JP2018123391A - Electrode for generating hydrogen and production method thereof - Google Patents

Electrode for generating hydrogen and production method thereof Download PDF

Info

Publication number
JP2018123391A
JP2018123391A JP2017017607A JP2017017607A JP2018123391A JP 2018123391 A JP2018123391 A JP 2018123391A JP 2017017607 A JP2017017607 A JP 2017017607A JP 2017017607 A JP2017017607 A JP 2017017607A JP 2018123391 A JP2018123391 A JP 2018123391A
Authority
JP
Japan
Prior art keywords
electrode
platinum
hydrogen generation
plane
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017017607A
Other languages
Japanese (ja)
Other versions
JP6837342B2 (en
Inventor
翔 竹之内
Sho Takenouchi
翔 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2017017607A priority Critical patent/JP6837342B2/en
Publication of JP2018123391A publication Critical patent/JP2018123391A/en
Application granted granted Critical
Publication of JP6837342B2 publication Critical patent/JP6837342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide an electrode with excellent durability for generating hydrogen that can generate hydrogen by alkaline water electrolysis with a lower hydrogen generation overvoltage than that of conventional cathodes.SOLUTION: An electrode for generating hydrogen of the present invention comprises a conductive substrate and a catalytic layer formed on the conductive substrate, in which platinum is included in the catalytic layer. The diameter of crystallite is 200Å or less according to an x-ray diffraction on the (111) surface of the platinum, and the crystalline phase proportion is 1-15% on the (220) and (311) surfaces of the platinum.SELECTED DRAWING: Figure 1

Description

本発明は、アルカリ水電解に用いる水素発生用電極およびその製造方法に関する。   The present invention relates to an electrode for hydrogen generation used for alkaline water electrolysis and a method for producing the same.

水素は貯蔵及び輸送に適し、環境負荷が小さいエネルギー源として関心が集まっている。現在、水素は主に化石燃料の水蒸気改質などにより製造されているが、地球温暖化及び化石燃料枯渇問題の観点から、再生可能エネルギーを動力源に用いた水電解の重要性が増してきている。   Hydrogen is attracting interest as an energy source that is suitable for storage and transport and has a low environmental impact. Currently, hydrogen is mainly produced by steam reforming of fossil fuels, but from the viewpoint of global warming and fossil fuel depletion, the importance of water electrolysis using renewable energy as a power source has increased. Yes.

水電解は、アルカリ水電解、固体高分子型水電解及び水蒸気電解の3つに大きく分けられる。固体高分子型水電解の電解質には、プロトン導電性のフッ素樹脂系イオン交換膜が用いられ、電極には、白金、白金系合金又は白金担持カーボン等白金系の材料が用いられている。固体高分子型電解はアルカリ水電解に比べ高効率であるが、部材コストが高いため、大型化しにくい。   Water electrolysis is roughly divided into three types: alkaline water electrolysis, solid polymer type water electrolysis, and water vapor electrolysis. A proton conductive fluororesin ion exchange membrane is used as an electrolyte for solid polymer water electrolysis, and a platinum-based material such as platinum, a platinum-based alloy, or platinum-supported carbon is used for an electrode. Solid polymer electrolysis is more efficient than alkaline water electrolysis, but is difficult to increase in size because of high member costs.

水蒸気電解は700〜800℃程度の水蒸気を電気分解して水素を製造する技術であり、電解質として、セラミックからなる固体酸化物が使用される。高温であるため、低温動作の他の水電解システムに比べ高効率が期待できるが、使用できる環境が限定されている。また、研究開発中の技術であり、実用化には課題が多く残っている。   Steam electrolysis is a technique for producing hydrogen by electrolyzing steam at about 700 to 800 ° C., and a solid oxide made of ceramic is used as an electrolyte. Because of the high temperature, high efficiency can be expected compared to other water electrolysis systems operating at low temperatures, but the environment in which it can be used is limited. In addition, it is a technology under research and development, and many problems remain in practical use.

一方、アルカリ水電解の電解質には高濃度アルカリ水溶液が用いられている。アルカリ水電解は、高価な貴金属触媒を使用することなく、アルカリ水を電気分解することで、安価に安定して水素を得られる方法として期待されている。アルカリ水電解は大規模な水素製造に適しており、大型化されている食塩電解装置の技術を活かすことができる。アルカリ水電解は高効率化が課題とされており、対応策として電極の改善が挙げられている。   On the other hand, a high-concentration alkaline aqueous solution is used as an electrolyte for alkaline water electrolysis. Alkaline water electrolysis is expected as a method of stably obtaining hydrogen at low cost by electrolyzing alkaline water without using an expensive noble metal catalyst. Alkaline water electrolysis is suitable for large-scale hydrogen production, and can utilize the technology of a large-sized salt electrolyzer. Alkaline water electrolysis is considered to have a high efficiency, and improvement of electrodes is cited as a countermeasure.

アルカリ水電解の両極における電極反応は以下のとおりである。
陽極反応:2OH→HO+1/2O+2e (1)
陰極反応:2HO+2e→H+2OH (2)
アルカリ水電解に用いられている陰極には、ソーダ電解に用いられている白金族系の焼成電極、又はニッケルメッキした鉄電極若しくはニッケル系金属電極のようなニッケル系材料が用いられている(特許文献1、並びに非特許文献1及び2)。
The electrode reactions at both electrodes of alkaline water electrolysis are as follows.
Anode reaction: 2OH → H 2 O + 1 / 2O 2 + 2e (1)
Cathode reaction: 2H 2 O + 2e → H 2 + 2OH (2)
The cathode used in the alkaline water electrolysis uses a platinum-based fired electrode used in soda electrolysis, or a nickel-based material such as a nickel-plated iron electrode or nickel-based metal electrode (patent) Document 1 and Non-Patent Documents 1 and 2).

特開2008−240001号公報JP 2008-240001 A

平成25年度特許出願動向調査報告書(概要) 電解式水素製造及びその周辺技術、特許庁、p.242013 Patent Application Trend Survey Report (Summary) Electrolytic hydrogen production and related technologies, JPO, p. 24 水素エネルギーシステム、Vol.36、No.1(2001)Hydrogen Energy System, Vol. 36, no. 1 (2001)

しかしながら、従来の陰極は、水素発生過電圧が高く、電極寿命が短いという問題がある。焼成電極は、負の電位において酸化状態が還元されるため、水素発生過電圧が高くなると考えられる。また従来の陰極は、電解を繰り返すとアルカリ水溶液に白金が溶出してしまい、耐久性に劣るという問題もある。   However, the conventional cathode has a problem that the hydrogen generation overvoltage is high and the electrode life is short. It is considered that the firing electrode has a high hydrogen generation overvoltage because the oxidation state is reduced at a negative potential. In addition, the conventional cathode has a problem that platinum is eluted in an alkaline aqueous solution when electrolysis is repeated, resulting in poor durability.

