JP2006118023A - Method for manufacturing electrode for generating hydrogen - Google Patents

Method for manufacturing electrode for generating hydrogen Download PDF

Info

Publication number
JP2006118023A
JP2006118023A JP2004309244A JP2004309244A JP2006118023A JP 2006118023 A JP2006118023 A JP 2006118023A JP 2004309244 A JP2004309244 A JP 2004309244A JP 2004309244 A JP2004309244 A JP 2004309244A JP 2006118023 A JP2006118023 A JP 2006118023A
Authority
JP
Japan
Prior art keywords
platinum
electrode
solution
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004309244A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirokura
義法 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004309244A priority Critical patent/JP2006118023A/en
Publication of JP2006118023A publication Critical patent/JP2006118023A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for generating hydrogen, which is used in the electrolysis of water or an aqueous solution of an chloride of an alkali metal, has sufficiently low hydrogen overvoltage and is superior in durability because of hardly being poisoned by ferrous ions and having a catalytic layer with excellent adhesiveness to a substrate, and to provide a manufacturing method therefor. <P>SOLUTION: The electrode for generating hydrogen includes a platinum alloy containing platinum and one metal selected from the group of nickel, cobalt, copper, silver and iron, carried on an electroconductive substrate, wherein the platinum alloy contains platinum in a range of 0.40 to 0.99 by mole ratio. The electrode is obtained by the steps of: applying a solution of a platinum compound which forms an ammine complex with a compound of one metal selected from the group consisting of nickel, cobalt, copper, silver and iron, onto the electroconductive substrate; drying the film; thermally decomposing the component of the film at 200 to 700°C; and then reducing the product. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用する水素発生用電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode for hydrogen generation used for electrolysis of water or electrolysis of an aqueous solution of an alkali metal chloride such as salt.

水又はアルカリ金属塩化物水溶液電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。その省エネルギー化の手段とは、理論分解電圧、液抵抗、隔膜抵抗、陽極過電圧、陰極過電圧などで構成される電解電圧を実質的に低減することである。特に、過電圧の低減に関しては、その過電圧値が電極の触媒材料や電極表面のモルフォロジーに左右されることから、その改良についてこれまで多くの研究開発が行われてきた。イオン交換膜法食塩電解においては、陽極過電圧の低減に盛んな研究開発が行われてきた結果、陽極過電圧が低く、耐久性に優れた寸法安定性電極[例えば、ペルメレック電極社製のDSE電極(登録商標)]が完成し、既に食塩電解工業を初め広い分野で利用されている。   The water or alkali metal chloride aqueous solution electrolysis industry is a power intensive industry, and various technological developments have been made to save energy. The energy saving means is to substantially reduce the electrolysis voltage composed of theoretical decomposition voltage, liquid resistance, diaphragm resistance, anode overvoltage, cathode overvoltage, and the like. In particular, regarding the reduction of the overvoltage, since the overvoltage value depends on the electrode catalyst material and the morphology of the electrode surface, many researches and developments have been conducted on the improvement thereof. As a result of extensive research and development for reducing anode overvoltage in salt exchange electrolysis using an ion exchange membrane method, a dimensional stability electrode having a low anode overvoltage and excellent durability [for example, a DSE electrode manufactured by Permerek Electrode Co., Ltd. ( Registered trademark)] has been completed and has already been used in a wide range of fields including the salt electrolysis industry.

一方、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関して、これまで苛性溶液中で耐食性が高く、比較的触媒活性の高いニッケルを主体とした様々な提案がなされている。主な製造方法としては、活性成分や金属塩を溶解させた浴から触媒成分を電析させる電気めっき法、金属塩溶液に活性物質を分散させた浴から触媒成分を電気泳動電着させる分散めっき法、溶融状態の触媒物質を基材に直接溶射する溶射法、金属塩の溶液などを塗布、焼成する熱分解法が挙げられる。   On the other hand, regarding hydrogen generating electrodes for reducing cathode overvoltage, so-called active cathodes, various proposals have heretofore been made mainly of nickel having high corrosion resistance in a caustic solution and relatively high catalytic activity. The main production methods include electroplating, in which the catalyst component is electrodeposited from a bath in which the active ingredient and metal salt are dissolved, and dispersion plating, in which the catalyst component is electrophoretically deposited from a bath in which the active substance is dispersed in a metal salt solution. And a thermal spraying method in which a molten catalyst material is directly sprayed onto a substrate, and a thermal decomposition method in which a solution of a metal salt is applied and fired.

