダー温度を260℃とした以外は実施例1と同様にしてバイアルを得た。得られたバイアルついて前述の方法で抗体活性保持率、溶出試験、容器の色調変化の評価を実施した。評価結果を表6に示す。
(Comparative example 5)
Examples except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm. An oxygen-absorbing resin composition (6) was obtained in the same manner as in Example 1. A vial was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer (A) was 260° C. for the obtained oxygen-absorbing resin composition. The obtained vials were evaluated for antibody activity retention, elution test, and color change of the container using the methods described above. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
 実施例1~3から明らかなように、第6の実施形態の保存方法により保存されたバイオ医薬品は活性保持率が高く、容器からの溶出が少なく、また、保管後の容器の色調変化が小さいため内容物視認性も良好であることが確認された。 As is clear from Examples 1 to 3, the biopharmaceuticals preserved by the preservation method of the sixth embodiment have a high activity retention rate, little elution from the container, and little change in color of the container after storage. Therefore, it was confirmed that the visibility of the contents was also good.
<<第7の実施形態>>
<評価方法>
(1)アドレナリン含有薬液の保存試験
 アドレナリン500mg、ピロ亜硫酸ナトリウム1670mgに精製水を加え、1000mLの無色透明のアドレナリン含有薬液を調製した。後述の方法によって得られたプレフィル用シリンジのシリンジバレルの先端部をトップキャップで封止し、当該プレフィル用シリンジに上記アドレナリン含有薬液を1mL充填した後、フランジ側をシリンジバレル内に空間が生じないようにストッパーで封止した。この状態で、30℃、相対湿度50%に6ヶ月間保存した後、薬液の色調を目視確認した。
 なお、アドレナリン含有薬液の薬液調製直後の外観としては無色透明であるが、アドレナリンが酸化した場合、薬液が黄色に変色することから、目視によってアドレナリンの酸化の有無を判定した。
<<Seventh embodiment>>
<Evaluation method>
(1) Storage test of adrenaline-containing drug solution Purified water was added to 500 mg of adrenaline and 1,670 mg of sodium pyrosulfite to prepare 1,000 mL of a colorless and transparent adrenaline-containing drug solution. After sealing the tip of the syringe barrel of the prefill syringe obtained by the method described below with a top cap, and filling the prefill syringe with 1 mL of the above adrenaline-containing drug solution, there is no space in the syringe barrel on the flange side. It was sealed with a stopper. After being stored in this state at 30° C. and 50% relative humidity for 6 months, the color tone of the chemical solution was visually confirmed.
The appearance of the adrenaline-containing drug solution immediately after preparation was colorless and transparent, but if adrenaline was oxidized, the drug solution would turn yellow, so the presence or absence of oxidation of adrenaline was determined by visual inspection.
(2)溶出試験
 後述の方法によって得られたプレフィル用シリンジを40℃、相対湿度90%下にて1ヵ月保管した後、1ccの超純水を充填してトップキャップ及びストッパーにより密栓した容器を40℃、60%RH下に4ヵ月保管し、その後、超純水中のトータルカーボン量(以下、TOC)を測定した。
 (TOC測定)
  装置;株式会社島津製作所製 TOC-VCPH
  燃焼炉温度;720℃
  ガス・流量;高純度空気、TOC計部150ml/min
  注入量;150μL
  検出限界;1μg/mL
(2) Elution test After storing the prefill syringe obtained by the method described below for one month at 40°C and 90% relative humidity, the container was filled with 1 cc of ultrapure water and sealed with a top cap and stopper. It was stored at 40° C. and 60% RH for 4 months, and then the total carbon content (hereinafter referred to as TOC) in ultrapure water was measured.
(TOC measurement)
Equipment: TOC-VCPH manufactured by Shimadzu Corporation
Combustion furnace temperature: 720℃
Gas/Flow rate: High purity air, TOC meter 150ml/min
Injection volume: 150μL
Detection limit: 1μg/mL
(3)容器の色調変化
 後述の方法によって得られたプレフィル用シリンジに1ccの蒸留水を充填してトップキャップ及びストッパーにより密栓したサンプルを測定用試料とし、日本電色工業株式会社製色差濁度測定器COH-300Aを使用して測定した初期の黄色度(YI)と40℃、相対湿度20%の保管条件で3ヵ月保管した後の黄色度の差(ΔYI)から算出した。ΔYIが1を超えないものを容器の色調変化が小さいと判断した。
(3) Change in color tone of container A prefill syringe obtained by the method described below was filled with 1 cc of distilled water and sealed with a top cap and a stopper as a sample for measurement. It was calculated from the difference between the initial yellowness (YI) measured using a measuring instrument COH-300A and the yellowness (ΔYI) after storage for 3 months at 40° C. and 20% relative humidity. When ΔYI did not exceed 1, it was determined that the change in color tone of the container was small.
<プレフィル用シリンジの製造>
 ISO11040-6に準拠し、次のとおり、外側から層B/層A/層Bの3層構成のプレフィル用シリンジ(内容量1mL(ロング))を得た。
 2機の射出シリンダーを備えた射出成形機(Sodick株式会社製、型式:GL-150)を使用し、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出して射出金型内キャビティーを満たすことにより、層B/層A/層Bの3層構成のプレフィル用シリンジを得た。なお、層Bにはシクロオレフィンポリマー(日本ゼオン(株)製、製品名:「ZEONEX(登録商標)5000」)を、層Aには実施例及び比較例の樹脂組成物を、それぞれ原料として使用した。
