JP2018123194A - Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package - Google Patents

Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package Download PDF

Info

Publication number
JP2018123194A
JP2018123194A JP2017014318A JP2017014318A JP2018123194A JP 2018123194 A JP2018123194 A JP 2018123194A JP 2017014318 A JP2017014318 A JP 2017014318A JP 2017014318 A JP2017014318 A JP 2017014318A JP 2018123194 A JP2018123194 A JP 2018123194A
Authority
JP
Japan
Prior art keywords
electronic component
resin composition
thermosetting resin
cured product
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017014318A
Other languages
Japanese (ja)
Inventor
雅義 上野
Masayoshi Ueno
雅義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2017014318A priority Critical patent/JP2018123194A/en
Publication of JP2018123194A publication Critical patent/JP2018123194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition for electronic component sealing, which can achieve both of high Tg and low water absorption, and provide a cured product, an electronic component sealing material, and an electronic component package using the same.SOLUTION: A thermosetting resin composition contains a bismaleimide compound represented by the formula (1) (A) and a curing accelerator (B).SELECTED DRAWING: None

Description

本発明は、熱硬化性樹脂組成物、硬化物、電子部品封止材、及び電子部品パッケージに関する。   The present invention relates to a thermosetting resin composition, a cured product, an electronic component sealing material, and an electronic component package.

電子部品封止材には、注型に適した粘度であること、保存安定性が高いこと、及び十分な硬化速度であることが要求される。また、注型後に硬化したものは、耐熱性、低吸湿性であること等が要求されていた。   The electronic component sealing material is required to have a viscosity suitable for casting, a high storage stability, and a sufficient curing rate. Moreover, what hardened | cured after casting was requested | required that it is heat resistance, low hygroscopicity.

しかし、半導体素子や他の電子部品が高密度化及び小型化されていくにつれ、素子の駆動温度が高くなり、封止樹脂(硬化物)として、より長期の耐熱性に優れ、かつ、加熱に伴い熱膨張量が低い事が要求されている。また、近時、半導体やそれを含むパッケージの反りを抑制する(低反りを達成する)ことが重要な課題となっており、封止樹脂(硬化物)として、高いガラス転移温度(高Tg)を有する樹脂組成物を用いたものも要求されている。それに応えるべく、耐熱性に比較的劣るエポキシ樹脂に代えて、エポキシ樹脂よりも耐熱性に優れた熱硬化性樹脂であるマレイミド樹脂を用いた封止用樹脂組成物が提案されている(例えば、特許文献1参照)。   However, as semiconductor elements and other electronic components become denser and smaller, the driving temperature of the elements increases, and as a sealing resin (cured product), it has superior long-term heat resistance and is suitable for heating. Along with this, it is required that the amount of thermal expansion is low. In addition, recently, it has become an important issue to suppress warpage of a semiconductor and a package including the semiconductor (to achieve low warpage), and as a sealing resin (cured product), a high glass transition temperature (high Tg). What uses the resin composition which has this is also requested | required. In response to this, a sealing resin composition using a maleimide resin, which is a thermosetting resin superior in heat resistance to an epoxy resin, instead of an epoxy resin relatively inferior in heat resistance has been proposed (for example, Patent Document 1).

特開平7−138483号公報Japanese Patent Laid-Open No. 7-138483

しかし、一般的に、芳香族マレイミド樹脂を用いて得られる硬化物はエポキシ樹脂よりも耐熱性に優れるものの、吸水率が高いといった問題がある。   However, in general, a cured product obtained by using an aromatic maleimide resin has a problem of high water absorption although it has better heat resistance than an epoxy resin.

本発明は、かかる問題点に鑑みてなされたものであり、高Tg及び低吸水性の両方を実現することができる電子部品封止用の熱硬化性樹脂組成物、硬化物、電子部品封止材、及びそれらを用いた電子部品パッケージを提供することを目的とする。   The present invention has been made in view of such problems, and is capable of realizing both high Tg and low water absorption, a thermosetting resin composition for electronic component sealing, a cured product, and electronic component sealing. It is an object to provide a material and an electronic component package using the same.

