JP2018119626A - Heat insulation structure for moss type liquefied gas storage tank, liquefied gas carrying vessel, and method for constructing heat insulation structure for moss type liquefied gas storage tank - Google Patents

Heat insulation structure for moss type liquefied gas storage tank, liquefied gas carrying vessel, and method for constructing heat insulation structure for moss type liquefied gas storage tank Download PDF

Info

Publication number
JP2018119626A
JP2018119626A JP2017012099A JP2017012099A JP2018119626A JP 2018119626 A JP2018119626 A JP 2018119626A JP 2017012099 A JP2017012099 A JP 2017012099A JP 2017012099 A JP2017012099 A JP 2017012099A JP 2018119626 A JP2018119626 A JP 2018119626A
Authority
JP
Japan
Prior art keywords
liquefied gas
radiant heat
protective cover
gas storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012099A
Other languages
Japanese (ja)
Other versions
JP6838977B2 (en
Inventor
健太郎 四方
Kentaro Yomo
健太郎 四方
川水 努
Tsutomu Kawamizu
努 川水
孝史 岡藤
Takashi Okafuji
孝史 岡藤
篤 藤井
Atsushi Fujii
篤 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017012099A priority Critical patent/JP6838977B2/en
Publication of JP2018119626A publication Critical patent/JP2018119626A/en
Application granted granted Critical
Publication of JP6838977B2 publication Critical patent/JP6838977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat insulation performance of a moss type liquefied gas storage tank including a protection cover by simple and low-cost means and avoid an increase in size of a storage tank.SOLUTION: A heat insulation structure for a moss type liquefied gas storage tank includes a protection cover for covering a surface of a tank outer wall. The heat insulation structure includes at least one radiant heat reflection plate that is provided between the tank outer wall and the protection cover and disposed while having a clearance between the tank outer wall and the protection cover.SELECTED DRAWING: Figure 2

Description

本開示は、モス型液化ガス貯蔵タンクの断熱構造、液化ガス運搬船及びモス型液化ガス貯蔵タンクの断熱構造の施工方法に関する。   The present disclosure relates to a heat insulating structure of a moss-type liquefied gas storage tank, a liquefied gas carrier ship, and a construction method of the heat-insulating structure of a moss-type liquefied gas storage tank.

LNG(液化天然ガス)やLPG(液化石油ガス)等の低温液化ガスを貯蔵するタンクは、タンクへの入熱量を抑制するため、タンク外壁に断熱材が被覆される。近年、ボイルオフガス(BOG)の発生率を減らすことが求められ、液化ガス貯蔵タンクの防熱性能の要求がさらに高まっている。しかし、液化ガス貯蔵タンクを搭載した液化ガス運搬船は、船体抵抗が増加するなどの理由により、船幅に制限があるため、断熱材の増厚による対策には限度がある。   In a tank that stores low-temperature liquefied gas such as LNG (liquefied natural gas) or LPG (liquefied petroleum gas), the outer wall of the tank is covered with a heat insulating material in order to suppress heat input to the tank. In recent years, it has been demanded to reduce the generation rate of boil-off gas (BOG), and the demand for heat insulation performance of the liquefied gas storage tank is further increased. However, a liquefied gas carrier ship equipped with a liquefied gas storage tank is limited in the width of the ship due to reasons such as increased hull resistance, so there are limits to measures by increasing the thickness of the heat insulating material.

他方、球形のタンクを備えるモス型液化ガス貯蔵タンクの外壁を保護カバーで覆う保護手段が採用されている。保護カバーの表面には遮熱塗料などが塗布されるが、遮熱塗料だけでは太陽光などの輻射熱を完全に防いでBOGを低下させることはできない。
特許文献1には、モス型液化ガス貯蔵タンクにおいて、上記保護カバーとタンク外壁との間に断熱材を設けた防熱手段が提案されている。
On the other hand, protective means for covering the outer wall of the moss type liquefied gas storage tank having a spherical tank with a protective cover is employed. Thermal barrier paint or the like is applied to the surface of the protective cover, but radiant heat such as sunlight can be completely prevented and BOG cannot be lowered only by the thermal barrier paint.
Patent Document 1 proposes a heat insulating means in which a heat insulating material is provided between the protective cover and the tank outer wall in a moss type liquefied gas storage tank.

実開昭61−113291号の明細書及び図面Specification and drawings of Japanese Utility Model Publication No. 61-113291

保護カバーを備えるモス型液化ガス貯蔵タンクの場合、特許文献1に開示された断熱構造も含めて、保護カバーとタンク外壁との間に形成される空間で空気の対流が発生し、断熱効果を弱めるという問題がある。
特許文献1に開示された断熱構造は、保護カバーと断熱材との間にデッドスペースがあるため、このデッドスペースで空気の対流が発生しやすく、かつ断熱材の設置スペース分だけタンクが大型化する問題がある。
In the case of a moss type liquefied gas storage tank provided with a protective cover, air convection occurs in the space formed between the protective cover and the tank outer wall, including the heat insulating structure disclosed in Patent Document 1, and the heat insulating effect is obtained. There is a problem of weakening.
Since the heat insulating structure disclosed in Patent Document 1 has a dead space between the protective cover and the heat insulating material, air convection is likely to occur in the dead space, and the tank is enlarged by the installation space for the heat insulating material. There is a problem to do.

少なくとも一実施形態は、保護カバーを備えるモス型液化ガス貯蔵タンクの断熱性能を向上させ、かつ貯蔵タンクの大型化を回避可能にすることを目的とする。   At least one embodiment aims at improving the heat insulation performance of a moss type liquefied gas storage tank provided with a protective cover, and enabling enlargement of a storage tank.

(1)少なくとも一実施形態に係るモス型液化ガス貯蔵タンクの断熱構造は、
タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造であって、
前記断熱構造は、
前記タンク外壁と前記保護カバーとの間に設けられ、前記タンク外壁及び前記保護カバーとの間に隙間を有して配置された少なくとも1枚の輻射熱反射板を備える。
ここで、「輻射熱反射板」とは、太陽光などの輻射熱を反射する板状体を言う。
上記(1)の構成によれば、タンク外壁及び保護カバーとの間に隙間を有して配置された少なくとも1枚の輻射熱反射板を備えることで、太陽光などの輻射熱を抑制できるため、タンク内への入熱量を抑制できる。また、輻射熱反射板は断熱材と異なり板厚を必要とせず薄厚化できるため、圧縮荷重に対して自在に変形して圧縮荷重を吸収可能であると共に、設置スペースを多く取らないので、タンクの大型化を回避でき、かつタンク外壁と保護カバーとの間にデッドスペースが形成されるのを回避できる。
これによって、対流の発生を抑制できるため、対流の形成による断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。
(1) The heat insulating structure of the moss-type liquefied gas storage tank according to at least one embodiment,
A moss type liquefied gas storage tank heat insulation structure comprising a protective cover covering the surface of the tank outer wall,
The heat insulating structure is
At least one radiant heat reflector is provided between the tank outer wall and the protective cover, and is disposed with a gap between the tank outer wall and the protective cover.
Here, the “radiant heat reflector” refers to a plate-like body that reflects radiant heat such as sunlight.
According to the configuration of (1) above, since at least one radiant heat reflecting plate disposed with a gap between the tank outer wall and the protective cover can be provided, radiant heat such as sunlight can be suppressed. The amount of heat input to the inside can be suppressed. Also, unlike the heat insulating material, the radiant heat reflector can be made thin without requiring a plate thickness, so it can be freely deformed to absorb the compressive load and absorb the compressive load. An increase in size can be avoided, and the formation of a dead space between the tank outer wall and the protective cover can be avoided.
Thereby, since generation | occurrence | production of a convection can be suppressed, the fall of the heat insulation performance by formation of a convection can be suppressed. Therefore, the occurrence rate of BOG can be reduced.

