JP2018125475A - Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core - Google Patents

Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core Download PDF

Info

Publication number
JP2018125475A
JP2018125475A JP2017018155A JP2017018155A JP2018125475A JP 2018125475 A JP2018125475 A JP 2018125475A JP 2017018155 A JP2017018155 A JP 2017018155A JP 2017018155 A JP2017018155 A JP 2017018155A JP 2018125475 A JP2018125475 A JP 2018125475A
Authority
JP
Japan
Prior art keywords
nanocrystal
ribbon
iron core
ribbons
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017018155A
Other languages
Japanese (ja)
Inventor
大道 光明寺
Daido Komyoji
大道 光明寺
西川 幸男
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017018155A priority Critical patent/JP2018125475A/en
Publication of JP2018125475A publication Critical patent/JP2018125475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate iron core having uniform magnetic characteristic, an electromagnetic component using the laminate iron core, and a manufacturing method of the laminate iron core by using a nano crystal ribbon.SOLUTION: A laminate iron core is a laminate iron core 10 that constructs one nano magnetic layer by combining a plurality of nano crystal ribbons 102a to 102f in connection surfaces 11a to 11c, and in which a nano magnetic layer is laminated. In a plan surface view where the laminate iron core 10 is viewed from a laminate direction, the connection surfaces 11a to 11c are positioned in a plurality of lines, and are distributed in a point symmetry. Also, a manufacturing method of the laminate iron core, includes: a first step of manufacturing an amorphous ribbons; a second step of externally processing the amorphous ribbons of the first step; a third step of thermally processing the amorphous ribbons obtained by externally processing in the second step, and obtaining the nano crystal ribbon; and a fourth step of laminating the plurality of nano crystal ribbons in the third step as a combination one layer.SELECTED DRAWING: Figure 2

Description

本発明は、積層鉄心とその製造方法およびその積層鉄心を用いた電磁部品に関する。   The present invention relates to a laminated iron core, a manufacturing method thereof, and an electromagnetic component using the laminated iron core.

従来の積層鉄心100は、図8の斜視図で示すように、磁性材料であるケイ素鋼帯などの薄板106を積層したもので構成されている。積層鉄心100は、その周辺にコイルが巻かれ、小型トランス、リアクトル、変流器、柱上変圧器等に用いられる。   As shown in the perspective view of FIG. 8, the conventional laminated iron core 100 is configured by laminating thin plates 106 such as silicon steel strips which are magnetic materials. The laminated core 100 has a coil wound around it, and is used for a small transformer, a reactor, a current transformer, a pole transformer, and the like.

一方、磁気特性に優れたアモルファス合金薄帯やナノ結晶薄帯がある。高い磁気特性のナノ結晶薄帯とするには、ナノレベルの結晶とする必要がある。そのためには、原料溶液を急冷し薄帯にし(特許文献1)、その後、熱処理を行う。これによって、ナノ結晶を析出させている。この製造方法を図9の断面図で説明する。   On the other hand, there are amorphous alloy ribbons and nanocrystal ribbons with excellent magnetic properties. In order to obtain a nanocrystal ribbon with high magnetic properties, it is necessary to form a nano-level crystal. For this purpose, the raw material solution is quenched and thinned (Patent Document 1), and then heat treatment is performed. As a result, nanocrystals are deposited. This manufacturing method will be described with reference to the cross-sectional view of FIG.

ノズル103から溶融された磁性材料が、ローラ101へ塗布される。ローラ101は、冷却されており、回転しながら溶液を受け。その表面で溶液を急冷し薄帯を作製する。この時点で薄帯は、アモルファス薄帯13である。アモルファス薄帯13は、熱処理条件は異なるが、所定の温度と時間の熱処理でナノレベルの結晶粒を有するナノ結晶薄帯を製造できる。   Magnetic material melted from the nozzle 103 is applied to the roller 101. The roller 101 is cooled and receives the solution while rotating. The solution is quenched at the surface to produce a ribbon. At this point, the ribbon is an amorphous ribbon 13. Although the amorphous ribbon 13 has different heat treatment conditions, a nanocrystal ribbon having nano-level crystal grains can be produced by heat treatment at a predetermined temperature and time.

特開2001−1113号公報Japanese Patent Laid-Open No. 2001-1113

しかし、アモルファス薄帯13からは、幅が広い、または、長さが長いナノ結晶薄帯を作製できない。なぜなら、図9のローラ101の大きさには制限があるためである。また、図9の方法で、均質なナノ結晶薄帯を作製する場合に、幅を広く、または、長さを長くすることができない。幅または長さを広げると、均質性は悪くなる。さらに、その後の熱処理においても、幅または長さを広げると、温度制御が特性に大きく影響し、均質なものを作製できない。結果、幅の広い、または、長さが長いナノ結晶薄帯を作製することは困難である。   However, a nanocrystal ribbon having a wide width or a long length cannot be produced from the amorphous ribbon 13. This is because the size of the roller 101 in FIG. 9 is limited. Moreover, when producing a uniform nanocrystal ribbon by the method of FIG. 9, the width cannot be increased or the length cannot be increased. If the width or length is increased, the homogeneity will deteriorate. Furthermore, even in the subsequent heat treatment, if the width or length is increased, the temperature control greatly affects the characteristics, and a homogeneous product cannot be produced. As a result, it is difficult to produce a nanocrystal ribbon having a wide width or a long length.