本発明者らは上記課題を解決するために鋭意検討した結果、特定のビスマレイミド化合物を含む熱硬化性樹脂組成物を用いることにより、その硬化物のガラス転移温度(Tg)を高めることができ、しかも、吸水率を低くすることができること、すなわち、高Tg及び低吸水性の両方を実現可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors can increase the glass transition temperature (Tg) of the cured product by using a thermosetting resin composition containing a specific bismaleimide compound. In addition, the inventors have found that the water absorption rate can be lowered, that is, that both high Tg and low water absorption can be realized, and the present invention has been completed.

すなわち、本発明は以下のとおりである。
〔1〕
下記式(1)で表されるビスマレイミド化合物(A)と、
硬化促進剤(B)と、
を含有する熱硬化性樹脂組成物。
That is, the present invention is as follows.
[1]
A bismaleimide compound (A) represented by the following formula (1);
A curing accelerator (B);
Containing thermosetting resin composition.

〔2〕
充填材(C)を更に含有する、
〔1〕に記載の熱硬化性樹脂組成物。
[2]
Further containing a filler (C),
[1] The thermosetting resin composition according to [1].

〔3〕
〔1〕又は〔2〕に記載の熱硬化性樹脂組成物を硬化して得られる、硬化物。
[3]
A cured product obtained by curing the thermosetting resin composition according to [1] or [2].

〔4〕
〔1〕又は〔2〕に記載の熱硬化性樹脂組成物を用いてなる、電子部品封止材。
[4]
An electronic component encapsulating material comprising the thermosetting resin composition according to [1] or [2].

〔5〕
電子部品と、
前記電子部品を封止する〔3〕に記載の硬化物又は〔4〕に記載の電子部品封止材と、を備える電子部品パッケージ。
[5]
Electronic components,
An electronic component package comprising: the cured product according to [3] or the electronic component sealing material according to [4] that seals the electronic component.

本発明によれば、高Tg及び低吸水性の両方を実現することができる電子部品封止用の熱硬化性樹脂組成物、硬化物、電子部品封止材、及びそれらを用いた電子部品パッケージを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermosetting resin composition for electronic component sealing which can implement | achieve both high Tg and low water absorption, hardened | cured material, an electronic component sealing material, and an electronic component package using them Can be provided.

以下、本発明の実施の形態(以下「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、熱硬化性樹脂組成物における充填材(C)を除いた成分をいい、「樹脂固形分100質量部」とは、熱硬化性樹脂組成物における充填材(C)を除いた成分の合計が100質量部であることをいうものとする。   Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail. However, the present invention is not limited thereto, and various modifications can be made without departing from the scope of the present invention. is there. In the present embodiment, “resin solid content” means a component excluding the filler (C) in the thermosetting resin composition unless otherwise specified, and “resin solid content 100 parts by mass”. The sum of the components excluding the filler (C) in the thermosetting resin composition is 100 parts by mass.

〔熱硬化性樹脂組成物〕
本実施形態の熱硬化性樹脂組成物は、ビスマレイミド化合物(A)と、硬化促進剤(B)とを含有する。
[Thermosetting resin composition]
The thermosetting resin composition of this embodiment contains a bismaleimide compound (A) and a curing accelerator (B).

〔ビスマレイミド化合物(A)〕
本実施形態で使用するビスマレイミド化合物(A)は、下記式(1)で表される1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミドである。
[Bismaleimide compound (A)]
The bismaleimide compound (A) used in this embodiment is a bismaleimide of 1,3-bis (aminomethyl) cyclohexane represented by the following formula (1).

このビスマレイミド化合物(A)は、例えば特開平9−249645号公報に記載された方法により合成することができる。すなわち、具体的には、かかるビスマレイミド化合物(A)は、1,3−ビス(アミノメチル)シクロヘキサンと無水マレイン酸とを反応させることによって製造することができる。   This bismaleimide compound (A) can be synthesized, for example, by the method described in JP-A-9-249645. Specifically, such bismaleimide compound (A) can be produced by reacting 1,3-bis (aminomethyl) cyclohexane and maleic anhydride.

この反応では、一般に 1,3−ビス(アミノメチル)シクロヘキサンに対して2倍モル量の無水マレイン酸を用い、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類又はジメチルホルムアミド、ジメチルアセトアミド等の非プロトン性極性溶媒等を反応溶媒として、約0〜15℃の反応温度で行われる第一段階の反応がまず行われ、中間体として所定のビスマレアミック酸を得る。   In this reaction, generally, maleic anhydride is used in an amount twice as much as 1,3-bis (aminomethyl) cyclohexane, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, or aprotic such as dimethylformamide and dimethylacetamide are used. A first stage reaction performed at a reaction temperature of about 0 to 15 ° C. using a polar solvent as a reaction solvent is first performed to obtain a predetermined bis-maleamic acid as an intermediate.