(2)一実施形態では、前記(1)の構成において、
前記輻射熱反射板は、互いに並列に配置された複数の輻射熱反射板を含み、
前記複数の輻射熱反射板の各々の間に隙間が形成される。
上記(2)の構成によれば、保護カバーとタンク外壁との間に、互いに並列に配置された複数の輻射熱反射板を設け、複数の輻射熱反射板の各々の間に隙間を形成することで、輻射熱の反射率を高めることができる。輻射熱反射板の枚数を多くするほど、反射率を高めタンク内への入熱を低減できる。即ち、輻射熱反射板の枚数をN枚とすると、各輻射熱反射板の反射率が同一であれば、タンクへの入熱量は、輻射熱反射板が設置されていない場合と比べて、1/(1+N)まで低減できる。
(2) In one embodiment, in the configuration of (1),
The radiant heat reflector includes a plurality of radiant heat reflectors arranged in parallel with each other,
A gap is formed between each of the plurality of radiant heat reflectors.
According to the configuration of (2) above, by providing a plurality of radiant heat reflecting plates arranged in parallel with each other between the protective cover and the tank outer wall, a gap is formed between each of the plurality of radiant heat reflecting plates. The reflectance of radiant heat can be increased. The greater the number of radiant heat reflectors, the higher the reflectivity and the lower the heat input into the tank. That is, if the number of radiant heat reflectors is N, and the reflectivity of each radiant heat reflector is the same, the amount of heat input to the tank is 1 / (1 + N) compared to the case where no radiant heat reflector is installed. ).

(3)一実施形態では、前記(2)の構成において、
前記断熱構造は、前記保護カバーの内側面から前記タンク外壁側へ突設された補強リブを備え、
前記輻射熱反射板は、前記補強リブに固定される。
上記(3)の構成によれば、上記補強リブを備えることで、保護カバーの強度を増加できると共に、輻射熱反射板を補強リブに固定することで、輻射熱反射板の保護カバーへの取付けが容易になる。
(3) In one embodiment, in the configuration of (2),
The heat insulating structure includes a reinforcing rib protruding from the inner side surface of the protective cover to the tank outer wall side,
The radiant heat reflecting plate is fixed to the reinforcing rib.
According to the configuration of (3), the strength of the protective cover can be increased by providing the reinforcing rib, and the radiant heat reflecting plate can be easily attached to the protective cover by fixing the radiant heat reflecting plate to the reinforcing rib. become.

(4)一実施形態では、前記(3)の構成において、
前記補強リブは、前記保護カバーの内側面から前記タンク外壁側へ突出する補強リブ本体と、前記補強リブ本体の先端部から前記タンク外壁の表面に沿って延在する支持部とを含み、
前記輻射熱反射板は前記支持部と前記保護カバーとの間の形成される空間に配置され、かつ前記支持部に固定される。
上記(4)の構成によれば、輻射熱反射板は上記支持部と保護カバーとの間の形成される空間に配置されるため、保護カバーとタンク外壁との間に形成される空間にデッドスペースを生じない。従って、タンクの大型化を回避できると共に、上記空気の対流が形成されるのを抑制できるため、対流形成による断熱性能の低下を抑制できる。
(4) In one embodiment, in the configuration of (3),
The reinforcing rib includes a reinforcing rib main body that protrudes from the inner side surface of the protective cover to the tank outer wall side, and a support portion that extends along the surface of the tank outer wall from the front end of the reinforcing rib main body,
The radiant heat reflection plate is disposed in a space formed between the support portion and the protective cover, and is fixed to the support portion.
According to the configuration of (4), since the radiant heat reflector is disposed in the space formed between the support portion and the protective cover, a dead space is formed in the space formed between the protective cover and the tank outer wall. Does not occur. Therefore, it is possible to avoid an increase in the size of the tank and to suppress the formation of the convection of the air, so that it is possible to suppress a decrease in heat insulation performance due to the formation of convection.

(5)一実施形態では、前記(4)の構成において、
前記断熱構造は、前記輻射熱反射板と前記支持部との間、又は前記複数の輻射熱反射板の間の各々に介装されるスペーサを備える。
上記(5)の構成によれば、上記スペーサを備えることで、輻射熱反射板と補強リブとの間又は輻射熱反射板同士の間で所望の隙間を形成でき、これによって、各輻射熱反射板は輻射熱反射効果を発揮できる。
(5) In one embodiment, in the configuration of (4),
The heat insulation structure includes a spacer interposed between the radiant heat reflecting plate and the support portion or between the plurality of radiant heat reflecting plates.
According to the structure of said (5), by providing the said spacer, a desired clearance gap can be formed between a radiant heat reflecting plate and a reinforcement rib, or between radiant heat reflecting plates, Thereby, each radiant heat reflecting plate is radiant heat. Reflective effect can be demonstrated.

(6)一実施形態では、前記(2)〜(5)の何れかの構成において、
前記複数の輻射熱反射板の間に形成される前記隙間は、対流発生限界以下の隙間である。
上記(6)の構成によれば、複数の輻射熱反射板間に形成される隙間が対流発生限界以下の隙間であるため、保護カバーとタンク外壁との間の空間において空気の対流発生を効果的に抑制できる。これによって、対流の形成による断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。
(6) In one embodiment, in any one of the configurations (2) to (5),
The gap formed between the plurality of radiant heat reflecting plates is a gap below the convection generation limit.
According to the configuration of (6) above, since the gap formed between the plurality of radiant heat reflectors is a gap below the convection generation limit, it is possible to effectively generate air convection in the space between the protective cover and the tank outer wall. Can be suppressed. Thereby, the fall of the heat insulation performance by formation of a convection can be suppressed. Therefore, the occurrence rate of BOG can be reduced.

(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記保護カバー又は前記輻射熱反射板に遮熱性被膜が形成される。
上記(7)の構成によれば、保護カバー又は輻射熱反射板に遮熱性被膜が形成されることで、タンク内への入熱量をさらに抑制できる。
(7) In one embodiment, in any one of the configurations (1) to (6),
A thermal barrier coating is formed on the protective cover or the radiant heat reflector.
According to the configuration of (7) above, the amount of heat input into the tank can be further suppressed by forming the heat shielding film on the protective cover or the radiant heat reflecting plate.

