JP2018115669A - Speed reduction device and method of processing workpiece - Google Patents

Speed reduction device and method of processing workpiece Download PDF

Info

Publication number
JP2018115669A
JP2018115669A JP2017004876A JP2017004876A JP2018115669A JP 2018115669 A JP2018115669 A JP 2018115669A JP 2017004876 A JP2017004876 A JP 2017004876A JP 2017004876 A JP2017004876 A JP 2017004876A JP 2018115669 A JP2018115669 A JP 2018115669A
Authority
JP
Japan
Prior art keywords
hardness
region
rolling
workpiece
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017004876A
Other languages
Japanese (ja)
Other versions
JP6759114B2 (en
Inventor
田村 光拡
Hikarikaku Tamura
光拡 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2017004876A priority Critical patent/JP6759114B2/en
Priority to DE102017130890.3A priority patent/DE102017130890B4/en
Priority to CN202110154021.9A priority patent/CN112984092A/en
Priority to CN201711430143.6A priority patent/CN108361363B/en
Publication of JP2018115669A publication Critical patent/JP2018115669A/en
Priority to JP2020131800A priority patent/JP7376439B2/en
Application granted granted Critical
Publication of JP6759114B2 publication Critical patent/JP6759114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/361Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers
    • F16C19/362Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers the rollers being crossed within the single row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed reduction device which has excellent processability of processing on a work as a processing blank for a holed member.SOLUTION: A speed reduction device comprises a holed member provided with a rolling surface, in which a rolling body rolls, and a hole part. The holed member is provided with a base material region 42 and a surface hardened layer 44 having higher hardness than the base material region 42 closer to a surface side than the base material region 42, and the surface hardened layer 44 is provided with a surface layer region 46 and a hardness transition region 48 in order in a vertical depth direction from a surface. Defining as a quantity of hardness variation a quantity of variation in Vickers hardness per 0.1 mm to a depth direction, the surface layer region 46 includes a place which is continuous from the surface to the hardness transition region 48 and 0 or larger in quantity of hardness variation, and the hardness transition region 48 includes a place which continuously decreases in hardness to the depth direction and -60 or less in quantity of hardness variation. The rolling surface is provided on a surface of the surface layer region 46, and the hole part is provided in the base material region 42.SELECTED DRAWING: Figure 4

Description

本発明は、減速装置及びワークの加工方法に関する。   The present invention relates to a reduction gear and a workpiece machining method.

特許文献1には、撓み噛み合い型減速装置が記載されている。この減速装置では、ケーシングと出力側フランジ体の間に転動体が配置されており、出力側フランジ体がケーシングに転動体を介して回転可能に支持されている。出力側フランジ体には、転動体が転動する転動面の他に、ボルトがねじ込まれる穴部が設けられている。   Patent Document 1 describes a flexure meshing type reduction gear. In this reduction gear, a rolling element is disposed between the casing and the output side flange body, and the output side flange body is rotatably supported by the casing via the rolling element. The output side flange body is provided with a hole into which a bolt is screwed in addition to the rolling surface on which the rolling element rolls.

特開2011−112214号公報JP 2011-112214 A

特許文献1の出力側フランジ体のように転動面がある部品は、疲労強度の向上を図るため、転動面の高硬度化が要求される。これを実現するため、一般には、ずぶ焼入れのような、熱処理対象となるワークの全体を焼入れ可能な表面硬化処理が用いられる。   A part having a rolling surface such as the output side flange body of Patent Document 1 is required to increase the hardness of the rolling surface in order to improve fatigue strength. In order to achieve this, generally, a surface hardening treatment that can quench the entire workpiece to be heat treated, such as full quenching, is used.

前述の出力側フランジ体のような穴付部材では、ワークに穴部を設けるための穿孔加工を表面硬化処理後にする場合がある。この場合、ワークの全体を焼入れにより高硬度化してしまうと、穿孔加工時に工具の寿命低下等の不具合が生じてしまう。このような穴付部材の素材となるワークの加工性との関係で工夫を施した減速装置は未だ提案されていない。   In the above-mentioned holed member such as the output-side flange body, there is a case where a drilling process for providing a hole in the work is performed after the surface hardening process. In this case, if the entire workpiece is hardened by quenching, problems such as a reduction in tool life may occur during drilling. A speed reducer that has been devised in relation to the workability of the workpiece that is the material of such a holed member has not yet been proposed.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、穴付部材の加工素材となるワークに関して、その加工時の加工性が良好な減速装置を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the reduction gear with favorable workability at the time of the process regarding the workpiece | work used as the process raw material of a member with a hole.

本発明のある態様は減速装置に関する。減速装置は、転動体が転動する転動面と穴部が設けられた穴付部材を備える減速装置であって、前記穴付部材には、母材領域と、前記母材領域より表面側にて前記母材領域より高硬度の表面硬化層とが設けられ、前記表面硬化層には、表面から垂直な深さ方向に向かって表層領域と硬度遷移領域が順に設けられ、前記深さ方向に対する0.1mm当たりのビッカース硬度の変化量を硬度変化量としたとき、前記表層領域は、前記表面から前記硬度遷移領域まで連続し、前記硬度変化量が0以上になる箇所を含み、前記硬度遷移領域は、前記深さ方向に向かって硬度が連続的に減少し、前記硬度変化量が−60以下になる箇所を含み、前記転動面は、前記表層領域の表面に設けられ、前記穴部は、前記母材領域に設けられる。   One embodiment of the present invention relates to a speed reducer. The speed reduction device is a speed reduction device including a rolling surface on which a rolling element rolls and a holed member provided with a hole, and the holed member includes a base material region and a surface side from the base material region. A surface hardened layer having a hardness higher than that of the base material region, and a surface layer region and a hardness transition region are provided in that order in the depth direction perpendicular to the surface of the surface hardened layer. When the amount of change in Vickers hardness per 0.1 mm relative to the hardness is the amount of change in hardness, the surface layer region is continuous from the surface to the hardness transition region, and includes a portion where the amount of change in hardness is 0 or more. The transition region includes a portion where the hardness continuously decreases in the depth direction and the hardness change amount is −60 or less, the rolling surface is provided on a surface of the surface layer region, and the hole The part is provided in the base material region.

本発明の他の態様はワークの加工方法に関する。本方法は、穴付部材の素材となるワークの加工方法であって、前記穴付部材には、前記転動体が転動する転動面と穴部とが設けられ、前記ワークの前記転動面となるべき部位にはレーザー光を照射することにより焼入れして表面硬化層を設け、前記ワークの穴部となるべき部位は焼入れせず母材領域を残す焼入れ工程と、前記ワークの穴部となるべき部位にある前記母材領域を穿孔する穿孔工程とを含む。   Another aspect of the present invention relates to a workpiece machining method. This method is a method of processing a workpiece that is a material of a holed member, and the holed member is provided with a rolling surface and a hole portion on which the rolling element rolls, and the rolling of the workpiece is performed. A part to be a surface is hardened by irradiating a laser beam to provide a surface hardened layer, and a part to be a hole part of the workpiece is not quenched, leaving a base material region, and a hole part of the work A drilling step of drilling the base material region at a site to be formed.

本発明によれば、穴付部材の加工素材となるワークに関して、その加工時の加工性が良好な減速装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, regarding the workpiece | work used as the process raw material of a member with a hole, the reduction gear with favorable workability at the time of the process can be provided.

第1実施形態の減速装置を示す断面図である。It is sectional drawing which shows the speed reducer of 1st Embodiment. 図1の転動体を周辺構造とともに示す拡大図である。It is an enlarged view which shows the rolling element of FIG. 1 with a surrounding structure. 第1実施形態の第1キャリア部材の硬度分布を模式的に示す図である。It is a figure which shows typically the hardness distribution of the 1st carrier member of 1st Embodiment. 第1実施形態の第1キャリア部材の硬度分布の一例を示すグラフである。It is a graph which shows an example of hardness distribution of the 1st career member of a 1st embodiment. 第1実施形態の第1キャリア部材の硬度分布の一例を示す他のグラフである。It is another graph which shows an example of hardness distribution of the 1st career member of a 1st embodiment.

以下、実施形態、変形例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、構成要素の寸法を適宜拡大、縮小して示す。また、共通点のある別々の構成要素には、名称の冒頭に「第1、第2」等と付し、符号の末尾に「−A、−B」等と付すことで区別し、総称するときはこれらを省略する。   Hereinafter, in the embodiment and the modification, the same reference numerals are given to the same components, and the duplicate description is omitted. In the drawings, for convenience of explanation, some of the components are omitted as appropriate, and the dimensions of the components are appropriately enlarged and reduced. In addition, different components having a common point are distinguished and collectively named by adding “first, second” or the like at the beginning of the name and adding “−A, −B” or the like at the end of the code. Sometimes these are omitted.

図1は、第1実施形態の減速装置10を示す断面図である。本実施形態の減速装置10は、内歯歯車24と噛み合う外歯歯車22を撓み変形させつつ回転させることで外歯歯車22を自転させ、その自転成分を出力する撓み噛み合い型減速装置である。   FIG. 1 is a cross-sectional view showing a reduction gear device 10 according to the first embodiment. The speed reducer 10 of the present embodiment is a flexure meshing type speed reducer that rotates the external gear 22 by rotating the external gear 22 that meshes with the internal gear 24 while bending and deforming, and outputs the rotation component.

