JP2018111102A - Mag welding wire for high-strength steel sheet and pulse mag welding method using the same - Google Patents

Mag welding wire for high-strength steel sheet and pulse mag welding method using the same Download PDF

Info

Publication number
JP2018111102A
JP2018111102A JP2017001307A JP2017001307A JP2018111102A JP 2018111102 A JP2018111102 A JP 2018111102A JP 2017001307 A JP2017001307 A JP 2017001307A JP 2017001307 A JP2017001307 A JP 2017001307A JP 2018111102 A JP2018111102 A JP 2018111102A
Authority
JP
Japan
Prior art keywords
pulse
welding
mag welding
wire
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001307A
Other languages
Japanese (ja)
Other versions
JP6676553B2 (en
Inventor
木本 勇
Isamu Kimoto
勇 木本
友勝 岩上
Tomokatsu Iwagami
友勝 岩上
諒 土久岡
Ryo Tokuoka
諒 土久岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2017001307A priority Critical patent/JP6676553B2/en
Publication of JP2018111102A publication Critical patent/JP2018111102A/en
Application granted granted Critical
Publication of JP6676553B2 publication Critical patent/JP6676553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an MAG welding wire for high-strength steel sheets, wherein, when welding a lap joint part or T joint part of a high-strength steel sheet with a tensile strength of 780 MPa or more, the arc is stable, the amounts of sputtering and slag generation are small, drop of weld metal is prevented even with a large gap, the bead appearance is good, and excellent strength of the weld metal is obtained, and a pulse MAG welding method using the same.SOLUTION: The present invention provides an MAG welding wire for a high-strength steel sheet with a thickness of 1.2-3.2 mm. The MAG welding wire contains, in mass% based on the total wire mass, C: 0.05-0.20%, Mn: 1.5-2.5%, and Mo: 0.4-0.7%, with Si: 0.10% or less, P: 0.03% or less, and S: 0.03% or less, with the balance being Fe and unavoidable impurities.SELECTED DRAWING: None

Description

本発明は、引張強度が780MPa以上の高強度薄鋼板のMAG溶接用ワイヤ及びこれを使用したパルスMAG溶接方法に関し、特に板厚が1.2〜3.2mmの高強度薄鋼板の重ね継手部やT継手部を溶接するに際し、アークを安定させて、スパッタ発生量及びスラグ生成量が少なく、ギャップが大きい場合においても溶接金属の垂れ落ちが生じ難く、ビード外観が良好で、かつ良好な溶接金属の強度を得る上で好適な高強度薄鋼板のMAG溶接用ワイヤ及びこれを使用したパルスMAG溶接方法に関する。   The present invention relates to a wire for MAG welding of a high strength thin steel sheet having a tensile strength of 780 MPa or more and a pulse MAG welding method using the same, and particularly to a lap joint portion of a high strength thin steel sheet having a thickness of 1.2 to 3.2 mm. When welding T and T joints, the arc is stabilized, the amount of spatter and slag generated is small, and even when the gap is large, the weld metal does not easily sag, the bead appearance is good, and good welding is achieved. The present invention relates to a wire for MAG welding of a high-strength thin steel sheet suitable for obtaining metal strength and a pulse MAG welding method using the same.

近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっており、車体材料の高強度化のために使用鋼板の薄肉化が進められている。例えば特許文献1には、引張最大強度780MPa以上の高強度鋼板で衝突時の衝撃吸収能に優れた自動車用鋼板が開示されている。また特許文献2には、引張強さが980MPa以上の高強度鋼板で成形性の優れた自動車用鋼板が開示されている。   In recent years, from the viewpoint of global environmental conservation, improving the fuel efficiency of automobiles has become an important issue, and the use of thinner steel sheets has been promoted in order to increase the strength of car body materials. For example, Patent Document 1 discloses a steel sheet for automobiles that is a high-strength steel sheet having a maximum tensile strength of 780 MPa or more and that is excellent in impact absorption at the time of collision. Patent Document 2 discloses a steel sheet for automobiles having a high strength steel sheet having a tensile strength of 980 MPa or more and excellent in formability.

一方、溶接用ワイヤも前記高強度鋼板の溶接に適用するために高強度の材料が求められており、例えば特許文献3には、薄板高張力鋼板(690MPa鋼級)をワイヤ成分、アーク電圧、溶接電流、溶接速度及びシールドガスを限定して溶接し、溶接継手の疲労強度を向上する技術が開示されている。   On the other hand, a high-strength material is required for the welding wire to be applied to the welding of the high-strength steel plate. For example, in Patent Document 3, a thin high-tensile steel plate (690 MPa steel grade) includes a wire component, an arc voltage, A technique for improving the fatigue strength of a welded joint by limiting welding current, welding speed, and shielding gas is disclosed.

また特許文献4には、引張強さ980MPa以上の高強度薄鋼板の溶接において、溶け込み深さ、溶接金属のビッカース硬さとワイヤのPcm値を限定することによって、溶接部の低温割れを抑制する技術が開示されている。   Patent Document 4 discloses a technique for suppressing low temperature cracking of a welded portion by limiting the penetration depth, the Vickers hardness of the weld metal and the Pcm value of the wire in welding of a high strength thin steel sheet having a tensile strength of 980 MPa or more. Is disclosed.

しかし、特許文献3及び特許文献4に記載の溶接用ワイヤを用いて、高強度薄鋼板をMAG溶接した場合、アークが不安定で溶接ビードの広がりがなく、ビード止端部のなじみが不良となりやすいという問題がある。   However, when a high strength thin steel sheet is MAG welded using the welding wires described in Patent Document 3 and Patent Document 4, the arc is unstable and the weld bead does not spread, and the familiarity of the bead toe becomes poor. There is a problem that it is easy.

このため、高速度でアークが安定した溶接を行うためにパルスを付与したパルスMAG溶接が提案されている。   For this reason, pulse MAG welding to which pulses are applied in order to perform welding with a stable arc at a high speed has been proposed.