(8)少なくとも一実施形態に係る液化ガス運搬船は、
前記(1)〜(7)の何れかの構成を有するモス型液化ガス貯蔵タンクの断熱構造を備えるモス型液化ガス貯蔵タンクが設けられる。
上記(8)の構成によれば、上記液化ガス貯蔵タンクの断熱構造を備える液化ガス運搬船は、保護カバーとタンク外壁との間にこれらと隙間を有して上記輻射熱反射板を備えることで、液化ガス貯蔵タンク内への入熱を抑制できる。また、保護カバーとタンク外壁間のスペースの増加をまねかないので、容積や船幅が限られた液化ガス運搬船でも配置の自由度を広げることができる。また、液化ガス貯蔵タンクの重量増加を抑制できるため、液化ガス運搬船の運行性能の悪化を抑制できる。
(8) A liquefied gas carrier ship according to at least one embodiment,
A moss type liquefied gas storage tank having a heat insulating structure of a moss type liquefied gas storage tank having any one of the constitutions (1) to (7) is provided.
According to the configuration of the above (8), the liquefied gas carrier ship provided with the heat insulating structure of the liquefied gas storage tank includes the radiant heat reflector with a gap between the protective cover and the tank outer wall. Heat input into the liquefied gas storage tank can be suppressed. In addition, since the space between the protective cover and the tank outer wall is not increased, the degree of freedom in arrangement can be increased even in a liquefied gas carrier ship with a limited volume and width. Moreover, since the weight increase of a liquefied gas storage tank can be suppressed, the deterioration of the operation performance of a liquefied gas carrier ship can be suppressed.

(9)少なくとも一実施形態に係るモス型液化ガス貯蔵タンクの断熱構造の施工方法は、
タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造の施工方法であって、
前記タンク外壁に取り付けられる前の前記保護カバーに対して、前記保護カバーの内側面との間に隙間を有して少なくとも1枚の輻射熱反射板を固定する輻射熱反射板固定ステップと、
前記輻射熱反射板が固定された前記保護カバーを前記タンク外壁に取り付けると共に、前記輻射熱反射板と前記タンク外壁との間に隙間を形成する保護カバー取付けステップと、
を備える。
(9) The construction method of the heat insulating structure of the moss-type liquefied gas storage tank according to at least one embodiment is as follows:
A construction method of a heat insulating structure of a moss type liquefied gas storage tank provided with a protective cover for covering the surface of the tank outer wall,
A radiant heat reflector fixing step for fixing at least one radiant heat reflector with a gap between the protective cover and the inner surface of the protective cover before being attached to the tank outer wall;
Attaching the protective cover to which the radiant heat reflecting plate is fixed to the tank outer wall, and forming a protective cover attaching step between the radiant heat reflecting plate and the tank outer wall;
Is provided.

上記(9)の方法によれば、上記輻射熱反射板固定ステップにおいて、前記タンク外壁に取り付けられる前の前記保護カバーに対して、前記保護カバーの内側面との間に隙間を有して少なくとも1枚の輻射熱反射板を固定するため、保護カバーへの輻射熱反射板の固定作業を地上の作業場で行うことができる。
これによって、輻射熱反射板の固定作業が容易になると共に、上記保護カバー取付けステップにおいて、輻射熱反射板がない保護カバーの取付けと同様の施工方法で、輻射熱反射板付き保護カバーをタンク外壁に取り付けることができる。従って、従来の液化ガス貯蔵タンクと比べて施工工数をほぼ同等に抑えることができる。
According to the method of (9) above, in the radiant heat reflector fixing step, the protective cover before being attached to the outer wall of the tank has a gap between the protective cover and the inner surface of the protective cover. Since the radiant heat reflecting plate is fixed, the fixing operation of the radiant heat reflecting plate to the protective cover can be performed at a work place on the ground.
This makes it easy to fix the radiant heat reflector, and in the protective cover installation step, attach the protective cover with the radiant heat reflector to the tank outer wall in the same manner as the protective cover without the radiant heat reflector. Can do. Therefore, the construction man-hours can be suppressed to be approximately equal as compared with the conventional liquefied gas storage tank.

こうして施工されたモス型液化ガス貯蔵タンクは、タンク外壁と保護カバーとの間に、これらに対して隙間を有して輻射熱反射板を備えることで、太陽光などの輻射熱を抑制でき、従って、タンク内への入熱量を抑制できる。また、輻射熱反射板は断熱材のように板厚を必要とせず薄厚化できるため、設置スペースを多く取らず、かつ圧縮荷重に対して自在に変形して吸収可能である。さらに、輻射熱反射板は薄厚化できるため設置スペースを多く取らないので、保護カバーとタンク外壁との間にデッドスペースが形成されるのを回避できる。また、デッドスペースをなくすことで、対流の発生を抑制でき、これによって、断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。   The moss-type liquefied gas storage tank constructed in this way can suppress radiant heat such as sunlight by providing a radiant heat reflector with a gap between the tank outer wall and the protective cover, and therefore, The amount of heat input into the tank can be suppressed. Further, since the radiant heat reflecting plate can be thinned without requiring a plate thickness unlike a heat insulating material, it does not take up a large installation space and can be freely deformed and absorbed with respect to a compressive load. Furthermore, since the radiant heat reflecting plate can be thinned, a large installation space is not required, so that it is possible to avoid the formation of a dead space between the protective cover and the tank outer wall. Moreover, by eliminating the dead space, it is possible to suppress the occurrence of convection and thereby suppress the deterioration of the heat insulation performance. Therefore, the occurrence rate of BOG can be reduced.

少なくとも一実施形態によれば、保護カバーを備える液化ガス貯蔵タンクの断熱性能を向上でき、BOGの発生を低下できると共に、タンクの大型化を回避できる。   According to at least one embodiment, the heat insulation performance of the liquefied gas storage tank provided with the protective cover can be improved, the generation of BOG can be reduced, and the enlargement of the tank can be avoided.

液化ガス運搬船に設けられた一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment provided in the liquefied gas carrier ship. 図1中のA部の拡大断面図である。It is an expanded sectional view of the A section in FIG. 液化ガス貯蔵タンク内に流入する熱流速の例を示す図表である。It is a graph which shows the example of the heat flow rate which flows in in a liquefied gas storage tank. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の施工方法の工程図である。It is process drawing of the construction method of the heat insulation structure of the liquefied gas storage tank concerning one embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の施工工程において、(A)は保護カバー取付け前を示す断面図であり、(B)は保護カバー取付け後を示す断面図である。In the construction process of the heat insulation structure of the liquefied gas storage tank concerning one embodiment, (A) is a sectional view showing before protection cover attachment, and (B) is a sectional view after protection cover attachment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
In addition, for example, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.