例えば、電気めっき法で導電性基材表面に、ニッケルと鉄、コバルト、インジウムとの組み合わせに加えてアミノ酸、カルボン酸、アミンなどの有機化合物を含んだ物質を被覆する方法が開示されている(特許文献1)。また、ニッケルとモリブデンからなる合金層をアークイオンプレーティング法で被覆する方法が開示されている(特許文献2)。   For example, a method is disclosed in which a conductive substrate surface is coated with a substance containing an organic compound such as amino acid, carboxylic acid, or amine in addition to a combination of nickel, iron, cobalt, and indium by electroplating ( Patent Document 1). Also disclosed is a method of coating an alloy layer made of nickel and molybdenum by an arc ion plating method (Patent Document 2).

一方、高活性触媒である白金を使用すると水素過電圧が低減できることは古くから知られており、白金を被覆する方法として、基剤に白金とセリウムを含んだ溶液を塗布、乾燥、焼成させる、所謂、熱分解法によって白金とセリウム酸化物からなる触媒を被覆する方法が開示されている(特許文献3)が、アルカリ金属塩化物水溶液の電気分解工業等での使用に更なる改善が検討されている。   On the other hand, it has long been known that hydrogen overvoltage can be reduced by using platinum, which is a highly active catalyst, and as a method of coating platinum, a solution containing platinum and cerium as a base is applied, dried and fired, so-called A method of coating a catalyst composed of platinum and cerium oxide by a thermal decomposition method has been disclosed (Patent Document 3), but further improvement has been studied for use in an electrolysis industry or the like of an aqueous alkali metal chloride solution. Yes.

また、被覆効率の高い方法として、ジニトロジアンミン白金と有機酸又は無機酸のアルカリ金属溶液から成るめっき浴を用い電気めっき法によって白金を効率良く被覆する方法が開示されている(特許文献4)。
また、白金合金を被覆する方法としては、塩素発生など電解用不溶性アノードの製造方法として、銅基材上に白金−モリブデン−鉄族金属からなる三元合金を誘起共析現象を利用した電気めっき法によって被覆する方法(特許文献5)や、真鍮上に白金とイリジウムとの合金を電気めっき法によって被覆する方法が開示されている(特許文献6)。
Further, as a method with high coating efficiency, a method of efficiently covering platinum by electroplating using a plating bath made of an alkali metal solution of dinitrodiammine platinum and an organic acid or an inorganic acid is disclosed (Patent Document 4).
In addition, as a method for coating a platinum alloy, as a method for producing an insoluble anode for electrolysis such as chlorine generation, electroplating using a ternary alloy composed of platinum-molybdenum-iron group metal on a copper substrate using induced eutectoid phenomenon. A method of coating by a method (Patent Document 5) and a method of coating an alloy of platinum and iridium on brass by an electroplating method are disclosed (Patent Document 6).

以上のことから、水又はアルカリ金属塩化物水溶液電解工業の電力消費量を削減する目的で、従来から様々な水素発生用電極の製造方法が提案されてきたが、電気めっき法によって白金合金を被覆する水素発生用電極に関する製造方法は知られていなかった。   In view of the above, various methods for producing electrodes for hydrogen generation have been proposed for the purpose of reducing the power consumption of water or alkali metal chloride aqueous solution electrolysis industry. No manufacturing method has been known for the hydrogen generating electrode.

特許第3319370号公報(実施例)Japanese Patent No. 3319370 (Example) 特許第3358465号公報(実施例)Japanese Patent No. 3358465 (Example) 特開2000−239882号公報(実施例)JP 2000-239882 A (Example) 特公昭61−58557号公報(実施例)Japanese Examined Patent Publication No. 61-58557 (Example) 特開平10−212592号公報(実施例)JP-A-10-212592 (Example) 特許第3117656号公報(実施例)Japanese Patent No. 3117656 (Example)

本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能な、水素過電圧が十分に低い水素発生電極の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a hydrogen generating electrode having a sufficiently low hydrogen overvoltage that can be used in water or an alkali metal chloride aqueous solution electrolysis industry.

本発明者らは、上記問題点を解決するため鋭意検討した結果、導電性基材上に、pH=5〜8における浸漬電位がSCE基準で0.5Vより卑な遷移金属化合物および白金化合物を溶解しているめっき浴を用いると、電気めっき法によって白金合金が被覆できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a transition metal compound and a platinum compound whose immersion potential at pH = 5 to 8 is lower than 0.5 V on the basis of SCE are formed on a conductive substrate. When a dissolved plating bath is used, it has been found that a platinum alloy can be coated by an electroplating method, and the present invention has been completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水素発生用電極に用いられる白金合金は、金属白金と遷移金属の混合物や遷移金属酸化物と白金との混合酸化物或いは複合酸化物等で存在するのではなく、添加金属と白金とが固溶した合金であり、導電性基材上にpH=5〜8における浸漬電位がSCE基準で0.5Vより卑な遷移金属化合物および白金化合物を溶解しているめっき浴を用いて、電気めっき法による白金合金の共電析によって得られる。   The platinum alloy used in the electrode for hydrogen generation of the present invention does not exist as a mixture of metal platinum and transition metal, a mixed oxide or composite oxide of transition metal oxide and platinum, or the like. Using a plating bath in which a transition metal compound and a platinum compound having an immersion potential at pH = 5 to 8 lower than 0.5 V on the basis of SCE are dissolved on a conductive substrate. Obtained by co-deposition of platinum alloy by plating.