パルスMAG溶接とは、溶接電流として平均電流値より高電流となるピーク電流と平均電流値より低電流としたベース電流を周期的に流す溶接方法である。これによりピーク電流期間では一定に送給されている溶接用ワイヤを電磁ピンチ力などの作用で溶滴状態に溶融させ、ベース電流期間中にこの溶滴を溶融池に安定的に移行させるので、高速溶接時にアンダーカットを抑制するために溶接中のアーク電圧が低くなった場合においても溶滴が溶融池と短絡することなくスムーズに溶融池へ移行させることができる。   Pulse MAG welding is a welding method in which a peak current that is higher than the average current value as a welding current and a base current that is lower than the average current value are periodically passed. As a result, the welding wire, which is constantly fed during the peak current period, is melted into a droplet state by an action such as an electromagnetic pinch force, and this droplet is stably transferred to the molten pool during the base current period. Even when the arc voltage during welding becomes low in order to suppress undercut during high-speed welding, the droplets can be smoothly transferred to the molten pool without short-circuiting with the molten pool.

このように、パルス溶接電源を適用することにより、パルスMAG溶接においてピーク電流、ピーク時間、アーク電圧の積からなる溶融エネルギーに対応したワイヤ送給量毎の溶滴生成量にする。すなわち、1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を溶融池に規則的に移行させる1パルス−1ドロップ移行となるパルス条件とするにより、溶滴はスムーズに溶融池に移行してスパッタ発生量が低減される。このため溶接電源は、溶接用ワイヤの送給量に対応してパルスの周波数を数十Hz〜300Hz程度まで変化させることが可能となっている。   In this way, by applying the pulse welding power source, the droplet generation amount for each wire feeding amount corresponding to the melting energy consisting of the product of peak current, peak time, and arc voltage in pulse MAG welding is obtained. That is, by forming a single droplet at the time of one pulse peak current and setting a pulse condition of 1 pulse-1 drop transition that regularly transfers the droplet to the molten pool during the base current period, The amount of spatter generated is reduced by smoothly moving to the molten pool. For this reason, the welding power source can change the frequency of the pulse from about several tens of Hz to about 300 Hz corresponding to the amount of welding wire fed.

一方、ピーク電流、ピーク時間、アーク電圧の積からなるワイヤを溶融するエネルギーがワイヤ送給量と不均衡になると、溶滴の形成がベース電流期間となり、溶滴形成がピーク電流期間の初期時に終了した溶滴はスムーズに移行できなくなり、スパッタとして飛散する。また溶滴移行時期がベース電流期間およびピーク電流期間に不連続に発生することになり、スパッタとして飛散するばかりでなく不均一なビード形状となる。   On the other hand, if the energy for melting the wire, which is the product of peak current, peak time, and arc voltage, becomes unbalanced with the wire feed amount, droplet formation becomes the base current period, and droplet formation occurs at the beginning of the peak current period. The finished droplets cannot move smoothly and scatter as spatter. In addition, the droplet transfer timing occurs discontinuously during the base current period and the peak current period, resulting in not only scattering as spatter but also a non-uniform bead shape.

特にガスシールドアーク溶接での高速度溶接においてはアンダーカットが発生し易く、これを抑制する方法としてはアーク電圧を低くした溶接条件を採用することが一般的であるが、アークの広がりが小さくなるのでビード幅も狭くなり、ビード幅の広い良好な継手の形成が困難となる。また薄鋼板の構造物の形状は複雑化し、溶接部においても継手部の形状は複雑で溶接狙い精度が要求され、ワイヤ狙い精度の不安定状態により鋼板の溶け落ちや溶け込み不良、さらにはアーク状態の安定性劣化によるスパッタの多発、ビード形状の不良などの要因となる。   Particularly in high-speed welding in gas shielded arc welding, undercut is likely to occur. As a method for suppressing this, it is common to employ welding conditions with a reduced arc voltage, but the arc spread is reduced. As a result, the bead width is also narrowed, making it difficult to form a good joint with a wide bead width. In addition, the shape of the structure of the thin steel plate is complicated, and the shape of the joint part is also complicated in the welded part, and the accuracy of the aiming of the welding is required. This causes frequent spatters due to deterioration of the stability of the steel and poor bead shape.

図1(a)、(b)、(c)、(d)、(e)に薄鋼板の重ね継手部の横向姿勢においてギャップがある場合のビード形成状態の例を示す。前板1に対して後側に後板2を位置させ、この前板1及び後板2にそれぞれ溶接金属3を形成させる。この前板1と後板2との間にはギャップGが形成されている。図1(a)は、溶け落ちやビードの垂れおよびアンダーカットがなくビード幅Wが大きく良好な溶接金属3が得られた例を示す。図1(b)は、アンダーカット4が生じた例を示す。図1(c)は、溶融金属3が前板1側に垂れた例を示す。図1(d)は、鋼板(後板2)が溶け落ちた例を示す。図1(e)は、溶融金属3が前板1と後板2の間のギャップG内に垂れ落ちた例を示す。   FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, and FIG. 1E show an example of a bead formation state when there is a gap in the lateral orientation of the lap joint portion of a thin steel plate. The rear plate 2 is positioned on the rear side with respect to the front plate 1, and the weld metal 3 is formed on each of the front plate 1 and the rear plate 2. A gap G is formed between the front plate 1 and the rear plate 2. FIG. 1 (a) shows an example in which a good weld metal 3 having a large bead width W without melt-through, bead dripping and undercut is obtained. FIG. 1B shows an example in which an undercut 4 has occurred. FIG. 1C shows an example in which the molten metal 3 hangs down to the front plate 1 side. FIG.1 (d) shows the example which the steel plate (rear plate 2) melted away. FIG. 1 (e) shows an example in which the molten metal 3 has dropped into the gap G between the front plate 1 and the rear plate 2.