図1は、一実施形態に係るモス型液化ガス貯蔵タンク10の断熱構造11の断面図であり、図2は、図1中のA部の拡大断面図である。
図1に示すように、モス型液化ガス貯蔵タンク10は球形のタンクを備え、タンク外壁12の表面を覆う保護カバー14を備える。図2に示すように、断熱構造11は、タンク外壁12と保護カバー14との間に形成された空間に少なくとも1枚の輻射熱反射板16を備える。輻射熱反射板16とタンク外壁12及び保護カバー14との間に夫々隙間sが形成される。
FIG. 1 is a cross-sectional view of a heat insulating structure 11 of a moss-type liquefied gas storage tank 10 according to one embodiment, and FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.
As shown in FIG. 1, the moss type liquefied gas storage tank 10 includes a spherical tank and includes a protective cover 14 that covers the surface of the tank outer wall 12. As shown in FIG. 2, the heat insulating structure 11 includes at least one radiant heat reflecting plate 16 in a space formed between the tank outer wall 12 and the protective cover 14. A gap s is formed between the radiant heat reflector 16 and the tank outer wall 12 and the protective cover 14.

上記構成の断熱構造11によれば、タンク外壁12と保護カバー14との間に輻射熱反射板16を備え、輻射熱反射板16とタンク外壁12及び保護カバー14との間に夫々隙間sが形成されることで、太陽光Lsなどの輻射熱を抑制できるため、タンク内への入熱量を抑制できる。また、輻射熱反射板16は断熱材と異なり板厚を必要とせず薄厚化できるため、圧縮荷重に対して自在に変形して圧縮荷重を吸収可能であると共に、設置スペースを多く取らないので、タンクの大型化を回避でき、かつタンク外壁12と保護カバー14との間にデッドスペースが形成されるのを回避できる。
これによって、対流の発生を抑制できるため、対流の形成による断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。
According to the heat insulating structure 11 having the above-described configuration, the radiant heat reflecting plate 16 is provided between the tank outer wall 12 and the protective cover 14, and the gaps s are formed between the radiant heat reflecting plate 16, the tank outer wall 12, and the protective cover 14. Thus, since radiant heat such as sunlight Ls can be suppressed, the amount of heat input into the tank can be suppressed. In addition, unlike the heat insulating material, the radiant heat reflecting plate 16 can be thinned without requiring a plate thickness. Therefore, the radiant heat reflecting plate 16 can be freely deformed to absorb the compressive load and absorb the compressive load, and does not take up a large installation space. Can be avoided, and the formation of a dead space between the tank outer wall 12 and the protective cover 14 can be avoided.
Thereby, since generation | occurrence | production of a convection can be suppressed, the fall of the heat insulation performance by formation of a convection can be suppressed. Therefore, the occurrence rate of BOG can be reduced.

一実施形態では、タンク外壁12は多数枚のアルミ合金又は鋼板を溶接接合し、その全体形状をほぼ球状に形成され、タンク外壁12の内部に、例えば、LNGやLPG等の低温液化ガスが貯蔵される。
一実施形態では、保護カバー14は、全体形状が逆碗形に形成され、タンク外壁12を外側から覆うように配置される。
一実施形態では、図1に示すように、モス型液化ガス貯蔵タンク10は液化ガス運搬船18に設けられる。
In one embodiment, the tank outer wall 12 is formed by welding a large number of aluminum alloys or steel plates, and the entire shape thereof is formed in a substantially spherical shape, and a low-temperature liquefied gas such as LNG or LPG is stored inside the tank outer wall 12. Is done.
In one embodiment, the protective cover 14 is formed in an inverted bowl shape as a whole and is disposed so as to cover the tank outer wall 12 from the outside.
In one embodiment, as shown in FIG. 1, the moss-type liquefied gas storage tank 10 is provided in a liquefied gas carrier ship 18.

一実施形態では、図2に示すように、輻射熱反射板16は、互いに並列に配置された複数の輻射熱反射板16を含み、複数の輻射熱反射板16の各々の間に隙間sが形成される。
この実施形態によれば、複数の輻射熱反射板16を設け、複数の輻射熱反射板16の各々の間に隙間sを形成することで、太陽光Lsなどの輻射熱の反射率を高めることができる。輻射熱反射板16の枚数が多くなるほど、タンク内への入熱を低減できる。即ち、輻射熱反射板16の枚数をN枚とすると、各輻射熱反射板の反射率が同一であれば、タンクへの入熱は、輻射熱反射板16が設置されていない場合と比べて、1/(1+N)まで低減できる。
また、対流熱伝達率をαとすると(ここでは、αを一定値とする。)、対流による入熱量も、輻射熱反射板16が設置されていない場合と比べて、((2N+2)/α−1)/(2/α−1)まで低減できる。
以上から、タンク内への入熱量を大幅に抑制でき、BOGの発生率を大幅に低下できる。
In one embodiment, as shown in FIG. 2, the radiant heat reflector 16 includes a plurality of radiant heat reflectors 16 arranged in parallel to each other, and a gap s is formed between each of the plurality of radiant heat reflectors 16. .
According to this embodiment, the reflectance of radiant heat, such as sunlight Ls, can be increased by providing a plurality of radiant heat reflecting plates 16 and forming gaps s between the plurality of radiant heat reflecting plates 16. As the number of the radiant heat reflecting plates 16 increases, the heat input into the tank can be reduced. That is, if the number of the radiant heat reflecting plates 16 is N, if the reflectance of each radiant heat reflecting plate is the same, the heat input to the tank is 1 / compared to the case where the radiant heat reflecting plate 16 is not installed. It can be reduced to (1 + N).
Further, when the convective heat transfer coefficient is α (here, α is a constant value), the amount of heat input by convection is also ((2N + 2) / α− compared to the case where the radiant heat reflector 16 is not installed. 1) / (2 / α-1).
From the above, the amount of heat input into the tank can be greatly suppressed, and the BOG generation rate can be greatly reduced.

図3は、本発明者等が試算したタンク内への入熱する合計熱流束の一例を示す。図2から、輻射熱反射板16を1枚設けるだけで、タンク内の入熱量を20%程度減少できることがわかる。   FIG. 3 shows an example of the total heat flux that heats into the tank calculated by the present inventors. As can be seen from FIG. 2, the amount of heat input in the tank can be reduced by about 20% by providing only one radiant heat reflecting plate 16.

一実施形態では、図2に示すように、保護カバー14の内側面からタンク外壁12側へ突設された補強リブ20を備え、輻射熱反射板16は補強リブ20に固定される。
この実施形態によれば、補強リブ20を備えることで、保護カバー14の強度を増加できると共に、輻射熱反射板16を補強リブ20に固定することで、輻射熱反射板16の保護カバー14への取付けが容易になる。
In one embodiment, as shown in FIG. 2, the reinforcing rib 20 is provided so as to protrude from the inner surface of the protective cover 14 toward the tank outer wall 12, and the radiant heat reflector 16 is fixed to the reinforcing rib 20.
According to this embodiment, the strength of the protective cover 14 can be increased by providing the reinforcing rib 20, and the radiant heat reflecting plate 16 can be attached to the protective cover 14 by fixing the radiant heat reflecting plate 16 to the reinforcing rib 20. Becomes easier.