 (射出及びブロー条件)
  層(B)用の射出シリンダー温度:315℃
  層(A)用の射出シリンダー温度:265℃
  射出金型内層(B)樹脂流路温度:320℃
  射出金型内層(A)樹脂流路温度:280℃
  射出金型温度:30℃
<Manufacture of prefill syringe>
In accordance with ISO11040-6, a prefill syringe (inner capacity 1 mL (long)) having a three-layer structure of layer B/layer A/layer B from the outside was obtained as follows.
Using an injection molding machine (manufactured by Sodick Corporation, model: GL-150) equipped with two injection cylinders, the material constituting layer B is injected from the injection cylinder, and then the material constituting layer A is injected into another injection molding machine. From the injection cylinder, the resin constituting layer B is simultaneously injected, and then the required amount of resin constituting layer B is injected to fill the cavity in the injection mold, thereby forming three layers: layer B/layer A/layer B. A prefill syringe with a layered structure was obtained. In addition, cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd., product name: "ZEONEX (registered trademark) 5000") was used as raw materials for layer B, and the resin compositions of Examples and Comparative Examples were used for layer A. did.
(Injection and blow conditions)
Injection cylinder temperature for layer (B): 315°C
Injection cylinder temperature for layer (A): 265°C
Injection mold inner layer (B) resin flow path temperature: 320°C
Injection mold inner layer (A) resin flow path temperature: 280°C
Injection mold temperature: 30℃
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)に対して、ステアリン酸コバルト(II)をコバルト量換算で2.5ppmとなるようブレンドし、得られた酸素吸収性樹脂組成物を、直径20mmのスクリューを2本有する2軸押出機を用いて、押出温度280℃、スクリュー回転数50rpmの条件にてストランド状で押出し、ペレタイザーでカットしたペレット形状の酸素吸収性樹脂組成物(1)を得た。得られた酸素吸収性樹脂組成物について前述の方法でプレフィル用シリンジを成形し、アドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Example 1)
Cobalt (II) stearate was blended with the polyester compound (1) so that the amount of cobalt was 2.5 ppm, and the resulting oxygen-absorbing resin composition was passed through a twin-screw machine with two screws each having a diameter of 20 mm. Using an extruder, the oxygen-absorbing resin composition (1) was extruded in the form of a strand at an extrusion temperature of 280° C. and a screw rotation speed of 50 rpm, and cut with a pelletizer to obtain an oxygen-absorbing resin composition (1) in the form of pellets. The obtained oxygen-absorbing resin composition was molded into a prefill syringe using the method described above, and a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color tone change of the container were performed. The evaluation results are shown in Table 7.
(実施例2)
 ポリエステル化合物(1)に代えてポリエステル化合物(2)を使用した以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Example 2)
A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
(実施例3)
 ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして酸素吸収性樹脂組成物(3)を得た。得られた酸素吸収性樹脂組成物について前述の方法でプレフィル用シリンジを成形し、得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Example 3)
An oxygen-absorbing resin composition (3) was obtained in the same manner as in Example 1, except that cobalt (II) stearate was blended to have a cobalt content of 20 ppm. The obtained oxygen-absorbing resin composition was molded into a prefill syringe using the method described above, and the obtained prefill syringe was subjected to a storage test, an elution test, and an evaluation of color tone change of the container for the adrenaline-containing drug solution using the method described above. did. The evaluation results are shown in Table 7.
(比較例1)
 ポリエステル化合物(1)に変えてポリエステル化合物(3)を使用した以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Comparative example 1)
A prefill syringe was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1). The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
(比較例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(4)を使用した以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Comparative example 2)
A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (4) was used instead of polyester compound (1). The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
(比較例3)
 ポリエステル化合物(1)に変えてポリエステル化合物(5)を使用した以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Comparative example 3)
A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (5) was used instead of polyester compound (1). The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