したがって、本発明は、従来の陰極より低い水素発生過電圧で、アルカリ水電解により水素を発生することができ、かつ耐久性に優れる水素発生用電極およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electrode for hydrogen generation that can generate hydrogen by alkaline water electrolysis with a hydrogen generation overvoltage lower than that of a conventional cathode, and that is excellent in durability, and a method for producing the same.

本発明者らは鋭意研究を重ねた結果、触媒層に含まれる白金のX線回折による結晶子径が特定範囲である水素発生用電極は、従来の陰極より低い水素発生過電圧で水素を発生することができ、また耐久性に優れることを見出した。また、このような水素発生用電極は、導電性基材を電気めっき法によりめっき処理し、その際のめっき浴のアルカリ成分濃度およびめっき浴温度を特定範囲にすることにより得られることを見出した。   As a result of intensive studies, the inventors of the present invention have developed that a hydrogen generating electrode in which the crystallite diameter of platinum contained in the catalyst layer is within a specific range generates hydrogen at a hydrogen generation overvoltage lower than that of a conventional cathode. And it was found to be excellent in durability. Further, it has been found that such an electrode for hydrogen generation can be obtained by plating a conductive base material by electroplating, and setting the alkaline component concentration of the plating bath and the plating bath temperature in a specific range. .

すなわち本発明は、以下の通りである。
1.導電性基材と該導電性基材の上に形成された触媒層とを有し、該触媒層中に白金を含有する水素発生用電極であって、該白金の(111)面におけるX線回折による結晶子径が200Å以下であり、かつ該白金の(220)面及び(311)面の結晶相存在割合が1〜15%である水素発生用電極。
2.前記白金のX線回折による(111)面の結晶相存在割合が40%以上である前記1に記載の水素発生用電極。
3.前記白金のECSA(電気化学活性比表面積)が5m/g以上である前記1または2に記載の水素発生用電極。
4.前記触媒層におけるアルカリ成分の含有量が50ppm以上である前記1〜3のいずれか1に記載の水素発生用電極。
5.前記アルカリ成分がカリウムである前記1〜4のいずれか1項に記載の水素発生用電極。
6.アルカリ水電解用である前記1〜5のいずれか1項に記載の水素発生用電極。
7.導電性基材と該導電性基材の上に形成された触媒層とを有し、該触媒層中に白金を含有する水素発生用電極の製造方法であって、
白金を含むめっき浴を用いて該導電性基材を電気めっき法によりめっき処理し、該導電性基材上に該白金をめっき浴から電析させるめっき処理工程を含み、
該めっき浴が、アルカリ成分を40〜70g/L含み、かつ
該めっき処理時の該めっき浴の温度が、20℃〜60℃の範囲内である
ことを特徴とする前記製造方法。
8.前記アルカリ成分がカリウムである前記7に記載の水素発生用電極の製造方法。
That is, the present invention is as follows.
1. An electrode for hydrogen generation having a conductive substrate and a catalyst layer formed on the conductive substrate, the platinum containing platinum in the catalyst layer, the X-ray on the (111) plane of the platinum An electrode for hydrogen generation having a crystallite diameter by diffraction of 200 mm or less and a crystal phase existence ratio of (220) plane and (311) plane of platinum of 1 to 15%.
2. 2. The electrode for hydrogen generation as described in 1 above, wherein the crystal phase existing ratio of (111) plane by X-ray diffraction of platinum is 40% or more.
3. 3. The hydrogen generation electrode according to 1 or 2, wherein the platinum has an ECSA (electrochemical activity specific surface area) of 5 m 2 / g or more.
4). 4. The electrode for hydrogen generation according to any one of 1 to 3, wherein the content of the alkali component in the catalyst layer is 50 ppm or more.
5. The electrode for hydrogen generation according to any one of 1 to 4, wherein the alkaline component is potassium.
6). 6. The electrode for hydrogen generation according to any one of 1 to 5, which is used for alkaline water electrolysis.
7). A method for producing an electrode for hydrogen generation comprising a conductive substrate and a catalyst layer formed on the conductive substrate, wherein the catalyst layer contains platinum.
Plating the conductive substrate by an electroplating method using a plating bath containing platinum, and a plating treatment step of depositing the platinum on the conductive substrate from the plating bath,
The said manufacturing method characterized by the said plating bath containing 40-70 g / L of an alkaline component, and the temperature of this plating bath at the time of this plating process exists in the range of 20 to 60 degreeC.
8). 8. The method for producing an electrode for hydrogen generation as described in 7 above, wherein the alkali component is potassium.

本発明の水素発生用電極は、従来の水素発生用電極と比較して、触媒層に含まれる白金の(111)面におけるX線回折による結晶子径が200Å以下であり、かつ該白金の(220)面及び(311)面の結晶相存在割合が1〜15%であるため、アルカリ水電解における水素発生過電圧が低く、またアルカリ水溶液への白金の溶出が抑制され耐久性が高い。したがって、本発明の水素発生用電極をアルカリ水電解に用いることにより、電極活性を大幅に向上させ、大きい電流密度でも触媒量を低減することができ、なおかつ耐久性に優れるため、水素製造のコストを低減することができる。   Compared with the conventional hydrogen generating electrode, the hydrogen generating electrode of the present invention has a crystallite diameter by X-ray diffraction on the (111) plane of platinum contained in the catalyst layer of 200 mm or less, and the platinum ( 220) and (311) planes have a crystal phase existence ratio of 1 to 15%, so that hydrogen generation overvoltage in alkaline water electrolysis is low, and elution of platinum into an alkaline aqueous solution is suppressed, resulting in high durability. Therefore, by using the electrode for hydrogen generation of the present invention for alkaline water electrolysis, the electrode activity can be greatly improved, the amount of catalyst can be reduced even at a large current density, and the durability is excellent. Can be reduced.

