JP2014200812A - Solid wire for gas shield arc welding of thin steel sheet - Google Patents

Solid wire for gas shield arc welding of thin steel sheet Download PDF

Info

Publication number
JP2014200812A
JP2014200812A JP2013077883A JP2013077883A JP2014200812A JP 2014200812 A JP2014200812 A JP 2014200812A JP 2013077883 A JP2013077883 A JP 2013077883A JP 2013077883 A JP2013077883 A JP 2013077883A JP 2014200812 A JP2014200812 A JP 2014200812A
Authority
JP
Japan
Prior art keywords
wire
welding
gap
bead
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077883A
Other languages
Japanese (ja)
Inventor
貴之 大塚
Takayuki Otsuka
貴之 大塚
木本 勇
Isamu Kimoto
勇 木本
雅哉 齋藤
Masaya Saito
雅哉 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2013077883A priority Critical patent/JP2014200812A/en
Publication of JP2014200812A publication Critical patent/JP2014200812A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid wire for gas shield arc welding of a thin steel sheet, with which high-speed welding is enabled with stable arc, a preferable bead shape, reduced spatter generation, and reduced slag generation even if there is a large gap between thin steel sheets.SOLUTION: The solid wire for gas shield arc welding of a thin steel sheet includes, by mass relative to the wire total mass, 0.03 to 0.10% C, 0.5 to 1.0% Si, 1.4 to 2.0% Mn, 0.1 to 0.3% Ti, 0.01 to 0.1% Bi, 0.005 to 0.070% S, 0.03% or less P, 0.01% or less O, and Fe with inevitable impurities as the balance.

Description

本発明は、板厚0.6〜3.2mmの薄鋼板の溶接において、CO2ガスシールドのショートアーク溶接またはシールドガスにAr、CO2、O2等を組み合わせたMAG溶接およびパルスMAG溶接に使用し、ビード始端のなじみがよく平滑なビード形状が得られ、架橋性が良好な薄鋼板のガスシールドアーク溶接用ソリッドワイヤに関するものである。 The present invention can be applied to short arc welding of a CO 2 gas shield or MAG welding in which Ar, CO 2 , O 2, etc. are combined with a shielding gas and pulse MAG welding in the welding of a thin steel plate having a thickness of 0.6 to 3.2 mm. The present invention relates to a solid wire for gas shielded arc welding of a thin steel plate that is used, has a smooth bead shape with good bead start-in fit, and has good crosslinkability.

従来、ソリッドワイヤを用いたガスシールドアーク溶接方法は高能率であり、機械的性
能の良好な溶接金属と良好なビード形状が得られることから薄鋼板の溶接に広く適用されている。一般的にはCO2をシールドガスとして用いたショートアーク溶接方法が用いられるが、スパッタ発生量の低減および高速溶接性確保の面から、主成分をArガスとし、これにCO2を混合、更には、O2ガスを混合させたシールドガスを使用したMAG溶接或いはパルスMAG溶接方法が近年増加している。これらの溶接は生産性の向上から高電流、高速度の溶接条件で施工され、良好な溶接ビードを形成し健全な溶接継手を作製している。
Conventionally, a gas shield arc welding method using a solid wire is highly efficient and widely applied to welding of thin steel sheets because a weld metal with good mechanical performance and a good bead shape can be obtained. Generally, a short arc welding method using CO 2 as a shielding gas is used. From the viewpoint of reducing the amount of spatter generated and ensuring high-speed weldability, the main component is Ar gas, and CO 2 is mixed with this. In recent years, MAG welding or pulse MAG welding methods using a shielding gas mixed with O 2 gas have been increasing. These welds are applied under high current and high speed welding conditions to improve productivity, and form a good weld bead to produce a sound welded joint.

近年、ソリッドワイヤを用いたガスシールドアーク溶接による溶接構造物には、高品質化、高効率化が要求されている。例えば、自動車業界においては環境負荷低減のため、燃費向上を目的とした鋼材の重量軽減が行われてきている。鋼材の重量を軽減するためには、使用する鋼材は薄板においても強度が確保できる高強度材の需要が増しつつある。鋼材の高強度化は鋼板のスプリングバックが大きくなるため、施工上では溶接部のギャップが広くなる。そのため、耐ギャップ性能の良好なワイヤが望まれている。   In recent years, high quality and high efficiency are required for welded structures by gas shielded arc welding using solid wires. For example, in the automobile industry, the weight of steel materials has been reduced for the purpose of improving fuel efficiency in order to reduce environmental impact. In order to reduce the weight of steel materials, there is an increasing demand for high-strength materials that can ensure the strength of the steel materials to be used even in thin plates. Since the strength of the steel material increases the springback of the steel sheet, the gap of the welded part is widened in construction. Therefore, a wire with good gap resistance is desired.