第二段階の反応は、一般には形成されたビスマレアミック酸を特に分離することなく、その反応混合物にトリエチルアミン等の塩基性触媒をビスマレアミック酸に対して約0.01〜0.1となるモル比で加え、さらに、無水酢酸等の脱水剤をビスマレアミック酸に対して約1〜3となるモル比で加え、約15〜50℃の反応温度で約1〜3時間程度反応させることによって行われ、環化反応生成物たる上記式(1)で表されるビスマレイミド化合物(A)を得る。   In the second stage reaction, generally, the formed bis-maleamic acid is not particularly separated, and a basic catalyst such as triethylamine is added to the reaction mixture at about 0.01 to 0.1 with respect to the bis-maleamic acid. Further, a dehydrating agent such as acetic anhydride is added at a molar ratio of about 1 to 3 with respect to the bis-maleamic acid, and the reaction is performed at a reaction temperature of about 15 to 50 ° C. for about 1 to 3 hours. The bismaleimide compound (A) represented by the above formula (1) as a cyclization reaction product is obtained.

〔硬化促進剤(B)〕
硬化促進剤(B)としては、特に限定されず、例えば、イミダゾール類等を含むアミン系化合物(アミン系硬化促進剤);酸無水物;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ−tert−ブチル−ジ−パーフタレート等の有機過酸化物;アゾビスニトリル等のアゾ化合物;フェノール、キシレノール、クレゾール、レゾルシン、カテコール等のフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄等の有機金属塩;これら有機金属塩をフェノール、ビスフェノール等の水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウム等の無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド等の有機錫化合物等が挙げられる。
[Curing accelerator (B)]
The curing accelerator (B) is not particularly limited, and examples thereof include amine compounds including imidazoles (amine curing accelerators); acid anhydrides; benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachloro Organic peroxides such as benzoyl peroxide, di-tert-butyl-di-perphthalate; azo compounds such as azobisnitrile; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, lead stearate Organic metal salts such as zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, and iron acetylacetone; these organic metal salts are dissolved in hydroxyl-containing compounds such as phenol and bisphenol. Become; tin chloride, zinc chloride, salt Inorganic metal salts such as aluminum; dioctyltin oxide, other alkyltin, organotin compounds such as alkyl tin oxide.

これらのなかでも、アミン系硬化促進剤がより好ましい。アミン系硬化促進剤としては、特に限定されず、例えば、エチレンジアミン等の炭素数2〜20の直鎖脂肪族ジアミン;メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、メタキシレンジアミン、1、3−ジアミノメチルシクロヘキサン、1,4−ジアミノメチルシクロヘキサン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジシクロヘキサン、ビス(4−アミノフェニル)フェニルメタン、1,5−ジアミノナフタレン、1,1−ビス(4−アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミノ類;2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、2,4,5−トリフェニルイミダゾール等のイミダゾール類;N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、N,N−ジメチルトルイジン、N,N−ジメチルピリジン、2−N−エチルアニリノエタノール、トリ−n−ブチルアミン、ピリジン、キノリン、N−メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、N−メチルピペリジン等の第3級アミン類が挙げられる。これらのなかでは、保存安定性の観点から、イミダゾール類が特に好ましい。   Among these, amine-based curing accelerators are more preferable. It does not specifically limit as an amine type hardening accelerator, For example, C2-C20 linear aliphatic diamine, such as ethylenediamine; Metaphenylenediamine, paraphenylenediamine, paraxylenediamine, metaxylenediamine, 1, 3- Diaminomethylcyclohexane, 1,4-diaminomethylcyclohexane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodicyclohexane, bis (4- Aminos such as aminophenyl) phenylmethane, 1,5-diaminonaphthalene, 1,1-bis (4-aminophenyl) cyclohexane, dicyanodiamide; 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1 -Benzyl-2-phenyl Imidazoles such as midazole and 2,4,5-triphenylimidazole; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-dimethylpyridine, 2-N-ethyl Tertiary amines such as anilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N-methylpiperidine and the like can be mentioned. Among these, imidazoles are particularly preferable from the viewpoint of storage stability.