図1(b)に示すアンダーカット4は、アーク電圧が高い場合に生じる。図1(c)に示す溶接金属3の前板1側への垂れは、図3に示すワイヤ狙い位置6が前板1の前面側61になった場合に生じやすい。図1(d)に示す鋼板(後板2)の溶け落ちは、図3に示すワイヤ狙い位置6が後板側62になった場合に生じやすい。図1(e)に示す溶接金属3のギャップG内への垂れ落ちは、ギャップG自体が大きい場合に生じやすくなる。このように、ワイヤ狙い位置が変動した場合は、溶融金属3の垂れや、後板2側の鋼板の溶け落ちが生ずるばかりでなく、重ね継手部のギャップGが大きい場合、溶融金属3が前板1と後板2との間で架橋できなくなり、良好な溶接ビード形成が困難になるという問題点があった。   The undercut 4 shown in FIG. 1B occurs when the arc voltage is high. The sag of the weld metal 3 to the front plate 1 side shown in FIG. 1C is likely to occur when the wire aiming position 6 shown in FIG. 3 is the front side 61 of the front plate 1. The steel plate (rear plate 2) shown in FIG. 1D is likely to be melted when the wire aiming position 6 shown in FIG. The dripping of the weld metal 3 into the gap G shown in FIG. 1 (e) is likely to occur when the gap G itself is large. In this way, when the wire aiming position fluctuates, not only does the molten metal 3 droop and the steel plate on the rear plate 2 side melts, but if the gap G of the lap joint is large, the molten metal 3 moves forward. There is a problem that it becomes impossible to bridge between the plate 1 and the rear plate 2 and it becomes difficult to form a good weld bead.

従来、高強度鋼板のパルスMAG溶接用ワイヤとして、例えば特許文献5には、薄板高張力鋼板(690MPa鋼級)をワイヤ成分、シールドガス組成及びパルス付与条件を限定して溶接し、溶接金属の機械的性質を良好にすることができると共にスパッタの発生量が少なく溶接作業性に優れる技術が開示されている。   Conventionally, as a wire for pulse MAG welding of a high-strength steel plate, for example, in Patent Document 5, a thin high-tensile steel plate (690 MPa steel grade) is welded by limiting the wire component, the shielding gas composition, and the pulse application conditions. A technique that can improve the mechanical properties and has low spatter generation and excellent welding workability is disclosed.

しかし、特許文献5の開示技術においても、アークが安定して、スラグ生成量が少なく、ビード外観が良好な溶接金属を得ることができず、溶接金属の強度も低くなってしまう問題点があった。   However, the technique disclosed in Patent Document 5 also has a problem in that the arc is stable, the amount of slag generation is small, a weld metal having a good bead appearance cannot be obtained, and the strength of the weld metal is reduced. It was.

特開2015−175061号公報Japanese Patent Laying-Open No. 2015-175061 特開2015−175051号公報JP-A-2015-175051 特開平8−25080号公報Japanese Patent Laid-Open No. 8-25080 特開2010−214466号公報JP 2010-214466 A 特開平8−99175号公報JP-A-8-99175

そこで本発明は、上述した問題点に鑑みて案出されたものであり、板厚が1.2〜3.2mmであり、引張強度が780MPa以上の高強度薄鋼板の重ね継手部やT継手部を溶接するに際し、アークが安定して、スパッタ発生量及びスラグ生成量が少なく、ギャップが大きい場合においても溶接金属の垂れ落ちが生じ難く、ビード外観が良好で、かつ良好な溶接金属の強度が得られる高強度薄鋼板のMAG溶接用ワイヤ及びこれを使用したパルスMAG溶接方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is a lap joint or T joint of a high strength thin steel plate having a plate thickness of 1.2 to 3.2 mm and a tensile strength of 780 MPa or more. When welding parts, the arc is stable, the amount of spatter generation and slag generation is small, and even when the gap is large, the weld metal does not easily sag, the bead appearance is good, and the strength of the weld metal is good. It aims at providing the wire for MAG welding of the high strength thin steel plate from which this is obtained, and the pulse MAG welding method using the same.

本発明の要旨は、
(1)厚さ1.2〜3.2mmである高強度薄鋼板のMAG溶接用ワイヤにおいて、ワイヤ全質量に対する質量%で、C:0.05〜0.20%、Mn:1.5〜2.5%、Mo:0.4〜0.7%を含有し、Si:0.10%以下、P:0.03%以下、S:0.03%以下であり、残部はFe及び不可避不純物からなることを特徴とする高強度薄鋼板のMAG溶接用ワイヤである。
The gist of the present invention is as follows.
(1) In a MAG welding wire of a high-strength thin steel sheet having a thickness of 1.2 to 3.2 mm, C: 0.05 to 0.20%, Mn: 1.5 to 2.5%, Mo: 0.4 to 0.7%, Si: 0.10% or less, P: 0.03% or less, S: 0.03% or less, the balance is Fe and inevitable A wire for MAG welding of a high-strength thin steel sheet characterized by comprising impurities.

(2)(1)に記載の高強度薄鋼板のMAG溶接用ワイヤを使用したパルスMAG溶接方法において、パルスピーク電流(Ip):400〜600A、パルスベース電流(Ib):30〜80Aとし、前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とするパルスMAG溶接方法。
400≦Ip(A)×Tp(msec) ≦800・・・・・(1)
(2) In the pulse MAG welding method using the MAG welding wire of the high-strength thin steel sheet described in (1), the pulse peak current (Ip) is 400 to 600 A, the pulse base current (Ib) is 30 to 80 A, A pulse MAG welding method, wherein welding is performed by adding a pulse in which the pulse peak current (Ip) and the pulse peak time (Tp) satisfy the following formula (1).
400 ≦ Ip (A) × Tp (msec) ≦ 800 (1)

本発明の高強度薄鋼板のMAG溶接用ワイヤ及びこれを使用したパルスMAG溶接方法によれば、板厚が1.2〜3.2mmの引張強度が780MPa以上の高強度薄鋼板の重ね継手部やT継手部を溶接するに際し、アークが安定して、スパッタ発生量及びスラグ生成量が少なく、ギャップが大きい場合においても溶接金属の垂れ落ちが生じ難く、ビード外観が良好で、かつ良好な溶接金属の強度が得られるなど、高能率で高品質な溶接部が得られる。   According to the wire for MAG welding of a high strength thin steel sheet and a pulse MAG welding method using the same according to the present invention, a lap joint portion of a high strength thin steel sheet having a plate thickness of 1.2 to 3.2 mm and a tensile strength of 780 MPa or more. When welding T and T joints, the arc is stable, the amount of spatter generation and slag generation is small, even when the gap is large, the weld metal does not sag easily, the bead appearance is good, and the welding is good High-efficiency and high-quality welds such as the strength of the metal can be obtained.