まず、白金合金に関して、白金は多くの金属元素と固溶体や金属間化合物といった合金相を形成し、その組成比と温度によって合金相は多様に変化する。これらは全率固溶体型、析出型、包晶反応型、共晶反応型、偏晶反応型といった合金状態図で開示されている。   First, regarding a platinum alloy, platinum forms an alloy phase such as a solid solution or an intermetallic compound with many metal elements, and the alloy phase changes variously depending on its composition ratio and temperature. These are disclosed in alloy phase diagrams such as a full solid solution type, a precipitation type, a peritectic reaction type, a eutectic reaction type, and a monotectic reaction type.

例えば、白金とコバルトを組み合わせた合金の場合、その合金状態図は析出型に属し、白金とコバルトは、いかなる組成比においても固溶した合金を形成する。また、白金とコバルト以外にも、ニッケル、銅、銀、鉄、モルブデン及びマンガン等の多くの元素と白金は、いかなる組成比においても固溶した合金を形成する(長崎誠三、平林眞 編著 「二元合金状態図集」、アグネ技術センター出版、第2版、第13、112、136、152、230頁)。   For example, in the case of an alloy combining platinum and cobalt, the alloy phase diagram belongs to a precipitation type, and platinum and cobalt form a solid solution alloy at any composition ratio. In addition to platinum and cobalt, platinum and many other elements such as nickel, copper, silver, iron, morbden, and manganese form a solid solution alloy at any composition ratio (edited by Seizo Nagasaki and Satoshi Hirabayashi, “2 Original Alloy Phase Diagrams ", Agne Technical Center Publishing, 2nd edition, 13, 112, 136, 152, 230).

本発明の水素発生用電極に用いられる白金合金とは、遷移金属と白金が固溶し、合金化したものであり、例えば金属白金のCuKα線によるX線主回折ピークである(111)面間隔の変化から同定可能なものである。   The platinum alloy used in the electrode for hydrogen generation of the present invention is a solution in which transition metal and platinum are solid-solved and alloyed. For example, the (111) plane spacing is the X-ray main diffraction peak of CuKα rays of metal platinum. It can be identified from changes in

具体的には、金属白金の結晶構造はASTMカード、No.4−0802に開示されているように面心立方格子であり、CuKα線による主回折ピークである(111)面間隔は2.265オングストロームである。この金属白金に原子半径の異なる金属が固溶、合金化することにより、金属白金の格子は膨張、収縮する。従って、(111)面間隔の変化から合金化の有無を確認することができる。   Specifically, the crystal structure of metallic platinum is ASTM card, No. As disclosed in Japanese Patent No. 4-0802, it is a face-centered cubic lattice, and the (111) plane spacing, which is the main diffraction peak due to CuKα rays, is 2.265 angstroms. When the metals having different atomic radii are dissolved and alloyed with the metal platinum, the lattice of the metal platinum expands and contracts. Therefore, the presence or absence of alloying can be confirmed from the change in (111) plane spacing.

次に、本発明の製造方法について詳細に説明する。   Next, the production method of the present invention will be described in detail.

まず、用いる導電性基材は、例えばニッケル、鉄、銅、チタンやステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば平板、曲板等が使用可能であり、エキスパンドメタル、パンチメタル、網等が使用できる。   First, examples of the conductive substrate to be used include nickel, iron, copper, titanium, and stainless steel alloy, and nickel having excellent corrosion resistance against an alkaline solution is particularly preferable. The shape of the conductive substrate is not particularly limited, and generally may be a shape that matches the electrode of the electrolytic cell. For example, a flat plate, a curved plate, etc. can be used, and an expanded metal, a punch metal, a net, etc. are used. it can.

この導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくでき基材と電析物の密着性が向上するためである。粗面化の手段としては特に限定されず公知の方法、例えばサンドブラスト処理、蓚酸、塩酸溶液などによるエッチング処理し、水洗、乾燥して用いることができる。また、基剤と電析物の密着性を向上させるために予め下地メッキを施すことが好ましい。   The conductive substrate is preferably roughened in advance. This is because the surface area of contact can be increased by roughening, and the adhesion between the substrate and the deposit is improved. The surface roughening means is not particularly limited and can be used by a known method such as sand blasting, etching with oxalic acid or hydrochloric acid solution, washing with water and drying. Moreover, in order to improve the adhesiveness between the base and the electrodeposit, it is preferable to perform base plating in advance.