このため、幅の短い、または、長さの短いアモルファス薄帯13を多く製造し、これらを熱処理しナノ結晶化し、順番に継ぎ足して巻いていく必要がある。継ぎ足し部分は他の部分と磁気特性が不連続になるので、全体として、磁気特性の不均一性が生じる。なお、磁気特性は、主に、軟磁気特性を示す。   For this reason, it is necessary to manufacture many amorphous ribbons 13 having a short width or a short length, heat-treat them to be nanocrystallized, and add and wind them in order. Since the added portion becomes discontinuous in magnetic characteristics with other portions, the magnetic characteristics are non-uniform as a whole. The magnetic characteristics mainly indicate soft magnetic characteristics.

よって、本願発明は、前記従来の課題を解決するもので、ナノ結晶薄帯を用いて、磁気特性が均質な積層鉄心とその積層鉄心を用いた電磁部品、積層鉄心の製造方法を提供することである。   Therefore, the present invention solves the above-mentioned conventional problems, and provides a laminated core having a uniform magnetic property using a nanocrystalline ribbon, an electromagnetic component using the laminated core, and a method for producing the laminated core It is.

前記目的を達成するために、複数のナノ結晶薄帯を繋ぎ面で組合せて1枚のナノ磁性層を構成し、上記ナノ磁性層を積層した積層鉄心であり、上記積層鉄心を上記積層方向から見た平面視において、上記繋ぎ面は複数線で位置し、点対称に分布する積層鉄心を用いる。   In order to achieve the above object, a plurality of nanocrystal ribbons are combined at a connecting surface to form a single nanomagnetic layer, and the laminated magnetic core is formed by laminating the nanomagnetic layer. In the viewed plan view, the connecting surface is positioned by a plurality of lines, and uses a laminated iron core that is distributed point-symmetrically.

また、上記積層鉄心にコイルを巻いた電磁部品を用いる。   Moreover, the electromagnetic component which wound the coil around the said laminated iron core is used.

さらに、アモルファス薄帯を作製する第1工程と、上記第1工程の上記アモルファス薄帯を外形加工する第2工程と、上記第2工程の外形加工した上記アモルファス薄帯を熱処理しナノ結晶薄帯とする第3工程と、上記第3工程の複数の上記ナノ結晶薄帯を組み合せ1層として、積層する第4工程と、を含む積層鉄心の製造方法を用いる。   Furthermore, a first step for producing an amorphous ribbon, a second step for externally processing the amorphous ribbon in the first step, and a heat treatment of the amorphous ribbon that has been externally processed in the second step to heat the nanocrystalline ribbon. And a fourth step of laminating as a single layer a combination of the plurality of nanocrystal ribbons in the third step.

本発明の一例によれば、磁気特性が均質な積層鉄心とその積層鉄心を用いた部品を提供できる。また、別の例によれば、磁気特性が均質な部品を提供できる。   According to an example of the present invention, it is possible to provide a laminated iron core having uniform magnetic characteristics and a component using the laminated iron core. Further, according to another example, it is possible to provide a component having uniform magnetic characteristics.

実施の形態1における積層鉄心の製造フローを示す図The figure which shows the manufacture flow of the laminated iron core in Embodiment 1 (a)実施の形態1における積層鉄心の分解斜視図、(b)(a)の平面図、(c)(a)の側面図、(d)(b)の変形例を示す平面図(A) Exploded perspective view of laminated core in Embodiment 1, (b) (a) plan view, (c) (a) side view, (d) (b) plan view showing a modification example (a)実施の形態2の薄帯の斜視図、(b)(a)の薄帯から薄帯の取り出す部分を示す平面図、(c)(b)の取り出した薄帯を合わせる状態を示す平面図、(d)(c)の薄帯の繋ぎ面部分の拡大断面図(A) Perspective view of the ribbon of Embodiment 2, (b) Plan view showing a portion from which the ribbon is extracted from (a), (c) (b) shows a state in which the ribbons extracted are combined. Plan view, enlarged sectional view of the connecting surface portion of the ribbon of (d) (c) (a)〜(c)実施の形態2の積層薄帯の側面図(A)-(c) Side view of laminated thin ribbon of embodiment 2 (a)〜(c)実施の形態3の薄帯の繋ぎ面を示す平面図、(d)(b)の時の積層鉄心の平面図(A)-(c) The top view which shows the connection surface of the ribbon of Embodiment 3, (d) The top view of the laminated iron core at the time of (b) (a)〜(b)実施の形態4の積層薄帯の分解斜視図、(c)〜(e)(b)の積層を作製するための薄帯の分割を示す平面図(A)-(b) Exploded perspective view of the laminated ribbon of Embodiment 4, (c)-(e) Plan view showing division of the ribbon for producing the laminate of (b) 実施の形態5の積層薄帯の製造のフローを示す図The figure which shows the flow of manufacture of the lamination | stacking thin ribbon of Embodiment 5. 従来の積層鉄心の斜視図Perspective view of conventional laminated iron core 従来の薄帯の製造方法を示す断面図Sectional drawing which shows the manufacturing method of the conventional ribbon