耐ギャップ性能には溶融金属の表面張力と粘性が大きく作用する。表面張力を低下することでビード幅を広くし、粘性を増大させることでビードを垂れ落ちにくくすることが重要である。そのため溶融金属の表面張力と粘性を適正化し、ギャップを架橋できる広いビード幅を得ることができ、さらに溶け落ちしにくく良好なビード形状が実現できるワイヤが必要となっている。   The surface tension and viscosity of the molten metal greatly affect the gap resistance. It is important to widen the bead width by reducing the surface tension and to make it difficult for the bead to droop by increasing the viscosity. Therefore, there is a need for a wire that can optimize the surface tension and viscosity of the molten metal, obtain a wide bead width that can bridge the gap, and can realize a good bead shape that does not easily melt.

図1(a)、(b)、(c)、(d)、(e)に薄鋼板の重ね継手部の横向姿勢でギャップGがある場合のビード形状状態の例を示す。図1(a)は、溶け落ちやビードの垂れがなく良好なビード形状の溶接金属3が得られた例である。図1(b)は、アンダカット4が生じた例、図1(c)は、溶接金属が前板1側に垂れた例である。図1(d)は、後板が溶け落ちた例、図1(e)は、溶接金属が前板1と後板2の間のギャップGに垂れ落ちた例である。このように、重ね継手部のギャップGが大きい場合はアンダカットが生じたり溶接金属が垂れやすくなり、良好な溶接ビードを形成することが困難になるという問題があった。   FIGS. 1A, 1 </ b> B, 1 </ b> C, 1 </ b> D, and 1 </ b> E show an example of a bead shape state in the case where there is a gap G in a lateral orientation of a lap joint portion of a thin steel plate. FIG. 1A is an example in which a weld metal 3 having a good bead shape without melting or bead dripping is obtained. FIG. 1B shows an example in which an undercut 4 occurs, and FIG. 1C shows an example in which the weld metal hangs down to the front plate 1 side. FIG. 1 (d) is an example in which the rear plate has melted, and FIG. 1 (e) is an example in which the weld metal has dropped in the gap G between the front plate 1 and the rear plate 2. As described above, when the gap G of the lap joint portion is large, there is a problem that undercut occurs or the weld metal is liable to sag and it is difficult to form a good weld bead.

このような背景から、薄鋼板のガスシールドアーク溶接用ソリッドワイヤとして、特開
2007−313558号公報(特許文献1)にワイヤ成分を高Sとして高速溶接においても広幅でビード形状が安定して得られるという技術が開示されている。本技術は、Sにより溶接金属の後方への流速を低減させ、幅方向への湯流れを促進することで、幅の広いビードを得ることができるというものである。
From such a background, as a solid wire for gas shielded arc welding of a thin steel plate, Japanese Patent Application Laid-Open No. 2007-31558 (Patent Document 1) obtains a stable and wide bead shape even in high-speed welding with a high S wire component. The technique of being able to be performed is disclosed. In the present technology, a wide bead can be obtained by reducing the flow velocity of the weld metal to the rear by S and promoting the hot water flow in the width direction.

しかし、Sは高温割れを引き起こすだけではなく、Sの添加に伴い硫化物が粗大化し、材料の強度および靭性を低下させる。そこで、対策としてMnおよびTi、Zr、La、Ceの1種以上の含有量を規定して高温割れを防止するとしている。しかし、規定のMn量では高温割れの抑制には不十分であった。さらに、Sは溶融金属の粘性を大きく低下させ、ギャップが広い溶接ではビードの溶け落ちが生じるため、耐ギャップ性能については不十分であった。   However, S not only causes hot cracking, but with the addition of S, sulfides are coarsened, and the strength and toughness of the material are reduced. Therefore, as a countermeasure, one or more contents of Mn and Ti, Zr, La, and Ce are specified to prevent hot cracking. However, the specified amount of Mn is insufficient to suppress hot cracking. Further, S greatly reduces the viscosity of the molten metal, and the weld with a wide gap causes the bead to be burned out, so that the gap resistance performance is insufficient.

