JP2018125185A - Method for inspecting membrane electrode assembly - Google Patents

Method for inspecting membrane electrode assembly Download PDF

Info

Publication number
JP2018125185A
JP2018125185A JP2017016930A JP2017016930A JP2018125185A JP 2018125185 A JP2018125185 A JP 2018125185A JP 2017016930 A JP2017016930 A JP 2017016930A JP 2017016930 A JP2017016930 A JP 2017016930A JP 2018125185 A JP2018125185 A JP 2018125185A
Authority
JP
Japan
Prior art keywords
voltage
electrode assembly
membrane electrode
inspecting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017016930A
Other languages
Japanese (ja)
Inventor
数馬 篠崎
Kazuma Shinozaki
数馬 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017016930A priority Critical patent/JP2018125185A/en
Publication of JP2018125185A publication Critical patent/JP2018125185A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting a membrane electrode assembly, capable of detecting, during a withstand voltage test, a current reduction when a fluff is lost at an application of voltage.SOLUTION: A method for inspecting a membrane electrode assembly includes the steps of: applying a voltage to a membrane electrode assembly while the voltage is swept from a predetermined starting voltage to an end voltage and measuring a current value flowing through the membrane electrode assembly by the application of a voltage; and inspecting the withstand voltage characteristics of the membrane electrode assembly on the basis of a current value having been measured. The method further includes a step of determining to be defective if a current change amount per predetermined time during voltage application is equal to or less than a predetermined value.SELECTED DRAWING: Figure 3

Description

本発明は、膜電極接合体の検査方法に関する。   The present invention relates to a method for inspecting a membrane electrode assembly.

膜電極接合体の耐電圧検査方法として、所定の電圧を印加して耐電圧を検査する工程と、耐電圧検査時の印加電圧よりも低い電圧を印加してリーク電流を検査する工程と、を有するものが知られている(例えば、特許文献1参照)。この検査方法によれば、高電圧を印加している間には完全に絶縁破壊せずOKと判定されてしまうが、部分的に破壊を受けた膜電極接合体およびセルを検出し、NG判定をすることができることから、耐電圧検査工程において不良と検出されなかった電解質膜について不良か否か判定することができ、不良品の流出を回避することが可能となる。   As a withstand voltage inspection method of the membrane electrode assembly, a step of inspecting the withstand voltage by applying a predetermined voltage, and a step of inspecting a leak current by applying a voltage lower than the applied voltage at the withstand voltage inspection, What has is known (for example, refer patent document 1). According to this inspection method, while a high voltage is applied, it is determined that the dielectric breakdown is not complete and it is determined to be OK. However, a partially broken membrane electrode assembly and cell are detected, and an NG determination is made. Therefore, it is possible to determine whether or not the electrolyte membrane that has not been detected as defective in the withstand voltage inspection process is defective, and it is possible to avoid the outflow of defective products.

特開2016−081596号公報JP 2006-081596 A

しかし、膜電極接合体の耐電圧の検査時に、電解質膜に対して拡散層基材繊維(=ケバ)が一部刺さっている場合がある。この場合、検査時に電圧を印加するとケバに電流が生じて(流れて)発熱することによってケバおよび貫通部の電解質も消失し、これと同時に、ケバが刺さっている部分の膜も消失する。このようなセルは、同検査時に検出する必要があるが、従来のリーク電流測定の追加では検出できない。このため、電圧印加時にケバが消失するときの電流減少を、耐電圧検査時に検出する必要がある。   However, when the withstand voltage of the membrane / electrode assembly is inspected, a part of the diffusion layer base fiber (= bare) may be stuck into the electrolyte membrane. In this case, when a voltage is applied at the time of inspection, an electric current is generated (flowed) in the chip and heat is generated, so that the electrolyte of the chip and the penetrating part disappears. Such a cell needs to be detected at the time of the inspection, but cannot be detected by adding a conventional leakage current measurement. For this reason, it is necessary to detect the decrease in current when the mark disappears during voltage application during the withstand voltage test.

そこで、本発明は、電圧印加時にケバが消失するときの電流減少を、耐電圧検査時に検出することができる膜電極接合体の検査方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for inspecting a membrane electrode assembly that can detect a current decrease when a mark disappears when a voltage is applied during a withstand voltage inspection.