一実施形態では、図2に示すように、補強リブ20は、保護カバー14の内側面からタンク外壁12側へ突出する補強リブ本体22と、補強リブ本体22の先端からタンク外壁12の表面に沿って延在する支持部24とを含む。輻射熱反射板16は支持部24と保護カバー14との間の形成される空間に配置され、かつ支持部24に固定される。
この実施形態によれば、輻射熱反射板16は支持部24と保護カバー14との間に形成される空間に配置されるため、保護カバー14とタンク外壁12との間に形成される空間にデッドスペースを生じない。従って、タンクの大型化を回避できると共に、上記空間に空気の対流が形成されるのを抑制できるため、対流形成による上記空間の断熱性能の低下を抑制できる。
In one embodiment, as shown in FIG. 2, the reinforcing rib 20 includes a reinforcing rib main body 22 that protrudes from the inner surface of the protective cover 14 toward the tank outer wall 12, and a tip of the reinforcing rib main body 22 to the surface of the tank outer wall 12. And a support portion 24 extending along. The radiant heat reflection plate 16 is disposed in a space formed between the support portion 24 and the protective cover 14 and is fixed to the support portion 24.
According to this embodiment, since the radiant heat reflector 16 is disposed in the space formed between the support portion 24 and the protective cover 14, it is dead in the space formed between the protective cover 14 and the tank outer wall 12. Does not create space. Therefore, it is possible to avoid an increase in the size of the tank and to suppress the formation of convection of air in the space, so that it is possible to suppress a decrease in the heat insulation performance of the space due to the formation of convection.

一実施形態では、図2に示すように、補強リブ20の支持部24は保護カバー14とほぼ平行な方向へ延在する板状体を形成し、該板状体の中央に補強リブ本体22が固着されている。補強リブ20は補強リブ本体22と支持部24とで逆T字形の断面を有する。そして、複数の補強リブ20が保護カバー14の内側面にほぼ一定間隔を有して設けられ、複数の補強リブ20の間の各々において、複数の輻射熱反射板16は互いに隙間sを有して並列に配置され、これらの両端は、保護カバー14の内側面と支持部24とで形成される凹部に挿入され、ボルト26で支持部24に固定される。
上記構成によって、複数の輻射熱反射板16の両端は上記凹部に配置され、かつ支持部24によって支持される。
これによって、複数の輻射熱反射板16は、各補強リブ20の間であって保護カバー14とタンク外壁12との間に形成される空間にデッドスペースを生じず、かつタンクの大型化を回避でき、さらに、上記空間に空気の対流が形成されるのを抑制できるため、対流形成による上記空間の断熱性能の低下を抑制できる。
In one embodiment, as shown in FIG. 2, the support portion 24 of the reinforcing rib 20 forms a plate-like body extending in a direction substantially parallel to the protective cover 14, and the reinforcing rib main body 22 is formed at the center of the plate-like body. Is fixed. The reinforcing rib 20 has an inverted T-shaped cross section with the reinforcing rib main body 22 and the support portion 24. The plurality of reinforcing ribs 20 are provided on the inner surface of the protective cover 14 with a substantially constant interval, and the plurality of radiant heat reflectors 16 have gaps s between each of the plurality of reinforcing ribs 20. Arranged in parallel, both ends thereof are inserted into a recess formed by the inner surface of the protective cover 14 and the support portion 24, and are fixed to the support portion 24 by bolts 26.
With the above configuration, both ends of the plurality of radiant heat reflecting plates 16 are disposed in the concave portions and supported by the support portion 24.
As a result, the plurality of radiant heat reflectors 16 do not cause a dead space in the space formed between the reinforcing ribs 20 and between the protective cover 14 and the tank outer wall 12, and an increase in the size of the tank can be avoided. Furthermore, since it is possible to suppress the formation of air convection in the space, it is possible to suppress a decrease in the heat insulation performance of the space due to the formation of convection.

一実施形態では、図2に示すように、複数の輻射熱反射板16の1つと補強リブ20との間又は複数の輻射熱反射板同士の間の各々にスペーサ28が介装される。
この実施形態によれば、複数のスペーサ28を備えることで、輻射熱反射板16と補強リブ20との間又は輻射熱反射板同士の間で所望の隙間を形成でき、これによって、各輻射熱反射板の輻射熱反射効果を維持できる。
In one embodiment, as shown in FIG. 2, spacers 28 are interposed between one of the plurality of radiant heat reflecting plates 16 and the reinforcing rib 20 or between the plurality of radiant heat reflecting plates.
According to this embodiment, by providing the plurality of spacers 28, a desired gap can be formed between the radiant heat reflecting plate 16 and the reinforcing rib 20, or between the radiant heat reflecting plates. The radiant heat reflection effect can be maintained.

一実施形態では、図2に示すように、複数のスペーサ28が輻射熱反射板16と補強リブ20の支持部24との間又は輻射熱反射板同士の間に介装される。各スペーサ28は同一形状及び同一の大きさを有する板状体を有する。
これによって、輻射熱反射板16と支持部24との間隔及び輻射熱反射板同士の間隔をスペーサ28の大きさに応じた所望の間隔に保持できる。
一実施形態では、複数のスペーサ28を板状体に形成し、複数のスペーサ28の厚さを同一にすることで、輻射熱反射板16と支持部24との間に形成される隙間s、及び輻射熱反射板同士の間隔を同一間隔に保持できる。
これによって、複数の輻射熱反射板16を同一間隔で並列に整列させることができる。
In one embodiment, as shown in FIG. 2, a plurality of spacers 28 are interposed between the radiant heat reflecting plate 16 and the support portion 24 of the reinforcing rib 20 or between the radiant heat reflecting plates. Each spacer 28 has a plate-like body having the same shape and the same size.
As a result, the distance between the radiant heat reflecting plate 16 and the support 24 and the distance between the radiant heat reflecting plates can be maintained at a desired distance corresponding to the size of the spacer 28.
In one embodiment, the plurality of spacers 28 are formed in a plate-like body, and the thickness of the plurality of spacers 28 is the same, whereby the gap s formed between the radiant heat reflecting plate 16 and the support portion 24, and The interval between the radiant heat reflectors can be kept at the same interval.
As a result, the plurality of radiant heat reflectors 16 can be aligned in parallel at the same interval.