以下本発明の一実施の形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(実施の形態1)
<積層鉄心の製造>
積層鉄心の製造方法の一例を図1に示す。
(1) アモルファス薄帯製造
図9で説明したように、磁性材料の合金溶融物を、ノズル103から、冷却されたローラ101の表面へ塗布する。溶融物は急冷却されアモルファス薄帯13となる。
(Embodiment 1)
<Manufacture of laminated core>
An example of the manufacturing method of a laminated iron core is shown in FIG.
(1) Amorphous ribbon production As described with reference to FIG. 9, an alloy melt of a magnetic material is applied from the nozzle 103 to the surface of the cooled roller 101. The melt is rapidly cooled to form an amorphous ribbon 13.

特に、Fe−B−Cu系、Fe−Cu−Nb−Si−B系、Fe−B−P−Cu系の合金を用いることが好ましい。アモルファス薄帯13の厚みは平均約10〜50μmである。
(2) 加工
(1)のアモルファス薄帯13を所定の外形となるように加工する。外形は条件によりいろいろ変化させる。
(3)熱処理
(2)で加工されたアモルファス薄帯13を熱処理する。熱処理は、高速で昇温するのが好ましい。結果、軟磁気特性がよいナノ結晶の薄帯が作製できる。(2)のアモルファス薄帯13は、長いものでなく、短くされているので、炉内等で高速で昇温することが可能である。
In particular, it is preferable to use an Fe-B-Cu alloy, an Fe-Cu-Nb-Si-B alloy, or an Fe-BP-Cu alloy. The thickness of the amorphous ribbon 13 is about 10 to 50 μm on average.
(2) Processing The amorphous ribbon 13 of (1) is processed so as to have a predetermined outer shape. The external shape varies depending on conditions.
(3) Heat treatment The amorphous ribbon 13 processed in (2) is heat treated. The heat treatment is preferably performed at a high speed. As a result, a nanocrystalline ribbon with good soft magnetic properties can be produced. Since the amorphous ribbon 13 of (2) is not long and is short, it can be heated at high speed in a furnace or the like.

合金組成物の結晶化温度より少し高い温度まで加熱する。
(4)積層
(3)の熱処理で作製された複数のナノ結晶薄帯を積層する。
(5)一体化
積層されたナノ結晶薄帯に樹脂を挿入したり、外枠に入れたりして、積層鉄心を作製する。ここで、積層鉄心の製造、ナノ結晶薄帯製造は一例であり、他のナノ結晶薄帯の製造方法でもよい。
Heat to a temperature slightly higher than the crystallization temperature of the alloy composition.
(4) Lamination A plurality of nanocrystal ribbons produced by the heat treatment of (3) are laminated.
(5) Integration A resin is inserted into the laminated nanocrystal ribbons or put into an outer frame to produce a laminated core. Here, the production of the laminated iron core and the production of the nanocrystal ribbon are examples, and other production methods of the nanocrystal ribbon may be used.

<積層鉄心の構造>
実施の形態1の積層鉄心10を、図2(a)〜図2(c)で説明する。図2(a)は、積層鉄心10の展開図である。図2(b)は、積層鉄心10の平面図である。図2(c)は、積層鉄心10の側面図である。
<Structure of laminated core>
The laminated iron core 10 of Embodiment 1 will be described with reference to FIGS. 2 (a) to 2 (c). FIG. 2A is a development view of the laminated core 10. FIG. 2B is a plan view of the laminated core 10. FIG. 2C is a side view of the laminated core 10.

この例では、6枚のナノ結晶薄帯102a〜102fを、2枚で1組で1層のナノ磁性層として、3組、3層の積層体を示している。3層のナノ磁性層A,B,Cのそれぞれに2つの繋ぎ面11a、11b、11cがある。なお、ナノ結晶薄帯、繋ぎ面を特定しない場合、ナノ結晶薄帯102、繋ぎ面11と表現する。   In this example, six nanocrystal ribbons 102a to 102f are used as two nanosheets, and a set of three layers and three layers are shown as one nanomagnetic layer. Each of the three nanomagnetic layers A, B, and C has two connecting surfaces 11a, 11b, and 11c. When the nanocrystal ribbon and the connection surface are not specified, the nanocrystal ribbon 102 and the connection surface 11 are expressed.

実施の形態のナノ結晶薄帯102は、前記のように、(2)で打ち抜きされた子片である。積層鉄心10を、積層方向の上方から見ると、繋ぎ面11は、線として見える。各線は90度の角度で交わる。その線分の分布が点対称に分布されている。   As described above, the nanocrystal ribbon 102 of the embodiment is a child piece punched in (2). When the laminated core 10 is viewed from above in the lamination direction, the connecting surface 11 appears as a line. Each line meets at an angle of 90 degrees. The distribution of the line segments is distributed point-symmetrically.