図1は、実施例1〜2および比較例1〜2で作製した水素発生用電極のSEM像、結晶子径、結晶相存在割合、ECSA、電極の電位の結果を示す図である。FIG. 1 is a diagram showing the results of SEM images, crystallite diameters, crystal phase existence ratios, ECSA, and electrode potentials of the hydrogen generation electrodes prepared in Examples 1 and 2 and Comparative Examples 1 and 2. 図2は、実施例1で作製した電極のX線回折法による解析の結果を示す図である。FIG. 2 is a diagram showing the results of analysis by the X-ray diffraction method of the electrode produced in Example 1. 図3は、実施例1、実施例2、比較例1で作製した電極のX線回折法による解析の結果を示す図である。FIG. 3 is a diagram showing the results of analysis by X-ray diffraction of the electrodes produced in Example 1, Example 2, and Comparative Example 1. 図4は、実施例1、実施例2、比較例1で作製した電極の電気化学測定結果を示す図である。FIG. 4 is a diagram showing the electrochemical measurement results of the electrodes produced in Example 1, Example 2, and Comparative Example 1. 図5は、比較例3で作製した水素発生用電極のSEM像、結晶子径、結晶相存在割合、ECSA、電極の電位の結果を示す図である。FIG. 5 is a graph showing SEM images, crystallite diameters, crystal phase existence ratios, ECSA, and electrode potentials of the hydrogen generation electrode prepared in Comparative Example 3. 図6は、実施例1、実施例2、比較例3で作製した電極の電気化学測定結果を示す図である。FIG. 6 is a diagram showing the electrochemical measurement results of the electrodes produced in Example 1, Example 2, and Comparative Example 3. 図7は、実施例1、比較例3で作製した電極のX線回折法による解析の結果を示す図である。FIG. 7 is a diagram showing the results of analysis by X-ray diffraction of the electrodes produced in Example 1 and Comparative Example 3.

以下、本発明を詳細に説明する。本発明は、導電性基材と該導電性基材の上に形成された触媒層とを有し、該触媒層中に白金を含有する水素発生用電極であって、該白金の(111)面におけるX線回折による結晶子径が200Å以下であり、(220)面及び(311)面の結晶相存在割合が1〜15%である水素発生用電極を提供する。   Hereinafter, the present invention will be described in detail. The present invention relates to an electrode for hydrogen generation which has a conductive base material and a catalyst layer formed on the conductive base material, and contains platinum in the catalyst layer. Provided is a hydrogen generating electrode in which the crystallite diameter by X-ray diffraction on the plane is 200 mm or less and the crystal phase existing ratio of the (220) plane and the (311) plane is 1 to 15%.

本発明の水素発生用電極が有する触媒層とは、導電性基材上に形成された、水素発生過電圧を低減する機能を有する層を意味する。触媒層には白金が含有される。   The catalyst layer possessed by the electrode for hydrogen generation of the present invention means a layer formed on a conductive substrate and having a function of reducing hydrogen generation overvoltage. The catalyst layer contains platinum.

触媒層における白金の含有量は、コスト面及び耐久性の観点から、1〜50g/mであることが好ましく、より好ましくは5〜20g/mであり、さらに好ましくは5〜15g/mである。 The content of platinum in the catalyst layer, from the viewpoint of cost and durability, is preferably 1 to 50 g / m 2, more preferably from 5 to 20 g / m 2, more preferably 5 to 15 g / m 2 .

触媒層に含まれる白金の(111)面におけるX線回折による結晶子径は200Å以下であり、好ましくは150Å以下、より好ましくは120Å以下である。また白金の(220)面及び(311)面の結晶相存在割合が1〜15%であり、好ましくは5〜15%であり、より好ましくは10〜15%である。これらの条件を満たすことにより、反応比表面積が増大するため、水素発生過電圧を低く抑えることができ、また結晶性が高いため耐久性にも優れる。なお白金の(111)面の結晶相存在割合は好ましくは40%以上であり、より好ましくは45%以上であり、50%以上が最適である。更に、触媒層に含まれる白金の(222)面の結晶相存在割合は、1〜5%であることが好ましく、1〜4%であることがより好ましく、2〜3%であることが更に好ましい。白金の(222)面の結晶相存在割合が1〜5%であれば、水素発生過電圧をより低く抑えることができ、また耐久性も向上する。   The crystallite diameter by X-ray diffraction on the (111) plane of platinum contained in the catalyst layer is 200 mm or less, preferably 150 mm or less, more preferably 120 mm or less. Further, the crystal phase existing ratio of the (220) plane and (311) plane of platinum is 1 to 15%, preferably 5 to 15%, more preferably 10 to 15%. By satisfying these conditions, the reaction specific surface area increases, so that the hydrogen generation overvoltage can be kept low, and the durability is also excellent because of high crystallinity. The crystal phase existing ratio of the (111) plane of platinum is preferably 40% or more, more preferably 45% or more, and most preferably 50% or more. Further, the proportion of the crystal phase present in the (222) plane of platinum contained in the catalyst layer is preferably 1 to 5%, more preferably 1 to 4%, and further preferably 2 to 3%. preferable. If the crystal phase existing ratio of the (222) plane of platinum is 1 to 5%, the hydrogen generation overvoltage can be further reduced, and the durability is improved.

白金の(111)面における結晶子径および白金結晶の配向性を示す各結晶相存在割合は、X線回折法により求めることができ、(111面)における結晶子径は、下式により求めることができる。結晶相存在割合は各ピークの積分強度比より算出する。
結晶子径:D=(Κ・λ)/(β・cosθ)
Κ:Sherrer定数(=0.94)
λ:使用X線管球の波長
β:結晶子の大きさによる回折線の拡がり
θ:回折角
The crystallite diameter in the (111) plane of platinum and the proportion of each crystal phase present indicating the orientation of the platinum crystal can be determined by X-ray diffraction, and the crystallite diameter in (111) plane is determined by the following equation. Can do. The crystal phase existence ratio is calculated from the integrated intensity ratio of each peak.
Crystallite diameter: D = (Κ · λ) / (β · cos θ)
Κ: Sherler constant (= 0.94)
λ: Wavelength of the X-ray tube used β: Spread of diffraction line depending on crystallite size θ: Diffraction angle