次に遷移金属化合物と白金化合物とを含有するめっき浴から白金合金を共電析させるが、共電析させるには遷移金属と白金の標準電極電位、または析出平衡電位が近いことが必須である。しかし、標準電極電位(「電気化学便覧」 第5版 丸善出版 第92〜95頁)からわかるように、白金は標準電極電位が貴で電析し易いのに対し、多くの遷移金属は標準電極電位が卑であり、互いの電位が離れすぎていることから、これら共電析させることは困難である。   Next, a platinum alloy is co-deposited from a plating bath containing a transition metal compound and a platinum compound. In order to co-deposit, it is essential that the standard electrode potential or precipitation equilibrium potential of the transition metal and platinum be close. . However, as can be seen from the standard electrode potential ("Electrochemical Handbook" 5th edition, Maruzen Publishing, pages 92-95), platinum is a noble standard electrode and easy to deposit, whereas many transition metals are standard electrodes. Since the potential is base and the potentials are too far from each other, it is difficult to co-deposit them.

しかしながら、めっき浴中において白金を錯体化させ白金の析出平衡電位を標準電極電位から卑に、即ち、pH=5〜8においてSCE基準で0.5Vより卑にすることによって、ニッケル、コバルト、鉄の標準電極電位と近くなり共電析が可能となる。特に、錯体化した白金の析出平衡電位と遷移金属の析出平衡電位を近づけること、即ち、その析出平衡電位の差をpH=5〜8において0.5V以下にすることが、効率よく共電析するのに好ましい。   However, by complexing platinum in the plating bath and lowering the platinum precipitation equilibrium potential from the standard electrode potential, ie, lower than 0.5 V on a SCE basis at pH = 5-8, nickel, cobalt, iron Therefore, co-deposition is possible. In particular, it is effective to make the precipitation equilibrium potential of the complex platinum and the precipitation equilibrium potential of the transition metal close to each other, that is, to reduce the difference between the precipitation equilibrium potentials to 0.5 V or less at pH = 5-8. It is preferable to do.

尚、本願発明において、析出平衡電位をめっき浴中に電極を浸漬した時の電位、即ち浸漬電位で測定し、遷移金属および白金の析出平衡電位をその浸漬電位に置き換える。   In the present invention, the deposition equilibrium potential is measured by the potential when the electrode is immersed in the plating bath, that is, the immersion potential, and the deposition equilibrium potential of the transition metal and platinum is replaced with the immersion potential.

白金のpH=5〜8における浸漬電位がSCE基準で0.5Vより貴な場合、遷移金属の浸漬電位と離れすぎるため白金が優先的に電析し共電析が困難となりるため、本発明の白金合金が被覆できない。   When the immersion potential of platinum at pH = 5 to 8 is nobler than 0.5 V on the basis of SCE, platinum is preferentially electrodeposited because it is too far from the immersion potential of the transition metal, so that co-deposition is difficult. The platinum alloy cannot be coated.

また、遷移金属化合物は、遷移金属の硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩等の溶解性塩を用いれば良いが、遷移金属の中でも標準電極電位が貴な金属、例えば、金、銀、銅パラジウム、イリジウム、ルテニウムなどの貴金属はグリシン、クエン酸、マロン酸、コハク酸塩のような錯塩を添加し錯体化させ、pH=5〜8における浸漬電位をSCE基準で0.5Vより卑にすればよい。   The transition metal compound may be a transition metal such as nitrate, sulfate, chloride, carbonate, acetate, sulfamate, etc. For example, noble metals such as gold, silver, copper palladium, iridium, and ruthenium are complexed by adding complex salts such as glycine, citric acid, malonic acid, and succinate, and the immersion potential at pH = 5 to 8 is based on SCE. What is necessary is just to make it lower than 0.5V.

めっき浴のpHは導電性基材の溶解を防止するためにpH=3以上が好ましい。pHの調製は、アンモニア、ホウ酸塩、リン酸塩などのpH緩衝剤を用いて調製すればよいが、pHが中性〜アルカリ性で水酸化物などの沈殿を生成する場合、上記に示すような錯塩を添加し遷移金属を錯体化すれば良い。   The pH of the plating bath is preferably pH = 3 or more in order to prevent dissolution of the conductive substrate. The pH may be adjusted using a pH buffer such as ammonia, borate, phosphate, etc., but when the pH is neutral to alkaline and precipitates such as hydroxide are generated, as shown above A complex complex may be formed by adding a complex salt.