減速装置10は、主に、ケーシング12と、一対のキャリア14と、複数の転動体16と、起振体18と、起振体軸受20と、外歯歯車22と、内歯歯車24と、を備える。   The speed reducer 10 mainly includes a casing 12, a pair of carriers 14, a plurality of rolling elements 16, a vibration generator 18, a vibration generator bearing 20, an external gear 22, an internal gear 24, Is provided.

ケーシング12は、筒状部材であり、その内側に一対のキャリア14が配置される。一対のキャリア14は、剛性を持つ筒状部材である。一対のキャリア14は後述する軸方向Xに間隔を空けて配置され、その内側に起振体18が配置される。   The casing 12 is a cylindrical member, and a pair of carriers 14 are disposed inside thereof. The pair of carriers 14 are rigid cylindrical members. A pair of carrier 14 is arrange | positioned at intervals in the axial direction X mentioned later, and the vibration body 18 is arrange | positioned inside it.

一方のキャリア14(図中右側のキャリア。以下、入力側キャリア14−Aという)は、ケーシング12にボルト26により回転不能に組み付けられる。入力側キャリア14−Aは、ボルト穴28にねじ込まれるボルト(不図示)により、モータ等の駆動装置に連結される。   One carrier 14 (the carrier on the right side in the figure, hereinafter referred to as the input-side carrier 14-A) is assembled to the casing 12 by a bolt 26 so as not to rotate. The input-side carrier 14 -A is connected to a driving device such as a motor by a bolt (not shown) screwed into the bolt hole 28.

他方のキャリア14(図中左側のキャリア。以下、出力側キャリア14−Bという)は、ケーシング12に転動体16を介して回転自在に支持される。出力側キャリア14−Bは、駆動装置から入力された回転を、駆動対象となる被駆動装置に出力するための出力部として機能する。以下、出力側キャリア14−Bの回転中心線Laに沿った方向を軸方向Xとして説明する。ケーシング12、出力側キャリア14−B、転動体16の詳細は後述する。   The other carrier 14 (the carrier on the left side in the figure, hereinafter referred to as output-side carrier 14 -B) is rotatably supported by the casing 12 via the rolling elements 16. The output side carrier 14-B functions as an output unit for outputting the rotation input from the driving device to the driven device to be driven. Hereinafter, the direction along the rotation center line La of the output-side carrier 14-B will be described as the axial direction X. Details of the casing 12, the output side carrier 14-B, and the rolling element 16 will be described later.

起振体18は、筒状部材であり、その断面形状は楕円状に形成される。起振体18は、一対のキャリア14に対して軸受30を介して回転自在に両持ち支持される。起振体18には、駆動装置の駆動軸が接続される。   The vibrator 18 is a cylindrical member, and its cross-sectional shape is formed in an elliptical shape. The vibrator 18 is supported on both ends of the pair of carriers 14 via a bearing 30 so as to be rotatable. A drive shaft of a drive device is connected to the vibrator 18.

起振体軸受20は、起振体18と外歯歯車22の間に配置される。起振体軸受20は、起振体18に対して外歯歯車22を回転自在に支持する。   The vibration body bearing 20 is disposed between the vibration body 18 and the external gear 22. The vibration body bearing 20 supports the external gear 22 rotatably with respect to the vibration body 18.

外歯歯車22は、起振体18の外周側に配置される。外歯歯車22は、可撓性を持つ環状部材である。外歯歯車22は、起振体軸受20を介して起振体18により楕円状に撓み変形させられる。外歯歯車22は、環状のベース部22aと、ベース部22aの外周側に一体的に形成された第1外歯部22b及び第2外歯部22cを有する。第1外歯部22b及び第2外歯部22cは軸方向Xに配置される。外歯歯車22は、起振体18が回転すると、内歯歯車24との噛合位置を周方向に変えつつ、起振体18の形状に合うように撓み変形する。   The external gear 22 is disposed on the outer peripheral side of the vibration generator 18. The external gear 22 is a flexible annular member. The external gear 22 is bent and deformed in an elliptical shape by the vibration generator 18 via the vibration generator bearing 20. The external gear 22 includes an annular base portion 22a and a first external tooth portion 22b and a second external tooth portion 22c that are integrally formed on the outer peripheral side of the base portion 22a. The first external tooth portion 22b and the second external tooth portion 22c are arranged in the axial direction X. When the vibration generator 18 rotates, the external gear 22 bends and deforms to match the shape of the vibration generator 18 while changing the meshing position with the internal gear 24 in the circumferential direction.

内歯歯車24は、剛性を持つ環状部材である。内歯歯車24は外歯歯車22の外周側に配置される。内歯歯車24には、外歯歯車22の第1外歯部22bが内接噛合する第1内歯歯車24−Aと、外歯歯車22の第2外歯部22cが内接噛合する第2内歯歯車24−Bとが含まれる。外歯部22b、22cは、起振体18の長軸方向の両側部分が内歯歯車24と内接噛合している。第1内歯歯車24−Aは、第1外歯部22bの外歯数より内歯数が2i(iは1以上の自然数)だけ多く、第2内歯歯車24−Bは、第2外歯部22cの外歯数と同数の内歯数である。第1内歯歯車24−Aは入力側キャリア14−Aに一体的に形成されており、第2内歯歯車24−Bは出力側キャリア14−Bに一体的に形成される。   The internal gear 24 is a rigid annular member. The internal gear 24 is disposed on the outer peripheral side of the external gear 22. The internal gear 24 includes a first internal gear 24-A in which the first external tooth portion 22b of the external gear 22 is internally meshed, and a second external gear portion 22c of the external gear 22 that is internally meshed. 2 internal gear 24-B. The external tooth portions 22 b and 22 c are in mesh with the internal gear 24 at both side portions in the longitudinal direction of the vibrator 18. The first internal gear 24-A has a larger number of internal teeth by 2i (i is a natural number of 1 or more) than the number of external teeth of the first external tooth portion 22b, and the second internal gear 24-B The number of internal teeth is the same as the number of external teeth of the tooth portion 22c. The first internal gear 24-A is formed integrally with the input side carrier 14-A, and the second internal gear 24-B is formed integrally with the output side carrier 14-B.

以上の減速装置10の動作を説明する。
駆動軸が回転すると、駆動軸とともに起振体18が回転する。起振体18が回転すると、内歯歯車24との噛合位置を周方向に変えつつ、起振体18の形状に合うように外歯歯車22が連続的に撓み変形させられる。第1外歯部22bは、起振体18が一回転するごとに、第1内歯歯車24−Aとの歯数差に相当する分、第1内歯歯車24−Aに対して相対回転(自転)する。このとき、起振体18の回転は、第1内歯歯車24−Aとの歯数差に応じた減速比で減速されて外歯歯車22が自転する。
The operation of the speed reducer 10 will be described.
When the drive shaft rotates, the vibrator 18 rotates with the drive shaft. When the vibration generator 18 rotates, the external gear 22 is continuously bent and deformed so as to match the shape of the vibration generator 18 while changing the meshing position with the internal gear 24 in the circumferential direction. The first external tooth portion 22b rotates relative to the first internal gear 24-A by an amount corresponding to the difference in the number of teeth from the first internal gear 24-A each time the vibration generator 18 rotates once. (Spin). At this time, the rotation of the vibrator 18 is decelerated at a reduction ratio corresponding to the difference in the number of teeth from the first internal gear 24-A, and the external gear 22 rotates.

第1外歯部22bは、第2外歯部22cと同位相で一体に回転する。第2内歯歯車24−Bは、第2外歯部22cと歯数が同じであるため、起振体18が一回転した前後で第2外歯部22cとの相対的な噛合位置が変わらないまま、第1外歯部22bと同じ自転成分で同期して回転する。この第1外歯部22bの自転成分は第2内歯歯車24−Bを介して出力側キャリア14−Bに伝達される。この結果、起振体18の回転が減速されて出力側キャリア14−Bから被駆動装置に出力される。   The first external tooth portion 22b rotates integrally with the second external tooth portion 22c in the same phase. Since the second internal gear 24-B has the same number of teeth as the second external gear portion 22c, the relative meshing position with the second external gear portion 22c changes before and after the vibration generator 18 makes one rotation. Without any rotation, the first external tooth portion 22b rotates in synchronism with the same rotation component. The rotation component of the first external tooth portion 22b is transmitted to the output side carrier 14-B via the second internal gear 24-B. As a result, the rotation of the vibrator 18 is decelerated and output from the output carrier 14-B to the driven device.