また、特開昭62−40995号公報(特許文献2)には、Biを添加して高電流の炭酸ガスアーク溶接においてスラグ剥離性を向上させた技術の開示がある。しかし、スラグ剥離性にのみ焦点が向けられ、耐ギャップ性能については全く考慮されていない。さらに、特開昭61−159296号公報(特許文献3)には、C、Si、MnおよびTiからなる組成にS+O等の成分を添加し、各成分の量を最適化することでスパッタを減少させるという技術の開示がある。   Japanese Patent Application Laid-Open No. 62-40995 (Patent Document 2) discloses a technique in which Bi is added to improve slag peelability in high-current carbon dioxide arc welding. However, the focus is only on slag peelability, and no consideration is given to gap resistance performance. Furthermore, in JP-A-61-159296 (Patent Document 3), components such as S + O are added to a composition composed of C, Si, Mn and Ti, and the amount of each component is optimized to reduce sputtering. There is a disclosure of the technology to make it.

しかし、混合ガスの高速溶接時の耐ギャップ性能については全く考慮されておらず、ギャップを有する箇所の高速溶接ではアークが不安定でスパッタ発生量が多く、ビード形状も不良になるという問題があった。   However, no consideration is given to the gap resistance performance during high-speed welding of mixed gas, and there is a problem in that high-speed welding at a portion having a gap causes unstable arcs, a large amount of spatter, and poor bead shape. It was.

特開2007−313558号公報JP 2007-31558 A 特開昭62−40995号公報Japanese Patent Laid-Open No. 62-40995 特開昭61−159296号公報JP-A 61-159296

本発明は、薄鋼板のギャップが大きい場合においても高速度の溶接が可能で、ビード形状を平滑で良好にできるとともに高温割れの発生を抑止し、アークが安定してスパッタ発生量およびスラグ発生量が極めて少ない薄鋼板のガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。   The present invention enables high-speed welding even when the gap of the thin steel plate is large, makes the bead shape smooth and satisfactory, suppresses the occurrence of high temperature cracks, stabilizes the arc, and generates spatter and slag. An object of the present invention is to provide a solid wire for gas shielded arc welding of a thin steel plate with a very small amount.

本発明の要旨は、ワイヤ全質量に対する質量%で、C:0.03〜0.10%、Si:0.5〜1.0%、Mn:1.4〜2.0%、Ti:0.1〜0.3%、Bi:0.01〜0.1%、S:0.005〜0.070%を含有し、P:0.030%以下、O:0.010%以下で、その他はFeおよび不可避不純物であることを特徴とする薄鋼板のガスシールドアーク溶接用ソリッドワイヤにある。   The gist of the present invention is mass% with respect to the total mass of the wire, C: 0.03 to 0.10%, Si: 0.5 to 1.0%, Mn: 1.4 to 2.0%, Ti: 0 0.1 to 0.3%, Bi: 0.01 to 0.1%, S: 0.005 to 0.070%, P: 0.030% or less, O: 0.010% or less, The other is a solid wire for gas shielded arc welding of a thin steel plate characterized by Fe and inevitable impurities.

本発明の薄鋼板のガスシールドアーク溶接用ソリッドワイヤによれば、ギャップが大きい場合においても高速度の溶接が可能で、アークが安定しスパッタ発生量が極めて少なく、さらにビード形状が平滑で美しく、高温割れが発生しないなど健全で高品質な溶接金属を得ることが可能となる。   According to the solid wire for gas shielded arc welding of the thin steel plate of the present invention, high-speed welding is possible even when the gap is large, the arc is stable, the amount of spatter generation is extremely small, and the bead shape is smooth and beautiful, It becomes possible to obtain a high quality weld metal that does not cause hot cracking.

(a)、(b)、(c)、(d)、(e)は、それぞれ薄鋼板の重ね継手部の横向姿勢でギャップがある場合のビード形成状態の例を示す図である。(A), (b), (c), (d), (e) is a figure which shows the example of a bead formation state in case there exists a gap in the horizontal attitude | position of the lap joint part of a thin steel plate, respectively. 本発明の実施例に用いた横向重ね継手の試験板を示す図である。It is a figure which shows the test plate of the horizontal lap joint used for the Example of this invention. 本発明の実施例における横向重ね継手部のワイヤ狙い位置を示す図である。It is a figure which shows the wire aiming position of the horizontal lap joint part in the Example of this invention.