白金のX線回折による(111)面の結晶相存在割合は、40%以上であることが好ましく、より好ましくは45%以上である。(111)面の結晶相存在割合が40%以上であることにより、水素吸着エネルギーが適度となるため、水素発生過電圧を低く抑えることができる。上限は特に限定されないが、通常80%以下であることが好ましく、70%以下であることがより好ましい。(111)面の結晶相存在割合が80%を超えると、耐久性が低下しPtが溶出する場合がある。(111)面の結晶相存在割合は各白金結晶面の積分強度を算出することにより求める。   The proportion of the crystal phase present on the (111) plane of platinum by X-ray diffraction is preferably 40% or more, more preferably 45% or more. When the proportion of the crystal phase on the (111) plane is 40% or more, the hydrogen adsorption energy becomes appropriate, so that the hydrogen generation overvoltage can be kept low. Although an upper limit is not specifically limited, Usually, it is preferable that it is 80% or less, and it is more preferable that it is 70% or less. If the crystal phase existing ratio of the (111) plane exceeds 80%, durability may be reduced and Pt may be eluted. The crystal phase existence ratio of the (111) plane is obtained by calculating the integrated intensity of each platinum crystal plane.

白金のX線回折による結晶子径及び白金の(220)面、(311)面、(111)面、(222)面の結晶相存在割合は、後述する電気めっき法の温度、電流密度、めっき浴のpH及びめっき浴中のアルカリ成分の含有量等の条件を調整することにより調整することができる。具体的な条件としては、下記の製造方法の説明で詳述するが、例えば、電気めっき法の温度を好ましくは20〜60℃、電流密度を好ましくは1〜3A/dm、より好ましくは2〜3A/dm、アルカリ成分の含有量を40〜70g/Lとする条件が挙げられる。 The crystallite diameter of platinum by X-ray diffraction and the crystal phase existence ratio of (220) plane, (311) plane, (111) plane, and (222) plane of platinum are the temperature, current density, and plating in the electroplating method described later. It can adjust by adjusting conditions, such as pH of a bath and content of the alkali component in a plating bath. Specific conditions will be described in detail in the description of the production method below. For example, the temperature of the electroplating method is preferably 20 to 60 ° C., the current density is preferably 1 to 3 A / dm 2 , more preferably 2. The conditions which make content of an alkaline component 40-70 g / L are -3A / dm < 2 >.

触媒層に含まれる白金のECSA(Electrochemical Surface area、電気化学活性比表面積)は5m/g以上であることが好ましく、より好ましくは10m/g以上であり、さらに好ましくは15m/g以上である。前記触媒層におけるECSAが5m/g以上であることにより、活性点が多いため、水素発生過電圧を低く抑えることができる。 The ECSA (Electrochemical Surface Area) of platinum contained in the catalyst layer is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and further preferably 15 m 2 / g or more. It is. When the ECSA in the catalyst layer is 5 m 2 / g or more, since there are many active sites, the hydrogen generation overvoltage can be kept low.

ECSAは水素原子吸着波の電気量から下式により算出する。
ECSA[cm/g]=QH[μC]/(210[μC/cm]×白金質量[g])
QH:水素吸着電荷量
210μC/cm:白金の単位活性面積当たり吸着電荷量
ECSA is calculated from the amount of electricity of the hydrogen atom adsorption wave by the following equation.
ECSA [cm 2 / g] = QH [μC] / (210 [μC / cm 2 ] × platinum mass [g])
QH: hydrogen adsorption charge amount 210 μC / cm 2 : adsorption charge amount per unit active area of platinum

前記白金のECSAは、後述する電気めっき法の温度、電流密度、めっき浴のpH等の条件を調整することにより調整することができる。具体的な条件としては、下記の製造方法の説明で詳述するが、例えば、電気めっき法の温度を好ましくは20〜60℃、電流密度を好ましくは1〜3A/dm、アルカリ成分の含有量を40〜70g/Lとする条件が挙げられる。 The ECSA of the platinum can be adjusted by adjusting conditions such as the temperature, current density, pH of the plating bath and the like in the electroplating method described later. Specific conditions will be described in detail in the description of the production method below. For example, the temperature of the electroplating method is preferably 20 to 60 ° C., the current density is preferably 1 to 3 A / dm 2 , and the alkali component is contained. The conditions which make quantity 40-70 g / L are mentioned.

触媒層におけるアルカリ成分の含有量は50ppm以上であることが好ましく、より好ましくは100ppm以上であり、さらに好ましくは150ppm以上である。触媒層におけるアルカリ成分の含有量が50ppm以上であることにより、表面が非晶質になるため、水素発生過電圧を低く抑えることができる。上限は特に限定されないが、通常500ppm以下であることが好ましい。触媒層におけるアルカリ成分の含有量は電極を溶解しICPにより測定することができる。   The content of the alkali component in the catalyst layer is preferably 50 ppm or more, more preferably 100 ppm or more, and further preferably 150 ppm or more. Since the surface becomes amorphous when the content of the alkali component in the catalyst layer is 50 ppm or more, the hydrogen generation overvoltage can be kept low. Although an upper limit is not specifically limited, Usually, it is preferable that it is 500 ppm or less. The content of the alkali component in the catalyst layer can be measured by ICP after dissolving the electrode.

前記アルカリ成分としては、例えば、カリウム及びナトリウムが挙げられ、耐久性およびめっき安定性の観点から、カリウムが好ましい。   Examples of the alkali component include potassium and sodium, and potassium is preferable from the viewpoint of durability and plating stability.

導電性基材としては、例えば、ニッケル、ニッケル合金及びステンレススチールなどを使用できる。しかし、ステンレススチールを高濃度のアルカリ水溶液中で用いた場合、鉄及びクロムが溶出すること、及びステンレススチールの電気伝導性がニッケルの1/10程度であることを考慮すると、導電性基材としてはニッケルが好ましい。   As the conductive substrate, for example, nickel, nickel alloy, stainless steel, or the like can be used. However, when stainless steel is used in a high-concentration alkaline aqueous solution, considering that elution of iron and chromium and that the electrical conductivity of stainless steel is about 1/10 that of nickel, the conductive base material is Is preferably nickel.