(a)乃至(e)は、それぞれ薄鋼板の重ね継手の横向姿勢でギャップがある場合のビード形成状態を示す図である。(A) thru | or (e) is a figure which shows the bead formation state in case there exists a gap in the horizontal orientation of the lap joint of a thin steel plate, respectively. 本発明の実施例に用いた横向重ね継手に試験板を示す図である。It is a figure which shows a test plate in the horizontal lap joint used for the Example of this invention. 本発明の実施例における横向重ね継手のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the horizontal lap joint in the Example of this invention.

本発明者らは、上述した問題点を解決するために、薄鋼板の横向姿勢による重ね継手とし、各種成分のソリッドワイヤを用いてMAG溶接及び各種パルス条件で60cm/min以上の溶接速度で溶接を行い、アークの安定性、溶接ビード幅、溶接欠陥の有無及び溶接金属の硬さについて詳細に検討した結果、次の知見を得た。   In order to solve the above-mentioned problems, the present inventors have made a lap joint with a transverse orientation of a thin steel plate, welded at a welding speed of 60 cm / min or more under MAG welding and various pulse conditions using solid wires of various components. As a result of detailed examination of the stability of the arc, the weld bead width, the presence or absence of weld defects, and the hardness of the weld metal, the following knowledge was obtained.

(1)ワイヤ組成は、Mnの含有量の増加、Siの含有量の低減によって溶滴の細粒化、アークの安定性向上、溶融金属の粘性及び表面張力の適正化を図り、広幅ビードでスパッタ発生量及びスラグ生成量の少ない溶接ができ、ビード外観が良好で溶接欠陥の無い溶接金属が得られる。また、Cの含有量の適正化及びMoの添加によって高強度の溶接金属が得られる。   (1) The wire composition increases the Mn content and reduces the Si content to make the droplets finer, improve the arc stability, optimize the viscosity and surface tension of the molten metal, and use a wide bead. Welding with less spatter generation and slag generation is possible, and a weld metal having a good bead appearance and no weld defects can be obtained. Moreover, a high-strength weld metal can be obtained by optimizing the C content and adding Mo.

(2)上述した組成のワイヤを用いてパルス条件が1パルス−1ドロップの溶滴移行となる領域にすることで、80cm/min以上の高速度の溶接でアーク電圧を低くしても溶滴が溶融池と短絡することがなく移行でき、ギャップが大きい場合においても溶接金属の垂れ落ちが生じ難く、スパッタ発生量が少ないビードが得られる。   (2) Even if the arc voltage is lowered by welding at a high speed of 80 cm / min or more by using the wire having the above-described composition, the pulse condition is set to a region in which the pulse transition is 1 pulse-1 drop. However, even when the gap is large, the weld metal does not easily sag and a bead with less spatter generation is obtained.

以下、本発明の高強度薄鋼板のMAG溶接用ワイヤ成分組成及びパルスMAG溶接条件の限定理由について説明する。   Hereinafter, the reason for limitation of the wire component composition for MAG welding and pulse MAG welding conditions of the high-strength thin steel sheet of the present invention will be described.

まず、高強度薄鋼板のMAG溶接用ワイヤ成分組成について説明する。なお、各成分の含有率は、ワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。   First, the wire component composition for MAG welding of a high strength thin steel sheet will be described. In addition, the content rate of each component shall be represented by the mass% with respect to the total mass of a wire, and the description regarding the mass% is only described as%.

[C:0.05〜0.20%]
Cは、溶接金属の強度を確保し溶滴を細粒化する作用があるが、本発明においては溶滴の細粒化と広幅ビードを得ることを目的に脱酸元素であるSiの含有量を低くしており、溶融金属の脱酸は主にCによって行う。Cが0.05%未満では、脱酸不足となり溶滴の細粒化が困難となってアークが不安定でビード外観が劣化する。また、スパッタ発生量が多く溶融金属の垂れが生じる。一方、Cが0.20%を超えると、溶融金属の粘性が劣り耐垂れ性を確保できない。また、スパッタ発生量が増加するばかりでなく、溶接金属を著しく硬化させ耐割れ性が劣化する。したがって、Cは0.05〜0.20%とする。
[C: 0.05-0.20%]
C has the effect of securing the strength of the weld metal and making the droplets finer, but in the present invention, the content of Si as a deoxidizing element for the purpose of making the droplets finer and obtaining a wide bead. The deoxidation of the molten metal is mainly performed by C. If C is less than 0.05%, deoxidation is insufficient, making it difficult to make the droplets fine, making the arc unstable and deteriorating the bead appearance. In addition, a large amount of spatter is generated, and dripping of molten metal occurs. On the other hand, when C exceeds 0.20%, the viscosity of the molten metal is inferior and the sag resistance cannot be ensured. Further, not only the spatter generation amount increases, but also the weld metal is remarkably hardened and the crack resistance is deteriorated. Therefore, C is set to 0.05 to 0.20%.

[Mn:1.5〜2.5%]
Mnは、脱酸剤として作用するとともに溶接金属の強度確保と溶融金属の粘度及び表面張力を適正化させる効果がある。Mnが1.5%未満では、その効果が得られず、溶融金属の粘度及び表面張力が劣化することから、溶融金属が垂れ、十分な耐ギャップ性が得られない。また、強度不足となる。一方、Mnが2.5%を超えると、溶滴が大きくなり短絡しやすくスパッタ発生の要因となる。さらに溶接金属が硬化して耐割れ性が劣化する。したがって、Mnは1.5〜2.5%とする。
[Mn: 1.5 to 2.5%]
Mn acts as a deoxidizer and has the effect of ensuring the strength of the weld metal and optimizing the viscosity and surface tension of the molten metal. If Mn is less than 1.5%, the effect cannot be obtained, and the viscosity and surface tension of the molten metal deteriorate, so that the molten metal sags and sufficient gap resistance cannot be obtained. In addition, the strength is insufficient. On the other hand, if Mn exceeds 2.5%, the droplets become large and a short circuit is likely to occur, causing a spatter. Furthermore, the weld metal hardens and crack resistance deteriorates. Therefore, Mn is 1.5 to 2.5%.