また、導電性を安定化するため塩化カリウムなどの電解質の添加しても良く、めっき浴中の各成分の濃度は特に限定されず、0.001〜1モル/リットルの範囲が例示できる。   Moreover, in order to stabilize electroconductivity, you may add electrolytes, such as potassium chloride, and the density | concentration of each component in a plating bath is not specifically limited, The range of 0.001-1 mol / liter can be illustrated.

めっき条件については、めっき浴温度、めっき時間、電流密度などの条件については限定されず、これらの条件変更によって白金と遷移金属の共電析物の組成、担持量など目的に応じて制御することが可能であり、めっき後の電極は純水、イオン交換水を用いて洗浄すればよい。   Regarding plating conditions, conditions such as plating bath temperature, plating time, current density are not limited, and by changing these conditions, the composition of platinum and transition metal co-deposits, the loading amount, etc. should be controlled according to the purpose. The electrode after plating may be cleaned using pure water or ion exchange water.

以上の様に、本発明の製造方法によって白金合金が被覆された水素発生用電極を効率よく容易に製造できる。   As described above, the hydrogen generating electrode coated with the platinum alloy can be efficiently and easily manufactured by the manufacturing method of the present invention.

本発明によって、水又はアルカリ金属塩化物水溶液電解工業等で使用可能な水素過電圧の低い白金合金を被覆した水素発生用電極を効率よく製造できる。   By this invention, the electrode for hydrogen generation which coat | covered the platinum alloy with low hydrogen overvoltage which can be used in water or an alkali metal chloride aqueous solution electrolysis industry etc. can be manufactured efficiently.

以下、本発明の実施例を示すが、本発明はこれらの実施例により何等限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

尚、各評価は下記に示す方法で実施した。   In addition, each evaluation was implemented by the method shown below.

(結晶構造)
得られた電極表面について、CuKα線によるX線回折装置(型式MXP3 マックサイエンス社製)を用いて、加速電圧40kV、加速電流30mA、ステップ間隔0.04deg、サンプリング時間3sec、測定範囲2θ=20〜60°の範囲を測定した。回折図形からブラッグの式より主回折ピークである(111)面間隔を計算した。
(担持量および白金含有量)
得られた電極は、電析部分を王水溶解した後にICP発光分析装置(パーキンエルマー社製、型式optima3000)を用い、ニッケルを添加した電極については、EPMA(堀場製作所製、型式EMAX−5770W)を用いて白金、遷移金属元素の含有量を測定し、電析物中の白金含有量は以下の式によって計算した。
(Crystal structure)
About the obtained electrode surface, using an X-ray diffractometer with CuKα ray (model MXP3 manufactured by Mac Science), acceleration voltage 40 kV, acceleration current 30 mA, step interval 0.04 deg, sampling time 3 sec, measurement range 2θ = 20˜ A range of 60 ° was measured. From the diffraction pattern, the (111) plane spacing, which is the main diffraction peak, was calculated from the Bragg equation.
(Supported amount and platinum content)
The obtained electrode was dissolved in the aqua regia with an ICP emission analyzer (Perkin Elmer, model optima3000). For the electrode to which nickel was added, EPMA (Horiba, model EMAX-5770W) was used. Was used to measure the content of platinum and transition metal elements, and the platinum content in the electrodeposits was calculated by the following formula.

白金含有量=白金/(白金+遷移金属)モル比
(浸漬電位の測定)
めっき溶液を200mL調整し、2cmの白金電極を2枚浸漬し、1mA/cmの電流密度で1時間予備電解を実施した後、窒素をバブリングしながら、25℃で当該めっき溶液の浸漬電位を測定した。
Platinum content = platinum / (platinum + transition metal) molar ratio (measurement of immersion potential)
Adjust the plating solution to 200 mL, immerse two 2 cm 2 platinum electrodes, conduct pre-electrolysis at a current density of 1 mA / cm 2 for 1 hour, and then immerse the plating solution at 25 ° C. while bubbling nitrogen. Was measured.