図2(b)の変形例として、図2(d)の平面図で示すような繋ぎ面11でもよい。
つまり、各々の繋ぎ面11を結ぶ複数の線分間がなす角度θは、ほぼ等しい。結果、積層鉄心10の磁気的性質は均質となる。また、平面図で、上下での繋ぎ面の個数は、同数が好ましい。図2(a)から図2(c)の例では、場所により、繋ぎ面11が2個と1個のところがある。4層構造にして、個数を同数の2個とするのがこの好ましい。
As a modification of FIG. 2B, a connecting surface 11 as shown in the plan view of FIG.
That is, the angle θ formed by a plurality of line segments connecting each connecting surface 11 is substantially equal. As a result, the magnetic properties of the laminated core 10 are uniform. In the plan view, the same number of upper and lower connecting surfaces is preferable. In the example of FIG. 2A to FIG. 2C, there are two and one connecting surfaces 11 depending on the location. This is preferably a four-layer structure with the same number of two.

この例では、各々のナノ結晶薄帯102は、ほぼ同じ厚み、形状としている。また、ナノ結晶薄帯102は、ドーナツの半分の形状であるが、その3分の1、額縁状の形状、その半分などでもよい。   In this example, each nanocrystal ribbon 102 has substantially the same thickness and shape. Moreover, although the nanocrystal ribbon 102 has a half shape of a donut, it may be a third, a frame shape, or a half thereof.

なお、繋ぎ面11の線は、点対称が好ましいが、線対称でもよい。   The line of the connecting surface 11 is preferably point-symmetric, but may be line-symmetric.

(実施の形態2)
実施の形態2を、図3(a)〜図3(d)を用いて説明する。実施の形態2は、実施の形態1に対して、ナノ結晶薄帯102間の繋ぎ面11の構造が異なる。説明しない事項は実施の形態1と同様である。
(Embodiment 2)
The second embodiment will be described with reference to FIGS. 3 (a) to 3 (d). The second embodiment differs from the first embodiment in the structure of the connecting surface 11 between the nanocrystal ribbons 102. Matters not described are the same as those in the first embodiment.

図3(a)は、ナノ結晶薄帯102の斜視図である。前記方法で作製したナノ結晶薄帯102は、厚みばらつきがある。これは、図9で説明したように、ナノ結晶薄帯102の両面を加圧状態とせずに冷却しているためである。厚みばらつきは、多くとも20μmから50μmの範囲である。   FIG. 3A is a perspective view of the nanocrystal ribbon 102. The nanocrystal ribbon 102 produced by the above method has a thickness variation. This is because, as described with reference to FIG. 9, both surfaces of the nanocrystal ribbon 102 are cooled without being pressurized. The thickness variation is at most 20 μm to 50 μm.

図3(a)の場合、A点,B点,C点,D点の順で厚みが厚くなる。ここで、ナノ結晶薄帯102a、ナノ結晶薄帯102bは、一例として、図3(b)の平面図で示すように、ナノ結晶薄帯102から作製される。図3(c)に繋ぎ面11と各々のナノ結晶薄帯102a、102bの平面図を示す。各々のナノ結晶薄帯102の繋ぎ面11の地点a、b、c、dは、ナノ結晶薄帯102の厚みが異なる。ここで、地点a、b、c、dでのナノ結晶薄帯102の厚みは、地点a、b、c、dの順で薄くなる。   In the case of FIG. 3A, the thickness increases in the order of point A, point B, point C, and point D. Here, as an example, the nanocrystalline ribbon 102a and the nanocrystalline ribbon 102b are produced from the nanocrystalline ribbon 102 as shown in the plan view of FIG. FIG. 3C shows a plan view of the connecting surface 11 and each of the nanocrystal ribbons 102a and 102b. The thicknesses of the nanocrystal ribbons 102 are different at the points a, b, c, and d on the connecting surface 11 of each nanocrystal ribbon 102. Here, the thickness of the nanocrystal ribbon 102 at the points a, b, c, and d decreases in the order of the points a, b, c, and d.

この場合、繋ぎ面11の拡大断面図を図3(d)に示す。地点aと地点dとを合わせる。また、地点bと地点cとを合わせる。このようにすることで、繋ぎ面11の各地点での厚みばらつき(厚み差)は減る。つまり、地点aと地点dの厚みの平均値と、地点bと地点cの厚みの平均値とが同じようになるように合わせる。別の言い方では、一方の端で、4点の内、一番厚い地点と一番薄い地点とを合わせ、他方の端で、それ以外の地点を合わせる。平均厚みとは、繋ぎ面11において、2つのナノ結晶薄帯102の厚みの平均値である。   In this case, an enlarged sectional view of the connecting surface 11 is shown in FIG. Match point a and point d. Moreover, the point b and the point c are match | combined. By doing in this way, the thickness dispersion | variation (thickness difference) in each point of the connection surface 11 reduces. That is, the average value of the thickness of the point a and the point d is matched with the average value of the thickness of the point b and the point c. In other words, the thickest point and the thinnest point of the four points are matched at one end, and the other points are matched at the other end. The average thickness is an average value of the thicknesses of the two nanocrystal ribbons 102 on the connecting surface 11.

このような関係で、図2(c)に相当する側面図を図4(a)から図4(c)に示す。   With this relationship, side views corresponding to FIG. 2C are shown in FIGS. 4A to 4C.