以下、本発明の薄鋼板のガスシールドアーク溶接用ソリッドワイヤについて詳細に説明する。本発明者らは上記の課題を解決するために、各種成分の異なるワイヤを試作して、JIS G3131 SPCCの板厚2.0mm、長さ450mmの鋼板を、図2に示すようにテーパ型スペーサ5を後板2と前板1に挟んでギャップG1=2mm、G2=4mmのテーパギャップを形成した横向重ね継手とし、CO2溶接によるショートアーク溶接、Ar−20%CO2ガスを用いたMAG溶接、Ar−20%CO2−3%O2ガスを用いたMAG溶接、Ar−20%CO2ガスを用いたパルスMAG溶接およびAr−20%CO2−3%O2ガスを用いたパルスMAG溶接で溶接速度80cm/minの高速度での溶接を行い、アーク状態、ビード形状、スパッタ発生状況および耐ギャップ性能等につき詳細に調査した。 Hereinafter, the solid wire for gas shielded arc welding of the thin steel plate of the present invention will be described in detail. In order to solve the above-mentioned problems, the inventors made a trial manufacture of wires having different components, and formed a JIS G3131 SPCC steel plate having a thickness of 2.0 mm and a length of 450 mm into a tapered spacer as shown in FIG. 5 is a horizontal lap joint with a gap G 1 = 2 mm and G 2 = 4 mm sandwiched between the back plate 2 and the front plate 1, short arc welding by CO 2 welding, Ar-20% CO 2 gas is used MAG welding, MAG welding using Ar-20% CO 2 -3% O 2 gas, pulse MAG welding using Ar-20% CO 2 gas, and Ar-20% CO 2 -3% O 2 gas The pulse MAG welding was performed at a high welding speed of 80 cm / min, and the arc state, bead shape, spatter generation, gap resistance performance, etc. were investigated in detail.

その結果、いずれの溶接方法においてもワイヤにBi、S、Tiを適量添加し、C、Si、Mn量を適正化することによって、アークの安定性、溶融金属の粘性および表面張力の適正化を図り、スパッタ発生量の減少、高温割れの防止効果および耐ギャップ性を有し、広幅で平滑なビードが得られることを見出した。   As a result, in any welding method, appropriate amounts of Bi, S, and Ti are added to the wire, and the amounts of C, Si, and Mn are optimized to optimize arc stability, molten metal viscosity, and surface tension. It has been found that a wide and smooth bead can be obtained with a reduction in the amount of spatter generated, an effect of preventing hot cracking and gap resistance.

以下、本発明におけるワイヤ組成とその含有量の限定理由について説明する。なお、各成分の含有量は質量%で示す。
[C:0.03〜0.10%]
Cは、アークを安定化し溶滴を細粒化する作用がある。Cが0.03%未満では、溶滴が大きくなってアークが不安定になりスパッタ発生量が多くなる。一方、Cが0.10%を超えると、溶融金属の粘性が低くなり溶融金属が垂れてビード形状が不良となる。また、スパッタ発生量が増加するばかりではなく、溶接金属を著しく硬化させ耐割れ性が劣化する。したがって、Cは0.03〜0.10%とする。
Hereinafter, the reason for limiting the wire composition and the content thereof in the present invention will be described. In addition, content of each component is shown by the mass%.
[C: 0.03-0.10%]
C has the effect of stabilizing the arc and making the droplets fine. If C is less than 0.03%, the droplets become large, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if C exceeds 0.10%, the viscosity of the molten metal becomes low and the molten metal droops, resulting in a poor bead shape. Further, not only the amount of spatter generated increases, but the weld metal is remarkably hardened and crack resistance deteriorates. Therefore, C is 0.03 to 0.10%.