〔充填材(C)〕
本実施形態の熱硬化性樹脂組成物は、充填材(C)を更に含んでもよい。充填材(C)としては、特に限定されず、例えば、無機充填材及び有機充填材が挙げられる。充填材(C)は、1種を単独で用いても、2種以上を併用してもよい。
[Filler (C)]
The thermosetting resin composition of the present embodiment may further include a filler (C). It does not specifically limit as a filler (C), For example, an inorganic filler and an organic filler are mentioned. A filler (C) may be used individually by 1 type, or may use 2 or more types together.

無機充填材としては、特に限定されず、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類;ホワイトカーボン等のケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム等の窒化物;硫酸バリウム等の金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛等の亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、Eガラス、Aガラス、NEガラス、Cガラス、Lガラス、Dガラス、Sガラス、MガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラス等が挙げられる。   The inorganic filler is not particularly limited, and examples thereof include silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, magnesium oxide, Metal oxides such as zirconium oxide; nitrides such as boron nitride, aggregated boron nitride, silicon nitride and aluminum nitride; metal sulfates such as barium sulfate; aluminum hydroxide and aluminum hydroxide heat-treated products (heat treatment of aluminum hydroxide) In addition, metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc compounds such as zinc borate and zinc stannate; alumina, Clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, ma F, E glass, A glass, NE glass, C glass, L glass, D glass, S glass, M glass G20, short glass fibers (glass fine powder such as E glass, T glass, D glass, S glass, Q glass, etc. Etc.), hollow glass, spherical glass and the like.

また、有機充填材としては、特に限定されず、例えば、スチレン型パウダー、ブタジエン型パウダー、アクリル型パウダー等のゴムパウダー;コアシェル型ゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダー等が挙げられる。   The organic filler is not particularly limited, and examples thereof include rubber powders such as styrene type powder, butadiene type powder, and acrylic type powder; core shell type rubber powder; silicone resin powder; silicone rubber powder; It is done.

このなかでも、熱膨張率や耐熱性の観点から、シリカ類が好ましい。   Among these, silicas are preferable from the viewpoint of thermal expansion coefficient and heat resistance.

充填材(C)の含有量は、樹脂固形分100質量部に対して、好ましくは50〜1600質量部であり、より好ましくは60〜1200質量部であり、更に好ましくは70〜1000質量部であり、特に好ましくは80〜800質量部である。充填材(C)の含有量が50質量部以上であることにより、熱膨張係数がより低下する傾向にある。   The content of the filler (C) is preferably 50 to 1600 parts by mass, more preferably 60 to 1200 parts by mass, and still more preferably 70 to 1000 parts by mass with respect to 100 parts by mass of the resin solid content. Yes, particularly preferably 80 to 800 parts by mass. When the content of the filler (C) is 50 parts by mass or more, the thermal expansion coefficient tends to be further reduced.

〔シランカップリング剤〕
本実施形態の熱硬化性樹脂組成物は、シランカップリング剤を更に含んでもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されず、例えば、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノシラン系化合物;γ−グリシドキシプロピルトリメトキシシラン等のエポキシシラン系化合物;γ−アクリロキシプロピルトリメトキシシラン等のアクリルシラン系化合物;N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系化合物;フェニルシラン系化合物等が挙げられる。
〔Silane coupling agent〕
The thermosetting resin composition of this embodiment may further contain a silane coupling agent. The silane coupling agent is not particularly limited as long as it is a silane coupling agent that is generally used for inorganic surface treatment. For example, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ. Aminosilane compounds such as aminopropyltrimethoxysilane; Epoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane; Acrylic silane compounds such as γ-acryloxypropyltrimethoxysilane; N-β- (N- Cationic silane compounds such as vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride; phenylsilane compounds and the like.

シランカップリング剤は、1種を単独で用いても、2種以上を併用してもよい。また、表面処理に用いるシランカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。かかるシランカップリング剤を用いることにより、充填材(C)と、ビスマレイミド化合物(A)及び/又は他の成分との結合をより強化することができる。   A silane coupling agent may be used individually by 1 type, or may use 2 or more types together. Further, the amount of the silane coupling agent used for the surface treatment and the surface treatment method are not particularly limited. By using such a silane coupling agent, the bond between the filler (C) and the bismaleimide compound (A) and / or other components can be further strengthened.