導電性基材の形状は特に限定されず、目的によって適切な形状を選択することができ、板材、多孔板、エキスパンド形状又はニッケル線を編んで作製したいわゆるウーブンメッシュなどが好ましい。導電性基材の形状については、電解槽における陽極と陰極との距離によって好ましい仕様がある。陽極と陰極とが有限な距離を有する場合には、多孔板又はエキスパンド形状が用いられ、イオン交換膜と電極とが接するいわゆるゼロギャップ電解槽の場合には、細い線を編んだウーブンメッシュなどが用いられる。   The shape of the conductive substrate is not particularly limited, and an appropriate shape can be selected depending on the purpose. A plate material, a porous plate, an expanded shape, or a so-called woven mesh produced by knitting a nickel wire is preferable. About the shape of an electroconductive base material, there exists a preferable specification with the distance of the anode and cathode in an electrolytic cell. When the anode and the cathode have a finite distance, a perforated plate or an expanded shape is used. In the case of a so-called zero gap electrolytic cell in which the ion exchange membrane and the electrode are in contact, a woven mesh knitted with a thin line is used. Used.

本発明の水素発生用電極の製造方法について詳細に説明する。本発明の水素発生用電極は、白金を含むめっき浴を用いて導電性基材を電気めっき法によりめっき処理し、該導電性基材上に該白金をめっき浴から電析させるめっき処理工程を含み、
該めっき浴が、アルカリ成分を40〜70g/L含み、かつ
該めっき処理時の該めっき浴の温度が、20℃〜60℃の範囲内である
ことを特徴とする。
The manufacturing method of the electrode for hydrogen generation of this invention is demonstrated in detail. The electrode for hydrogen generation of the present invention includes a plating treatment step in which a conductive substrate is plated by an electroplating method using a plating bath containing platinum, and the platinum is electrodeposited from the plating bath on the conductive substrate. Including
The plating bath contains an alkali component in an amount of 40 to 70 g / L, and the temperature of the plating bath during the plating treatment is in a range of 20 ° C to 60 ° C.

導電性基材は、予め表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくすることができ、導電性基材と電析物との密着性が向上するためである。粗面化の手段としては特に限定されず公知の方法、例えば、サンドブラスト処理、蓚酸又は塩酸溶液などによりエッチング処理し、水洗及び乾燥して用いることができる。また、導電性基材と電析物の密着性を向上させるために予め下地メッキを施すことが好ましい。   The conductive substrate is preferably roughened in advance. This is because the contact surface area can be increased by roughening, and the adhesion between the conductive substrate and the electrodeposit is improved. The surface roughening means is not particularly limited and can be used by a known method such as sand blasting, etching with oxalic acid or hydrochloric acid solution, washing with water and drying. Moreover, in order to improve the adhesiveness of an electroconductive base material and an electrodeposit, it is preferable to perform base plating beforehand.

めっき浴の温度は、20〜60℃であることが好ましく、より好ましくは20〜50℃であり、さらに好ましくは20〜40℃である。めっき浴の温度を20〜60℃とすることにより、触媒層に含まれる白金の(111)面におけるX線回折による結晶子径を小さくし、水素発生過電圧を低く抑えることができる。   It is preferable that the temperature of a plating bath is 20-60 degreeC, More preferably, it is 20-50 degreeC, More preferably, it is 20-40 degreeC. By setting the temperature of the plating bath to 20 to 60 ° C., the crystallite diameter by X-ray diffraction on the (111) plane of platinum contained in the catalyst layer can be reduced, and the hydrogen generation overvoltage can be kept low.

めっきによる結晶子径への影響は、核生成と結晶成長の速度論で説明することができる。放電は電極表面全体で均一に行われるのではなく、凸部に放電が集中し、その部分に原子が析出する。原子の析出である核生成が結晶成長より優先的に進むと、結晶子径は小さくなり微結晶化する。一方、結晶成長が核生成より優先的に進むと結晶子径が大きくなる。めっき浴の温度を低くすることにより、核生成が結晶成長より優先的に進み、吸着電子やめっき浴中のカチオンの表面拡散距離が小さくなることで、結晶子径が小さくなり、微結晶化すると考えられる。   The influence of plating on the crystallite diameter can be explained by the kinetics of nucleation and crystal growth. The discharge is not uniformly performed on the entire electrode surface, but the discharge concentrates on the convex portion, and atoms are deposited on that portion. When nucleation, which is atomic precipitation, proceeds preferentially over crystal growth, the crystallite size becomes smaller and microcrystallization occurs. On the other hand, when crystal growth proceeds preferentially over nucleation, the crystallite diameter increases. By lowering the temperature of the plating bath, nucleation proceeds preferentially over crystal growth, and the surface diffusion distance of adsorbed electrons and cations in the plating bath is reduced. Conceivable.

電流密度は、1〜3A/dmとすることが好ましく、より好ましくは2〜2.5A/dmである。電流密度を1〜3A/dmとすることにより、白金の(111)面におけるX線回折による結晶子径を小さくし、微結晶化することができ、水素発生過電圧を低く抑えることができる。 The current density is preferably in a. 1-3A / dm 2, more preferably 2~2.5A / dm 2. By setting the current density to 1 to 3 A / dm 2 , the crystallite diameter by X-ray diffraction on the (111) plane of platinum can be reduced and microcrystallization can be performed, and the hydrogen generation overvoltage can be suppressed low.

電流密度を高くすることにより、単位面積及び時間当たりの放電量が増加し、空間電荷の影響により放電場所が分散し、凸部が増加する。このことにより、核生成が結晶成長より優先的に進み、結晶子径が小さくなり、微結晶化すると考えられる。   By increasing the current density, the discharge amount per unit area and time increases, the discharge locations are dispersed due to the influence of space charge, and the convex portions increase. Thus, it is considered that nucleation proceeds preferentially over crystal growth, the crystallite diameter becomes smaller, and microcrystallization occurs.

めっき浴はアルカリ成分を含有することが好ましい。アルカリ成分としては、例えば、水酸化ナトリウム、水酸化カリウム、塩化カリウム及び水酸化リチウムが挙げられ、中でもカリウムを含むアルカリ成分が好ましい。   The plating bath preferably contains an alkali component. Examples of the alkali component include sodium hydroxide, potassium hydroxide, potassium chloride and lithium hydroxide, and among them, an alkali component containing potassium is preferable.

めっき浴におけるアルカリ成分の含有量は、40〜70g/Lが好ましく、45〜65g/Lがより好ましく、55〜60g/Lがさらに好ましい。アルカリ成分をこのような含有量に設定することにより、めっき後の触媒層中アルカリ成分量を調整することができる。めっき浴のpHは、11〜14が好ましく、より好ましくは12〜14であり、さらに好ましくは13〜14である。   The alkali component content in the plating bath is preferably 40 to 70 g / L, more preferably 45 to 65 g / L, and still more preferably 55 to 60 g / L. By setting the alkali component to such a content, the amount of the alkali component in the catalyst layer after plating can be adjusted. 11-14 are preferable, as for pH of a plating bath, More preferably, it is 12-14, More preferably, it is 13-14.