[Si:0.5〜1.0%]
Siは、溶接金属の主脱酸剤として不可欠であるとともに、ワイヤの電気抵抗を増大させてワイヤの溶融量を増加させる。また、溶融金属中にSiの微細介在物を生成し、溶融金属の粘性を増大して良好な耐ギャップ性能が得られる。Siが0.5%未満では、ワイヤ溶融量が少なく、溶融金属の粘性も低くなって耐ギャップ性が得られなくなる。一方、Siが1.0%を超えると、溶融金属の粘性が過度に上昇するため溶融金属が高速度の溶接速度に追従できず、アークが不安定でハンピングビードとなりやすい。また、溶接金属の強度が高くなるので高温割れが発生しやすくなる。したがって、Siは0.5〜1.0%とする。
[Si: 0.5 to 1.0%]
Si is indispensable as a main deoxidizer for weld metal and increases the electric resistance of the wire to increase the amount of melting of the wire. In addition, fine inclusions of Si are generated in the molten metal, and the viscosity of the molten metal is increased to obtain a good gap resistance performance. If Si is less than 0.5%, the amount of wire melting is small, the viscosity of the molten metal is also low, and gap resistance cannot be obtained. On the other hand, if Si exceeds 1.0%, the viscosity of the molten metal excessively increases, so that the molten metal cannot follow the high welding speed, and the arc is unstable and tends to be a humping bead. Moreover, since the strength of the weld metal is increased, hot cracking is likely to occur. Therefore, Si is 0.5 to 1.0%.

[Mn:1.4〜2.0%]
Mnは、Siと同様に脱酸剤として作用する他、溶融金属の粘性を高くし表面張力を低下させる効果がある。また、FeSなどの低融点化合物が生成される前にMnSとしてSを固定するので高温割れ防止効果がある。Mnが1.4%未満では、高温割れが生じやすくなり、ブローホール等の気孔欠陥が発生しやすくなるとともに、溶融金属が垂れて十分な耐ギャップ性が得られなくなる。また、表面張力が高くなり溶滴が粗大化するためスパッタ発生量が多くなる。一方、Mnが2.0%を超えると、溶融金属の粘性が過度に上昇するため溶融金属が高速度の溶接速度に追従できず、アークが不安定でハンピングビードとなりやすい。したがって、Mnは1.4〜2.0%とする。
[Mn: 1.4 to 2.0%]
Mn acts as a deoxidizer like Si, and has the effect of increasing the viscosity of the molten metal and reducing the surface tension. Further, since S is fixed as MnS before a low melting point compound such as FeS is produced, there is an effect of preventing high temperature cracking. If Mn is less than 1.4%, hot cracking is likely to occur, and pore defects such as blow holes are likely to occur, and the molten metal drips and sufficient gap resistance cannot be obtained. Further, since the surface tension is increased and the droplets are coarsened, the amount of spatter generated increases. On the other hand, if Mn exceeds 2.0%, the viscosity of the molten metal excessively increases, so that the molten metal cannot follow the high welding speed, and the arc is unstable and tends to be a humping bead. Therefore, Mn is set to 1.4 to 2.0%.

[Ti:0.1〜0.3%]
Tiを含有させることによって、溶融金属中の酸化物(介在物)が多くなり粘性が適性となって耐ギャップ性が良好となる。Tiが0.1%未満では、溶融金属の粘性が低くなって耐ギャップ性が得られなくなる。一方、Tiが0.3%を超えると、溶融金属中の酸化物が多くなりすぎて凸ビードとなり耐ギャップ性が得られなくなる。したがって、Tiは0.1〜0.3%とする
[Ti: 0.1 to 0.3%]
By containing Ti, oxides (inclusions) in the molten metal increase, viscosity becomes suitable, and gap resistance becomes good. When Ti is less than 0.1%, the viscosity of the molten metal is lowered and gap resistance cannot be obtained. On the other hand, if Ti exceeds 0.3%, the amount of oxide in the molten metal becomes too large to form a convex bead and gap resistance cannot be obtained. Therefore, Ti is 0.1 to 0.3%.