図4(a)では、ナノ磁性層Aで地点aと地点dを合わせ、ナノ磁性層Cで地点bと地点cを合わせている。   In FIG. 4A, the point a and the point d are aligned in the nanomagnetic layer A, and the point b and the point c are aligned in the nanomagnetic layer C.

図4(b)では、ナノ磁性層Aで地点aと地点dを合わせ、ナノ磁性層Cで地点dと地点aを合わせている。   In FIG. 4B, the point a and the point d are aligned in the nanomagnetic layer A, and the point d and the point a are aligned in the nanomagnetic layer C.

図4(c)では、ナノ磁性層Aで地点aと地点dを合わせ、ナノ磁性層Cで地点aと地点dを合わせている。   In FIG. 4C, the point a and the point d are matched in the nanomagnetic layer A, and the point a and the point d are matched in the nanomagnetic layer C.

対称性の観点から、繋ぎ面11が均一、ランダムとなるのが好ましい。いずれもよいが、図4(c)、図4(b)、図4(a)の順に好ましい。   From the viewpoint of symmetry, the connecting surface 11 is preferably uniform and random. Either may be used, but it is preferable in the order of FIG. 4C, FIG. 4B, and FIG.

すなわち、ナノ磁性層Aで繋ぎ面11での平均厚みが最大のものと、ナノ磁性層Cで繋ぎ面での平均厚みが最小のものと、を組み合わせる。結果、上下の繋ぎ面11で、平均厚みが、平均化される。当然、ナノ磁性層A、Cは逆でもよい。   That is, the nanomagnetic layer A having the maximum average thickness at the connecting surface 11 and the nanomagnetic layer C having the minimum average thickness at the connecting surface are combined. As a result, the average thickness is averaged at the upper and lower connecting surfaces 11. Of course, the nanomagnetic layers A and C may be reversed.

各層の上下間の位置で、繋ぎ面でのナノ結晶薄帯102の平均厚みのばらつきが少なくなるようにするのが好ましい。   It is preferable to reduce the variation in the average thickness of the nanocrystalline ribbon 102 at the connecting surface between the upper and lower portions of each layer.

(実施の形態3)
実施の形態3を、図5(a)〜図5(c)を用いて説明する。実施の形態3は、実施の形態1に対して、ナノ結晶薄帯102間の繋ぎ面11の構造が異なる。説明しない事項は実施の形態1、2と同様である。図5(d)は、図5(b)の時の積層鉄心の平面図である。繋ぎ面11での形状が、図5(a)〜図5(c)で変わる。
(Embodiment 3)
A third embodiment will be described with reference to FIGS. 5 (a) to 5 (c). The third embodiment is different from the first embodiment in the structure of the connecting surface 11 between the nanocrystal ribbons 102. Matters not described are the same as in the first and second embodiments. FIG.5 (d) is a top view of the laminated iron core at the time of FIG.5 (b). The shape of the connecting surface 11 changes in FIGS. 5 (a) to 5 (c).

図5(a)は、ナノ結晶薄帯102aとナノ結晶薄帯102bとの繋ぎ面11の平面図である。ナノ結晶薄帯102a、102bは、共に、端辺が、凹凸となっている。2つを組み合わせる。繋ぎ面11に注目すると、階段状となる。   FIG. 5A is a plan view of the connecting surface 11 between the nanocrystal ribbon 102a and the nanocrystal ribbon 102b. The nanocrystal ribbons 102a and 102b both have uneven edges. Combine the two. When attention is paid to the connecting surface 11, it becomes a staircase shape.

図5(b)は、ナノ結晶薄帯102aとナノ結晶薄帯102bとの繋ぎ面11の平面図である。ナノ結晶薄帯102a、102bは、共に、端辺が、傾斜辺となっている。繋ぎ面11に注目すると、傾斜した繋ぎ面、平行四辺形となる。   FIG. 5B is a plan view of the connecting surface 11 between the nanocrystal ribbon 102a and the nanocrystal ribbon 102b. The nanocrystal ribbons 102a and 102b both have inclined sides. When attention is paid to the connecting surface 11, an inclined connecting surface and a parallelogram are formed.

図5(c)は、ナノ結晶薄帯102aとナノ結晶薄帯102bとの繋ぎ面11の平面図である。ナノ結晶薄帯102a、102bは、共に、端辺が、波状となっている。繋ぎ面11に注目しても、波状である。   FIG. 5C is a plan view of the connecting surface 11 between the nanocrystal ribbon 102a and the nanocrystal ribbon 102b. The nanocrystal ribbons 102a and 102b both have wavy edges. Even if attention is paid to the connecting surface 11, it is wavy.

前記はいずれも、ナノ結晶薄帯102a、102bの2つ端辺を組み合わせて、1つの形状としている。前記以外でも、端辺を、ギザギザの形状としてもよい。   In any of the above, the two ends of the nanocrystal ribbons 102a and 102b are combined into one shape. In addition to the above, the edge may have a jagged shape.

ナノ結晶薄帯102の繋ぎ面11の形状は、2つのナノ結晶薄帯102間で対称な形状でない方がよい。ナノ結晶薄帯102の厚みばらつきの影響が少なくなり、全体として均質性が増加する。   The shape of the connecting surface 11 of the nanocrystal ribbon 102 should not be symmetrical between the two nanocrystal ribbons 102. The influence of the thickness variation of the nanocrystal ribbon 102 is reduced, and the homogeneity increases as a whole.