[Mo:0.4〜0.7%]
Moは、溶接金属の組織を微細化して強度を向上させる元素である。またMoを添加することにより、溶滴形成性が良くなり、移行が安定してスパッタ発生量が少なくなる。Moが0.4%未満では、上記効果が得られず、溶接金属の強度が低くなる。また、スパッタ発生量が多くなる。一方、Moが0.7%を超えると、溶接金属が硬化して耐割れ性が劣化し、かつ溶滴形成性が悪く、移行が不安定になりスパッタ発生量が多くなる。したがって、Moは0.4〜0.7%とする。
[Mo: 0.4 to 0.7%]
Mo is an element that refines the structure of the weld metal and improves the strength. Also, by adding Mo, droplet formation is improved, the transition is stable, and the amount of spatter generated is reduced. If Mo is less than 0.4%, the above effect cannot be obtained, and the strength of the weld metal is lowered. In addition, the amount of spatter generated increases. On the other hand, if Mo exceeds 0.7%, the weld metal is hardened and crack resistance is deteriorated, and the droplet formation is poor, the transition becomes unstable, and the amount of spatter generated increases. Therefore, Mo is 0.4 to 0.7%.

[Si:0.10%以下]
Siは、少量添加することによって溶融金属の粘度及び表面張力を適正化させる。また、少量添加によって溶滴を細粒化すると共にアーク電圧を低くした場合においても溶滴が短絡し難く電圧条件の拡大に寄与できる。しかし、Siが0.10%を超えると、溶滴が大きくなることから短絡しやすくスパッタ発生の要因になる。また、溶融地の溶融金属が溶接速度に追従できずハンピングビードとなりやすい。さらに、スラグが多く生成してビード外観を劣化させる。したがって、Siは0.10%以下とする。なお、下限は特に限定しないが製鋼コストから0.005%以上であることが好ましい。
[Si: 0.10% or less]
Si is added in a small amount to optimize the viscosity and surface tension of the molten metal. Moreover, even when the droplets are made finer by addition of a small amount and the arc voltage is lowered, the droplets are hardly short-circuited, which can contribute to the expansion of voltage conditions. However, if the Si content exceeds 0.10%, the droplets become large, so that a short circuit is likely to occur, causing spattering. In addition, the molten metal in the molten area cannot follow the welding speed and tends to be a humping bead. Furthermore, a lot of slag is generated, and the bead appearance is deteriorated. Therefore, Si is made 0.10% or less. In addition, although a minimum is not specifically limited, It is preferable that it is 0.005% or more from steelmaking cost.

[P:0.03%以下]
Pは不純物であり、Pの増加により溶接金属の割れを引き起こすので0.03%以下とする。好ましくは、0.010%以下である。
[P: 0.03% or less]
P is an impurity, and an increase in P causes cracking of the weld metal, so 0.03% or less. Preferably, it is 0.010% or less.

[S:0.03%以下]
Sは不純物であり、Sの増加により溶接金属の割れを引き起こすので0.03%以下とする。好ましくは、0.015%以下である。
[S: 0.03% or less]
S is an impurity, and an increase in S causes cracking of the weld metal, so 0.03% or less. Preferably, it is 0.015% or less.

さらに、80cm/min以上の高速度の溶接条件でビード幅が広く、しかも垂れ難い最適パルスMAG条件範囲を検討した結果、1パルス−1ドロップ領域であるパルスピーク電流Ipとパルスピーク時間Tpの領域において、短絡がし難くスパッタ発生量の少ない溶接となり、ワイヤ狙い位置が変動した場合においても広幅ビードが得られる最適のパルスMAG条件範囲を見出した。   Furthermore, as a result of studying the optimum pulse MAG condition range where the bead width is wide and difficult to sag under high-speed welding conditions of 80 cm / min or more, the region of the pulse peak current Ip and the pulse peak time Tp which are one pulse-1 drop region Thus, the optimum pulse MAG condition range in which a wide bead can be obtained even when the wire target position fluctuates because the short-circuiting is difficult and the amount of spatter generated is small.

[パルスピーク電流(Ip):400〜600A]
パルスピーク電流(Ip)が400A未満では、電磁ピンチ効果による溶滴の離脱がスムーズに行われなくなり、アークが不安定で、ビード幅が狭くなることから、十分な耐ギャップ性が得られない。一方、パルスピーク電流(Ip)が600Aを超えると、アーク力により溶融地が垂れ易くなる。したがって、パルスピーク電流(Ip)は400〜600Aとする。
[Pulse peak current (Ip): 400-600A]
When the pulse peak current (Ip) is less than 400 A, the droplets are not released smoothly due to the electromagnetic pinch effect, the arc is unstable, and the bead width becomes narrow, so that sufficient gap resistance cannot be obtained. On the other hand, when the pulse peak current (Ip) exceeds 600 A, the melted ground tends to sag due to the arc force. Therefore, the pulse peak current (Ip) is 400 to 600A.

[パルスベース電流(Ib):30〜80A]
パルスベース電流(Ib)は、ベース期間でアークを保持できる電流値が必要となる。パルスベース電流(Ib)が30A未満では、アークが不安定となり、80Aを超えると、溶滴の離脱が速やかに行われず、アークが不安定でスパッタ発生量が多くなる。したがって、パルスベース電流(Ib)は30〜80Aとする。
[Pulse base current (Ib): 30-80A]
The pulse base current (Ib) requires a current value that can hold the arc in the base period. When the pulse base current (Ib) is less than 30A, the arc becomes unstable. When the pulse base current (Ib) exceeds 80A, the detachment of the droplets is not performed quickly, and the arc is unstable and the amount of spatter generated increases. Therefore, the pulse base current (Ib) is 30 to 80A.