〔その他の成分〕
本実施形態の熱硬化性樹脂組成物は、上記成分の他、必要に応じて、他の成分を含んでいてもよい。他の成分としては、特に限定されず、例えば、カーボンブラックをはじめとする顔料等の添加剤が挙げられる。
[Other ingredients]
The thermosetting resin composition of the present embodiment may contain other components as necessary in addition to the above components. Other components are not particularly limited, and examples include additives such as pigments including carbon black.

〔熱硬化性樹脂組成物の製造方法〕
本実施形態の熱硬化性樹脂組成物の製造方法は、特に限定されず、上述の各成分を、公知の手段で混合することにより製造することができる。具体的には、例えば、ディゾルバー等のミキサーにて混合し、ロール、ニーダー又は押出機等の混練機で溶融混練することにより製造することができる。また、必要に応じて加熱しながら、ディゾルバー等のミキサーにて混合してもよい。この場合、加熱温度はビスマレイミド化合物(A)と硬化促進剤(B)を混合することができる温度であればよく、例えば、60〜100℃が好ましい。得られた熱硬化性樹脂組成物は封止用樹脂組成物として用いることができる。
[Method for producing thermosetting resin composition]
The manufacturing method of the thermosetting resin composition of this embodiment is not specifically limited, It can manufacture by mixing each above-mentioned component by a well-known means. Specifically, it can be produced, for example, by mixing with a mixer such as a dissolver and melt-kneading with a kneader such as a roll, kneader or extruder. Moreover, you may mix with mixers, such as a dissolver, heating as needed. In this case, heating temperature should just be a temperature which can mix a bismaleimide compound (A) and a hardening accelerator (B), for example, 60-100 degreeC is preferable. The obtained thermosetting resin composition can be used as a sealing resin composition.

〔用途:硬化物、電子部品封止材、及び電子部品パッケージ〕
本実施形態の熱硬化性樹脂組成物は、電子部品封止用の硬化物又は電子部品封止材として好適に用いることができる。
[Usage: Cured product, electronic component sealing material, and electronic component package]
The thermosetting resin composition of this embodiment can be used suitably as a hardened | cured material for electronic component sealing, or an electronic component sealing material.

本実施形態の熱硬化性樹脂組成物の硬化物を作製する場合、トランスファー成形、シート成形、コンプレッション成形、プレス成形等の成形法を用いることができる。この場合の熱硬化性樹脂組成物の硬化及び成形条件としては、例えば温度100〜240℃、及び反応時間1〜240分の条件で行うことが好ましい。また、必要に応じてポストキュアをすることもでき、そのポストキュアを温度100〜260℃、及び反応時間1〜240分の条件で行うことが好ましい。   When producing the cured product of the thermosetting resin composition of the present embodiment, molding methods such as transfer molding, sheet molding, compression molding, and press molding can be used. The curing and molding conditions of the thermosetting resin composition in this case are preferably performed under conditions of, for example, a temperature of 100 to 240 ° C. and a reaction time of 1 to 240 minutes. Moreover, it can also post-cure as needed and it is preferable to perform the post-cure on the conditions of temperature 100-260 degreeC, and reaction time 1-240 minutes.

また、電子部品封止材は、本実施形態の熱硬化性樹脂組成物を含む組成にて公知の手段で混合することにより作製することにより得られる。具体的には、例えば、熱ロール、ニーダー等を用いて溶融混合処理を行い、冷却固化させ、適当な大きさに粉砕した後に、上述した硬化物の成形方法によって成形し、電子部品封止材として利用することができる。封止方法としては、トランスファー成形等の公知の方法により行うことができる。   Moreover, an electronic component sealing material is obtained by mixing by a well-known means with the composition containing the thermosetting resin composition of this embodiment. Specifically, for example, a melt mixing process is performed using a hot roll, a kneader, etc., solidified by cooling, pulverized to an appropriate size, and then molded by the above-described method of molding a cured product. Can be used as As a sealing method, it can carry out by well-known methods, such as transfer molding.

こうして得られる硬化物又は電子部品封止材を用いて、例えば基板上に固定配置された半導体素子等の電子部品を封止することにより、本実施形態の電子部品パッケージを作製することができる。封止成形条件は特に限定されないが、例えば圧縮成形により行うことができる。この場合、高Tg化を達成するために、圧縮成形は100℃以上180℃以下の温度条件により行うことがより好ましく、圧力に関しては注型可能であれば特に限定されない。   The electronic component package of the present embodiment can be manufactured by sealing the electronic component such as a semiconductor element fixedly arranged on the substrate using the cured product or the electronic component sealing material thus obtained. The sealing molding conditions are not particularly limited, but can be performed by, for example, compression molding. In this case, in order to achieve a high Tg, the compression molding is more preferably performed under a temperature condition of 100 ° C. or higher and 180 ° C. or lower, and the pressure is not particularly limited as long as casting is possible.