なお、実施の形態1で示した繋ぎ面11の線分は、この例では、点線で示す線分である。線分が対称に分布するのが好ましい。   In addition, the line segment of the connection surface 11 shown in Embodiment 1 is a line segment shown with a dotted line in this example. The line segments are preferably distributed symmetrically.

(実施の形態4)
実施の形態4は、積層鉄心10の各々のナノ結晶薄帯102の形状に関する。図6(a)〜図6(e)で実施の形態4を説明する。説明しない事項は実施の形態1〜3と同様である。
(Embodiment 4)
The fourth embodiment relates to the shape of each nanocrystalline ribbon 102 of the laminated core 10. The fourth embodiment will be described with reference to FIGS. 6 (a) to 6 (e). Matters not described are the same as in the first to third embodiments.

図6(a)の斜視図では、各々のナノ結晶薄帯102が、額縁の縁の半分の形状である。2つのナノ結晶薄帯を組み合わせ層(ナノ磁性層A〜C)として、積層する。繋ぎ面11は、図2(b)同様である。   In the perspective view of FIG. 6A, each nanocrystal ribbon 102 has a shape that is half the edge of the frame. Two nanocrystal ribbons are laminated as combination layers (nanomagnetic layers A to C). The connecting surface 11 is the same as that in FIG.

図6(b)斜視図では、ナノ結晶薄帯102の4つを組み合わせて1層のナノ磁性層A〜Cとしている。長方形のナノ結晶薄帯102b、102dと、この字型のナノ結晶薄帯102a、102cとを組み合わせている。   In the perspective view of FIG. 6B, four nanocrystal ribbons 102 are combined to form one nanomagnetic layer A to C. The rectangular nanocrystal ribbons 102b and 102d are combined with the shaped nanocrystal ribbons 102a and 102c.

なお、図6(b)で、実施の形態1で示した繋ぎ面11の線分は、この例では、点線で示す線分である。線分が対称に分布するのが好ましい。   In FIG. 6B, the line segment of the connecting surface 11 shown in the first embodiment is a line segment indicated by a dotted line in this example. The line segments are preferably distributed symmetrically.

この形状とする利点は、ナノ結晶薄帯の利用効率がよいためである。このような形状とするため、図6(c)〜図6(e)の平面図で示すように、1枚のナノ結晶薄帯102から、無駄なく、長方形のナノ結晶薄帯102b、102dと、この字型のナノ結晶薄帯102a、102cとを取り出すことができる。   The advantage of this shape is that the use efficiency of the nanocrystal ribbon is good. In order to obtain such a shape, as shown in the plan views of FIG. 6C to FIG. 6E, rectangular nanocrystal ribbons 102b and 102d can be formed from one nanocrystal ribbon 102 without waste. The character-shaped nanocrystal ribbons 102a and 102c can be taken out.

(実施の形態5)
実施の形態5は、ナノ結晶薄帯102選別に関する。図7で実施の形態5を説明する。説明しない事項は実施の形態1〜4と同様である。
(Embodiment 5)
The fifth embodiment relates to selection of the nanocrystal ribbon 102. Embodiment 5 will be described with reference to FIG. Matters not described are the same as in the first to fourth embodiments.

図7は、積層鉄心10を製造するフローである。
(1) ナノ結晶薄帯の作製
図1の熱処理までの工程である。ある形状の複数のナノ結晶薄帯102が作製される。
(2) ナノ結晶薄帯102の厚み測定
(1)のナノ結晶薄帯102の繋ぎ面となる部分の厚みを測定する。
(3)ナノ結晶薄帯の組み合わせの決定
(2)の厚み測定の結果から、繋ぎ面での平均厚みが小さくなるように、ナノ結晶薄帯102の組み合わせを決定する。
(4)組み合わせ、積層
(3)で決定したナノ結晶薄帯102の組み合わせで組み合わせ、積層する。
1例として、例えば、図2(a)のような形状の積層鉄心10を作製する場合を考える。
複数のナノ結晶薄帯102が作製され、それぞれのナノ結晶薄帯102の繋ぎ面11部分2箇所の厚みを測定する。2箇所の平均厚みの順番に、ナノ結晶薄帯102を並べ、その順番に組み合わせる。組み合わせ方は、図3(c)、図3(d)に示したように組み合わせる。組み合わせ1層を作製し、積層する。こうすれば、層間の厚みばらつきも少なくなる。
FIG. 7 is a flow for manufacturing the laminated core 10.
(1) Production of nanocrystalline ribbon The process up to the heat treatment of FIG. A plurality of nanocrystal ribbons 102 having a certain shape are produced.
(2) Measurement of the thickness of the nanocrystal ribbon 102 The thickness of the portion that becomes the connecting surface of the nanocrystal ribbon 102 of (1) is measured.
(3) Determination of the combination of nanocrystalline ribbons From the result of the thickness measurement in (2), the combination of nanocrystalline ribbons 102 is determined so that the average thickness at the connecting surface is reduced.
(4) Combination and lamination The combination of the nanocrystal ribbons 102 determined in (3) is combined and laminated.
As an example, consider a case where a laminated core 10 having a shape as shown in FIG.
A plurality of nanocrystal ribbons 102 are produced, and the thicknesses of two portions of the joining surface 11 portion of each nanocrystal ribbon 102 are measured. The nanocrystal ribbons 102 are arranged in the order of the two average thicknesses, and are combined in that order. The combination is performed as shown in FIGS. 3C and 3D. One combination layer is produced and laminated. By doing so, the thickness variation between layers is reduced.