一実施形態では、図2に示すように、複数の輻射熱反射板16の間に形成される隙間は対流発生限界以下の隙間δである。
この実施形態によれば、複数の輻射熱反射板16間に形成される隙間が対流発生限界以下の隙間δであるため、タンク外壁12と保護カバー14との間の空間において空気の対流発生を効果的に抑制できる。これによって、タンク外壁12と保護カバー14との間の空間に存在する空気が熱伝導率0.02〜0.03W/mKの断熱材として防熱に寄与するため、タンク内の入熱量を低減でき、BOGの発生率を低下できる。
In one embodiment, as shown in FIG. 2, the gap formed between the plurality of radiant heat reflectors 16 is a gap δ that is less than or equal to the convection generation limit.
According to this embodiment, since the gap formed between the plurality of radiant heat reflecting plates 16 is the gap δ which is not more than the convection generation limit, it is effective to generate air convection in the space between the tank outer wall 12 and the protective cover 14. Can be suppressed. As a result, air existing in the space between the tank outer wall 12 and the protective cover 14 contributes to heat insulation as a heat insulating material having a thermal conductivity of 0.02 to 0.03 W / mK, so that the amount of heat input in the tank can be reduced. , BOG generation rate can be reduced.

対流発生限界以下の隙間δは以下の式で求めることができる。
レイリー数;Ra=Gr・Pr<657 (1)
グラスホフ数;Gr=g・β・ρ・ΔT・δ/η (2)
プラントル数;Pr=η・Cp/λ (3)
ここで、g;重力、ρ;密度、β;体膨張係数[1/K]、ΔT;輻射熱反射板と空気との温度差[K]、η;粘度、Cp;比熱、λ;熱伝導率。
実際に複数の輻射熱反射板16を互いに隙間sを設けて層状に配置すると、各輻射熱反射板16の表裏面側の空気温度差は小さくなるため、必要な隙間δは大きくなる。
The clearance δ below the convection generation limit can be obtained by the following equation.
Rayleigh number; Ra = Gr · Pr <657 (1)
Grashof number; Gr = g · β · ρ 2 · ΔT · δ 3 / η 2 (2)
Prandtl number; Pr = η · Cp / λ (3)
Where, g: gravity, ρ: density, β: coefficient of body expansion [1 / K], ΔT: temperature difference between the radiant heat reflector and air [K], η: viscosity, Cp: specific heat, λ: thermal conductivity .
When a plurality of radiant heat reflecting plates 16 are actually arranged in layers with a gap s between them, the difference in air temperature between the front and back surfaces of each radiant heat reflecting plate 16 becomes smaller, and the necessary gap δ becomes larger.

一実施形態では、保護カバー14又は輻射熱反射板16に遮熱性被膜が形成される。保護カバー14又は輻射熱反射板16に遮熱性被膜が形成されることで、保護カバー14又は輻射熱反射板16の表裏面の輻射熱を抑制でき、タンク内への入熱量を抑制できるため、BOGの発生率を低下できる。
遮熱性被膜として、例えば、遮熱塗料やアルミ製テープなどの反射材を保護カバー14又は輻射熱反射板16の表裏面に塗布又は施工する。
In one embodiment, a thermal barrier coating is formed on the protective cover 14 or the radiant heat reflector 16. By forming a heat-shielding film on the protective cover 14 or the radiant heat reflecting plate 16, it is possible to suppress the radiant heat on the front and back surfaces of the protective cover 14 or the radiant heat reflecting plate 16 and to suppress the amount of heat input into the tank. The rate can be reduced.
As the heat shielding film, for example, a reflective material such as a heat shielding paint or an aluminum tape is applied or applied to the front and back surfaces of the protective cover 14 or the radiant heat reflector 16.

一実施形態では、図1に示すように、上記幾つかの実施形態に係る断熱構造11を備えるモス型液化ガス貯蔵タンク10は液化ガス運搬船18に設けられる。
この実施形態によれば、断熱構造11を備える液化ガス運搬船18は、モス型液化ガス貯蔵タンク10は、タンク内への入熱を抑制できると共に、タンク外壁12と保護カバー14間のスペースの増加をまねかないので、容積や船幅が限られた液化ガス運搬船でも配置の自由度を広げることができる。また、薄厚化が可能な輻射熱反射板16を設けるため、重量増加を抑制でき、これによって、液化ガス運搬船18の運行性能の悪化を抑制できる。
In one embodiment, as shown in FIG. 1, the moss-type liquefied gas storage tank 10 including the heat insulating structure 11 according to some embodiments is provided in a liquefied gas carrier ship 18.
According to this embodiment, in the liquefied gas carrier ship 18 provided with the heat insulating structure 11, the moss type liquefied gas storage tank 10 can suppress heat input into the tank and increase the space between the tank outer wall 12 and the protective cover 14. Therefore, even a liquefied gas carrier ship with a limited volume and width can expand the degree of freedom of arrangement. Moreover, since the radiant heat reflecting plate 16 that can be thinned is provided, an increase in weight can be suppressed, and thereby deterioration in operation performance of the liquefied gas carrier 18 can be suppressed.

図4は、一実施形態に係るモス型液化ガス貯蔵タンク10の断熱構造11の施工方法の工程図であり、図5(A)は、上記施工方法において、保護カバー14をタンク外壁12に固定する前の状態を示し、図5(B)は、保護カバー14をタンク外壁12の固定した後の状態を示している。
図4に示すように、タンク外壁12に取り付けられる前の保護カバー14に対して、保護カバー14の内側面との間に隙間sを有して少なくとも1枚の輻射熱反射板16を固定する(輻射熱反射板固定ステップS10)。
次に、輻射熱反射板16が固定された保護カバー14をタンク外壁12に取り付けると共に、輻射熱反射板16とタンク外壁12との間に隙間sを形成する(保護カバー取付けステップS12)。
FIG. 4 is a process diagram of a construction method of the heat insulation structure 11 of the moss type liquefied gas storage tank 10 according to an embodiment. FIG. 5A is a diagram illustrating a method of fixing the protective cover 14 to the tank outer wall 12 in the construction method. FIG. 5B shows a state after the protective cover 14 is fixed to the tank outer wall 12.
As shown in FIG. 4, at least one radiant heat reflector 16 is fixed to the protective cover 14 before being attached to the tank outer wall 12 with a gap s between the inner surface of the protective cover 14 ( Radiation heat reflector fixing step S10).
Next, the protective cover 14 to which the radiant heat reflecting plate 16 is fixed is attached to the tank outer wall 12, and a gap s is formed between the radiant heat reflecting plate 16 and the tank outer wall 12 (protective cover attaching step S12).

上記方法によれば、輻射熱反射板固定ステップS10において、タンク外壁12に取り付けられる前の保護カバー14に対して、保護カバー14の内側面と間に隙間sを有して少なくとも1枚の輻射熱反射板16を固定するため、保護カバー14への輻射熱反射板16の固定作業を地上の作業場で行うことができる。
これによって、輻射熱反射板16の固定作業が容易になると共に、保護カバー取付けステップS12において、輻射熱反射板16がない保護カバー14の取付けとほぼ同等の施工方法で、輻射熱反射板付き保護カバー14をタンク外壁12に取り付けることができる。
According to the above method, in the radiant heat reflector fixing step S10, at least one radiant heat reflector having a gap s between the inner surface of the protective cover 14 and the protective cover 14 before being attached to the tank outer wall 12. Since the plate 16 is fixed, the work for fixing the radiant heat reflecting plate 16 to the protective cover 14 can be performed at a work place on the ground.
As a result, the fixing work of the radiant heat reflecting plate 16 is facilitated, and the protective cover 14 with the radiant heat reflecting plate is attached in the protective cover attaching step S12 by a construction method substantially equivalent to the attachment of the protective cover 14 without the radiant heat reflecting plate 16. It can be attached to the tank outer wall 12.