以下、本発明を実施例及び比較例を用いてより具体的に説明する。ただし、本発明は、以下の実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

(合成例1)1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミド化合物
100ml三口フラスコに、無水マレイン酸(8.26g)、及びジメチルホルムアミド(30g)を装入した後、氷浴にて冷却し、1,3−ビス(アミノメチル)シクロヘキサン(5.67g)とジメチルホルムアミド(30g)の溶液を滴下した。滴下完了後、80℃/3hrの撹拌をした溶液を水/メタノール=1/1の溶液(1L)に落として得られたものを回収し、それをメタノールにて再結晶することにより、上記式(1)で表される1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミド化合物(A)を得た。
(Synthesis Example 1) 1,3-bis (aminomethyl) cyclohexane bismaleimide compound A 100 ml three-necked flask was charged with maleic anhydride (8.26 g) and dimethylformamide (30 g), and then cooled in an ice bath. Then, a solution of 1,3-bis (aminomethyl) cyclohexane (5.67 g) and dimethylformamide (30 g) was added dropwise. After completion of the dropwise addition, the solution obtained by dropping the stirred solution at 80 ° C./3 hr into a solution of water / methanol = 1/1 (1 L) was recovered and recrystallized with methanol to obtain the above formula. A bismaleimide compound (A) of 1,3-bis (aminomethyl) cyclohexane represented by (1) was obtained.

(実施例1)
合成例1で得た上記式(1)で表される1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミド化合物(A)(マレイミド当量151g/eq.)100質量部を加熱溶解させ、これに硬化促進剤(B)として2−エチル−4−メチルイミダゾール(和光純薬工業(株)製)1.0質量部を添加したものを、縦10cm×横10cm×厚み1mmの金型に注型し、200℃にて1時間加熱して硬化物を得た。さらに、その硬化物に、240℃にて2時間追加加熱するポストキュア処理を施して評価サンプルを得た。
Example 1
100 parts by mass of the bismaleimide compound (A) (maleimide equivalent 151 g / eq.) Of 1,3-bis (aminomethyl) cyclohexane represented by the above formula (1) obtained in Synthesis Example 1 was dissolved by heating. What added 1.0 mass part of 2-ethyl-4-methylimidazole (made by Wako Pure Chemical Industries Ltd.) as a hardening accelerator (B) was cast in the metal mold | die of length 10cm x width 10cm x thickness 1mm. And heated at 200 ° C. for 1 hour to obtain a cured product. Further, the cured product was subjected to a post-cure treatment for additional heating at 240 ° C. for 2 hours to obtain an evaluation sample.

(比較例1)
1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミド化合物(A)に代えて、芳香族マレイミド化合物であるビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン(ケイ・アイ化成(株)製、BMI−70、マレイミド当量179g/eq.)を用いたこと以外は、実施例1と同様にして評価サンプルを得た。
(Comparative Example 1)
Instead of the bismaleimide compound (A) of 1,3-bis (aminomethyl) cyclohexane, the aromatic maleimide compound bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (Kay-Ii Kasei) An evaluation sample was obtained in the same manner as in Example 1 except that BMI-70, maleimide equivalent 179 g / eq.) Was used.

(比較例2)
1,3−ビス(アミノメチル)シクロヘキサンのビスマレイミド化合物(A)に代えて、フェノールノボラック型樹脂(群栄化学工業(株)製、PS4271)35.7質量部、及び、ビスフェノールA型エポキシ樹脂(エピコート828、三菱化学(株)製、エポキシ当量189g/eq.)64.3質量部を用いたこと、並びに、硬化促進剤(B)としての2−エチル−4−メチルイミダゾール(和光純薬工業(株)製)の配合量を0.2質量部としたこと以外は、実施例1と同様にして評価サンプルを得た。
(Comparative Example 2)
In place of the bismaleimide compound (A) of 1,3-bis (aminomethyl) cyclohexane, 35.7 parts by mass of a phenol novolac resin (manufactured by Gunei Chemical Industry Co., Ltd., PS4271), and a bisphenol A epoxy resin (Epicoat 828, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 189 g / eq.) 64.3 parts by mass, and 2-ethyl-4-methylimidazole (Wako Pure Chemical) as a curing accelerator (B) An evaluation sample was obtained in the same manner as in Example 1 except that the blending amount of Kogyo Co., Ltd. was 0.2 parts by mass.