[Bi:0.01〜0.1%]
Biは、溶融金属の表面張力を低下させる作用があり、それによりビードの平滑性およびビード止端部の濡れ性を向上することができる。また、表面張力が低下することで溶融池の湯流れを変化させ、スラグ剥離性を向上させることができ、さらにビードが広幅となるため良好な耐ギャップ性能が得られる。Biが0.01%未満であると、凸ビードとなりビードの平滑性およびビード止端部の良好な濡れ性が得られず、スラグ剥離性が不良で、耐ギャップ性も劣化する。一方、Biが0.1%を超えると、アークが不安定になり、スパッタ発生量が増加し、さらにスラグ生成量が増加する。したがって、Biは0.01〜0.1%とする。
[Bi: 0.01 to 0.1%]
Bi has the effect of reducing the surface tension of the molten metal, thereby improving the smoothness of the bead and the wettability of the bead toe. Moreover, since the surface tension is lowered, the hot water flow in the molten pool can be changed, the slag peelability can be improved, and the bead is widened, so that a good gap resistance performance can be obtained. If Bi is less than 0.01%, it becomes a convex bead, smoothness of the bead and good wettability of the bead toe cannot be obtained, slag peelability is poor, and gap resistance is also deteriorated. On the other hand, if Bi exceeds 0.1%, the arc becomes unstable, the amount of spatter generated increases, and the amount of slag generated further increases. Therefore, Bi is set to 0.01 to 0.1%.

[S:0.005〜0.070%]
Sは、溶融金属の表面張力を低下させる作用があり、それにより溶滴の細粒化とビードの平滑性およびビード止端部の濡れ性を大きく向上することができる。また、表面張力が低下することで溶融池の湯流れを変化させ、スラグ発生量を低減することができ、さらにビードが広幅となるため良好な耐ギャップ性能が得られるが、高温割れ感受性を高める元素でもある。Sが0.005%未満では、ビード改善の効果が不十分で耐ギャップ性が不良となり、溶滴が大きくなってアークが不安定になるためスパッタ発生量およびスラグ生成量が多くなる。一方、Sが0.070%を超えると、高温割れが発生しやすくなる。また、溶滴の表面張力が過度に低下し、溶融金属が垂れやすくなり、特にギャップがある溶接ではビード形状が不良となる。したがって、Sは0.005〜0.070%とする。
[S: 0.005 to 0.070%]
S has the effect of lowering the surface tension of the molten metal, which can greatly improve the atomization of the droplets, the smoothness of the beads and the wettability of the bead toes. In addition, by reducing the surface tension, it is possible to change the hot water flow in the molten pool and reduce the amount of slag generated. Furthermore, since the bead is wide, a good gap resistance performance can be obtained. is there. If S is less than 0.005%, the effect of improving the bead is insufficient and the gap resistance is poor, and the droplets become large and the arc becomes unstable, resulting in an increase in the amount of spatter generation and slag generation. On the other hand, when S exceeds 0.070%, hot cracking tends to occur. In addition, the surface tension of the droplets is excessively lowered, and the molten metal is liable to sag, and the bead shape is poor particularly in welding with a gap. Therefore, S is made 0.005 to 0.070%.

[P:0.03%以下、O:0.01%以下]
Pは、0.03%を超えると溶接金属の耐割れ性が劣化する。また、Oは0.01%を超えると、ワイヤ製造時にワイヤ表面に亀裂が生じ溶接時にワイヤ表面の銅めっきが剥離してチップ詰まりが生じやすくなる。なお、本発明の薄鋼板のガスシールドアーク溶接用ワイヤは、防錆、通電性およびワイヤ送給性を良好とするためにワイヤ表面に銅めっきを厚さ0.3〜1.1μm施すことができる。その他は、Feおよび不可避不純物である。
[P: 0.03% or less, O: 0.01% or less]
If P exceeds 0.03%, the crack resistance of the weld metal deteriorates. On the other hand, if O exceeds 0.01%, the wire surface is cracked at the time of wire production, and the copper plating on the surface of the wire is peeled off at the time of welding, and chip clogging is likely to occur. In addition, the wire for gas shielded arc welding of the thin steel plate of the present invention may be subjected to copper plating with a thickness of 0.3 to 1.1 μm on the wire surface in order to improve rust prevention, electrical conductivity and wire feedability. it can. Others are Fe and inevitable impurities.

また、CO2溶接によるショートアーク溶接、Ar−CO2ガスを用いたMAG溶接、Ar−CO2−O2ガスを用いたMAG溶接、Ar−CO2ガスを用いたパルスMAG溶接およびAr−CO2−O2ガスを用いたパルスMAG溶接ともにシールドガスの流量は耐欠陥性および大気からの窒素の混入を防ぐために20〜25リットル/分であることが好ましい。 Also, short arc welding by CO 2 welding, MAG welding using Ar—CO 2 gas, MAG welding using Ar—CO 2 —O 2 gas, pulse MAG welding using Ar—CO 2 gas, and Ar—CO. In the pulse MAG welding using 2- O 2 gas, the flow rate of the shielding gas is preferably 20 to 25 liters / minute in order to prevent the defect resistance and the mixing of nitrogen from the atmosphere.