転動体16周りの構成を説明する。
図2は、図1の転動体16を周辺構造とともに示す拡大図である。複数の転動体16は、出力側キャリア14−B及びケーシング12の一部と協働して軸受を構成する。本実施形態の転動体16は、出力側キャリア14−B及びケーシング12の一部と協働してクロスローラ軸受を構成する。複数の転動体16は、出力側キャリア14−Bの回転中心線La周りの周方向に間隔を空けて設けられる。本実施形態の転動体16はクロスローラ軸受のクロスローラとなる円柱状のころである。複数の転動体16は、自らの転動軸が回転中心線Laに向かって軸方向Xの一方側に延びるものと、軸方向Xの他方側に延びるものとが周方向に交互に配置される。
A configuration around the rolling element 16 will be described.
FIG. 2 is an enlarged view showing the rolling element 16 of FIG. 1 together with the peripheral structure. The plurality of rolling elements 16 constitute a bearing in cooperation with the output side carrier 14 -B and a part of the casing 12. The rolling element 16 of this embodiment constitutes a cross roller bearing in cooperation with the output side carrier 14 -B and a part of the casing 12. The plurality of rolling elements 16 are provided at intervals in the circumferential direction around the rotation center line La of the output-side carrier 14-B. The rolling element 16 of this embodiment is a cylindrical roller that serves as a cross roller of a cross roller bearing. The plurality of rolling elements 16 are alternately arranged in the circumferential direction such that their rolling shafts extend to one side in the axial direction X toward the rotation center line La and those extending to the other side in the axial direction X. .

出力側キャリア14−Bとケーシング12は複数の転動体16を間に挟んで配置される。出力側キャリア14−Bは内周側に配置され、ケーシング12は外周側に配置される。出力側キャリア14−Bは、筒状の第1キャリア部材32と、第1キャリア部材32にインロー嵌合等により接続される筒状の第2キャリア部材34とを有する。   The output side carrier 14-B and the casing 12 are arranged with a plurality of rolling elements 16 interposed therebetween. The output side carrier 14-B is disposed on the inner peripheral side, and the casing 12 is disposed on the outer peripheral side. The output-side carrier 14-B includes a cylindrical first carrier member 32 and a cylindrical second carrier member 34 connected to the first carrier member 32 by a spigot fitting or the like.

第1キャリア部材32とケーシング12には、互いに径方向に対向する箇所にV字状溝36が形成される。第1キャリア部材32のV字状溝36の一対の内側面のそれぞれは、転動体16が転動する第1転動面38−Aとなる。ケーシング12のV字状溝36の一対の内側面のそれぞれは、複数の転動体16が転動する第2転動面38−Bとなる。第1転動面38−Aと第2転動面38−Bとは複数の転動体16を挟んで径方向に対向する箇所に設けられる。   A V-shaped groove 36 is formed in the first carrier member 32 and the casing 12 at locations that are opposed to each other in the radial direction. Each of the pair of inner side surfaces of the V-shaped groove 36 of the first carrier member 32 becomes a first rolling surface 38-A on which the rolling element 16 rolls. Each of the pair of inner side surfaces of the V-shaped groove 36 of the casing 12 becomes a second rolling surface 38-B on which the plurality of rolling elements 16 roll. The first rolling surface 38-A and the second rolling surface 38-B are provided at locations that face each other in the radial direction across the plurality of rolling elements 16.

第1キャリア部材32は、前述の第1転動面38−Aの他に第1穴部40−Aが設けられた第1穴付部材である。第1転動面38−Aは、第1キャリア部材32の筒状部分の外周面に形成される。第1穴部40−Aは、第1転動面38−Aより軸方向Xの一方側にずれた位置に設けられる。本実施形態の第1穴部40−Aには雌ねじ部が形成されており、被駆動装置と連結するためのボルト(不図示)がねじ込まれる。   The first carrier member 32 is a member with a first hole in which a first hole 40-A is provided in addition to the first rolling surface 38-A described above. The first rolling surface 38 -A is formed on the outer peripheral surface of the cylindrical portion of the first carrier member 32. The first hole 40-A is provided at a position shifted to one side in the axial direction X from the first rolling surface 38-A. A female screw part is formed in the first hole 40-A of the present embodiment, and a bolt (not shown) for connecting to the driven device is screwed in.

ケーシング12は、前述の第2転動面38−Bの他に第2穴部40−Bが設けられた第2穴付部材である。第2転動面38−Bは、ケーシング12の筒状部分の内周面に形成される。第2穴部40−Bは、第2転動面38−Bより軸方向Xの他方側にずれた位置に設けられる。本実施形態の第2穴部40−Bには雌ねじが形成されており、入力側キャリア14−Aを組み付けるためのボルト26がねじ込まれる。   The casing 12 is a member with a second hole in which a second hole 40-B is provided in addition to the above-described second rolling surface 38-B. The second rolling surface 38 -B is formed on the inner peripheral surface of the cylindrical portion of the casing 12. The second hole 40-B is provided at a position shifted from the second rolling surface 38-B to the other side in the axial direction X. A female screw is formed in the second hole 40-B of the present embodiment, and a bolt 26 for assembling the input-side carrier 14-A is screwed in.

第1キャリア部材32とケーシング12は、第1キャリア部材32の第1転動面38−A上での転動体16の転動と、ケーシング12の第2転動面38−B上での転動体16の転動を伴い相対回転する。このとき、第1キャリア部材32は転動体16用の内輪の機能を兼ね、ケーシング12は転動体16用の外輪の機能を兼ねる。第1キャリア部材32とケーシング12は、転動体16の転動を伴い相対回転可能な第1部材及び第2部材として機能する。   The first carrier member 32 and the casing 12 are configured such that the rolling element 16 rolls on the first rolling surface 38-A of the first carrier member 32 and the rolling on the second rolling surface 38-B of the casing 12. The moving body 16 rotates relative to the rolling motion. At this time, the first carrier member 32 also functions as an inner ring for the rolling elements 16, and the casing 12 also functions as an outer ring for the rolling elements 16. The first carrier member 32 and the casing 12 function as a first member and a second member that can rotate relative to each other as the rolling element 16 rolls.

第1キャリア部材32は、第1転動面38−Aと第1穴部40−Aが単一の部材の一部として設けられている。ケーシング12は、第2転動面38−Bと第2穴部40−Bが単一の部材の一部として設けられている。これは、転動面38と穴部40が別々の部材に個別に設けられているのではなく、これらが一体成形品(単一の部材)の一部として設けられていることを意味する。   The first carrier member 32 is provided with a first rolling surface 38-A and a first hole 40-A as part of a single member. The casing 12 is provided with a second rolling surface 38-B and a second hole 40-B as part of a single member. This means that the rolling surface 38 and the hole 40 are not individually provided in separate members, but are provided as part of an integrally molded product (single member).

ここで本実施形態では、第1キャリア部材32、ケーシング12それぞれの硬度分布に関して特徴がある。この硬度分布は、第1キャリア部材32、ケーシング12のそれぞれで共通している。以下、第1キャリア部材32の硬度分布を主に説明し、ケーシング12の硬度分布は説明を省略する。   Here, in this embodiment, there is a characteristic regarding the hardness distribution of each of the first carrier member 32 and the casing 12. This hardness distribution is common to the first carrier member 32 and the casing 12. Hereinafter, the hardness distribution of the first carrier member 32 will be mainly described, and the description of the hardness distribution of the casing 12 will be omitted.

図3は、第1キャリア部材32の硬度分布を模式的に示す図である。第1キャリア部材32は、たとえば、クロムモリブデン鋼鋼材(JISでいうSCM材)等の機械構造用合金鋼鋼材、つまり、金属を素材とする。第1キャリア部材32には、レーザー焼入れによる表面硬化処理が施されており、母材領域42の他に表面硬化層44が設けられる。   FIG. 3 is a diagram schematically showing the hardness distribution of the first carrier member 32. The first carrier member 32 is made of, for example, an alloy steel material for mechanical structure such as chromium molybdenum steel material (SCM material in JIS), that is, a metal. The first carrier member 32 is subjected to a surface hardening process by laser hardening, and a surface hardening layer 44 is provided in addition to the base material region 42.

母材領域42は、硬化処理が施されておらず、硬化していない領域である。母材領域42は、第1キャリア部材32の加工素材となるワークの母材そのものの硬度を持つ領域である。   The base material region 42 is a region that has not been cured and is not cured. The base material region 42 is a region having the hardness of the workpiece base material itself that is a processed material of the first carrier member 32.

表面硬化層44は、母材領域42より表面側に設けられる。表面硬化層44は、焼入れによる表面硬化処理を施すことにより硬化した領域であり、母材領域42より高硬度である。表面硬化層44には、たとえば、マルテンサイト等を主相とする焼入れ組織が設けられる。表面硬化層44は、第1キャリア部材32の全表面のうち、転動面38を含む一部分にのみ設けられ、穴部40を含む周辺部分には設けられない。   The surface hardened layer 44 is provided on the surface side from the base material region 42. The surface hardened layer 44 is a region hardened by performing a surface hardening process by quenching, and has a higher hardness than the base material region 42. The surface hardened layer 44 is provided with a hardened structure whose main phase is martensite or the like, for example. The surface hardened layer 44 is provided only on a part including the rolling surface 38 in the entire surface of the first carrier member 32, and is not provided on a peripheral part including the hole 40.