[400≦Ip(A)×Tp(msec)≦800]
下記式(1)で示すパルス電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)で得られる値を限定することによって、ピーク時間の短い領域でアーク電圧が高い場合においても、溶滴の短絡がピーク時及びベース時に適度に生じて溶融金属の垂れが生じ難く、広幅ビードが得られる。パルスピーク電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)が400未満では、ピーク電流期間で溶滴を形成するためのエネルギーが不足し十分な溶滴の形成ができず、ビード幅が狭くなることから十分な耐ギャップ性が得られない。またIp×Tpが400未満では、溶融金属が垂れやすくなる。一方、パルスピーク電流(Ip)とパルスピーク時間(Tp)の積が800を超えると、過度に成長した溶滴が短絡しやすくなり再点弧時のアーク力で溶融地が吹き飛ばされることからスパッタ発生量が多くなるとともに溶融金属が垂れやすく、十分な耐ギャップ性が得られない。従ってIp×Tpは、下記式(1)で示される範囲とする。
400≦Ip(A)×Tp(msec)≦800 ・・・・(1)
[400 ≦ Ip (A) × Tp (msec) ≦ 800]
Even when the arc voltage is high in the region where the peak time is short, by limiting the value obtained by the product (Ip × Tp) of the pulse current (Ip) and the pulse peak time (Tp) represented by the following formula (1), The short circuit of the droplets occurs moderately at the peak and at the base, and the dripping of the molten metal hardly occurs, and a wide bead is obtained. When the product (Ip × Tp) of the pulse peak current (Ip) and the pulse peak time (Tp) is less than 400, the energy for forming the droplets is insufficient in the peak current period, and sufficient droplets cannot be formed. Since the bead width is narrow, sufficient gap resistance cannot be obtained. If Ip × Tp is less than 400, the molten metal tends to sag. On the other hand, if the product of the pulse peak current (Ip) and the pulse peak time (Tp) exceeds 800, the excessively grown droplets are likely to short-circuit, and the molten ground is blown away by the arc force at the time of re-ignition. As the amount generated increases, molten metal tends to sag, and sufficient gap resistance cannot be obtained. Therefore, Ip × Tp is set to a range represented by the following formula (1).
400 ≦ Ip (A) × Tp (msec) ≦ 800 (1)

本発明を適用した高強度薄鋼板のMAG溶接用ワイヤの残部は、Fe及び不可避不純物である。   The balance of the MAG welding wire of the high-strength thin steel plate to which the present invention is applied is Fe and inevitable impurities.

以下、実施例により本発明の効果をさらに具体的に説明する。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

まず、原料鋼を真空溶解し、鍛造、圧延、伸線、焼鈍そして銅めっきした後、1.2mmのワイヤ径まで伸線、スプールに巻き取った試作ワイヤの化学成分を表1に示す。   First, Table 1 shows chemical components of the trial wire that was prepared by vacuum melting the raw steel, forging, rolling, wire drawing, annealing, copper plating, wire drawing to a wire diameter of 1.2 mm, and winding on a spool.

Figure 2018111102
Figure 2018111102

表1に示す試作ワイヤを用いて、MAG溶接による横向重ねすみ肉継手で溶接耐ギャップ性試験を行い、架橋可能なギャップ幅を調査した。試験体は、表2に示す化学成分、板厚1.6mm、溶接長500mmの980MPa級の高強度薄鋼板を使用した。耐ギャップ性試験は、図2に示すように前板1と後板2の間にスペーサ5を挟み、試験片長さ500mmの継手を形成した。この時、ギャップ長さG1=1mmからG2=3mmへと広がるようにして溶接を行った。溶接のスタートはギャップ長さG1=1mm側から表3に示すMAG溶接条件で行い、溶接金属が架橋できなくなるところまで溶接を実施した。なお、溶接は図3に示すように、前板1と後板2側の角を狙い位置にし、溶接トーチ7の角度θは30°として溶接した。この時の溶接可能なギャップを測定し、溶接可能なギャップが2.5mm以上を良好とした。またアーク状態、スパッタ発生量、スラグ生成量、溶融金属垂れの有無、ビード外観を調査した。さらに、溶接終了後マクロ試験片を溶接開始から200mmより採取しJISZ2244に準拠してビッカース硬さを測定し、10点の平均値が250〜400Hvを良好とした。それらの結果を表4にまとめて示す。   Using the prototype wire shown in Table 1, a weld gap resistance test was conducted on a laterally overlapped fillet joint by MAG welding, and a gap width capable of crosslinking was investigated. The test body used was a high strength thin steel sheet of 980 MPa class having chemical components shown in Table 2, a plate thickness of 1.6 mm, and a weld length of 500 mm. In the gap resistance test, a spacer 5 was sandwiched between the front plate 1 and the rear plate 2 as shown in FIG. 2 to form a joint having a test piece length of 500 mm. At this time, welding was performed so that the gap length G1 = 1 mm increased to G2 = 3 mm. Welding was started under the MAG welding conditions shown in Table 3 from the gap length G1 = 1 mm side, and welding was performed until the weld metal could not be cross-linked. As shown in FIG. 3, the welding was performed with the angle on the front plate 1 and the rear plate 2 side set as a target position and the angle θ of the welding torch 7 being 30 °. The weldable gap at this time was measured, and a weldable gap of 2.5 mm or more was considered good. In addition, the arc state, spatter generation amount, slag generation amount, presence of molten metal sagging, and bead appearance were investigated. Further, after completion of welding, a macro test piece was taken from 200 mm from the start of welding, Vickers hardness was measured according to JISZ2244, and an average value of 10 points was considered to be 250 to 400 Hv. The results are summarized in Table 4.

Figure 2018111102
Figure 2018111102

Figure 2018111102
Figure 2018111102

Figure 2018111102
Figure 2018111102

表1及び表4中の試験No.1〜No.7は本発明例、試験No.8〜No.14は比較例である。本発明例である試験No.1〜No.7は、ワイヤ記号W1〜W7が本発明で規定した各成分範囲内であるので、MAG溶接による横向重ねすみ肉継手溶接のアークが安定して、スパッタ発生量及びスラグ生成量が少なく、溶融金属の粘性及び表面張力が適正で溶融金属垂れが無く、溶接可能ギャップが広く、良好なビード外観が得られると共に溶接金属のビッカース硬さも適正であり、極めて満足な結果であった   Test No. in Table 1 and Table 4 1-No. 7 is an example of the present invention, test no. 8-No. 14 is a comparative example. Test No. which is an example of the present invention. 1-No. No. 7, since the wire symbols W1 to W7 are within the respective component ranges defined in the present invention, the arc of horizontal overlapped fillet joint welding by MAG welding is stable, the amount of spatter generation and slag generation is small, molten metal Viscosity and surface tension were appropriate, there was no dripping of molten metal, a wide weldable gap was obtained, a good bead appearance was obtained, and the Vickers hardness of the weld metal was also appropriate, which was a very satisfactory result.

比較例中試験No.8は、ワイヤ記号W8のCが少ないので、アークが不安定となりスパッタ発生量も多く、溶接開始近傍で溶融金属の垂れも生じ、ビード外観が不良であった。   Test No. in Comparative Examples. In No. 8, since the C of the wire symbol W8 is small, the arc becomes unstable, the amount of spatter generated is large, dripping of the molten metal occurs near the start of welding, and the bead appearance is poor.