実施例1
導電性基材として、ニッケルエキスパンドメッシュ(2×5cm)を用いて、ジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:4.5重量%、溶媒:8重量%硝酸溶液)と硝酸コバルト6水和物、クエン酸三ナトリウム、グリシン、リン酸二水素アンモニウムをもちいて、以下のメッキ浴中の各濃度に調製した後に、10%アンモニア水溶液を用いメッキ浴のpHを8に調製した。
ジニトロジアンミン白金 0.005 モル/リットル
硝酸コバルト6水和物 0.005 モル/リットル
クエン酸三ナトリウム 0.01 モル/リットル
グリシン 0.01 モル/リットル
リン酸二水素アンモニウム 0.01 モル/リットル
別に、アンモニア水溶液でpH=8に調製した濃度0.005モル/リットルのジニトロアンミン白金溶液及び硝酸コバルト6水和物溶液の浸漬電位を測定した結果、pH=8で、SCE基準0.21V及び−0.08Vであり、どちらの浸漬電位もSCE基準で0.50Vより卑であった。
Example 1
A nickel expanded mesh (2 × 5 cm) was used as the conductive substrate, dinitrodiammine platinum nitrate solution (Tanaka Kikinzoku, platinum concentration: 4.5 wt%, solvent: 8 wt% nitric acid solution) and cobalt nitrate 6 water. After adjusting the concentration of each of the following plating baths using a Japanese product, trisodium citrate, glycine, and ammonium dihydrogen phosphate, the pH of the plating bath was adjusted to 8 using a 10% aqueous ammonia solution.
Dinitrodiammine platinum 0.005 mol / liter cobalt nitrate hexahydrate 0.005 mol / liter trisodium citrate 0.01 mol / liter glycine 0.01 mol / liter ammonium dihydrogen phosphate 0.01 mol / liter separately As a result of measuring the immersion potential of a dinitroammine platinum solution and a cobalt nitrate hexahydrate solution with a concentration of 0.005 mol / liter prepared with an aqueous ammonia solution at pH = 8, pH = 8, SCE standard 0.21V and − 0.08V, and both immersion potentials were lower than 0.50V on the basis of SCE.

次いで、上記めっき浴を65℃に加温し、対極に白金板を用いて50mA/cmの電流密度で30分間めっきした。得られた、電析物を水洗し、上記の方法で求めた白金含有量を表1に、白金合金のXRDパターンを図1に示した。 Next, the plating bath was heated to 65 ° C., and was plated for 30 minutes at a current density of 50 mA / cm 2 using a platinum plate as a counter electrode. The obtained electrodeposits were washed with water, the platinum content determined by the above method is shown in Table 1, and the XRD pattern of the platinum alloy is shown in FIG.

Figure 2006118023
Figure 2006118023

実施例2〜3
めっき時の電流密度を変更した以外は実施例1の方法と同様に行い、上記の方法で求めた白金含有量を表1に、白金合金のXRDパターンを図1に示した。
Examples 2-3
Except for changing the current density during plating, the same procedure as in Example 1 was performed. The platinum content determined by the above method is shown in Table 1, and the XRD pattern of the platinum alloy is shown in FIG.

浸漬電位は、各々pH=8で、SCE基準0.21V及び−0.08Vであり、どちらの浸漬電位もSCE基準で0.50Vより卑であった。
実施例4
めっき浴の硝酸コバルト6水和物を硝酸ニッケル6水和物に変更した以外は実施例1の方法と同様に行い、上記の方法で求めた白金含有量を表1に、白金合金のXRDパターンを図1に示した。
The immersion potentials were pH = 8, respectively, SCE standard 0.21V and −0.08V, and both immersion potentials were lower than 0.50V based on SCE.
Example 4
Except that the cobalt nitrate hexahydrate in the plating bath was changed to nickel nitrate hexahydrate, the same procedure as in Example 1 was carried out. The platinum content determined by the above method is shown in Table 1, and the XRD pattern of the platinum alloy Is shown in FIG.

浸漬電位は、ジニトロアンミン白金溶液においてpH=8でSCE基準0.210V、硝酸ニッケル溶液においてpH=8でSCE基準0.053Vであり、どちらの浸漬電位もSCE基準で0.50Vより卑であり、その差も0.50V以下であった。   The immersion potential is 0.210V with SCE standard at pH = 8 in dinitroammine platinum solution, and 0.053V with SCE standard at pH = 8 in nickel nitrate solution. Both immersion potentials are lower than 0.50V on SCE standard. The difference was also 0.50 V or less.

比較例1
導電性基材として、ニッケルエキスパンドメッシュ(2×5cm)を用いて、塩化白金酸溶液(田中貴金属製、Pt濃度15wt%と硝酸コバルト6水和物、リン酸二水素アンモニウムをもちいて、以下のメッキ浴中の各濃度に調製した後に、10%アンモニア水溶液を用いメッキ浴のpHを5に調製した。
塩化白金酸 0.005モル/リットル
硝酸コバルト6水和物 0.005モル/リットル
リン酸二水素アンモニウム 0.01 モル/リットル
次いで、上記めっき浴を65℃に加温し、対極に白金板を用いて25mA/cmの電流密度で30分間めっきした。得られた、電析物を水洗し、上記の方法で求めた白金含有量を表1に、XRDパターンを図1に示したが白金のみ電析した。
Comparative Example 1
Using a nickel expanded mesh (2 × 5 cm) as the conductive substrate, a chloroplatinic acid solution (Tanaka Kikinzoku, Pt concentration 15 wt%, cobalt nitrate hexahydrate, ammonium dihydrogen phosphate, After adjusting each concentration in the plating bath, the pH of the plating bath was adjusted to 5 using a 10% aqueous ammonia solution.
Chloroplatinic acid 0.005 mol / liter Cobalt nitrate hexahydrate 0.005 mol / liter Ammonium dihydrogen phosphate 0.01 mol / liter Next, the plating bath was heated to 65 ° C., and a platinum plate was placed on the counter electrode. And plated for 30 minutes at a current density of 25 mA / cm 2 . The obtained electrodeposits were washed with water, the platinum content determined by the above method was shown in Table 1, and the XRD pattern was shown in FIG.