図4は、第1キャリア部材32の硬度分布の一例を示すグラフである。このグラフでは、表面硬化層44の表面からの深さとビッカース硬度との関係を示す。本グラフでは、後述する実施例1、2の第1キャリア部材32の硬度分布を示す。このグラフでは、表面硬化層44の表面(転動面38)に垂直な方向を深さ方向Paとしたとき、表面硬化層44の表面から深さ方向Paに向かった複数箇所で測定したビッカース硬度をプロットしている。ビッカース硬度はJIS Z2244に準じた方法により測定される。   FIG. 4 is a graph showing an example of the hardness distribution of the first carrier member 32. This graph shows the relationship between the depth from the surface of the surface hardened layer 44 and the Vickers hardness. In this graph, the hardness distribution of the 1st carrier member 32 of Example 1, 2 mentioned later is shown. In this graph, when the direction perpendicular to the surface (rolling surface 38) of the surface hardened layer 44 is the depth direction Pa, the Vickers hardness measured at a plurality of locations from the surface hardened layer 44 toward the depth direction Pa. Is plotted. Vickers hardness is measured by a method according to JIS Z2244.

グラフ中の測定点に添えた数字は、表面側に隣り合う測定点からのビッカース硬度の変化量(以下、硬度変化量という)を示す。この硬度変化量は、表面硬化層44や母材領域42の深さ方向Paに対する0.1mm当たりのビッカース硬度の変化量を示す。   The numbers attached to the measurement points in the graph indicate the amount of change in Vickers hardness (hereinafter referred to as hardness change amount) from the measurement point adjacent to the surface side. This amount of change in hardness indicates the amount of change in Vickers hardness per 0.1 mm with respect to the depth direction Pa of the surface hardened layer 44 and the base material region 42.

表面硬化層44には、表面硬化層44の表面から深さ方向Paに向かって表層領域46と硬度遷移領域48とが順に設けられる(図3も参照)。表層領域46は、表面硬化層44の表面から硬度遷移領域48まで連続している。硬度遷移領域48は、表層領域46から母材領域42まで連続している。硬度遷移領域48は、深さ方向Paに向かって硬度が連続的に減少しており(つまり、硬度変化量が0以上になることがない)、表層領域46の硬度から母材領域42の硬度に遷移する領域となる。   The surface hardened layer 44 is provided with a surface layer region 46 and a hardness transition region 48 in this order from the surface of the surface hardened layer 44 in the depth direction Pa (see also FIG. 3). The surface layer region 46 is continuous from the surface of the surface hardened layer 44 to the hardness transition region 48. The hardness transition region 48 is continuous from the surface layer region 46 to the base material region 42. In the hardness transition region 48, the hardness continuously decreases in the depth direction Pa (that is, the hardness change amount does not become 0 or more), and the hardness of the base material region 42 is determined from the hardness of the surface region 46. It becomes the area that changes to.

硬度遷移領域48は、表面硬化層44の表面から深さ方向Paに向かう途中で硬度が急激に減少する箇所として、硬度変化量が少なくとも−60以下、通常は−100以下になる箇所を含む。硬度遷移領域48は、硬度変化量が少なくとも−60以下、通常は−100以下になる箇所を含む領域であって、深さ方向Paに向かって硬度変化量が0以上の値から負の値に切り替わる箇所から始まる領域である。硬度遷移領域48は、たとえば、硬度変化量が−200以上0未満となる。硬度遷移領域48の深さ方向Paでの長さは、たとえば、0.3mm〜0.8mmの範囲となる。このように硬度が急激に減少する硬度遷移領域48があることにより、表面硬化層44の表面から母材領域42までの深さである全硬化層深さを浅くし易くなる。   The hardness transition region 48 includes a portion where the hardness change amount is at least −60 or less, and usually −100 or less, as a portion where the hardness sharply decreases on the way from the surface of the surface hardened layer 44 in the depth direction Pa. The hardness transition region 48 is a region including a portion where the hardness change amount is at least −60 or less, usually −100 or less, and the hardness change amount from a value of 0 or more toward a negative value toward the depth direction Pa. It is an area starting from the place where it switches. For example, the hardness transition region 48 has a hardness change amount of −200 or more and less than 0. The length of the hardness transition region 48 in the depth direction Pa is, for example, in the range of 0.3 mm to 0.8 mm. The presence of the hardness transition region 48 in which the hardness sharply decreases in this way makes it easy to reduce the total hardened layer depth, which is the depth from the surface of the surface hardened layer 44 to the base material region 42.

表層領域46は、表面硬化層44の表面と硬度遷移領域48の間に存在する領域である。このことを特定するため、表層領域46は硬度変化量が0以上になる箇所を含むことを条件としている。また、表層領域46は、硬度変化量が負の値になる場合でも、硬度変化量が少なくとも−60以下、通常は−100以下になる箇所を含む硬度遷移領域48より硬度変化量が大きく(絶対値が小さく)なるため、硬度遷移領域48ほど硬度が急激に減少しない。表層領域46は、硬度変化量が少なくとも−60超になる領域であるとも捉えられる。このような表層領域46があることにより、母材領域42より高硬度の領域が表面硬化層44の表面と硬度遷移領域48の間にあることになり、所要の硬度を持つ有効硬化層の深さを確保し易くなる。   The surface layer region 46 is a region existing between the surface of the surface hardened layer 44 and the hardness transition region 48. In order to specify this, it is a condition that the surface layer region 46 includes a portion where the amount of change in hardness is 0 or more. Further, even when the hardness change amount is a negative value, the surface layer region 46 has a larger hardness change amount than the hardness transition region 48 including a portion where the hardness change amount is at least −60 or less, usually −100 or less (absolute Therefore, the hardness does not decrease as rapidly as the hardness transition region 48. The surface layer region 46 is also regarded as a region where the amount of change in hardness is at least over −60. By having such a surface layer region 46, a region having a higher hardness than the base material region 42 is located between the surface of the surface hardened layer 44 and the hardness transition region 48, and the depth of the effective hardened layer having the required hardness is increased. It becomes easy to ensure the thickness.

表層領域46は、ビッカース硬度に大きな増減がなく、所要の硬度を持つ有効硬化層の深さを確保するのに寄与する領域でもある。これを実現するため、表層領域46は、ビッカース硬度の最大値と最小値の差分である第1差分値Δが100以下となり、その硬度変化量が−60超+60以下の範囲となる。ここでのビッカース硬度の最大値と最小値とは、表層領域46のビッカース硬度を深さ方向Paに向かって0.1mm単位で測定したときの最大値と最小値をいう。   The surface layer region 46 is also a region contributing to ensuring the depth of an effective hardened layer having a required hardness without greatly increasing or decreasing the Vickers hardness. In order to realize this, in the surface layer region 46, the first difference value Δ which is the difference between the maximum value and the minimum value of the Vickers hardness is 100 or less, and the hardness change amount is in the range of more than −60 + 60 or less. Here, the maximum value and the minimum value of the Vickers hardness mean the maximum value and the minimum value when the Vickers hardness of the surface layer region 46 is measured in units of 0.1 mm toward the depth direction Pa.

表層領域46は、所要の硬度を持つ有効硬化層の深さを確保するため、たとえば、母材領域42の開始位置のビッカース硬度の少なくとも1.5倍以上のビッカース硬度となる。また、表層領域46は、有効硬化層の深さを確保するため、表面硬化層44の表面から少なくとも0.2mmの範囲に設けられる。表層領域46のビッカース硬度の下限値は、特に限られないが、十分な疲労強度を確保する観点からは、たとえば、600以上あると好ましい。表層領域46のビッカース硬度の上限値は、特に限られないが、たとえば、800以下になる。   The surface layer region 46 has, for example, a Vickers hardness of at least 1.5 times the Vickers hardness at the starting position of the base material region 42 in order to ensure the depth of the effective hardened layer having a required hardness. The surface layer region 46 is provided in a range of at least 0.2 mm from the surface of the surface hardened layer 44 in order to ensure the depth of the effective hardened layer. The lower limit value of the Vickers hardness of the surface layer region 46 is not particularly limited, but is preferably, for example, 600 or more from the viewpoint of securing sufficient fatigue strength. The upper limit value of the Vickers hardness of the surface layer region 46 is not particularly limited, but is 800 or less, for example.

母材領域42は、硬度遷移領域48より深さ方向Paに向かって硬度変化量が負の値から0以上の値に切り替わる箇所から始まる。母材領域42では、深さ方向Paに向かって硬度が大きく増減しない。この関係から、母材領域42は、たとえば、ビッカース硬度の最大値と最小値の差分である第2差分値Δが50以下となり、硬度変化量が−50以上+50以下となる。したがって、母材領域42は、硬度遷移領域48の硬度変化量が−60以下になる箇所より深さ方向Paに向かって、硬度変化量が−50以上+50以下になる箇所から始まると捉えてもよい。母材領域42は、その具体的な硬度に関して特に限られるものではないが、たとえば、250〜400Hvの範囲となる。   The base material region 42 starts from a location where the hardness change amount switches from a negative value to a value of 0 or more in the depth direction Pa from the hardness transition region 48. In the base material region 42, the hardness does not greatly increase or decrease in the depth direction Pa. From this relationship, in the base material region 42, for example, the second difference value Δ which is the difference between the maximum value and the minimum value of the Vickers hardness is 50 or less, and the hardness change amount is −50 or more and +50 or less. Accordingly, the base material region 42 may be regarded as starting from a location where the hardness change amount is −50 or more and +50 or less in the depth direction Pa from a location where the hardness change amount of the hardness transition region 48 is −60 or less. Good. The base material region 42 is not particularly limited with respect to its specific hardness, but is, for example, in the range of 250 to 400 Hv.