めっき時間、析出速度及びめっき浴中の白金濃度等は特に限定されず、目的に応じて制御することが可能である。めっき後の電極は純水又はイオン交換水を用いて洗浄すればよい。   The plating time, deposition rate, platinum concentration in the plating bath, and the like are not particularly limited, and can be controlled according to the purpose. What is necessary is just to wash | clean the electrode after plating using a pure water or ion-exchange water.

前記本発明の製造方法により、白金の(111)面におけるX線回折による結晶子径が200Å以下であり、かつ該白金の(220)面及び(311)面の結晶相存在割合が1〜15%である水素発生用電極が得られる。   According to the production method of the present invention, the crystallite diameter by X-ray diffraction on the (111) plane of platinum is 200 mm or less, and the crystal phase existing ratio of the (220) plane and (311) plane of the platinum is 1-15. % Hydrogen generating electrode is obtained.

以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not restrict | limited to the following example.

実施例1
Ni板(幅2cm、高さ10cm)を前処理[サンドブラスト(粒径150〜180μm)し、室温にて1分間超音波洗浄し、30秒間電解脱脂[1分間1M塩酸より処理]したものを導電性基材とした。
Example 1
Conduction of a Ni plate (width 2 cm, height 10 cm) pretreated [sandblast (particle size 150-180 μm), ultrasonically cleaned at room temperature for 1 minute, and electrolytically degreased [treated with 1 M hydrochloric acid for 1 minute] for 30 seconds It was set as a conductive substrate.

下記のめっき条件において、めっき温度を30℃とし、導電性基材を白金担持量が10g/mとなるようにめっき処理した。得られた水素発生用電極のSEM像、結晶子径、結晶相存在割合、ECSA、電極の電位を評価した。結果を図1に示す。 Under the following plating conditions, the plating temperature was 30 ° C., and the conductive substrate was plated so that the amount of platinum supported was 10 g / m 2 . The SEM image, crystallite diameter, crystal phase existence ratio, ECSA, and electrode potential of the obtained hydrogen generation electrode were evaluated. The results are shown in FIG.

(めっき条件)
めっき液:EEJA社製プラチナート100に対し、下記条件となるように変更を加えたもの。
Pt濃度:20g/L
カリウム濃度:55g/L
pH:13.8
析出速度:3分間/μm(2.5A/dm時)
めっき電流密度:2.2A/dm
(Plating conditions)
Plating solution: EEJA platinumate 100 with the following changes.
Pt concentration: 20 g / L
Potassium concentration: 55 g / L
pH: 13.8
Deposition rate: 3 minutes / μm ( 2.5 A / dm 2 hour)
Plating current density: 2.2 A / dm 2

結晶子径は下記式を用いてX線回折法により求めた。
結晶子径:D=Κλ/βcosθ
Κ:Sherrer定数(=0.94)
λ:使用X線管球の波長
β:結晶子の大きさによる回折線の拡がり
θ:回折角
The crystallite diameter was determined by the X-ray diffraction method using the following formula.
Crystallite diameter: D = Κλ / βcosθ
Κ: Sherler constant (= 0.94)
λ: Wavelength of the X-ray tube used β: Spread of diffraction line depending on crystallite size θ: Diffraction angle

ECSAは、硫酸水溶液中でCV測定(試料極測定面積:10cm)を行い、下式により水素原子吸着波の電気量からを算出した。
ECSA[cm/g]=QH[μC]/(210[μC/cm]×Pt質量[g])
QH:水素吸着電荷量
210μC/cm:Ptの単位活性面積当たり吸着電荷量
ECSA performed CV measurement (sample electrode measurement area: 10 cm 2 ) in a sulfuric acid aqueous solution, and calculated from the electric quantity of a hydrogen atom adsorption wave by the following equation.
ECSA [cm 2 / g] = QH [μC] / (210 [μC / cm 2 ] × Pt mass [g])
QH: Hydrogen adsorption charge amount 210 μC / cm 2 : Adsorption charge amount per unit active area of Pt

実施例2および比較例1〜2
めっき条件を図1に記載したように変更したこと以外は、実施例1を繰り返した。
Example 2 and Comparative Examples 1-2
Example 1 was repeated except that the plating conditions were changed as described in FIG.

図1の結果から分かるように、実施例1〜2の水素発生用電極は、白金の(111)面におけるX線回折による結晶子径が200Å以下であり、かつ該白金の(220)面及び(311)面の結晶相存在割合が1〜15%であるため、該条件を満たさない比較例1〜2の電極に比べ、アルカリ水電解における水素発生過電圧が低くなることが示唆された。これにより、本発明の水素発生用電極をアルカリ水電解に用いることにより、電極活性を大幅に向上させ、大きい電流密度でも触媒量を低減することができることが分かった。   As can be seen from the results in FIG. 1, the hydrogen generating electrodes of Examples 1 and 2 have a crystallite diameter of 200 mm or less by X-ray diffraction on the (111) plane of platinum, and the (220) plane of the platinum and Since the crystal phase existence ratio of the (311) plane is 1 to 15%, it was suggested that the hydrogen generation overvoltage in alkaline water electrolysis is lower than that of the electrodes of Comparative Examples 1 and 2 that do not satisfy the conditions. Thus, it was found that by using the hydrogen generating electrode of the present invention for alkaline water electrolysis, the electrode activity can be greatly improved and the amount of catalyst can be reduced even at a large current density.

なお図2に、実施例1で作製した電極のX線回折法による解析の結果を示す。   FIG. 2 shows the result of analysis by the X-ray diffraction method of the electrode produced in Example 1.

また図3に、実施例1、実施例2、比較例1で作製した電極のX線回折法による解析の結果を示す。いずれのめっき浴温度においても白金の各結晶相の存在が確認されるが、比較例1の電極における白金の(111)面は、結晶子径が200Åを超えていた。これにより、アルカリ水電解における水素発生過電圧も高くなることが示唆される。   FIG. 3 shows the results of analysis by X-ray diffraction of the electrodes produced in Example 1, Example 2, and Comparative Example 1. Although the presence of each crystal phase of platinum was confirmed at any plating bath temperature, the crystallite diameter of the (111) plane of platinum in the electrode of Comparative Example 1 exceeded 200 mm. This suggests that the hydrogen generation overvoltage in alkaline water electrolysis also increases.