(比較例4)
 ポリエステル化合物(1)に変えてポリエステル化合物(6)を使用した以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジついて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Comparative example 4)
A prefill syringe was obtained in the same manner as in Example 1 except that polyester compound (6) was used instead of polyester compound (1). The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
(比較例5)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用し、ステアリン酸コバルト(II)をコバルト量換算で20ppmとなるようブレンドした以外は実施例1と同様にして酸素吸収性樹脂組成物(6)を得た。得られた酸素吸収性樹脂組成物について層(A)用の射出シリンダー温度を260℃とした以外は実施例1と同様にしてプレフィル用シリンジを得た。得られたプレフィル用シリンジについて前述の方法でアドレナリン含有薬液の保存試験、溶出試験、容器の色調変化の評価を実施した。評価結果を表7に示す。
(Comparative example 5)
Example except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of polyester compound (1), and cobalt (II) stearate was blended to give a cobalt content of 20 ppm. An oxygen-absorbing resin composition (6) was obtained in the same manner as in Example 1. A prefill syringe was obtained in the same manner as in Example 1, except that the temperature of the injection cylinder for layer (A) was 260° C. for the obtained oxygen-absorbing resin composition. The obtained prefill syringe was subjected to a storage test for an adrenaline-containing drug solution, an elution test, and an evaluation of color change of the container using the methods described above. The evaluation results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
 実施例1~3から明らかなように、第7の実施形態に係るアドレナリン含有薬液の保存方法により保存されたアドレナリン含有薬液は黄色化が進行しておらず(すなわち、酸化が進行しておらず)、容器からの溶出が少なく、また、保管後の容器の色調変化が小さいため内容物視認性も良好であることが確認された。 As is clear from Examples 1 to 3, the adrenaline-containing drug solution stored by the method for preserving an adrenaline-containing drug solution according to the seventh embodiment did not undergo yellowing (that is, did not undergo oxidation). ), it was confirmed that there was little elution from the container, and the color change of the container after storage was small, so the visibility of the contents was also good.
<<第8の実施形態>>
<改質ポリエステルの評価方法>
(1)酸素バリア性
 第1の実施形態の「(1)酸素バリア性」の評価方法にしたがった。
<<Eighth embodiment>>
<Evaluation method of modified polyester>
(1) Oxygen barrier property The evaluation method for "(1) Oxygen barrier property" of the first embodiment was followed.
(2)容器の色調変化(ΔYI)
 第1の実施形態の「(2)容器の色調変化(ΔYI)」の評価方法にしたがった。
(2) Container color change (ΔYI)
The evaluation method for "(2) Container color tone change (ΔYI)" of the first embodiment was followed.
(3)成形性
 第1の実施形態の「(3)成形性」の評価方法にしたがった。
(3) Moldability The evaluation method for "(3) Moldability" of the first embodiment was followed.
(4)形状・強度維持性
 東洋精機製作所製2軸押出機ラボプラストミル2D15Wを使用して下記製造例のポリエステル化合物を押出成形して得た200μm厚のフィルムを試料として、40℃100%RHの保管条件で3ヵ月保管した後のフィルムの状態を目視で確認した。形状及びフィルムの強度を維持しているものを合格とした。
(4) Shape/strength retention A 200 μm thick film obtained by extrusion molding the polyester compound of the following production example using a twin-screw extruder Labo Plastomill 2D15W manufactured by Toyo Seiki Seisakusho was used as a sample at 40°C 100% RH. The condition of the film was visually confirmed after being stored for 3 months under the following storage conditions. Those that maintained the shape and strength of the film were deemed to have passed.
<バイアルの製造>
 第2の実施形態の<バイアルの製造>にしたがった。
<Manufacture of vials>
The procedure of <Manufacture of vial> of the second embodiment was followed.
[ポリエステル化合物の製造例]
(製造例1~6)
 第1の実施形態の(製造例1)~(製造例6)にしたがって、ポリエステル化合物(1)~(6)を得た。
[Production example of polyester compound]
(Manufacturing examples 1 to 6)
Polyester compounds (1) to (6) were obtained according to (Production Example 1) to (Production Example 6) of the first embodiment.
(実施例1)
 ポリエステル化合物(1)を使用し、前述の方法でバイアルを成形した後、バイアルに対してγ線を20kGy照射し、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(1)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Example 1)
After molding a vial using the polyester compound (1) by the method described above, the vial was irradiated with 20 kGy of gamma rays to obtain a vial in which the modified polyester was the intermediate layer. The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (1), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(実施例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(2)を使用した以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(2)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Example 2)