以上の硬度に関する条件は、転動面38の幅方向Pbの中央部38a(図3参照)から深さ方向Paに向かう範囲で満たしていればよい。ここでの幅方向Pbとは、第1キャリア部材32を回転中心線La(図1参照)に沿って切断した断面において、転動面38の深さ方向Paと直交する方向をいう。   The above-mentioned conditions relating to the hardness only have to be satisfied in a range from the central portion 38a (see FIG. 3) in the width direction Pb of the rolling surface 38 toward the depth direction Pa. Here, the width direction Pb refers to a direction orthogonal to the depth direction Pa of the rolling surface 38 in a cross section obtained by cutting the first carrier member 32 along the rotation center line La (see FIG. 1).

以上の第1キャリア部材32では、転動面38が表層領域46の表面に設けられ、第1穴部40−Aが母材領域42に設けられる。つまり、第1穴部40−Aは母材領域42にのみ設けられ、表面硬化層44には設けられない。よって、第1キャリア部材32の加工素材となるワークに関して、高硬度の表面硬化層44ではなく低硬度の母材領域42に第1穴部40−Aを設けるための穿孔加工をできる。このため、そのワークの加工時の加工性が良好になる。   In the first carrier member 32 described above, the rolling surface 38 is provided on the surface of the surface layer region 46, and the first hole 40 -A is provided in the base material region 42. That is, the first hole portion 40 -A is provided only in the base material region 42 and is not provided in the surface hardened layer 44. Therefore, with respect to the workpiece that is the processing material of the first carrier member 32, it is possible to perform drilling for providing the first hole portion 40-A in the low hardness base material region 42 instead of the high hardness surface hardened layer 44. For this reason, the workability at the time of processing the workpiece is improved.

また、表面硬化層44には、深さ方向Paに向かって硬度が急激に減少しない表層領域46が設けられているため、有効硬化層の深さを確保し易くなる。また、表面硬化層44には、深さ方向Paに向かって硬度が急激に減少する硬度遷移領域48が設けられているため、全硬化層深さを浅くし易くなる。よって、転動面38に穴部40を近づけることで、第1キャリア部材32を小型化する設計が許容されるようになる。本実施形態の例でいえば、転動面38に穴部40を軸方向に近づけることで、第1キャリア部材32を軸方向に小型化する設計が許容されるようになる。この結果、前述のワークの加工時の良好な加工性のみならず、表面硬化層44の十分な有効硬化層深さと、第1キャリア部材32の小型化とをバランスよく実現し易くなる。   Further, since the surface hardened layer 44 is provided with a surface layer region 46 in which the hardness does not rapidly decrease in the depth direction Pa, it becomes easy to ensure the depth of the effective hardened layer. Further, since the surface hardened layer 44 is provided with a hardness transition region 48 in which the hardness sharply decreases in the depth direction Pa, the total hardened layer depth can be easily reduced. Therefore, the design that reduces the size of the first carrier member 32 is allowed by bringing the hole 40 closer to the rolling surface 38. In the example of the present embodiment, the design that reduces the size of the first carrier member 32 in the axial direction is allowed by bringing the hole 40 close to the rolling surface 38 in the axial direction. As a result, it becomes easy to realize not only good workability at the time of processing of the workpiece described above but also a sufficient effective hardened layer depth of the surface hardened layer 44 and a reduction in size of the first carrier member 32 in a balanced manner.

また、第1キャリア部材32は、第1転動面38−Aと第1穴部40−Aが単一の部材の一部として設けられている。よって、減速装置10の部品点数の増大を招くことなく、前述の効果を得られる。   Further, the first carrier member 32 is provided with a first rolling surface 38-A and a first hole 40-A as a part of a single member. Therefore, the above-described effects can be obtained without increasing the number of parts of the reduction gear 10.

次に、第1キャリア部材32の硬度分布の好ましい条件を説明する。
表層領域46の表面にある転動面38から硬度遷移領域48の開始点までの深さ(以下、遷移開始深さという)は、0.5mm〜1.5mmの範囲であると好ましい。この遷移開始深さが0.5mm未満となると、硬度遷移領域48の開始点が浅くなりすぎ、有効硬化層の深さが不足する恐れがある。この遷移開始深さが1.5mm超となると、硬度遷移領域48の開始点が深くなりすぎ、ワークの加工時の加工性を確保するうえで、転動面38から穴部40までの距離が長くなる恐れがある。この遷移開始深さの条件を満たしていれば、前述のワークの加工時の加工性と、表面硬化層44の十分な有効硬化層深さと、第1キャリア部材32の小型化とをよりバランスよく実現し易くなる。
Next, preferable conditions for the hardness distribution of the first carrier member 32 will be described.
The depth from the rolling surface 38 on the surface of the surface layer region 46 to the starting point of the hardness transition region 48 (hereinafter referred to as transition start depth) is preferably in the range of 0.5 mm to 1.5 mm. If this transition start depth is less than 0.5 mm, the starting point of the hardness transition region 48 becomes too shallow, and the depth of the effective hardened layer may be insufficient. When the transition start depth exceeds 1.5 mm, the starting point of the hardness transition region 48 becomes too deep, and the distance from the rolling surface 38 to the hole 40 is sufficient to ensure the workability when processing the workpiece. There is a risk of becoming longer. If the condition of the transition start depth is satisfied, the workability at the time of processing the workpiece, the sufficient effective hardened layer depth of the surface hardened layer 44, and the miniaturization of the first carrier member 32 are more balanced. It becomes easy to realize.

表層領域46の表面にある転動面38から母材領域42の開始点までの距離、つまり、転動面38から硬度遷移領域48の終了点までの深さ(以下、遷移終了深さという)は、0.8mm〜2.0mmの範囲であると好ましい。この遷移終了深さが0.8mm未満となると、硬度遷移領域48の終了点が浅くなりすぎ、有効硬化層の深さが不足する恐れがある。この遷移終了深さが2.0mm超であると、硬度遷移領域48の終了点が深くなりすぎ、ワークの加工時の加工性を確保するうえで、転動面38から穴部40までの距離が長くなる恐れがある。この遷移終了深さの条件を満たしていれば、前述のワークの加工時の加工性と、表面硬化層44の十分な有効硬化層深さと、第1キャリア部材32の小型化とをよりバランスよく実現し易くなる。   The distance from the rolling surface 38 on the surface of the surface layer region 46 to the starting point of the base material region 42, that is, the depth from the rolling surface 38 to the end point of the hardness transition region 48 (hereinafter referred to as transition end depth). Is preferably in the range of 0.8 mm to 2.0 mm. When the transition end depth is less than 0.8 mm, the end point of the hardness transition region 48 becomes too shallow, and the depth of the effective hardened layer may be insufficient. If the transition end depth is more than 2.0 mm, the end point of the hardness transition region 48 becomes too deep, and the distance from the rolling surface 38 to the hole 40 is sufficient to ensure the workability when processing the workpiece. May become longer. If the condition of the transition end depth is satisfied, the workability at the time of processing the workpiece, the sufficient effective hardened layer depth of the surface hardened layer 44, and the miniaturization of the first carrier member 32 are more balanced. It becomes easy to realize.

図5は、第1キャリア部材32の硬度分布の一例を示す他のグラフである。本グラフでは、後述する実施例3、4、参考例1、2の第1キャリア部材32の硬度分布を示す。詳細は後述するが、実施例1〜4は、第1キャリア部材32の転動面38に対する表面硬化処理としてレーザー焼入れを用いている。一方、参考例1は窒化処理を用いており、参考例2は高周波焼入れを用いている。   FIG. 5 is another graph showing an example of the hardness distribution of the first carrier member 32. This graph shows the hardness distribution of the first carrier member 32 of Examples 3 and 4 and Reference Examples 1 and 2 described later. Although mentioned later for details, Examples 1-4 use the laser hardening as a surface hardening process with respect to the rolling surface 38 of the 1st carrier member 32. FIG. On the other hand, Reference Example 1 uses nitriding treatment, and Reference Example 2 uses induction hardening.