浸漬電位は、塩化白金酸溶液において、pH=5で、SCE基準1.10V、硝酸コバルト溶液で0.11Vであり、塩化白金酸の浸漬電位はSCE基準で0.50Vより貴であり、その差は0.5V以上であった。   In the chloroplatinic acid solution, the immersion potential is pH = 5, SCE standard 1.10V, and the cobalt nitrate solution is 0.11V, and the immersion potential of chloroplatinic acid is nobler than 0.50V in SCE standard. The difference was 0.5V or more.

尚、本発明の実施例および比較例における還元処理後の担持量は、10g/m〜15g/mの範囲であった。また、実施例1〜4のX線回折図は、白金と遷移金属の金属又は酸化物状態が検出されず、金属白金の主回折ピークである(111)面間隔が変化し、遷移金属と金属白金が固溶した白金合金が得られることが確認された。 In the examples and comparative examples of the present invention, the supported amount after the reduction treatment was in the range of 10 g / m 2 to 15 g / m 2 . In addition, in the X-ray diffractograms of Examples 1 to 4, the metal or oxide state of platinum and transition metal was not detected, the (111) plane spacing, which is the main diffraction peak of metal platinum, changed, and the transition metal and metal It was confirmed that a platinum alloy in which platinum was dissolved was obtained.

実施例1、2、3、4、比較例1で得られた水素発生用電極のX線回折図を示し、図中、X軸(横軸)は回折角(2θ、単位は「°」)であり、Y軸(縦軸)はcount(単位は任意)である。The X-ray diffraction diagram of the electrode for hydrogen generation obtained in Examples 1, 2, 3, 4 and Comparative Example 1 is shown, in which the X axis (horizontal axis) is the diffraction angle (2θ, the unit is “°”). Y axis (vertical axis) is count (unit is arbitrary).

符号の説明Explanation of symbols

1:基剤ニッケルのピーク
2:金属白金(111)のピーク
3:白金合金のピーク
1: Peak of base nickel 2: Peak of metallic platinum (111) 3: Peak of platinum alloy

Claims (3)

導電性基材上に、pH=5〜8における浸漬電位がSCE基準で0.5Vより卑な遷移金属化合物および白金化合物を溶解しているめっき浴を用いて、電気めっき法により担持することを特徴とする水素発生用電極の製造方法。 It is supported by electroplating on a conductive substrate using a plating bath in which a transition metal compound and a platinum compound in which the immersion potential at pH = 5 to 8 is lower than 0.5 V on the basis of SCE is dissolved. A method for producing a hydrogen generating electrode. 白金化合物がアンミン錯塩であることを特徴とする請求項1記載の水素発生用電極の製造方法。 The method for producing an electrode for hydrogen generation according to claim 1, wherein the platinum compound is an ammine complex salt. 白金化合物と遷移金属化合物とのpH=5〜8における浸漬電位の差が0.5V以下であることを特徴とする請求項1または請求項2記載の水素発生用電極の製造方法
The method for producing an electrode for hydrogen generation according to claim 1 or 2, wherein the difference in immersion potential between the platinum compound and the transition metal compound at pH = 5 to 8 is 0.5 V or less.
JP2004309244A 2004-10-25 2004-10-25 Method for manufacturing electrode for generating hydrogen Pending JP2006118023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309244A JP2006118023A (en) 2004-10-25 2004-10-25 Method for manufacturing electrode for generating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309244A JP2006118023A (en) 2004-10-25 2004-10-25 Method for manufacturing electrode for generating hydrogen

Publications (1)

Publication Number Publication Date
JP2006118023A true JP2006118023A (en) 2006-05-11

Family

ID=36536172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309244A Pending JP2006118023A (en) 2004-10-25 2004-10-25 Method for manufacturing electrode for generating hydrogen

Country Status (1)