以下、本発明の効果を実施例により具体的に説明する。
表1に示す各種成分のワイヤ径1.2mmのソリッドワイヤを試作した。JIS G3131 SPCCの板厚2.0mm、長さ450mmの鋼板を、図2に示すようにテーパ型スペーサ5を後板2と前板1に挟んでギャップG1=2mm、G2=4mmのテーパギャップを形成した横向重ね継手とし、表2に示す溶接条件でMAG溶接を行った。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
A solid wire having a wire diameter of 1.2 mm of various components shown in Table 1 was made as an experiment. As shown in FIG. 2, a JIS G3131 SPCC steel plate having a thickness of 2.0 mm and a length of 450 mm is sandwiched between a rear plate 2 and a front plate 1 with a gap G 1 = 2 mm and G 2 = 4 mm. MAG welding was performed under the welding conditions shown in Table 2 using a lateral lap joint in which a gap was formed.

なお、表1に示す化学組成のワイヤ記号1〜8は本発明例、ワイヤ記号9〜18は比較例である。 In addition, the wire symbols 1-8 of the chemical composition shown in Table 1 are examples of the present invention, and the wire symbols 9-18 are comparative examples.

溶接は図3に示すように、ワイヤ狙い位置6を前板1側の鋼板板厚の中心、トーチ7の角度θは30°でギャップG1(2mm)側からスタートしてギャップG2 (4mm)方向へ溶接して溶融金属が架橋できなくなるところまでを溶接可能ギャップとした。各ワイヤによる溶接可能ギャップ、アークの安定性およびビード形状を調査した。なお、溶接可能ギャップは3.5mm以上を良好とした。また、スパッタ発生量は、銅製の捕集箱を用いて、図2に示す横向重ね継手のギャップG1を2mmの一定として表2に示す溶接条件で5回溶接し、1分間当たりのスパッタ発生量を算出した。スパッタ発生量が0.5g/min以下を良好とした。それらの結果を表3にまとめて示す。 As shown in FIG. 3, the welding is started from the gap G 1 (2 mm) side when the wire aiming position 6 is the center of the steel plate thickness on the front plate 1 side, the angle θ of the torch 7 is 30 °, and the gap G 2 (4 mm The weldable gap was defined as the point where the molten metal could not be cross-linked by welding in the) direction. The weldable gap, arc stability and bead shape of each wire were investigated. The weldable gap was determined to be 3.5 mm or more. Furthermore, spatter, using a copper collecting box, welded five times with welding conditions shown in Table 2 the gap G 1 of sideways lap joint shown in FIG. 2 as a constant 2 mm, per minute spatter The amount was calculated. A spatter generation amount of 0.5 g / min or less was considered good. The results are summarized in Table 3.

表3中に示すワイヤ記号1〜8が本発明例、ワイヤ記号9〜18は比較例である。 Wire symbols 1 to 8 shown in Table 3 are examples of the present invention, and wire symbols 9 to 18 are comparative examples.

本発明例であるワイヤ記号1〜8は、C、Si、Mn、S、Ti、Biが適量であるので、アークが安定し、溶融金属の粘性および表面張力が適正で溶接可能ギャップが広く、スパッタ発生量が少なく外観の良好なビードが得られるとともに高温割れの発生もなく極めて満足な結果であった。比較例中のワイヤ記号9は、Cが多いので、溶融金属が垂れてビード形状が不良でアークがやや不安定となりスパッタ発生量が多く、高温割れが生じた。さらに、Tiが少ないので、溶接可能ギャップも狭かった。   Since the wire symbols 1 to 8 of the present invention are appropriate amounts of C, Si, Mn, S, Ti, Bi, the arc is stable, the viscosity and surface tension of the molten metal are appropriate, and the weldable gap is wide. A bead with a small amount of spatter generated and a good appearance was obtained, and there was no occurrence of hot cracking. Since the wire symbol 9 in the comparative example has a large amount of C, the molten metal dripped, the bead shape was poor, the arc was somewhat unstable, the amount of spatter was large, and high temperature cracking occurred. Furthermore, since there was little Ti, the weldable gap was also narrow.