前述の遷移開始深さ、遷移終了深さの条件は、表面硬化処理としてレーザー焼入れを用いることで満たせるようになる。表面硬化処理として窒化処理を用いた場合、参考例1に示すように、第1キャリア部材32の転動面38から深さ方向Paに向かって非常に浅い範囲でのみ焼入れされる。この場合、表面硬化層44に表層領域46が存在しなくなる。また、この場合、遷移開始深さは0.1mm〜0.2mm、遷移終了深さは0.8mm未満の範囲となり、何れの条件も満たせない。表面硬化処理として高周波焼入れを用いた場合、参考例2に示すように、第1キャリア部材32の転動面38から深さ方向Paに向かって非常に深い範囲に亘り焼入れされる。この場合、遷移開始深さや遷移終了深さが2.0mm超の大きさとなり、何れの条件も満たせない。図示はしないが、表面硬化処理として高周波焼入れを用いた場合、遷移開始深さや遷移終了深さが5.0mm以上の大きさとなる。ワークの加工時の加工性を確保するうえで、転動面38から穴部40までの距離が長くなり過ぎることになる。   The conditions of the transition start depth and the transition end depth described above can be satisfied by using laser hardening as the surface hardening process. When nitriding treatment is used as the surface hardening treatment, as shown in Reference Example 1, quenching is performed only in a very shallow range from the rolling surface 38 of the first carrier member 32 toward the depth direction Pa. In this case, the surface layer region 46 does not exist in the surface hardened layer 44. In this case, the transition start depth is in the range of 0.1 mm to 0.2 mm, and the transition end depth is less than 0.8 mm, and none of the conditions can be satisfied. When induction hardening is used as the surface hardening treatment, as shown in Reference Example 2, it is quenched over a very deep range from the rolling surface 38 of the first carrier member 32 toward the depth direction Pa. In this case, the transition start depth and the transition end depth are over 2.0 mm, and none of the conditions can be satisfied. Although not shown, when induction hardening is used as the surface hardening treatment, the transition start depth and the transition end depth are 5.0 mm or more. The distance from the rolling surface 38 to the hole 40 becomes too long in order to ensure the workability when machining the workpiece.

なお、前述の表面硬化層44は、第1キャリア部材32の転動面38の全周に亘る範囲で設けられる。このような表面硬化層44は、後述するように、レーザー焼入れと同時にワークを水冷することで得られる。   The above-mentioned hardened surface layer 44 is provided in a range over the entire circumference of the rolling surface 38 of the first carrier member 32. Such a surface hardened layer 44 can be obtained by water-cooling the workpiece simultaneously with laser hardening, as will be described later.

次に、第1キャリア部材32の素材となるワークの加工方法を説明する。
本加工方法は、ワークを焼入れする焼入れ工程と、ワークを穿孔する穿孔工程とを含む。本加工方法の加工対象となるワークは切削加工等により準備する。この加工対象となるワークは、第1キャリア部材32の穴部40となるべき部位に穴部40がない形状を持つ。
Next, a method for processing a workpiece that is a material of the first carrier member 32 will be described.
This processing method includes a quenching step of quenching the workpiece and a drilling step of drilling the workpiece. A workpiece to be machined by this machining method is prepared by cutting or the like. The workpiece to be processed has a shape in which the hole 40 is not provided at a site to be the hole 40 of the first carrier member 32.

焼入れ工程では、レーザー光を用いてワークを焼入れするレーザー焼入れを用いる。焼入れ工程では、回転治具(不図示)によってワークを回転中心線La周りに回転可能に支持する。ワークの転動面38となるべき部位には、レーザーヘッドから所定の出力のレーザー光を照射する。レーザー光の出力は、ワークの組成に応じた焼入れ温度を超える昇温状態が得られるように設定される。レーザーヘッドからは、ワークの転動面38となるべき部位の幅方向Pbの全長に亘る範囲にレーザー光を照射する。この状態で、ワークを回転中心線La周りに所定の回転速度で回転させることで、ワークの転動面38となるべき部位を周方向に焼入れする。これにより、ワークの転動面38となるべき部位には、表面から深さ方向Paに向かって表面硬化層44が設けられる。このとき、ワークの穴部40となるべき部位は焼入れされないようにレーザー光を照射しないこととし、母材領域42を残すようにする。   In the quenching process, laser quenching is used in which the workpiece is quenched using laser light. In the quenching step, the workpiece is rotatably supported around the rotation center line La by a rotating jig (not shown). A laser beam having a predetermined output is irradiated from a laser head to a portion to be the rolling surface 38 of the workpiece. The output of the laser beam is set so that a temperature rise state exceeding the quenching temperature corresponding to the composition of the workpiece is obtained. From the laser head, the laser beam is irradiated to a range extending over the entire length in the width direction Pb of the portion to be the rolling surface 38 of the workpiece. In this state, by rotating the workpiece around the rotation center line La at a predetermined rotation speed, the portion to be the rolling surface 38 of the workpiece is quenched in the circumferential direction. Thereby, the surface hardening layer 44 is provided in the site | part which should become the rolling surface 38 of a workpiece | work toward the depth direction Pa from the surface. At this time, the portion that should become the hole 40 of the workpiece is not irradiated with laser light so as not to be quenched, and the base material region 42 is left.

この表面硬化層44の硬度分布はワークの組成に応じたものとなる。よって、前述した条件の硬度分布を満たせる組成のワークを準備することになる。このワークの組成は、たとえば、SCM440、AISI4150等のクロムモリブデン鋼鋼材であるが、これらに限られるものではなく、実験的検討により定めればよい。   The hardness distribution of the surface hardened layer 44 depends on the composition of the workpiece. Therefore, a workpiece having a composition that can satisfy the hardness distribution under the above-described conditions is prepared. The composition of the workpiece is, for example, a chromium molybdenum steel material such as SCM440 or AISI4150, but is not limited thereto, and may be determined by experimental examination.

本実施形態の焼入れ工程では、ワークの転動面38となるべき部位に全周に亘り表面硬化層44が設けられるように焼入れする。これを実現するため、所定の回転速度で回転するワークに、所定の出力のレーザー光を照射して焼入れしつつ水冷する。回転速度、出力は、リング型コイルで加熱している昇温状態が擬似的に得られるように、十分に早い回転速度及び十分に高い出力に設定される。水冷は、大出力のレーザー光を用いることに伴い、レーザー焼入れの特徴である自己冷却が効き難くなるため、焼入れに必要な冷却速度を確保するために行われる。この回転速度、レーザー光の出力の大きさや、水冷条件は、例えば、実験的検討により定めればよい。   In the hardening process of this embodiment, it hardens so that the surface hardening layer 44 may be provided in the site | part which should become the rolling surface 38 of a workpiece | work over a perimeter. In order to realize this, the workpiece rotating at a predetermined rotation speed is irradiated with a laser beam having a predetermined output and cooled with water while being quenched. The rotational speed and output are set to a sufficiently high rotational speed and a sufficiently high output so that a temperature rise state heated by the ring coil can be obtained in a pseudo manner. Water cooling is performed in order to secure a cooling rate necessary for quenching because self-cooling, which is a feature of laser quenching, becomes difficult to use with the use of high-power laser light. The rotational speed, the output level of the laser beam, and the water cooling conditions may be determined by experimental investigation, for example.

穿孔工程では、焼入れ工程で焼入れしたワークの穴部となるべき部位にある母材領域42を穿孔する。本実施形態の穿孔工程では、ワークの穴部となるべき部位にタップを用いて穿孔し、雌ねじ部を形成するようにする。このとき、ワークの穴部となるべき部位には母材領域42が設けられているため、ワークの加工時の加工性が良好となる。   In the drilling process, the base material region 42 is drilled in a portion that should become a hole portion of the workpiece quenched in the quenching process. In the drilling step of the present embodiment, a portion to be a hole portion of the workpiece is punched using a tap to form a female screw portion. At this time, since the base material region 42 is provided in a portion to be a hole portion of the workpiece, workability at the time of machining the workpiece is improved.

なお、焼入れ工程では、ワークの転動面38となるべき部位の表面に熱吸収率に優れた吸収材を塗布したうえで、その吸収材にレーザー光を照射してもよい。この吸収材は、たとえば、グラファイト等である。これにより、ワークの転動面38となるべき部位の熱吸収量を増大させることができ、そのワークに穿孔工程を経て得られる穴付部材に関して、前述の遷移開始深さや遷移終了深さを深くできる。   In the quenching step, an absorbent material having an excellent heat absorption rate may be applied to the surface of the portion that should become the rolling surface 38 of the workpiece, and then the absorbent material may be irradiated with laser light. This absorber is, for example, graphite. As a result, the amount of heat absorption at the site that is to be the rolling surface 38 of the workpiece can be increased, and the above-mentioned transition start depth and transition end depth are deepened with respect to the holed member obtained through the drilling process on the workpiece. it can.

以下、本発明の実施例を説明する。実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Examples of the present invention will be described below. The examples are merely illustrative examples for suitably explaining the present invention, and do not limit the present invention.

まず、前述した第1キャリア部材32の外形を持つワークを試作した。試作したワークには、実施例1、3、4、参考例1、2として、SCM440を用いたワークと、実施例2として、AISI4150を用いたワークが含まれる。   First, a workpiece having the outer shape of the first carrier member 32 described above was prototyped. The prototype workpieces include workpieces using SCM440 as Examples 1, 3, 4 and Reference Examples 1 and 2, and workpieces using AISI 4150 as Example 2.