本発明の一態様に係る検査方法は、膜電極接合体に、所定の開始電圧から終了電圧まで掃引しながら電圧を印加するとともに、電圧の印加によって膜電極接合体に流れる電流値を測定する工程と、測定された電流値に基づいて膜電極接合体の耐電圧特性を検査する工程とを有する膜電極接合体の検査方法であって、
電圧印加中における、所定時間当たりの電流変化量が所定値以下の場合に不良と判定する工程をさらに有する、というものである。
The inspection method according to an aspect of the present invention includes a step of applying a voltage to the membrane electrode assembly while sweeping from a predetermined start voltage to an end voltage, and measuring a current value flowing through the membrane electrode assembly by applying the voltage. And a method for inspecting a withstand voltage characteristic of the membrane electrode assembly based on the measured current value,
The method further includes a step of determining a failure when the amount of current change per predetermined time during voltage application is equal to or less than a predetermined value.

上記態様の検査方法によれば、耐電圧特性を検査すると同時に、膜電極接合体内の一部の発熱による電解質膜の消失を検査することが可能となる。   According to the inspection method of the above aspect, it is possible to inspect the disappearance of the electrolyte membrane due to partial heat generation in the membrane electrode assembly at the same time as inspecting the withstand voltage characteristics.

本発明によれば、電圧印加時にケバが消失するときの電流減少を、耐電圧検査時に検出することができる膜電極接合体の検査方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the test | inspection method of a membrane electrode assembly which can detect the electric current decrease when a crack disappears at the time of a voltage application at the time of a withstand voltage test | inspection can be provided.

膜電極接合体の検査方法について説明する膜電極接合体またはセルの概略図である。It is the schematic of the membrane electrode assembly or cell explaining the inspection method of a membrane electrode assembly. 膜電極接合体の検査方法の処理の一例を示すフローチャートである。It is a flowchart which shows an example of a process of the inspection method of a membrane electrode assembly. (a)、(b)は、良品とケバ貫通品とのそれぞれに耐電圧検査で電圧を掃引し、高電圧まで印加したときの電流と電圧との関係を示すグラフ、(c)、(d)は、それぞれ、図3(a)、(b)での電流/時間の傾きの5点平均と電圧との関係を示すグラフである。(A), (b) is a graph showing the relationship between current and voltage when a voltage is swept to a non-defective product and a cut-through product in a withstand voltage test and applied up to a high voltage, (c), (d) ) Are graphs showing the relationship between the average of the current / time slopes in FIGS. 3A and 3B and the voltage, respectively.

添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。   A preferred embodiment of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, what attached | subjected the same code | symbol has the same or similar structure.

以下、図を参照しつつ、膜電極接合体10(またはセル)の検査方法を説明する(図1、図2等参照)。   Hereinafter, a method for inspecting the membrane electrode assembly 10 (or cell) will be described with reference to the drawings (see FIGS. 1 and 2).

本実施形態の検査方法では、まず、電圧印加・電流検出装置20を用いて、膜電極接合体10に所定の開始電圧から終了電圧まで掃引しながら電圧を印加するとともに、電圧の印加によって膜電極接合体10に流れる電流値を測定し、測定された電流値に基づいて膜電極接合体10の耐電圧特性を検査する(ステップSP1)。   In the inspection method of the present embodiment, first, a voltage is applied to the membrane electrode assembly 10 while sweeping from a predetermined start voltage to an end voltage using the voltage application / current detection device 20, and the membrane electrode is applied by voltage application. The current value flowing through the joined body 10 is measured, and the withstand voltage characteristic of the membrane electrode assembly 10 is inspected based on the measured current value (step SP1).

検査の結果、絶縁破壊が生じておらずOKであればステップSP3へ進む(ステップSP2にてOK)。一方、絶縁破壊が生じていれば(ステップSP2にてNG)、一連の検査を終了する。   As a result of the inspection, if dielectric breakdown does not occur and it is OK, the process proceeds to step SP3 (OK in step SP2). On the other hand, if dielectric breakdown has occurred (NG in step SP2), a series of inspections is completed.