〔特性評価〕
実施例1並びに比較例1及び2で得られた評価サンプルを用い、以下に示す方法により、ガラス転移温度(Tg)及び吸水率を測定した。結果をまとめて表1に示す。
(Characteristic evaluation)
Using the evaluation samples obtained in Example 1 and Comparative Examples 1 and 2, the glass transition temperature (Tg) and the water absorption rate were measured by the following methods. The results are summarized in Table 1.

(ガラス転移温度(Tg))
実施例1並びに比較例1及び2で得られた評価サンプルについて動的粘弾性分析装置(TAインスツルメント製、Discovery HR−2 レオメータシステム)を用いたDMA法により、ガラス転移温度(Tg)を測定した(n=3の平均値)。この際の測定温度条件としては、室温から200℃まで10℃/分の速度で昇温し、測定周波数を10Hzとした。
(Glass transition temperature (Tg))
For the evaluation samples obtained in Example 1 and Comparative Examples 1 and 2, the glass transition temperature (Tg) was determined by the DMA method using a dynamic viscoelasticity analyzer (manufactured by TA Instruments, Discovery HR-2 rheometer system). Measured (average value of n = 3). As measurement temperature conditions at this time, the temperature was raised from room temperature to 200 ° C. at a rate of 10 ° C./min, and the measurement frequency was set to 10 Hz.

(吸水率)
実施例1並びに比較例1及び2で得られた評価サンプルを、縦1cm×横2cm×厚み1mmに成形加工し、その加工サンプルを、加熱真空乾燥にて温度110℃で12時間加熱乾燥し、その重量を測定して初期重量(W1)とした。次に、その加工サンプルを、(株)平山製作所製のPCT装置(Capachy)を用いて温度121℃及び湿度100%RHで5時間の加熱吸湿処理を行い、その吸湿後の重量(W2)を測定した。それらの数値から下記式を用いて、吸水率(wt%)を算出した。
吸水率(wt%)=(W2−W1)/W1×100
(Water absorption rate)
The evaluation samples obtained in Example 1 and Comparative Examples 1 and 2 were molded into a length of 1 cm × width of 2 cm × thickness of 1 mm, and the processed samples were heat-dried at a temperature of 110 ° C. for 12 hours by heating vacuum drying, The weight was measured to obtain the initial weight (W1). Next, the processed sample was subjected to a heat absorption treatment for 5 hours at a temperature of 121 ° C. and a humidity of 100% RH using a PCT device (Capachy) manufactured by Hirayama Seisakusho, and the weight (W2) after the moisture absorption was It was measured. The water absorption (wt%) was calculated from the numerical values using the following formula.
Water absorption (wt%) = (W2−W1) / W1 × 100

本発明の熱硬化性樹脂組成物は、電子部品封止用の硬化物、電子部品封止材等の材料として、産業上の利用可能性を有する。   The thermosetting resin composition of the present invention has industrial applicability as a material such as a cured product for encapsulating electronic components and an electronic component encapsulating material.

Claims (5)

下記式(1)で表されるビスマレイミド化合物(A)と、
硬化促進剤(B)と、
を含有する熱硬化性樹脂組成物。
A bismaleimide compound (A) represented by the following formula (1);
A curing accelerator (B);
Containing thermosetting resin composition.
充填材(C)を更に含有する、
請求項1に記載の熱硬化性樹脂組成物。
Further containing a filler (C),
The thermosetting resin composition according to claim 1.
請求項1又は2に記載の熱硬化性樹脂組成物を硬化して得られる、硬化物。   A cured product obtained by curing the thermosetting resin composition according to claim 1. 請求項1又は2に記載の熱硬化性樹脂組成物を用いてなる、電子部品封止材。   The electronic component sealing material which uses the thermosetting resin composition of Claim 1 or 2. 電子部品と、
前記電子部品を封止する請求項3に記載の硬化物又は請求項4に記載の電子部品封止材と、
を備える電子部品パッケージ。
Electronic components,
The cured product according to claim 3 or the electronic component sealing material according to claim 4, wherein the electronic component is sealed.
Electronic component package comprising.
JP2017014318A 2017-01-30 2017-01-30 Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package Pending JP2018123194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014318A JP2018123194A (en) 2017-01-30 2017-01-30 Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014318A JP2018123194A (en) 2017-01-30 2017-01-30 Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package