試作したワークの転動面38には複数種類の表面硬化処理を施した。実施例1、3では、ワークを回転させた状態で、レーザー焼入れにより焼入れ温度以上の温度で加熱しつつ、水冷により冷却することで焼入れした。実施例2、4では、ワークの転動面38に吸収材としてグラファイトを塗布した他は、実施例1、3と同じ条件のレーザー焼入れによる表面硬化処理を施した。参考例1では、ワークの転動面38にフッ素系ガスを用いた窒化処理による表面硬化処理を施した。参考例2では、ワークの転動面38に高周波焼入れによる表面硬化処理を施した。この高周波焼入れは、焼入れ温度以上の温度で加熱した後に水冷により冷却することで行った。   A plurality of types of surface hardening treatments were applied to the rolling surface 38 of the prototype workpiece. In Examples 1 and 3, the workpiece was hardened by being cooled by water cooling while being heated at a temperature equal to or higher than the quenching temperature by laser quenching while the workpiece was rotated. In Examples 2 and 4, surface hardening treatment by laser quenching was performed under the same conditions as in Examples 1 and 3 except that graphite was applied to the rolling surface 38 of the workpiece as an absorbent. In Reference Example 1, a surface hardening treatment by nitriding treatment using a fluorine-based gas was performed on the rolling surface 38 of the workpiece. In Reference Example 2, the surface of the rolling surface 38 of the workpiece was subjected to surface hardening treatment by induction hardening. This induction hardening was performed by heating at a temperature equal to or higher than the quenching temperature and then cooling by water cooling.

表面硬化処理を施したワークからは、転動面38から深さ方向Paに向かって複数の箇所から試験片を切り出し、複数の試験片をビッカース硬さ試験に供することとした。   From the surface-treated workpiece, test pieces were cut out from a plurality of locations from the rolling surface 38 in the depth direction Pa, and the plurality of test pieces were subjected to a Vickers hardness test.

図4は、実施例1、2の試験結果を示す。図5は、実施例3、4、参考例1、2の試験結果を示す。図4、図5に示すように、レーザー焼入れを施した実施例1〜4では、前述した硬度分布を満たす表層領域46、硬度遷移領域48が表面硬化層44に設けられている。なお、前述した表層領域46のビッカース硬度の最大値と最小値の第1差分値Δは、実施例1〜4では、それぞれ44.4、97.3、35.8、50.1となる。   FIG. 4 shows the test results of Examples 1 and 2. FIG. 5 shows the test results of Examples 3 and 4 and Reference Examples 1 and 2. As shown in FIGS. 4 and 5, in Examples 1 to 4 where laser hardening was performed, the surface layer region 46 and the hardness transition region 48 that satisfy the above-described hardness distribution are provided in the surface hardened layer 44. In addition, the 1st difference value (DELTA) of the maximum value of Vickers hardness of the surface layer area | region 46 mentioned above and the minimum value will be 44.4, 97.3, 35.8, 50.1, respectively in Examples 1-4.

以上、本発明の実施形態の例について詳細に説明した。前述した実施形態は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して説明しているが、そのような表記のない内容に設計変更が許容されないわけではない。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。   In the above, the example of embodiment of this invention was demonstrated in detail. The above-described embodiments are merely specific examples for carrying out the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as changes, additions, deletions, etc. of constituent elements are possible without departing from the spirit of the invention defined in the claims. Is possible. In the above-described embodiment, the contents that can be changed in the design are described with the notation of “embodiment”, “in the embodiment”, and the like. Changes are not unacceptable. Moreover, the hatching given to the cross section of drawing does not limit the material of the hatched object.

減速装置10は撓み噛み合い型減速装置を例に説明したが、その種類は特に限られない。たとえば、偏心揺動型減速装置等でもよいし、遊星歯車機構、直交軸歯車機構、平行軸歯車機構等の何れかを含む減速装置でもよい。また、筒型の撓み噛み合い型減速装置を例に説明したが、撓み噛み合い型減速装置の種類は特に限られない。たとえば、内歯歯車が一つのカップ型又はシルクハット型の撓み噛み合い型減速装置に適用されてもよい。   The speed reducer 10 has been described by taking a flexure meshing type speed reducer as an example, but the type thereof is not particularly limited. For example, an eccentric oscillating speed reduction device or the like, or a speed reduction device including any of a planetary gear mechanism, an orthogonal shaft gear mechanism, a parallel shaft gear mechanism, and the like may be used. Moreover, although the cylindrical bending engagement type reduction device has been described as an example, the type of the bending engagement type reduction device is not particularly limited. For example, the internal gear may be applied to a single cup type or top hat type flexure meshing type reduction gear.

転動面38と穴部40が設けられた穴付部材として、ケーシング12と第1キャリア部材32とを例に説明したが、その具体例はこれに限られない。また、転動体16を間に挟んで配置される第1部材及び第2部材の両方が穴付部材である例を説明したが、少なくとも一方が穴付部材であればよい。   Although the casing 12 and the first carrier member 32 have been described as examples of the holed member provided with the rolling surface 38 and the hole 40, the specific example is not limited thereto. Moreover, although the example in which both the 1st member arrange | positioned on both sides of the rolling element 16 and the 2nd member was a member with a hole was demonstrated, at least one should just be a member with a hole.

以上の穴付部材の硬度分布に関する条件は、表面硬化処理としてレーザー焼入れを用いる場合、ワークの組成、熱処理条件を適宜に設定することで満たせる。ここでの硬度分布に関する条件とは、前述の表層領域46と硬度遷移領域48が表面硬化層44に設けられる点や、遷移開始深さや遷移終了深さに関する数値条件をいう。ここでの熱処理条件とは、たとえば、ワークに照射されるレーザー光の出力(kW)や、ワークの表面への吸収材の塗布の有無に関する条件をいう。このレーザー光の出力を大きくすると、穴付部材の転動面から深さ方向Paに向かって焼入れされる範囲が広がり、遷移開始深さや遷移終了深さを深くし易くなる。また、ワークの表面に吸収材を塗布すると、吸収材を塗布しない場合と比べて、遷移開始深さや遷移終了深さを深くし易くなる。前述の穴付部材の硬度分布を満たすための諸条件は、このような事項を考慮のうえ、実験や解析等を経て定めればよい。   The above conditions regarding the hardness distribution of the holed member can be satisfied by appropriately setting the composition of the workpiece and the heat treatment conditions when laser hardening is used as the surface hardening treatment. The condition relating to the hardness distribution here refers to a numerical condition relating to the point that the surface layer region 46 and the hardness transition region 48 are provided in the surface hardened layer 44, and the transition start depth and transition end depth. The heat treatment condition here refers to, for example, a condition relating to the output (kW) of the laser beam irradiated to the workpiece and the presence / absence of application of the absorbent to the surface of the workpiece. When the output of this laser beam is increased, the range of quenching from the rolling surface of the holed member toward the depth direction Pa is widened, and the transition start depth and transition end depth are easily increased. Moreover, when the absorbent material is applied to the surface of the workpiece, it becomes easier to increase the transition start depth and the transition end depth than when the absorbent material is not applied. Various conditions for satisfying the hardness distribution of the holed member described above may be determined through experiments, analysis, and the like in consideration of such matters.

実施例では、穴付部材に適用される表面硬化処理の例として、レーザー焼入れを説明したが、これに限定されない。この表面硬化処理は、穴付部材の表面から硬度遷移領域まで連続し、硬度変化量が0以上になる箇所を含む表層領域と、深さ方向に向かって硬度が連続的に減少し、硬度変化量が−60以下になる箇所を含む硬度遷移領域とを得られるものであればよい。   In the embodiment, laser hardening has been described as an example of the surface hardening treatment applied to the holed member, but the present invention is not limited to this. This surface hardening treatment is continuous from the surface of the holed member to the hardness transition region, the surface layer region including the portion where the hardness change amount becomes 0 or more, and the hardness continuously decreases in the depth direction, the hardness change What is necessary is just to be able to obtain a hardness transition region including a portion where the amount becomes −60 or less.

10…減速装置、16…転動体、38…転動面、40…穴部、42…母材領域、44…表面硬化層、46…表層領域、48…硬度遷移領域。 DESCRIPTION OF SYMBOLS 10 ... Reduction gear, 16 ... Rolling body, 38 ... Rolling surface, 40 ... Hole part, 42 ... Base material area | region, 44 ... Surface hardened layer, 46 ... Surface layer area | region, 48 ... Hardness transition area | region.