試験記号No.9は、ワイヤ記号W9のCが多いので、スパッタ発生量が多く、溶接開始近傍で溶接金属の垂れが生じた。また、溶接金属の硬さが高くクレータ割れも発生した。   Test symbol No. No. 9 had a large amount of spatter generated due to the large number C of the wire symbol W9, and the weld metal drooped near the start of welding. Moreover, the hardness of the weld metal was high and crater cracks also occurred.

試験記号No.10は、ワイヤ記号W10のMnが少ないので、溶接金属の硬さが低く、溶融金属の垂れが生じ、溶接可能ギャップが狭く、ビード外観が不良であった。   Test symbol No. In No. 10, since the Mn of the wire symbol W10 was small, the hardness of the weld metal was low, dripping of the molten metal occurred, the weldable gap was narrow, and the bead appearance was poor.

試験記号No.11は、ワイヤ記号W11のMnが多いので、溶接金属の硬さが高く、クレータ割れも発生し、スパッタ発生量も多かった。   Test symbol No. No. 11 had much Mn of the wire symbol W11, so the hardness of the weld metal was high, crater cracking occurred, and the amount of spatter was large.

試験記号No.12は、ワイヤ記号W12のMoが少ないので、溶接金属の硬さが低く、スパッタ発生量も多かった。   Test symbol No. In No. 12, since the Mo of the wire symbol W12 is small, the hardness of the weld metal is low and the amount of spatter generated is large.

試験記号No.13は、ワイヤ記号W13のSiが多いので、ハンピングビードとなり、スパッタ発生量も多かった。また、スラグの生成量が多くビード外観が不良であった。   Test symbol No. No. 13 was a humping bead because of the large amount of Si of the wire symbol W13, and the amount of spatter generated was large. Moreover, the amount of slag produced was large and the bead appearance was poor.

試験記号No.14は、ワイヤ記号W14のMoが多いので、溶接金属の硬さが高く、クレータ割れも発生し、スパッタ発生量も多かった。   Test symbol No. No. 14 had a large amount of Mo of the wire symbol W14, so the hardness of the weld metal was high, crater cracking occurred, and the amount of spatter generated was large.

表1に示す試作ワイヤを用いて、パルスMAG溶接による横向重ねすみ肉継手溶接の耐ギャップ性試験を行った。試験体は、実施例1と同一の試験体を使用した。溶接は、表3と表5に示す各パルスMAG溶接条件で実施例1と同一の溶接及び評価を行った。その結果を表5にまとめて示す。   Using the prototype wires shown in Table 1, a gap resistance test of transverse lap fillet joint welding by pulse MAG welding was performed. As the test body, the same test body as in Example 1 was used. For welding, the same welding and evaluation as in Example 1 were performed under the pulse MAG welding conditions shown in Tables 3 and 5. The results are summarized in Table 5.

Figure 2018111102
Figure 2018111102

表5中の試験No.15〜No.20は本発明例、試験No.21〜No.26は比較例である。本発明例である試験No.15〜No.20は、ワイヤ記号W1〜W7が本発明で規定した各成分範囲内で、パルスMAG溶接条件が適正であるので、パルスMAG溶接による横向重ねすみ肉継手溶接のアークが安定して、スパッタ発生量が少なく、溶融金属の粘性及び表面張力が適正で溶融金属垂れが無く、溶接可能ギャップが広く、良好なビード外観が得られると共に溶接金属のビッカース硬さも適正であり、極めて満足な結果であった。   Test No. in Table 5 15-No. No. 20 is an example of the present invention, test no. 21-No. 26 is a comparative example. Test No. which is an example of the present invention. 15-No. No. 20, since the wire symbols W1 to W7 are within the respective component ranges defined in the present invention and the pulse MAG welding conditions are appropriate, the arc of transverse overlapped fillet joint welding by pulse MAG welding is stable, and the amount of spatter generated The weld metal has an appropriate viscosity and surface tension, no molten metal sagging, a wide weldable gap, a good bead appearance, and the weld metal has an appropriate Vickers hardness. .

比較例中の試験記号No.21は、ワイヤ記号W13のSiが多いので、ハンピングビードとなり、スパッタ発生量も多かった。また、スラグの生成量が多くビード外観が不良であった。さらに、パルスベース電流Ibが低いので、アークが不安定であった。   Test symbol No. in the comparative example. No. 21 was a humping bead due to the large amount of Si of the wire symbol W13, and the amount of spatter generated was also large. Moreover, the amount of slag produced was large and the bead appearance was poor. Furthermore, since the pulse base current Ib was low, the arc was unstable.

試験記号No.22は、ワイヤ記号W3が本発明で規定した各成分範囲内であるが、パルスピーク電流(Ip)が高いので、溶接開始近傍で溶接金属の垂れが生じた。   Test symbol No. No. 22 is within the respective component ranges defined by the wire symbol W3 in the present invention, but since the pulse peak current (Ip) is high, welding metal sagging occurred near the start of welding.

試験記号No.23は、ワイヤ記号W11のMnが多いので、溶接金属の硬さが高く、クレータ割れも発生し、スパッタ発生量も多かった。また、パルスピーク電流(Ip)が低いので、アークが不安定となり、ビード外観が不良で、溶接可能ギャップが狭かった。   Test symbol No. In No. 23, since the Mn of the wire symbol W11 is large, the hardness of the weld metal is high, crater cracks are generated, and the amount of spatter generated is large. Moreover, since the pulse peak current (Ip) was low, the arc became unstable, the bead appearance was poor, and the weldable gap was narrow.

試験記号No.24は、ワイヤ記号W12のMoが少ないので、溶接金属の硬さが低く、スパッタ発生量も多かった。また、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが低いので、溶接可能ギャップが狭く、溶接開始近傍で溶融金属垂れが生じた。   Test symbol No. In No. 24, since the Mo of the wire symbol W12 is small, the hardness of the weld metal is low and the amount of spatter generated is also large. Further, since the product Ip × Tp of the pulse peak current Ip and the peak time Tp was low, the weldable gap was narrow, and molten metal sagging occurred near the start of welding.