A vial having a modified polyester as an intermediate layer was obtained in the same manner as in Example 1 except that polyester compound (2) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (2), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(実施例3)
 γ線照射量を40kGyとした以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(1)を使用し、前述の方法で得たフィルムに対してγ線を40kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Example 3)
A vial in which the intermediate layer was made of modified polyester was obtained in the same manner as in Example 1 except that the γ-ray irradiation amount was 40 kGy. The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (1), the film obtained by the above method was irradiated with 40 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(比較例1)
 ポリエステル化合物(1)に変えてポリエステル化合物(3)を使用した以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(3)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Comparative example 1)
A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (3) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (3), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(比較例2)
 ポリエステル化合物(1)に変えてポリエステル化合物(4)を使用した以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(4)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Comparative example 2)
A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (4) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (4), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate the shape and strength retention properties. The evaluation results are shown in Table 8.
(比較例3)
 ポリエステル化合物(1)に変えてポリエステル化合物(5)を使用した以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(5)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Comparative example 3)
A vial in which the modified polyester was used as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (5) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (5), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate the shape and strength retention properties. The evaluation results are shown in Table 8.
(比較例4)
 ポリエステル化合物(1)に変えてポリエステル化合物(6)を使用した以外は実施例1と同様にして、改質ポリエステルが中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(6)を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Comparative example 4)
A vial containing the modified polyester as an intermediate layer was obtained in the same manner as in Example 1, except that polyester compound (6) was used instead of polyester compound (1). The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using the polyester compound (6), the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(比較例5)
 ポリエステル化合物(1)に変えてナイロンMXD6(三菱ガス化学株式会社製、商品名:MXナイロンS7007)を使用した以外は実施例1と同様にして、ナイロンMXD6改変体が中間層となるバイアルを得た。得られたバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ナイロンMXD6を使用し、前述の方法で得たフィルムに対してγ線を20kGy照射し、形状・強度維持性の評価を実施した。評価結果を表8に示す。
(比較例6)
 ポリエステル化合物(1)を使用し、前述の方法でバイアルを成形した後、バイアルに対してγ線を照射しない非改質ポリエステルが中間層となるバイアルについて酸素バリア性、容器の色調変化、成形性の評価を実施した。また、ポリエステル化合物(1)を使用し、前述の方法で得たフィルムに対してγ線を照射しない非改質ポリエステルについて形状・強度維持性の評価を実施した。評価結果を表8に示す。
(Comparative example 5)
A vial was obtained in the same manner as in Example 1, except that nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S7007) was used instead of the polyester compound (1), with the nylon MXD6 modified product serving as the intermediate layer. Ta. The obtained vials were evaluated for oxygen barrier properties, color change of the container, and moldability. Further, using nylon MXD6, the film obtained by the above method was irradiated with 20 kGy of gamma rays to evaluate its shape and strength retention. The evaluation results are shown in Table 8.
(Comparative example 6)
After forming a vial using the polyester compound (1) using the method described above, the vial has an intermediate layer made of unmodified polyester that does not irradiate the vial with gamma rays. Oxygen barrier properties, color change of the container, and formability An evaluation was conducted. Further, using polyester compound (1), the shape and strength maintenance properties of unmodified polyester, which was not irradiated with gamma rays, were evaluated for the film obtained by the method described above. The evaluation results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000017
 