Publications (1)

Publication Number Publication Date
JP2018123194A true JP2018123194A (en) 2018-08-09

Family

ID=63108876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014318A Pending JP2018123194A (en) 2017-01-30 2017-01-30 Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package

Country Status (1)

Country Link
JP (1) JP2018123194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077849A (en) * 2020-11-12 2022-05-24 信越化学工業株式会社 Thermosetting maleimide resin composition, and uncured resin film and cured resin film comprising the resin composition
JP2022077848A (en) * 2020-11-12 2022-05-24 信越化学工業株式会社 Thermosetting maleimide resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653365A (en) * 1992-06-04 1994-02-25 Nitto Denko Corp Semiconductor device
JPH09249645A (en) * 1996-03-14 1997-09-22 Nippon Mektron Ltd Bismaleimide compound and its production
JP2011219539A (en) * 2010-04-05 2011-11-04 Mitsui Chemicals Inc Bisimide compound, bisamic acid compound and method for producing those
JP2014207304A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Unsaturated polyester resin composition for light reflector and light reflector for light-emitting device
JP2016088972A (en) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 Resin composition for encapsulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653365A (en) * 1992-06-04 1994-02-25 Nitto Denko Corp Semiconductor device
JPH09249645A (en) * 1996-03-14 1997-09-22 Nippon Mektron Ltd Bismaleimide compound and its production
JP2011219539A (en) * 2010-04-05 2011-11-04 Mitsui Chemicals Inc Bisimide compound, bisamic acid compound and method for producing those
JP2014207304A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Unsaturated polyester resin composition for light reflector and light reflector for light-emitting device
JP2016088972A (en) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 Resin composition for encapsulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077849A (en) * 2020-11-12 2022-05-24 信越化学工業株式会社 Thermosetting maleimide resin composition, and uncured resin film and cured resin film comprising the resin composition
JP2022077848A (en) * 2020-11-12 2022-05-24 信越化学工業株式会社 Thermosetting maleimide resin composition
JP7330648B2 (en) 2020-11-12 2023-08-22 信越化学工業株式会社 Thermosetting maleimide resin composition, and uncured resin film and cured resin film made of the resin composition
JP7387236B2 (en) 2020-11-12 2023-11-28 信越化学工業株式会社 Thermosetting maleimide resin composition

Similar Documents

Publication Publication Date Title
JP4793565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPWO2012057144A1 (en) Cyanate ester compound, curable resin composition containing cyanate ester compound, and cured product thereof
US20140242394A1 (en) Curable resin composition and method for manufacturing cured product using the same
TWI644981B (en) Curable resin composition and cured product thereof, and semiconductor device using the same
WO2009150983A1 (en) Manufacturing method for phenolic novolac resin and resin‑coated sand
JP2018123194A (en) Thermosetting resin composition, cured product, electronic component sealing material, and electronic component package
JP2006233016A (en) Epoxy resin composition and semiconductor device
KR20170000066A (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
JPH07300491A (en) Silane coupling agent composition
JPS62280215A (en) Epoxy resin composition
JPS63226951A (en) Resin sealed semiconductor device
CN112745483A (en) Epoxy resin curing agent, preparation method thereof, epoxy resin composition and application
JPS59197421A (en) Curable epoxy resin composition
JPS58215452A (en) Molding material for use in sealing
KR101845134B1 (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
JP7367766B2 (en) Thermosetting resin composition, cured product thereof, and structure containing the cured product
JPS6069129A (en) Epoxy resin composition
JP3450260B2 (en) Epoxy resin composition and coil casting
TWI707883B (en) Polyalkynes and its preparation method and use
JPS58219221A (en) Molding material for sealing
JPH04325540A (en) Resin composition for semiconductor sealing
JP2017107961A (en) Method of manufacturing electronic/electrical component
JPS629250B2 (en)
JPS58219222A (en) Molding material for sealing
CN117700937A (en) Preparation method of high-heat-conductivity epoxy composite insulating material based on diamond filling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210127