(全体として)
前記の実施の形態は組み合わせることができる。
前記積層鉄心10にコイルを巻くと、電磁部品となり、各種電磁を利用する機器となる。
(as a whole)
The above embodiments can be combined.
When a coil is wound around the laminated core 10, it becomes an electromagnetic component, and a device that uses various electromagnetic waves.

繋ぎ面11を保護部で保護してもよい。保護部は、樹脂や樹脂テープなどで接着を兼ねて保護をしてもよい。繋ぎ面11だけでなく全体を樹脂などでモールド保護してもよい。   You may protect the connection surface 11 with a protection part. The protective part may be protected by a resin, a resin tape, or the like. Not only the connecting surface 11 but also the whole may be molded protected with resin or the like.

本発明の積層鉄心は、小型トランス、リアクトル、変流器、柱上変圧器、モータなどに用いることができる。   The laminated iron core of the present invention can be used for small transformers, reactors, current transformers, pole transformers, motors and the like.

10 積層鉄心
11、11a、11b、11c 繋ぎ面
13 アモルファス薄帯
100 積層鉄心
101 ローラ
102 ナノ結晶薄帯
102a ナノ結晶薄帯
102b ナノ結晶薄帯
103 ノズル
106 薄板
DESCRIPTION OF SYMBOLS 10 Laminated iron core 11, 11a, 11b, 11c Connecting surface 13 Amorphous thin ribbon 100 Laminated iron core 101 Roller 102 Nanocrystalline ribbon 102a Nanocrystalline ribbon 102b Nanocrystalline ribbon 103 Nozzle 106 Thin plate

Claims (11)

複数のナノ結晶薄帯を繋ぎ面で組合せて1枚のナノ磁性層を構成し、前記ナノ磁性層を積層した積層鉄心であり、
前記積層鉄心を前記積層の方向から見た平面視において、前記繋ぎ面は複数線で位置し、点対称に分布する積層鉄心。
A laminated iron core in which a plurality of nanocrystalline ribbons are combined at a connecting surface to form one nanomagnetic layer, and the nanomagnetic layer is laminated,
In the plan view of the laminated iron core as viewed from the direction of the lamination, the connecting surfaces are located in a plurality of lines and are distributed symmetrically with respect to a point.
前記複数の線間のなす角度は、一定角度である請求項1記載の積層鉄心。 The laminated core according to claim 1, wherein an angle formed between the plurality of lines is a constant angle. 前記ナノ磁性層において、前記繋ぎ面が複数有り、それぞれの前記繋ぎ面での2つの前記ナノ結晶薄帯の厚みの平均値が、前記ナノ磁性層の内で小さくなるように、前記ナノ結晶薄帯が組み合わされている請求項1または2記載の積層鉄心。 In the nanomagnetic layer, there are a plurality of the joining surfaces, and the nanocrystal thin film is formed such that an average value of the thicknesses of the two nanocrystal ribbons at each joining surface becomes smaller in the nanomagnetic layer. The laminated iron core according to claim 1 or 2, wherein bands are combined. 前記繋ぎ面が2箇所あった場合、前記2箇所での前記ナノ結晶薄帯の厚み4点において、最大厚みの前記ナノ結晶薄帯と最小厚みの前記ナノ結晶薄帯とを合わせ、他の2つの前記ナノ結晶薄帯を合わせる請求項3記載の積層鉄心。 When there are two joint surfaces, the nanocrystal ribbon having the maximum thickness and the nanocrystal ribbon having the minimum thickness are combined at the four thicknesses of the nanocrystal ribbon at the two locations. The laminated iron core according to claim 3, wherein the two nanocrystalline ribbons are combined. 前記複数のナノ磁性層の間において、積層方向からの平面視で、上下の前記繋ぎ面として、前記ナノ結晶薄帯間の平均厚みが、一方の前記ナノ磁性層の内で最小の前記繋ぎ面と、他方の前記ナノ磁性層の内で最大の前記繋ぎ面と、を組み合わせた請求項1〜4のいずれか1項に記載の積層鉄心。 Between the plurality of nanomagnetic layers, in the plan view from the stacking direction, as the upper and lower connecting surfaces, the average thickness between the nanocrystal ribbons is the minimum connecting surface in one of the nanomagnetic layers. The laminated iron core according to any one of claims 1 to 4, wherein the connecting surface that is the largest of the other nanomagnetic layers is combined. 前記組み合わせたナノ結晶薄帯の端面は、同じ形状でない請求項1〜5のいずれか1項に記載の積層鉄心。 The laminated iron core according to any one of claims 1 to 5, wherein end faces of the combined nanocrystal ribbons are not the same shape. この字形状の前記ナノ結晶薄帯と方形の前記ナノ結晶薄帯とを組み合わせて前記ナノ磁性層とした請求項1〜5のいずれか1項に記載の積層鉄心。 The laminated iron core according to any one of claims 1 to 5, wherein the nanomagnetic layer is formed by combining the character-shaped nanocrystal ribbon and the square nanocrystal ribbon. 前記ナノ磁性層は、ドーナツ状、または、額縁状である請求項1〜7のいずれか1項に記載の積層鉄心。 The laminated iron core according to claim 1, wherein the nanomagnetic layer has a donut shape or a frame shape. 請求項1〜8のいずれか1項に記載の積層鉄心にコイルを巻いた電磁部品。 The electromagnetic component which wound the coil around the laminated core of any one of Claims 1-8. アモルファス薄帯を作製する第1工程と、
前記第1工程の前記アモルファス薄帯を外形加工する第2工程と、
前記第2工程の外形加工した前記アモルファス薄帯を熱処理しナノ結晶薄帯とする第3工程と、
前記第3工程の複数の前記ナノ結晶薄帯を組み合せ1層として、積層する第4工程と、を含む積層鉄心の製造方法。
A first step of producing an amorphous ribbon;
A second step of externally processing the amorphous ribbon in the first step;
A third step of heat-treating the amorphous ribbon subjected to the external processing in the second step to form a nanocrystalline ribbon;
And a fourth step of laminating the plurality of nanocrystal ribbons in the third step as a combined layer.
前記第4工程は、
前記ナノ結晶薄帯の厚み測定する第5工程と、
第5工程の前記厚みから前記ナノ結晶薄帯の組み合わせを決定する第6工程と、
第6工程の組み合わせにより前記ナノ結晶薄帯を組み合わせた層を形成し、繰り返すことで複数の層を形成し、前記複数の層を積層する第7工程と、を含む請求項10記載の積層鉄心の製造方法。
The fourth step includes
A fifth step of measuring the thickness of the nanocrystal ribbon;
A sixth step of determining a combination of the nanocrystal ribbons from the thickness of the fifth step;
11. A laminated core according to claim 10, comprising: forming a layer combining the nanocrystalline ribbons by a combination of the sixth step, forming a plurality of layers by repeating, and laminating the plurality of layers. Manufacturing method.
JP2017018155A 2017-02-03 2017-02-03 Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core Pending JP2018125475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018155A JP2018125475A (en) 2017-02-03 2017-02-03 Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018155A JP2018125475A (en) 2017-02-03 2017-02-03 Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core