ステップSP3では、短絡ケバ消失が生じているかどうか判断する。これは、膜電極接合体の電解質膜に対してケバ(拡散層の基材繊維)12が一部刺さっている場合(図1参照)、耐電圧検査時に電圧を印加するとケバ12に電流が生じて発熱することによってケバ12および貫通部の電解質も消失し、これと同時に、ケバ12が刺さっている部分の膜も消失するので(図1において、膜電極接合体10の消失部を符号14で示す)、電圧印加時にケバ12が消失するときの電流減少を検出するためのものである。   In step SP3, it is determined whether or not a short circuit mark disappears. This is because, when a part of the incision (base material fiber of the diffusion layer) 12 is stuck to the electrolyte membrane of the membrane electrode assembly (see FIG. 1), current is generated in the incision 12 when a voltage is applied during a withstand voltage test. As a result of the heat generated, the electrolyte of the incision 12 and the penetrating part disappears, and at the same time, the film of the part where the incision 12 is stuck also disappears (in FIG. This is for detecting a decrease in current when the gap 12 disappears when a voltage is applied.

上記のステップSP3では、電圧印加中における、所定時間当たりの電流変化量が所定値以下の場合に、不良(NG)と判定する(ステップSP3にてNG)。これについて以下に説明する(図3参照)。   In step SP3, when the amount of current change per predetermined time during voltage application is equal to or less than a predetermined value, it is determined as defective (NG) (NG in step SP3). This will be described below (see FIG. 3).

膜電極接合体10の良品であっても、触媒層及び拡散層部材であるカーボンの酸化電流、電解質中に含まれる水の電解電流が観測される。これらの反応電流が減少するときの電流/時間の傾きを、貫通ケバ(短絡ケバ)消失時の電流/時間の傾きと誤判定しないよう、電流/時間の傾きに閾値を設ける必要がある。   Even when the membrane electrode assembly 10 is a non-defective product, an oxidation current of carbon that is a catalyst layer and a diffusion layer member and an electrolysis current of water contained in the electrolyte are observed. It is necessary to provide a threshold value for the current / time slope so that the current / time slope when these reaction currents decrease is not mistakenly determined as the current / time slope when the through-hole (short-circuit) disappears.

図3(a)、(b)は、良品とケバ貫通品とのそれぞれに耐電圧検査で電圧を掃引し、高電圧まで印加したときの電流と電圧との関係を示している。図3(c)、(d)は、それぞれ、図3(a)、(b)での電流/時間の傾きの5点平均と電圧との関係を示している。   FIGS. 3A and 3B show the relationship between the current and the voltage when the voltage is swept to the non-defective product and the penetration through product in the withstand voltage test and applied up to a high voltage. FIGS. 3C and 3D show the relationship between the average of the current / time slopes in FIGS. 3A and 3B and the voltage, respectively.

電流/時間の傾きの閾値としては、一例として、−0.1A/s以上が好ましい(図3(c)、(d)参照)。ノイズの影響を避けるため、傾きの移動平均が連続して3点以上検出されたときをNGと判定するのがよい。   As an example, the threshold value of the current / time slope is preferably −0.1 A / s or more (see FIGS. 3C and 3D). In order to avoid the influence of noise, it is better to determine NG when three or more moving averages of slopes are detected continuously.

なお、ここまで説明したごとき検査を実施するには下記の設備等が必要である。特に図示はしないが、以下に列記する。
・燃料電池の膜電極接合体、またはセルを板で挟んで面圧をかけることができる設備。
・板の間に電圧を印加できる設備。
・電圧を掃引しながら印加できる設備。
・電圧印加時に電流の時間変化を検出できる設備。
・電流/時間の傾きを検知して、正値または負値を検出できる設備。
・電流/時間の傾きの移動平均を計算できる設備。
・電流/時間の傾きの移動平均が、負値の閾値を超えた場合にNG判定できる設備。
・電流/時間の傾きの移動平均が、負値の閾値を連続で超えた場合にNG判定できる設備。
In order to carry out the inspection as described so far, the following facilities are required. Although not shown in particular, it is listed below.
・ Fuel cell membrane electrode assembly or equipment that can apply surface pressure by sandwiching a cell with a plate.
-Equipment that can apply voltage between plates.
-Equipment that can be applied while sweeping voltage.
・ Equipment that can detect time change of current when voltage is applied
・ Equipment that can detect the positive or negative value by detecting the slope of current / time.
-Equipment that can calculate the moving average of the current / time slope.
-Equipment that can be judged NG when the moving average of the current / time slope exceeds the negative threshold.
-Equipment that can make NG judgments when the moving average of the current / time slope exceeds the negative threshold continuously.

なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状およびサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。   The embodiments described above are for facilitating the understanding of the present invention, and are not intended to limit the present invention. Each element provided in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed. In addition, the structures shown in different embodiments can be partially replaced or combined.

本発明は、膜電極接合体の検査に適用して好適である。   The present invention is suitable for application to inspection of membrane electrode assemblies.

10…膜電極接合体、12…ケバ(基材繊維)、14…消失部、20…電圧印加・電流検出装置 DESCRIPTION OF SYMBOLS 10 ... Membrane electrode assembly, 12 ... Levee (base material fiber), 14 ... Eliminating part, 20 ... Voltage application / current detection device

Claims (1)

膜電極接合体に、所定の開始電圧から終了電圧まで掃引しながら電圧を印加するとともに、電圧の印加によって前記膜電極接合体に流れる電流値を測定する工程と、測定された電流値に基づいて前記膜電極接合体の耐電圧特性を検査する工程とを有する膜電極接合体の検査方法であって、
電圧印加中における、所定時間当たりの電流変化量が所定値以下の場合に不良と判定する工程をさらに有する、膜電極接合体の検査方法。
A step of applying a voltage to the membrane electrode assembly while sweeping from a predetermined start voltage to an end voltage, and measuring a current value flowing through the membrane electrode assembly by applying the voltage, and based on the measured current value A method for inspecting a membrane electrode assembly, comprising a step of inspecting a withstand voltage characteristic of the membrane electrode assembly,
A method for inspecting a membrane / electrode assembly, further comprising a step of determining a failure when a current change amount per predetermined time during voltage application is a predetermined value or less.
JP2017016930A 2017-02-01 2017-02-01 Method for inspecting membrane electrode assembly Pending JP2018125185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016930A JP2018125185A (en) 2017-02-01 2017-02-01 Method for inspecting membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016930A JP2018125185A (en) 2017-02-01 2017-02-01 Method for inspecting membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2018125185A true JP2018125185A (en) 2018-08-09

Family

ID=63110412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016930A Pending JP2018125185A (en) 2017-02-01 2017-02-01 Method for inspecting membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2018125185A (en)

Similar Documents

Publication Publication Date Title
JP6215808B2 (en) Inspection method of electrolyte membrane for fuel cell
US10534040B2 (en) Inspection apparatus and inspection method for membrane electrode assembly
Kim et al. Change in PD pattern with aging
US20140239962A1 (en) Fuel cell inspection method and inspection device
JP2018523136A (en) Equipment for detecting leaks in piping
JP2005142062A (en) Inspection device and inspection method of fuel cell
Génevé et al. Voltammetric methods for hydrogen crossover diagnosis in a PEMFC stack
KR101509867B1 (en) Inspecting method and inspecting system
KR102094539B1 (en) nondestructive inspection apparatus for battery
JP4959596B2 (en) Insulating film evaluation method and measurement circuit
JP6154867B2 (en) Inspection method and inspection system
JP2018125185A (en) Method for inspecting membrane electrode assembly
JP2008108519A (en) Fuel-cell membrane electrode assembly evaluation device
JP2013140759A (en) Method for inspecting nonaqueous electrolytic secondary battery in short circuit
EP3229032B1 (en) Water tree testing method and water tree testing device
CN108562831B (en) Method for manufacturing insulating material
JP2006013532A (en) Apparatus and method for detecting soft breakdown of dielectric layer of semiconductor wafer
JP5049063B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
JP2005274234A (en) Ceramic element inspection method
JP2008176944A (en) Inspection method of fuel cell
JP4983174B2 (en) Diode element and inspection method of diode element
JP2008034432A (en) Method of inspecting semiconductor device
KR20200027345A (en) Thermoelectric element quality inspection system and its method of inspection
JP2014173928A (en) Corrosion potential sensor
Janus et al. Gas measurements as a mean for identification of Partial Discharges in XLPE HV cable insulation