 実施例1~3から明らかなように、第8の実施形態の改質ポリエステルは、良好な酸素バリア性能を示し、酸素吸収後の色調が良好かつ強度・形状維持性に優れ、成形性も優れることが確認された。
 
 
As is clear from Examples 1 to 3, the modified polyester of the eighth embodiment exhibits good oxygen barrier performance, has a good color tone after oxygen absorption, has excellent strength and shape retention, and has excellent moldability. This was confirmed.

Claims (21)

  1.  ポリエステル化合物(a)と、
     遷移金属触媒と、
    を含有する樹脂組成物であって、
     前記ポリエステル化合物(a)が、前記ポリエステル化合物(a)における下記式(1)、式(2)及び式(3)で表される構成単位の合計100モル%に対して、
      下記式(1)で表される構成単位を30~55モル%、
      下記式(2)で表される構成単位を15~40モル%、
      下記式(3)で表される構成単位を20~40モル%、
    含有する、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    (上記式(1)~(3)中、nは繰り返し単位の量を表し、それぞれ、前記式(1)で表される構成単位、前記式(2)で表される構成単位及び前記式(3)で表される構成単位の組成比に対応する。)
    polyester compound (a);
    a transition metal catalyst;
    A resin composition containing,
    The polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a),
    30 to 55 mol% of the structural unit represented by the following formula (1),
    15 to 40 mol% of the structural unit represented by the following formula (2),
    20 to 40 mol% of the structural unit represented by the following formula (3),
    A resin composition containing.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In the above formulas (1) to (3), n represents the amount of repeating unit, and the structural unit represented by the above formula (1), the structural unit shown by the above formula (2), and the above formula ( Corresponds to the composition ratio of the constituent units expressed in 3).)
  2.  前記ポリエステル化合物(a)が、前記ポリエステル化合物(a)における下記式(1)、式(2)及び式(3)で表される構成単位の合計100モル%に対して、
     前記式(1)で表される構成単位を40~50モル%、
     前記式(2)で表される構成単位を20~35モル%、
     前記式(3)で表される構成単位を25~35モル%、
    含有し、
     前記ポリエステル化合物(a)の全構成単位100モル%に対して、前記式(1)~(3)で表される構成単位の合計が95モル%以上である、請求項1に記載の樹脂組成物。
    The polyester compound (a) is based on a total of 100 mol% of the structural units represented by the following formulas (1), (2), and (3) in the polyester compound (a),
    40 to 50 mol% of the structural unit represented by the above formula (1),
    20 to 35 mol% of the structural unit represented by the formula (2),
    25 to 35 mol% of the structural unit represented by the formula (3),
    Contains
    The resin composition according to claim 1, wherein the total of the structural units represented by the formulas (1) to (3) is 95 mol% or more with respect to 100 mol% of the total structural units of the polyester compound (a). thing.
  3.  前記遷移金属触媒が、コバルト、ニッケル及び銅からなる群より選択される少なくとも1種の遷移金属を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of cobalt, nickel, and copper.
  4.  前記遷移金属触媒が、前記ポリエステル化合物(a)の質量を基準として、遷移金属量として0.5~10ppm含まれる、請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the transition metal catalyst is contained in an amount of 0.5 to 10 ppm as a transition metal based on the mass of the polyester compound (a).
  5.  請求項1~4のいずれか一項に記載の樹脂組成物を含有する層(A)と、
     前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)と、を含有する、多層射出成形体。
    A layer (A) containing the resin composition according to any one of claims 1 to 4,
    and a layer (B) containing a thermoplastic resin (b) different from the polyester compound (a).
  6.  請求項5に記載の多層射出成形体を含む、容器。 A container comprising the multilayer injection molded article according to claim 5.
  7.  請求項5に記載の多層射出成形体を、更に加工して得られる、容器。 A container obtained by further processing the multilayer injection molded article according to claim 5.
  8.  射出ブロー成形又は延伸ブロー成形により得られる、請求項7に記載の容器。
    8. Container according to claim 7, obtained by injection blow molding or stretch blow molding.
  9.  請求項1~4のいずれか一項に記載の樹脂組成物を含有する層(A)と、
     前記ポリエステル化合物(a)と異なる熱可塑性樹脂(b)を含有する層(B)を前記層(A)の両側に積層した、少なくとも3層を含有する多層体。
    A layer (A) containing the resin composition according to any one of claims 1 to 4,
    A multilayer body comprising at least three layers, in which a layer (B) containing a thermoplastic resin (b) different from the polyester compound (a) is laminated on both sides of the layer (A).
  10.  請求項9に記載の多層体を含む、容器。 A container comprising the multilayer body according to claim 9.
  11.  請求項1~4のいずれか一項に記載の樹脂組成物を含有する層(A)と、
     ポリオレフィン(b)を含有する層(B)と、を含み、
     前記層(A)の両側に前記層(B)が積層された、少なくとも3層を含む多層構造を有する、
    医療用多層成形容器。
    A layer (A) containing the resin composition according to any one of claims 1 to 4,
    A layer (B) containing polyolefin (b),
    having a multilayer structure including at least three layers, in which the layer (B) is laminated on both sides of the layer (A);
    Medical multilayer molded container.
  12.  前記ポリオレフィン(b)が、シクロオレフィンコポリマー又はシクロオレフィンポリマーである、請求項11に記載の医療用多層成形容器。 The medical multilayer molded container according to claim 11, wherein the polyolefin (b) is a cycloolefin copolymer or a cycloolefin polymer.
  13.  前記医療用多層成形容器が、薬剤を密封状態で収容可能であり、使用に際し前記密封状態を解除して前記薬剤を注出可能なプレフィル用シリンジである、請求項12に記載の医療用多層成形容器。
    13. The medical multilayer molded container according to claim 12, wherein the medical multilayer molded container is a prefill syringe that can house a drug in a sealed state and, when used, can release the sealed state and pour out the drug. container.
  14.  バイオ医薬品を容器に保存する方法であって、
     前記容器は、請求項1~4のいずれか一項に記載の樹脂組成物からなる酸素吸収層(層A)と、前記層Aの両側に積層したポリオレフィン(b)を含有する樹脂層(層B)と、を含む、少なくとも3層を含有する多層構造の容器である、バイオ医薬品の保存方法。
    A method for storing biopharmaceuticals in containers, the method comprising:
    The container comprises an oxygen absorbing layer (layer A) made of the resin composition according to any one of claims 1 to 4, and a resin layer (layer A) containing polyolefin (b) laminated on both sides of the layer A. B) A method for preserving a biopharmaceutical, the container having a multilayer structure containing at least three layers.
  15.  前記ポリオレフィン(b)が、シクロオレフィンコポリマー又はシクロオレフィンポリマーである、請求項14に記載のバイオ医薬品の保存方法。 The method for preserving a biopharmaceutical according to claim 14, wherein the polyolefin (b) is a cycloolefin copolymer or a cycloolefin polymer.
  16.  前記バイオ医薬品が、アドレナリン含有薬液である、請求項14に記載の保存方法。 The preservation method according to claim 14, wherein the biopharmaceutical is an adrenaline-containing drug solution.
  17.  前記容器が、プレフィル用シリンジである、請求項16に記載の保存方法。 The preservation method according to claim 16, wherein the container is a prefill syringe.
  18.  請求項1~4のいずれか一項で定義されるポリエステル化合物(a)に放射線を照射することによって得られる改質ポリエステル。 A modified polyester obtained by irradiating the polyester compound (a) defined in any one of claims 1 to 4 with radiation.
  19.  前記放射線が、γ線または電子線である、請求項18に記載の改質ポリエステル。 The modified polyester according to claim 18, wherein the radiation is a gamma ray or an electron beam.
  20.  前記放射線の照射量が、5kGy以上60kGy未満である、請求項19に記載の改質ポリエステル。 The modified polyester according to claim 19, wherein the radiation dose is 5 kGy or more and less than 60 kGy.
  21.  請求項1~4のいずれか一項で定義されるポリエステル化合物(a)に放射線を照射する工程を含む、改質ポリエステルの製造方法。
     