試験記号No.25は、ワイヤ記号W4が本発明で規定した各成分範囲内であるが、パルスベース電流Ibが高いので、アークが不安定となりスパッタ発生量も多かった。   Test symbol No. 25, the wire symbol W4 is within the respective component ranges defined in the present invention, but since the pulse base current Ib is high, the arc becomes unstable and the amount of spatter generated is large.

試験記号No.26は、ワイヤ記号W5が本発明で規定した各成分範囲内であるが、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが高いので、スパッタ発生量が多かった。さらに、溶接開始近傍で溶融金属垂れが生じ、溶接可能ギャップも狭かった。   Test symbol No. No. 26 is within the component ranges defined by the wire symbol W5 in the present invention, but the product Ip × Tp of the pulse peak current Ip and the peak time Tp is high, so that the amount of spatter was large. Furthermore, molten metal dripping occurred near the start of welding, and the weldable gap was narrow.

1 前板
2 後板
3 溶接金属
4 アンダーカット
5 スペーサ
6、61、62 ワイヤ狙い位置
7 溶接トーチ
W ビード幅
θ トーチ角度
G ギャップ長さ
1 Front plate 2 Rear plate 3 Weld metal 4 Undercut 5 Spacer 6, 61, 62 Target position 7 Welding torch W Bead width θ Torch angle G Gap length

Claims (2)

厚さ1.2〜3.2mmである高強度薄鋼板のMAG溶接用ワイヤにおいて、
ワイヤ全質量に対する質量%で、
C:0.05〜0.20%、
Mn:1.5〜2.5%、
Mo:0.4〜0.7%を含有し、
Si:0.10%以下、
P:0.03%以下、
S:0.03%以下であり、
残部はFe及び不可避不純物からなることを特徴とする高強度薄鋼板のMAG溶接用ワイヤ。
In the MAG welding wire of a high-strength thin steel sheet having a thickness of 1.2 to 3.2 mm,
% By mass relative to the total mass of the wire
C: 0.05-0.20%,
Mn: 1.5 to 2.5%
Mo: contains 0.4 to 0.7%,
Si: 0.10% or less,
P: 0.03% or less,
S: 0.03% or less,
A MAG welding wire for a high-strength thin steel sheet, characterized in that the balance consists of Fe and inevitable impurities.
請求項1に記載の高強度薄鋼板のMAG溶接用ワイヤを使用したパルスMAG溶接方法において、
パルスピーク電流(Ip):400〜600A、
パルスベース電流(Ib):30〜80Aとし、
前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とするパルスMAG溶接方法。
400≦Ip(A)×Tp(msec) ≦800・・・・・(1)
In the pulse MAG welding method using the MAG welding wire of the high-strength thin steel sheet according to claim 1,
Pulse peak current (Ip): 400-600A,
Pulse base current (Ib): 30-80A,
A pulse MAG welding method, wherein welding is performed by adding a pulse in which the pulse peak current (Ip) and the pulse peak time (Tp) satisfy the following formula (1).
400 ≦ Ip (A) × Tp (msec) ≦ 800 (1)
JP2017001307A 2017-01-06 2017-01-06 MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same Active JP6676553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001307A JP6676553B2 (en) 2017-01-06 2017-01-06 MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001307A JP6676553B2 (en) 2017-01-06 2017-01-06 MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same

Publications (2)

Publication Number Publication Date
JP2018111102A true JP2018111102A (en) 2018-07-19
JP6676553B2 JP6676553B2 (en) 2020-04-08

Family

ID=62910733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001307A Active JP6676553B2 (en) 2017-01-06 2017-01-06 MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same

Country Status (1)

Country Link
JP (1) JP6676553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142287A (en) * 2019-03-07 2020-09-10 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195193A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Solid wire for thin sheet of high tension steel
JPH07232294A (en) * 1994-02-23 1995-09-05 Sumitomo Metal Ind Ltd Welding wire for galvanized steel sheet and welding method
JPH0825080A (en) * 1994-07-08 1996-01-30 Kobe Steel Ltd Solid wire for welding and welding method
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2009166066A (en) * 2008-01-15 2009-07-30 Nippon Steel & Sumikin Welding Co Ltd Solid wire for pulse mag welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195193A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Solid wire for thin sheet of high tension steel
JPH07232294A (en) * 1994-02-23 1995-09-05 Sumitomo Metal Ind Ltd Welding wire for galvanized steel sheet and welding method
JPH0825080A (en) * 1994-07-08 1996-01-30 Kobe Steel Ltd Solid wire for welding and welding method
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2009166066A (en) * 2008-01-15 2009-07-30 Nippon Steel & Sumikin Welding Co Ltd Solid wire for pulse mag welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142287A (en) * 2019-03-07 2020-09-10 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
JP7221742B2 (en) 2019-03-07 2023-02-14 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method

Also Published As

Publication number Publication date
JP6676553B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
RU2506148C2 (en) Combined welding process using combination of gas-arc welding by metallic electrode and hidden-arc welding, and combined-action arc welding machine
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
KR20080006471A (en) Solid wire
JP2007301623A (en) High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP6683635B2 (en) Pulse MAG welding method for high strength thin steel sheet
JPWO2018037754A1 (en) Vertical narrow groove gas shielded arc welding method
JP5925703B2 (en) Solid wire for gas shielded arc welding of thin steel sheet
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP2018111102A (en) Mag welding wire for high-strength steel sheet and pulse mag welding method using the same
JP5080748B2 (en) Tandem arc welding method
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
JP5086881B2 (en) High-speed gas shield arc welding method for thin steel sheet
JP2018111101A (en) Mag welding wire for high-strength steel sheet and pulse mag welding method using the same
JP5037369B2 (en) Solid wire for pulse MAG welding
JP2015100813A (en) Solid wire for gas shield arc weld for thin steel plate
JP7311473B2 (en) arc welding method
JP7364088B2 (en) Arc welding joints and arc welding methods
WO2022230905A1 (en) Arc-welded joint and arc-welding method
KR20230154325A (en) Arc welding joints and arc welding methods
JP2010064140A (en) Solid wire for gas shielded arc welding of steel sheet
CN112512739A (en) Method for manufacturing vertical narrow groove welded joint and vertical narrow groove welded joint
JP2014200812A (en) Solid wire for gas shield arc welding of thin steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250