また図4に、実施例1、実施例2、比較例1で作製した電極の電気化学測定を行った(n=3)。なお、電気化学測定前に電解脱脂、50mV/sでCV電位走査を行い、電極表面を毎回洗浄してから使用した。測定条件は以下の通りである。
図4に示すように、低い水素発生過電圧が示された。
Also, in FIG. 4, electrochemical measurements were performed on the electrodes produced in Example 1, Example 2, and Comparative Example 1 (n = 3). Before electrochemical measurement, electrolytic degreasing, CV potential scanning at 50 mV / s was performed, and the electrode surface was washed each time before use. The measurement conditions are as follows.
As shown in FIG. 4, a low hydrogen generation overvoltage was shown.

(電気化学測定条件)
参照電極:Ag/AgCl
補助電極:Pt/Ti
電解質溶液組成:30wt% KOH水溶液
温度:室温
測定面積:1cm
(Electrochemical measurement conditions)
Reference electrode: Ag / AgCl
Auxiliary electrode: Pt / Ti
Electrolyte solution composition: 30 wt% KOH aqueous solution Temperature: Room temperature Measurement area: 1 cm 2

比較例3
実施例1で調製した導電性基材(Ni板)の表面に、10質量%濃度の塩化白金酸水溶液を刷毛塗りし、500℃、30分間、大気焼成した。この操作を10〜15回程度繰り返し、白金担持量を10g/mに調整し、比較例3の水素発生用電極を得た。得られた水素発生用電極のSEM像、結晶子径、結晶相存在割合、ECSA、電極の電位を実施例1と同様に評価した。結果を図5に示す。
Comparative Example 3
The surface of the conductive base material (Ni plate) prepared in Example 1 was brush-coated with a 10% by mass aqueous chloroplatinic acid solution and baked in the air at 500 ° C. for 30 minutes. This operation was repeated about 10 to 15 times, the platinum loading was adjusted to 10 g / m 2, and the hydrogen generating electrode of Comparative Example 3 was obtained. The SEM image, crystallite diameter, crystal phase existence ratio, ECSA, and electrode potential of the obtained hydrogen generating electrode were evaluated in the same manner as in Example 1. The results are shown in FIG.

続いて、30質量%濃度の水酸化カリウム水溶液を80℃に加温し、そこに実施例1の電極(ただし、白金担持量は10g/m)および比較例3の電極を100時間浸漬した(各n=2。すなわち実施例1の電極1および電極2、比較例3の電極1および電極2)。浸漬前後における水酸化カリウム水溶液中の白金濃度をICPにより測定し、該水溶液中への白金の溶出量を調べた。結果を以下に示す。 Subsequently, a 30% strength by weight potassium hydroxide aqueous solution was heated to 80 ° C., and the electrode of Example 1 (however, the amount of platinum supported was 10 g / m 2 ) and the electrode of Comparative Example 3 were immersed for 100 hours. (Each n = 2. That is, electrode 1 and electrode 2 of Example 1, electrode 1 and electrode 2 of Comparative Example 3). The platinum concentration in the aqueous potassium hydroxide solution before and after the immersion was measured by ICP, and the elution amount of platinum into the aqueous solution was examined. The results are shown below.

実施例1の電極1の白金溶出量=0.050mg
実施例1の電極2の白金溶出量=0.040mg
比較例3の電極1の白金溶出量=0.512mg
比較例3の電極2の白金溶出量=0.690mg
Elution amount of platinum of electrode 1 of Example 1 = 0.050 mg
Elution amount of platinum in electrode 2 of Example 1 = 0.040 mg
Platinum elution amount of electrode 1 of Comparative Example 3 = 0.512 mg
Platinum elution amount of electrode 2 of Comparative Example 3 = 0.690 mg

以上の結果から、実施例1の水素発生用電極の白金溶出量は、比較例3で作製したような従来の焼成電極に比べ、約1/10以下であり、本発明の水素発生用電極の耐久性が証明された。   From the above results, the platinum elution amount of the hydrogen generation electrode of Example 1 is about 1/10 or less as compared with the conventional fired electrode produced in Comparative Example 3, and the hydrogen generation electrode of the present invention has the following amount. Proven durability.

また、比較例3で作製した電極の電気化学測定を上記と同様に行った(n=3)。その結果を図6に示す。図6は、図4のグラフに比較例3の結果(符号5)を加えた図である。図6に示すように、本発明の電極は、比較例3で作製したような従来の焼成電極に比べ、低い水素発生過電圧が示された。   Moreover, the electrochemical measurement of the electrode produced in Comparative Example 3 was performed in the same manner as described above (n = 3). The result is shown in FIG. FIG. 6 is a diagram in which the result (reference numeral 5) of Comparative Example 3 is added to the graph of FIG. As shown in FIG. 6, the electrode of the present invention showed a lower hydrogen generation overvoltage than the conventional fired electrode produced in Comparative Example 3.

また、図7に実施例1、比較例1で作製した電極のX線回折法による解析の結果を示す。図7に示すように、本発明の電極(実施例1)、塗布焼成電極(比較例3)ともにPt量は約10g/mであるにも関わらずピークの強度が大きく異なっており、本発明の電極は、比較例3で作製したような従来の焼成電極に比べ、結晶性の高いPt触媒層が形成されており、耐久性が高いことがわかった。 FIG. 7 shows the results of analysis by X-ray diffraction of the electrodes produced in Example 1 and Comparative Example 1. As shown in FIG. 7, both the electrode of the present invention (Example 1) and the coated and baked electrode (Comparative Example 3) have greatly different peak intensities although the Pt amount is about 10 g / m 2. It has been found that the electrode of the invention has a higher Pt catalyst layer having higher crystallinity than the conventional fired electrode as produced in Comparative Example 3, and has high durability.

なお、実施例1のめっき条件において、カリウム濃度が40g/Lであるめっき浴を用い、実施例1を繰り返したところ、導電性基材に白金めっきが付かなかったことが確認された。   In addition, when Example 1 was repeated using the plating bath whose potassium concentration is 40 g / L on the plating conditions of Example 1, it was confirmed that platinum plating was not attached to the electroconductive base material.