Country Link
JP (1) JP2006118023A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975280A1 (en) 2007-03-23 2008-10-01 Permelec Electrode Ltd. Electrode for generation of hydrogen
EP2098616A1 (en) 2008-03-07 2009-09-09 Permelec Electrode Ltd. Cathode for hydrogen generation
CN104040032A (en) * 2012-01-12 2014-09-10 庄信万丰股份有限公司 Improvements in coating technology
US9133556B2 (en) 2010-02-10 2015-09-15 Permelec Electrode Ltd. Activated cathode for hydrogen evolution
JP2018123391A (en) * 2017-02-02 2018-08-09 田中貴金属工業株式会社 Electrode for generating hydrogen and production method thereof
JPWO2018151228A1 (en) * 2017-02-15 2019-02-21 旭化成株式会社 Cathode, method for producing the same, electrolytic cell using the same, and method for producing hydrogen
JP2019210541A (en) * 2018-03-20 2019-12-12 東ソー株式会社 Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975280A1 (en) 2007-03-23 2008-10-01 Permelec Electrode Ltd. Electrode for generation of hydrogen
EP2224040A1 (en) 2007-03-23 2010-09-01 Permelec Electrode Ltd. Electrode for generation of hydrogen
US8070924B2 (en) 2007-03-23 2011-12-06 Permelec Electrode Ltd. Electrode for generation of hydrogen
EP2098616A1 (en) 2008-03-07 2009-09-09 Permelec Electrode Ltd. Cathode for hydrogen generation
US7959774B2 (en) 2008-03-07 2011-06-14 Permelec Electrode Ltd. Cathode for hydrogen generation
US9133556B2 (en) 2010-02-10 2015-09-15 Permelec Electrode Ltd. Activated cathode for hydrogen evolution
CN104040032A (en) * 2012-01-12 2014-09-10 庄信万丰股份有限公司 Improvements in coating technology
JP2018123391A (en) * 2017-02-02 2018-08-09 田中貴金属工業株式会社 Electrode for generating hydrogen and production method thereof
JPWO2018151228A1 (en) * 2017-02-15 2019-02-21 旭化成株式会社 Cathode, method for producing the same, electrolytic cell using the same, and method for producing hydrogen
JP2019073806A (en) * 2017-02-15 2019-05-16 旭化成株式会社 Cathode, production method therefor, electrolytic bath employing the same, and hydrogen production method
JP7323299B2 (en) 2017-02-15 2023-08-08 旭化成株式会社 Cathode, method for producing the same, electrolytic cell using the same, and method for producing hydrogen
JP2019210541A (en) * 2018-03-20 2019-12-12 東ソー株式会社 Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen
JP7135596B2 (en) 2018-03-20 2022-09-13 東ソー株式会社 Method for producing hydrogen generating electrode and electrolysis method using hydrogen generating electrode
JP7388500B2 (en) 2018-03-20 2023-11-29 東ソー株式会社 Method for manufacturing hydrogen generation electrode and electrolysis method using hydrogen generation electrode

Similar Documents

Publication Publication Date Title
Rao et al. Chemical and electrochemical depositions of platinum group metals and their applications
JPS634920B2 (en)
JP4882218B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
Safizadeh et al. Study of the hydrogen evolution reaction on Fe–Mo–P coatings as cathodes for chlorate production
Vazquez-Arenas et al. Effect of electrolyte and agitation on the anomalous behavior and morphology of electrodeposited Co–Ni alloys
Bae et al. Effect of solution temperature on electrodeposition behavior of Zn–Ni alloy from alkaline zincate solution
JP2006118023A (en) Method for manufacturing electrode for generating hydrogen
Hrussanova et al. Electrodeposition of silver–tin alloys from pyrophosphate-cyanide electrolytes
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
JP2006118022A (en) Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JPS6223078B2 (en)
JP3319370B2 (en) Low hydrogen overvoltage cathode and its manufacturing method
WO2018224987A1 (en) A method of electroless deposition of platinum group metals and their alloys and a plating bath used therein
GB1134620A (en) Method of producing a platinum group metal or alloy electrode
JP4740528B2 (en) Nickel-molybdenum alloy plating solution, plating film and plated article
JPH0341559B2 (en)
Narasimhamurthy et al. Electrodeposition of Zn-Fe alloy from non-cyanide alkaline sulphate bath containing tartarate
WO2021132400A1 (en) Cathode for producing electrolytic manganese dioxide
Ohsaka et al. Electroplating of iridium–cobalt alloy
JPH10212592A (en) Platinum alloy plating bath
Skibińska et al. Electrocatalytical properties of palladium-decorated cobalt coatings obtained by electrodeposition and galvanic displacment
JP3161827U (en) Insoluble anode structure
JPH0260759B2 (en)
JP2899333B2 (en) Platinum alloy plating bath and platinum alloy plating method
JPH0633484B2 (en) Method for manufacturing cathode for hydrogen generation