こうしてモス型液化ガス貯蔵タンク10に施工された断熱構造11は、タンク外壁12と保護カバー14との間に、これらに対して隙間sを有して輻射熱反射板16を備えることで、簡易かつ低コストで太陽光などの輻射熱を抑制でき、従って、タンク内への入熱量を抑制できる。また、輻射熱反射板16は断熱材のように板厚を必要とせず薄厚化できるため、設置スペースを多く取らず、かつ圧縮荷重に対して自在に変形して吸収可能である。さらに、輻射熱反射板16は薄厚化できるため設置スペースを多く取らないので、タンク外壁12と保護カバー14との間にデッドスペースが形成されるのを回避できる。また、デッドスペースをなくすことで、対流の発生を抑制でき、これによって、断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。   Thus, the heat insulation structure 11 constructed in the moss type liquefied gas storage tank 10 includes the radiant heat reflection plate 16 with a gap s between the tank outer wall 12 and the protective cover 14, thereby simplifying and Radiant heat such as sunlight can be suppressed at a low cost, and therefore the amount of heat input into the tank can be suppressed. Further, since the radiant heat reflecting plate 16 does not require a plate thickness like a heat insulating material and can be thinned, it does not take up a large installation space and can be freely deformed and absorbed with respect to a compression load. Furthermore, since the radiant heat reflecting plate 16 can be thinned, a large installation space is not required, so that a dead space can be prevented from being formed between the tank outer wall 12 and the protective cover 14. Moreover, by eliminating the dead space, it is possible to suppress the occurrence of convection and thereby suppress the deterioration of the heat insulation performance. Therefore, the occurrence rate of BOG can be reduced.

一実施形態では、図5に示すように、上記施工方法によって断熱構造11を備えるモス型液化ガス貯蔵タンク10は液化ガス運搬船18に設けられる。上記施工方法を採用することで、輻射熱反射板16を設けない場合と比べて、液化ガス運搬船18の建造工数をほぼ同等に抑えることができる。   In one embodiment, as shown in FIG. 5, the moss-type liquefied gas storage tank 10 including the heat insulating structure 11 is provided in a liquefied gas carrier ship 18 by the above construction method. By adopting the above construction method, the number of man-hours for building the liquefied gas carrier ship 18 can be suppressed to be substantially equal to that in the case where the radiant heat reflector 16 is not provided.

幾つかの実施形態によれば、簡易かつ低コストな手段で、保護カバーを備える液化ガス貯蔵タンクの断熱性能を向上でき、モス型液化ガス貯蔵タンクが陸上又は液化ガス運搬船にいずれに設けられた場合であっても有効に適用できる。   According to some embodiments, the heat insulation performance of the liquefied gas storage tank provided with the protective cover can be improved by simple and low-cost means, and the moss-type liquefied gas storage tank is provided either on land or in the liquefied gas carrier ship. Even in cases, it can be applied effectively.

10 モス型液化ガス貯蔵タンク
11 断熱構造
12 タンク外壁
14 保護カバー
16 輻射熱反射板
18 液化ガス運搬船
20 補強リブ
22 補強リブ本体
24 支持部
26 ボルト
28 スペーサ
Ls 太陽光
s 隙間
DESCRIPTION OF SYMBOLS 10 Moss type | mold liquefied gas storage tank 11 Heat insulation structure 12 Tank outer wall 14 Protective cover 16 Radiant heat reflector 18 Liquefied gas carrier 20 Reinforcement rib 22 Reinforcement rib main body 24 Support part 26 Bolt 28 Spacer Ls Sunlight s Gap

Claims (9)

タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造であって、
前記断熱構造は、
前記タンク外壁と前記保護カバーとの間に設けられ、前記タンク外壁及び前記保護カバーとの間に隙間を有して配置された少なくとも1枚の輻射熱反射板を備えることを特徴とするモス型液化ガス貯蔵タンクの断熱構造。
A moss type liquefied gas storage tank heat insulation structure comprising a protective cover covering the surface of the tank outer wall,
The heat insulating structure is
A moss-type liquefaction comprising: at least one radiant heat reflector provided between the tank outer wall and the protective cover and disposed with a gap between the tank outer wall and the protective cover. Insulation structure of gas storage tank.
前記輻射熱反射板は、互いに並列に配置された複数の輻射熱反射板を含み、
前記複数の輻射熱反射板の各々の間に隙間が形成されることを特徴とする請求項1に記載のモス型液化ガス貯蔵タンクの断熱構造。
The radiant heat reflector includes a plurality of radiant heat reflectors arranged in parallel with each other,
The heat insulation structure of a moss type liquefied gas storage tank according to claim 1, wherein a gap is formed between each of the plurality of radiant heat reflecting plates.
前記断熱構造は、前記保護カバーの内側面から前記タンク外壁側へ突設された補強リブを備え、
前記輻射熱反射板は、前記補強リブに固定されることを特徴とする請求項2に記載のモス型液化ガス貯蔵タンクの断熱構造。
The heat insulating structure includes a reinforcing rib protruding from the inner side surface of the protective cover to the tank outer wall side,
The heat insulating structure of a moss type liquefied gas storage tank according to claim 2, wherein the radiant heat reflector is fixed to the reinforcing rib.
前記補強リブは、前記保護カバーの内側面から前記タンク外壁側へ突出する補強リブ本体と、前記補強リブ本体の先端部から前記タンク外壁の表面に沿って延在する支持部とを含み、
前記輻射熱反射板は前記支持部と前記保護カバーとの間の形成される空間に配置され、かつ前記支持部に固定されることを特徴とする請求項3に記載のモス型液化ガス貯蔵タンクの断熱構造。
The reinforcing rib includes a reinforcing rib main body that protrudes from the inner side surface of the protective cover to the tank outer wall side, and a support portion that extends along the surface of the tank outer wall from the front end of the reinforcing rib main body,
4. The moss type liquefied gas storage tank according to claim 3, wherein the radiant heat reflection plate is disposed in a space formed between the support portion and the protective cover, and is fixed to the support portion. Thermal insulation structure.
前記断熱構造は、前記輻射熱反射板と前記支持部との間、又は前記複数の輻射熱反射板の間の各々に介装されるスペーサを備えることを特徴とする請求項4に記載のモス型液化ガス貯蔵タンクの断熱構造。   5. The moss-type liquefied gas storage according to claim 4, wherein the heat insulating structure includes a spacer interposed between the radiant heat reflecting plate and the support portion or between the plurality of radiant heat reflecting plates. Tank insulation structure. 前記複数の輻射熱反射板の間に形成される前記隙間は、対流発生限界以下の隙間であることを特徴とする請求項2乃至5の何れか一項に記載のモス型液化ガス貯蔵タンクの断熱構造。   The heat insulation structure for a moss type liquefied gas storage tank according to any one of claims 2 to 5, wherein the gap formed between the plurality of radiant heat reflecting plates is a gap that is less than a convection generation limit. 前記保護カバー又は前記輻射熱反射板に遮熱性被膜が形成されることを特徴とする請求項1乃至6の何れか一項に記載のモス型液化ガス貯蔵タンクの断熱構造。   The heat insulating structure of the moss type liquefied gas storage tank according to any one of claims 1 to 6, wherein a heat shielding film is formed on the protective cover or the radiant heat reflecting plate. 請求項1乃至7の何れか一項に記載のモス型液化ガス貯蔵タンクの断熱構造を備えるモス型液化ガス貯蔵タンクが設けられることを特徴とする液化ガス運搬船。   The liquefied gas carrier ship provided with the moss type liquefied gas storage tank provided with the heat insulation structure of the moss type liquefied gas storage tank as described in any one of Claims 1 thru | or 7. タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造の施工方法であって、
前記タンク外壁に取り付けられる前の前記保護カバーに対して、前記保護カバーの内側面との間に隙間を有して少なくとも1枚の輻射熱反射板を固定する輻射熱反射板固定ステップと、
前記輻射熱反射板が固定された前記保護カバーを前記タンク外壁に取り付けると共に、前記輻射熱反射板と前記タンク外壁との間に隙間を形成する保護カバー取付けステップと、
を備えることを特徴とするモス型液化ガス貯蔵タンクの断熱構造の施工方法。
A construction method of a heat insulating structure of a moss type liquefied gas storage tank provided with a protective cover for covering the surface of the tank outer wall,
A radiant heat reflector fixing step for fixing at least one radiant heat reflector with a gap between the protective cover and the inner surface of the protective cover before being attached to the tank outer wall;
Attaching the protective cover to which the radiant heat reflecting plate is fixed to the tank outer wall, and forming a protective cover attaching step between the radiant heat reflecting plate and the tank outer wall;
The construction method of the heat insulation structure of the moss type liquefied gas storage tank characterized by comprising.
JP2017012099A 2017-01-26 2017-01-26 Construction method of heat insulating structure of moss type liquefied gas storage tank, heat insulating structure of liquefied gas carrier and moss type liquefied gas storage tank Active JP6838977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012099A JP6838977B2 (en) 2017-01-26 2017-01-26 Construction method of heat insulating structure of moss type liquefied gas storage tank, heat insulating structure of liquefied gas carrier and moss type liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012099A JP6838977B2 (en) 2017-01-26 2017-01-26 Construction method of heat insulating structure of moss type liquefied gas storage tank, heat insulating structure of liquefied gas carrier and moss type liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JP2018119626A true JP2018119626A (en) 2018-08-02
JP6838977B2 JP6838977B2 (en) 2021-03-03

Family

ID=63043708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012099A Active JP6838977B2 (en) 2017-01-26 2017-01-26 Construction method of heat insulating structure of moss type liquefied gas storage tank, heat insulating structure of liquefied gas carrier and moss type liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP6838977B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140073A (en) * 1977-07-12 1979-02-20 Frigitemp Corporation Thermal barrier system for liquefied gas tank
JPS61113291U (en) * 1984-12-27 1986-07-17
JPS62194097A (en) * 1986-02-20 1987-08-26 Nippon Kokan Kk <Nkk> Roof cold insulating structure of low-temperature tank
JPS63130998A (en) * 1986-11-20 1988-06-03 Kobe Steel Ltd Multi-layer heat insulating material
JPH09119599A (en) * 1995-09-07 1997-05-06 Perkin Elmer Corp:The Heat-insulating vessel for liquefied gas
JP2003128182A (en) * 2001-10-19 2003-05-08 Yoshiyuki Hayakawa Box-formed housing body
JP2014066468A (en) * 2012-09-27 2014-04-17 Dowa Thermotech Kk Heat treatment furnace and reflector thermal insulation material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140073A (en) * 1977-07-12 1979-02-20 Frigitemp Corporation Thermal barrier system for liquefied gas tank
JPS61113291U (en) * 1984-12-27 1986-07-17
JPS62194097A (en) * 1986-02-20 1987-08-26 Nippon Kokan Kk <Nkk> Roof cold insulating structure of low-temperature tank
JPS63130998A (en) * 1986-11-20 1988-06-03 Kobe Steel Ltd Multi-layer heat insulating material
JPH09119599A (en) * 1995-09-07 1997-05-06 Perkin Elmer Corp:The Heat-insulating vessel for liquefied gas
JP2003128182A (en) * 2001-10-19 2003-05-08 Yoshiyuki Hayakawa Box-formed housing body
JP2014066468A (en) * 2012-09-27 2014-04-17 Dowa Thermotech Kk Heat treatment furnace and reflector thermal insulation material

Also Published As

Publication number Publication date
JP6838977B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
US10458597B2 (en) Insulation panel for corner area of LNG cargo containment system
KR101177904B1 (en) Cargo containment system for liquefied natural gas carrier
JP2006300319A (en) Liquefied natural gas storage tank utilizing anchor
JP6843517B2 (en) Cold liquid storage tank
JP2018119626A (en) Heat insulation structure for moss type liquefied gas storage tank, liquefied gas carrying vessel, and method for constructing heat insulation structure for moss type liquefied gas storage tank
KR101589118B1 (en) Pressurized container for liquefied gas
KR20160024032A (en) Cargo barrier structure
KR100998554B1 (en) A structure of insulation for lng carrier cargo
KR20120013254A (en) Structure of pump-tower for lng storage tank
JP2013238285A (en) Liquid storage tank
KR101571425B1 (en) Base support used for tank
KR101580912B1 (en) Insulation panel structure of cargo for liquefied gas
JP4822699B2 (en) Storage container
KR101571426B1 (en) Reinforcement unit used for membrane
KR102185817B1 (en) Insulation system for natural gas cargo of carrier and liquefied natural gas fuel tank
KR101149495B1 (en) Membrane of a cargo
KR101712008B1 (en) Cargo for liquefied gas and fabrication method thereof
KR101588661B1 (en) Cargo and reinforcing member used in the same
Wang et al. Thermal analysis and strength evaluation of cargo tanks in offshore FLNGs and LNG carriers
JP7178262B2 (en) double shell tank
KR101434146B1 (en) Connecting structure of insulating barrier
KR101885164B1 (en) Liquefied gas storage tank
KR20220063683A (en) Membrane-type Liquefied Gas Insulation System
KR101337630B1 (en) Lng storage tank
KR101475193B1 (en) Level difference adjustiong structure for insulation panel and insulation panel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6838977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150