    A method for producing a modified polyester, comprising the step of irradiating the polyester compound (a) defined in any one of claims 1 to 4 with radiation.
PCT/JP2023/018075 2022-06-03 2023-05-15 Resin composition WO2023233984A1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2022090838A JP2023177883A (en) 2022-06-03 2022-06-03 modified polyester
JP2022-090857 2022-06-03
JP2022-090877 2022-06-03
JP2022090852A JP2023177894A (en) 2022-06-03 2022-06-03 Multilayer injection molding, and container
JP2022090836A JP2023177881A (en) 2022-06-03 2022-06-03 resin composition
JP2022-090852 2022-06-03
JP2022090856A JP2023177896A (en) 2022-06-03 2022-06-03 Medical multilayer container
JP2022-090859 2022-06-03
JP2022-090838 2022-06-03
JP2022090833A JP2023177878A (en) 2022-06-03 2022-06-03 Preservation method for adrenaline-containing chemical solution
JP2022090857A JP2023177897A (en) 2022-06-03 2022-06-03 Multilayer body and container
JP2022090859A JP2023177899A (en) 2022-06-03 2022-06-03 Pre-filled syringe
JP2022090877A JP2023177910A (en) 2022-06-03 2022-06-03 Preservation method of biopharmaceuticals
JP2022-090833 2022-06-03
JP2022-090856 2022-06-03
JP2022-090836 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023233984A1 true WO2023233984A1 (en) 2023-12-07