Claims (8)

導電性基材と該導電性基材の上に形成された触媒層とを有し、該触媒層中に白金を含有する水素発生用電極であって、該白金の(111)面におけるX線回折による結晶子径が200Å以下であり、かつ該白金の(220)面及び(311)面の結晶相存在割合が1〜15%である水素発生用電極。   An electrode for hydrogen generation having a conductive substrate and a catalyst layer formed on the conductive substrate, the platinum containing platinum in the catalyst layer, the X-ray on the (111) plane of the platinum An electrode for hydrogen generation having a crystallite diameter by diffraction of 200 mm or less and a crystal phase existence ratio of (220) plane and (311) plane of platinum of 1 to 15%. 前記白金のX線回折による(111)面の結晶相存在割合が40%以上である請求項1に記載の水素発生用電極。   2. The electrode for hydrogen generation according to claim 1, wherein a crystal phase existing ratio of the (111) plane by X-ray diffraction of platinum is 40% or more. 前記白金のECSA(電気化学活性比表面積)が5m/g以上である請求項1または2に記載の水素発生用電極。 The electrode for hydrogen generation according to claim 1 or 2, wherein the platinum has an ECSA (electrochemical activity specific surface area) of 5 m 2 / g or more. 前記触媒層におけるアルカリ成分の含有量が50ppm以上である請求項1〜3のいずれか1項に記載の水素発生用電極。   The electrode for hydrogen generation according to any one of claims 1 to 3, wherein the content of the alkali component in the catalyst layer is 50 ppm or more. 前記アルカリ成分がカリウムである請求項1〜4のいずれか1項に記載の水素発生用電極。   The electrode for hydrogen generation according to any one of claims 1 to 4, wherein the alkali component is potassium. アルカリ水電解用である請求項1〜5のいずれか1項に記載の水素発生用電極。   It is for alkaline water electrolysis, The electrode for hydrogen generation of any one of Claims 1-5. 導電性基材と該導電性基材の上に形成された触媒層とを有し、該触媒層中に白金を含有する水素発生用電極の製造方法であって、
白金を含むめっき浴を用いて該導電性基材を電気めっき法によりめっき処理し、該導電性基材上に該白金をめっき浴から電析させるめっき処理工程を含み、
該めっき浴が、アルカリ成分を40〜70g/L含み、かつ
該めっき処理時の該めっき浴の温度が、20℃〜60℃の範囲内である
ことを特徴とする前記製造方法。
A method for producing an electrode for hydrogen generation comprising a conductive substrate and a catalyst layer formed on the conductive substrate, wherein the catalyst layer contains platinum.
Plating the conductive substrate by an electroplating method using a plating bath containing platinum, and a plating treatment step of depositing the platinum on the conductive substrate from the plating bath,
The said manufacturing method characterized by the said plating bath containing 40-70 g / L of an alkaline component, and the temperature of this plating bath at the time of this plating process exists in the range of 20 to 60 degreeC.
前記アルカリ成分がカリウムである請求項7に記載の水素発生用電極の製造方法。   The method for producing an electrode for hydrogen generation according to claim 7, wherein the alkali component is potassium.
JP2017017607A 2017-02-02 2017-02-02 Electrode for hydrogen generation and its manufacturing method Active JP6837342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017607A JP6837342B2 (en) 2017-02-02 2017-02-02 Electrode for hydrogen generation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017607A JP6837342B2 (en) 2017-02-02 2017-02-02 Electrode for hydrogen generation and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018123391A true JP2018123391A (en) 2018-08-09
JP6837342B2 JP6837342B2 (en) 2021-03-03

Family

ID=63111050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017607A Active JP6837342B2 (en) 2017-02-02 2017-02-02 Electrode for hydrogen generation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6837342B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103337A1 (en) * 2004-04-23 2005-11-03 Tosoh Corporation Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
JP2006118023A (en) * 2004-10-25 2006-05-11 Tosoh Corp Method for manufacturing electrode for generating hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103337A1 (en) * 2004-04-23 2005-11-03 Tosoh Corporation Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
JP2006118023A (en) * 2004-10-25 2006-05-11 Tosoh Corp Method for manufacturing electrode for generating hydrogen

Also Published As

Publication number Publication date
JP6837342B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
Chen et al. Study of cobalt boride-derived electrocatalysts for overall water splitting
Esmailzadeh et al. Pulse electrodeposition of nickel selenide nanostructure as a binder-free and high-efficient catalyst for both electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution
Wei et al. A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water
Zhu et al. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting
Cao et al. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction
Yang et al. Amorphous film of ternary NiCoP alloy on Ni foam for efficient hydrogen evolution by electroless deposition
Lang et al. Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction
Subramanya et al. Novel Co–Ni–graphene composite electrodes for hydrogen production
Amin et al. Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction
Cheng et al. Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P
JP4578348B2 (en) Electrode for hydrogen generation
Zhang et al. Preparation of Ti@ NiB electrode via electroless plating toward high-efficient alkaline simulated seawater splitting
Lin et al. Electro-deposition of nickel–iron nanoparticles on flower-like MnCo 2 O 4 nanowires as an efficient bifunctional electrocatalyst for overall water splitting
JP7353599B2 (en) Electrode catalyst and its manufacturing method, and hydrogen manufacturing method
Shetty et al. Electrodeposition of Ni–Mo–rGO composite electrodes for efficient hydrogen production in an alkaline medium
CN109576733B (en) Preparation method of carbon fiber loaded chlorine evolution catalytic electrode
Hong et al. Electrochemical fabrication of Ni‐P‐B ternary catalyst for hydrogen production in proton exchange membrane water electrolyzer
Sharma et al. Electroless deposited NiP-fabric electrodes for efficient water and urea electrolysis for hydrogen production at industrial scale
JP2005163059A (en) Electrolytic hydrogen production method using rare element-electrodeposited electrode
Xu et al. Cu-induced NiCu-P and NiCu-Pi with multilayered nanostructures as highly efficient electrodes for hydrogen production via urea electrolysis
CN109234760B (en) Active cathode and preparation method and application thereof
JP7142862B2 (en) Electrode manufacturing method, electrode and hydrogen manufacturing method
JP6837342B2 (en) Electrode for hydrogen generation and its manufacturing method
Wang et al. Electrodeposition of carbon cloth supported Co-Mo-B bifunctional catalytic electrode for water splitting
JP2006265649A (en) Method for producing electrode for generating hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250