Publications (1)

Publication Number Publication Date
JP2018125475A true JP2018125475A (en) 2018-08-09

Family

ID=63109012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018155A Pending JP2018125475A (en) 2017-02-03 2017-02-03 Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core

Country Status (1)

Country Link
JP (1) JP2018125475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473158B2 (en) 2019-03-05 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon piece
US11473157B2 (en) 2019-03-05 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473158B2 (en) 2019-03-05 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon piece
US11473157B2 (en) 2019-03-05 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for manufacturing alloy ribbon piece

Similar Documents

Publication Publication Date Title
CN109643603B (en) Iron core and motor
TWI707372B (en) Magnetic core and its manufacturing method, and coil component
JP7167779B2 (en) Method for manufacturing iron core, wound iron core, method for manufacturing stacked iron core, and method for manufacturing electromagnetic steel sheet for iron core
JP6522252B2 (en) THIN-LIP PARTS, ITS MANUFACTURING METHOD, AND MOTOR USING THIN-LIP PARTS
JP2018125475A (en) Laminate iron core, manufacturing method of the same, and electromagnetic component using the laminate iron core
JPWO2019087932A1 (en) Magnetic material, laminated magnetic material using the same, laminated packet and laminated core, and method for producing magnetic material
JP2017157806A (en) Wound core and method of manufacturing wound core
Soinski et al. Nanocrystalline block cores for high-frequency chokes
JP2019068704A (en) Core plate and method of manufacturing the same
JP2006060432A (en) Radio wave transmitting and receiving antenna
KR930010640B1 (en) Magnet core and making method thereof
JP6210165B2 (en) Method for producing amorphous alloy magnetic core
JP2004356468A (en) Laminated magnetic core and magnetic component
JP6460115B2 (en) Amorphous alloy magnetic core and manufacturing method thereof
US20210225571A1 (en) Laminated core
WO2024024958A1 (en) Sheet-shaped magnetic member
JP2008159926A (en) Soft magnetic member, laminated body of soft magnetic members, and manufacturing method for those materials
WO2024043283A1 (en) Sheet-like magnetic member
JP2020178411A (en) Stator iron core and motor
JP2020126963A (en) Manufacturing method for alloy ribbon
JP7302488B2 (en) laminated core
JP2018093072A (en) Wound core and electromagnetic component using the same
TWI778842B (en) Wound iron core, manufacturing method of wound iron core, and wound iron core manufacturing device
US11328850B2 (en) Magnetic film including regular pattern of through-cracks
JP4636371B2 (en) Magnetic shield device manufacturing method and magnetic shield sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121