Family

ID=89026446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018075 WO2023233984A1 (en) 2022-06-03 2023-05-15 Resin composition

Country Status (1)

Country Link
WO (1) WO2023233984A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134194A (en) * 1994-11-02 1996-05-28 Teijin Ltd Polyethylene naphthalate copolymer film
WO2014057991A1 (en) * 2012-10-10 2014-04-17 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
WO2014136811A1 (en) * 2013-03-05 2014-09-12 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134194A (en) * 1994-11-02 1996-05-28 Teijin Ltd Polyethylene naphthalate copolymer film
WO2014057991A1 (en) * 2012-10-10 2014-04-17 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
WO2014136811A1 (en) * 2013-03-05 2014-09-12 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition

Similar Documents

Publication Publication Date Title
US9840359B2 (en) Oxygen-absorbing resin composition, and multilayer body, container, injection-molded body, and medical container using same
EP2784120B1 (en) Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
KR20150126393A (en) Oxygen-absorbing multilayer body, oxygen-absorbing container, oxygen-absorbing airtight container, oxygen-absorbing push-through pack, and storage method using same
JP6249245B2 (en) Oxygen-absorbing resin composition, and oxygen-absorbing multilayer injection molded article and oxygen-absorbing multilayer container using the same
WO2014136918A1 (en) Oxygen-absorbing medical multiwall container and biopharmaceutical storage method
JP5974871B2 (en) Oxygen-absorbing multilayer injection molding
TWI595049B (en) Oxygen-absorbing resin composition and multilayer body, container, injection molded body and medical container formed using the same
WO2023233984A1 (en) Resin composition
WO2014010598A1 (en) Oxygen-absorbing resin composition
JP2023177894A (en) Multilayer injection molding, and container
JP2023177897A (en) Multilayer body and container
JP6048745B2 (en) Oxygen-absorbing multilayer injection molding
JP5935660B2 (en) Oxygen-absorbing multilayer injection molding
JP6015322B2 (en) Medical multi-layer container
JP6015328B2 (en) Oxygen-absorbing multilayer injection molding
JP2023177896A (en) Medical multilayer container
JP2023177878A (en) Preservation method for adrenaline-containing chemical solution
JP2023177910A (en) Preservation method of biopharmaceuticals
JP5962439B2 (en) Oxygen-absorbing injection molded body
JP6098238B2 (en) How to store containers filled with chemicals
JP2018135310A (en) Storage method of adrenalin-containing drug solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815744

Country of ref document: EP

Kind code of ref document: A1