Claims (5)

転動体が転動する転動面と穴部が設けられた穴付部材を備える減速装置であって、
前記穴付部材には、母材領域と、前記母材領域より表面側にて前記母材領域より高硬度の表面硬化層とが設けられ、
前記表面硬化層には、表面から垂直な深さ方向に向かって表層領域と硬度遷移領域が順に設けられ、
前記深さ方向に対する0.1mm当たりのビッカース硬度の変化量を硬度変化量としたとき、
前記表層領域は、前記表面から前記硬度遷移領域まで連続し、前記硬度変化量が0以上になる箇所を含み、
前記硬度遷移領域は、前記深さ方向に向かって硬度が連続的に減少し、前記硬度変化量が−60以下になる箇所を含み、
前記転動面は、前記表層領域の表面に設けられ、前記穴部は、前記母材領域に設けられる減速装置。
A reduction gear comprising a rolling surface on which a rolling element rolls and a holed member provided with a hole,
The holed member is provided with a base material region and a surface hardened layer having a higher hardness than the base material region on the surface side of the base material region,
In the surface hardened layer, a surface layer region and a hardness transition region are sequentially provided in a depth direction perpendicular to the surface,
When the amount of change in Vickers hardness per 0.1 mm with respect to the depth direction is the amount of change in hardness,
The surface layer region is continuous from the surface to the hardness transition region, and includes a portion where the hardness change amount is 0 or more,
The hardness transition region includes a portion where the hardness continuously decreases in the depth direction and the hardness change amount is −60 or less,
The rolling device is provided on a surface of the surface layer region, and the hole portion is provided on the base material region.
前記転動面から前記硬度遷移領域までの深さは0.5mm〜1.5mmの範囲である請求項1に記載の減速装置。   The speed reducer according to claim 1, wherein a depth from the rolling surface to the hardness transition region is in a range of 0.5 mm to 1.5 mm. 前記転動面から前記母材領域までの深さは0.8mm〜2.0mmの範囲である請求項1または2に記載の減速装置。   The speed reducer according to claim 1 or 2, wherein a depth from the rolling surface to the base material region is in a range of 0.8 mm to 2.0 mm. 前記穴付部材は、前記転動面と前記穴部が単一の部材の一部として設けられている請求項1から3のいずれかに記載の減速装置。   The speed reducing device according to any one of claims 1 to 3, wherein the holed member includes the rolling surface and the hole as a part of a single member. 穴付部材の素材となるワークの加工方法であって、
前記穴付部材には、転動体が転動する転動面と穴部とが設けられ、
前記ワークの前記転動面となるべき部位にはレーザー光を照射することにより焼入れして表面硬化層を設け、前記ワークの穴部となるべき部位は焼入れせずに母材領域を残す焼入れ工程と、
前記ワークの穴部となるべき部位にある前記母材領域を穿孔する穿孔工程とを含むワークの加工方法。
A method of processing a workpiece that is a material for a holed member,
The holed member is provided with a rolling surface on which a rolling element rolls and a hole,
A quenching step in which a portion to be the rolling surface of the workpiece is quenched by irradiating a laser beam to provide a surface hardened layer, and a portion to be a hole of the workpiece is not quenched and leaves a base material region When,
A workpiece machining method including a drilling step of drilling the base material region at a site to be a hole of the workpiece.
JP2017004876A 2017-01-16 2017-01-16 How to process speed reducer and workpiece Active JP6759114B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017004876A JP6759114B2 (en) 2017-01-16 2017-01-16 How to process speed reducer and workpiece
DE102017130890.3A DE102017130890B4 (en) 2017-01-16 2017-12-21 Reduction gear and processing method of a workpiece
CN202110154021.9A CN112984092A (en) 2017-01-16 2017-12-26 Speed reducer and method for machining workpiece
CN201711430143.6A CN108361363B (en) 2017-01-16 2017-12-26 Speed reducer and method for machining workpiece
JP2020131800A JP7376439B2 (en) 2017-01-16 2020-08-03 Workpiece processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004876A JP6759114B2 (en) 2017-01-16 2017-01-16 How to process speed reducer and workpiece

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020131800A Division JP7376439B2 (en) 2017-01-16 2020-08-03 Workpiece processing method

Publications (2)

Publication Number Publication Date
JP2018115669A true JP2018115669A (en) 2018-07-26
JP6759114B2 JP6759114B2 (en) 2020-09-23

Family

ID=62716896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004876A Active JP6759114B2 (en) 2017-01-16 2017-01-16 How to process speed reducer and workpiece

Country Status (3)

Country Link
JP (1) JP6759114B2 (en)
CN (2) CN112984092A (en)
DE (1) DE102017130890B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133800A (en) * 2019-02-21 2020-08-31 住友重機械工業株式会社 Flexible mesh gear device and manufacturing method thereof
JP2020173032A (en) * 2017-01-16 2020-10-22 住友重機械工業株式会社 Speed reduction device and method of processing workpiece
CN114110095A (en) * 2020-08-27 2022-03-01 住友重机械工业株式会社 Flexible engagement type gear device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873136B (en) * 2018-09-03 2022-01-25 通用汽车环球科技运作有限责任公司 Method for manufacturing a ferrous component with a friction surface
JP7492444B2 (en) 2020-11-20 2024-05-29 住友重機械工業株式会社 Manufacturing method of gear device
WO2023137751A1 (en) * 2022-01-24 2023-07-27 Jacobs Chuck Manufactuirng (Suzhou) Company, Ltd. Drill chuck with hardened body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180212A (en) * 1999-12-28 2001-07-03 Ntn Corp Wheel bearing device
JP2013023086A (en) * 2011-07-21 2013-02-04 Nsk Ltd Hub unit for supporting wheel, and method for manufacturing the same
JP2015064037A (en) * 2013-09-25 2015-04-09 Ntn株式会社 Hub bearing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187331B2 (en) * 1998-12-22 2008-11-26 株式会社ハーモニック・ドライブ・システムズ Cross roller bearing
JP2001280348A (en) * 2000-03-28 2001-10-10 Nsk Ltd Rolling bearing
JP2002339990A (en) 2001-05-22 2002-11-27 Harmonic Drive Syst Ind Co Ltd Lightweight bearing, and wave motive gear device
CN1252290C (en) * 2002-07-22 2006-04-19 广州富通光科技术有限公司 Laser surface hardening process of gear
JP2006083905A (en) * 2004-09-15 2006-03-30 Kyushu Institute Of Technology Wave motion gear device
DE102004056928B4 (en) 2004-11-25 2015-03-26 Schaeffler Technologies AG & Co. KG Angular contact ball bearings and method for producing and mounting such an angular contact ball bearing
JP4802273B2 (en) * 2009-10-06 2011-10-26 Ntn株式会社 bearing
JP5337008B2 (en) 2009-11-30 2013-11-06 住友重機械工業株式会社 Flexure meshing gear device and method of manufacturing the external gear
JP5337068B2 (en) * 2010-02-03 2013-11-06 住友重機械工業株式会社 Eccentric oscillation type reducer
JP2013535623A (en) * 2010-07-02 2013-09-12 アクティエボラゲット・エスコーエッフ Bearing component and surface hardening method
DE102012101309A1 (en) * 2012-02-17 2013-08-22 Thyssenkrupp Rothe Erde Gmbh Method for inductive surface hardening of an annular surface
JP6326008B2 (en) 2015-06-12 2018-05-16 矢崎総業株式会社 Connector structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180212A (en) * 1999-12-28 2001-07-03 Ntn Corp Wheel bearing device
JP2013023086A (en) * 2011-07-21 2013-02-04 Nsk Ltd Hub unit for supporting wheel, and method for manufacturing the same
JP2015064037A (en) * 2013-09-25 2015-04-09 Ntn株式会社 Hub bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173032A (en) * 2017-01-16 2020-10-22 住友重機械工業株式会社 Speed reduction device and method of processing workpiece
JP2020133800A (en) * 2019-02-21 2020-08-31 住友重機械工業株式会社 Flexible mesh gear device and manufacturing method thereof
JP7374361B2 (en) 2019-02-21 2023-11-06 住友重機械工業株式会社 Manufacturing method of flexible mesh gear device
JP7438666B2 (en) 2019-02-21 2024-02-27 住友重機械工業株式会社 Flexible mesh gear device and its manufacturing method
CN114110095A (en) * 2020-08-27 2022-03-01 住友重机械工业株式会社 Flexible engagement type gear device

Also Published As

Publication number Publication date
CN108361363B (en) 2022-07-08
CN108361363A (en) 2018-08-03
JP6759114B2 (en) 2020-09-23
CN112984092A (en) 2021-06-18
DE102017130890B4 (en) 2023-03-30
DE102017130890A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP2018115669A (en) Speed reduction device and method of processing workpiece
EP2554686B1 (en) Method for manufacturing base material for wave gear
JP7376439B2 (en) Workpiece processing method
JP6185829B2 (en) Manufacturing method of crankshaft and external gear of eccentric oscillating speed reducer
US11052451B2 (en) Gear manufacturing method and gear manufactured thereby
CN110142577B (en) Machining process of input shaft of speed reducer
CN104712731A (en) Eccentric oscillating type speed reduction device and method of manufacturing eccentric body shaft gear of eccentric oscillating type speed reduction device
RU2659196C1 (en) Dual harmonic gear drive
JP2019167589A (en) Laser quenching method
JP2023111950A (en) Speed reducer
JP2016148428A (en) Rolling shaft and method of manufacturing the same
JP6113141B2 (en) Method for processing components such as gears
JP2005147285A (en) Planetary gearing mechanism
JP2007211940A (en) Linear motion device
JP2006083905A (en) Wave motion gear device
JP6429853B2 (en) Crankshaft manufacturing method for eccentric oscillating speed reducer
KR102521913B1 (en) Method for manufacturing strain wave gear device
JP7492444B2 (en) Manufacturing method of gear device
JP2007253192A (en) Method for manufacturing shaft
JP2018197608A (en) Method of manufacturing external gear
JP2007113675A (en) Worm gear
JP2022152013A (en) Speed reducer and thermal processing method
JP6287656B2 (en) Planetary carrier manufacturing method and planetary carrier
JP2013068241A (en) Gear and method of manufacturing gear
JP2023099960A (en) Eccentric oscillation type gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6759114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150