ワイヤ記号10は、Cが少ないので、アークが不安定でスパッタ発生量が多かった。ま
た、Tiが多いので、凸ビードになり、溶接可能ギャップも狭かった。ワイヤ記号11は、Siが多いので、アークが不安定でハンピングビードとなり溶接可能ギャップが狭く、高温割も生じた。ワイヤ記号12は、Siが少ないので、アークが不安定となり、溶接可能ギャップも狭かった。ワイヤ記号13は、Mnが多いので、アークが不安定でハンピングビードとなり溶接可能ギャップも狭かった。
Since the wire symbol 10 has a small amount of C, the arc is unstable and the amount of spatter generated is large. Moreover, since there was much Ti, it became a convex bead and the weldable gap was also narrow. Since the wire symbol 11 has a large amount of Si, the arc is unstable, a humping bead is formed, a weldable gap is narrow, and a high temperature is also generated. Since the wire symbol 12 has less Si, the arc becomes unstable and the weldable gap is narrow. Since the wire symbol 13 had a large amount of Mn, the arc was unstable and a humping bead was formed, and the weldable gap was narrow.

ワイヤ記号14は、Mnが少ないので、スパッタ発生量が多かった。また、溶融金属が
垂れて溶接可能ギャップが狭かった。さらに、高温割れも生じた。ワイヤ記号15は、Sが多いので、溶融金属が垂れて溶接可能ギャップも狭かった。また、高温割れが発生した。ワイヤ記号16は、Sが少ないので、アークが不安定でビード始端部のなじみが悪く、凸ビードとなり溶接可能ギャップが狭かった。また、スパッタ発生量も多かった。ワイヤ記号17は、Biが多いので、アークが不安定になり、スパッタ発生量およびスラグ生成量が多かった。ワイヤ記号18は、Biが少ないので、凸ビードとなりビード止端部のなじみが悪く、溶接可能ギャップが狭かった。
Since the wire symbol 14 has a small amount of Mn, the amount of spatter generated was large. Moreover, the molten metal dripped and the weldable gap was narrow. Furthermore, hot cracking also occurred. Since the wire symbol 15 has a large amount of S, the molten metal dripped and the weldable gap was narrow. Moreover, hot cracking occurred. Since the wire symbol 16 had a small amount of S, the arc was unstable and the bead start end was not well-suited, so that it became a convex bead and the weldable gap was narrow. Also, the amount of spatter generated was large. Since the wire symbol 17 has a large amount of Bi, the arc becomes unstable, and the amount of spatter generation and slag generation is large. Since the wire symbol 18 had a small Bi, it became a convex bead and the fit of the bead toe portion was poor, and the weldable gap was narrow.

1 前板
2 後板
3 溶接金属
4 アンダカット
5 スペーサ
6 ワイヤ狙い位置
7 トーチ
G、G1、G2 ギャップ
θ トーチ角度


特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1
1 Front plate 2 Rear plate 3 Weld metal 4 Undercut 5 Spacer 6 Wire target position 7 Torch G, G 1 , G 2 gap θ Torch angle


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1

Claims (1)

ワイヤ全質量に対する質量%で、C:0.03〜0.10%、Si:0.5〜1.0%、Mn:1.4〜2.0%、Ti:0.1〜0.3%、Bi:0.01〜0.1%、S:0.005〜0.070%を含有し、P:0.03%以下、O:0.01%以下で、その他はFeおよび不可避不純物であることを特徴とする薄鋼板のガスシールドアーク溶接用ソリッドワイヤ。 In mass% with respect to the total mass of the wire, C: 0.03 to 0.10%, Si: 0.5 to 1.0%, Mn: 1.4 to 2.0%, Ti: 0.1 to 0.3 %, Bi: 0.01 to 0.1%, S: 0.005 to 0.070%, P: 0.03% or less, O: 0.01% or less, and the others are Fe and inevitable impurities A solid wire for gas shielded arc welding of thin steel sheet, characterized by
JP2013077883A 2013-04-03 2013-04-03 Solid wire for gas shield arc welding of thin steel sheet Pending JP2014200812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077883A JP2014200812A (en) 2013-04-03 2013-04-03 Solid wire for gas shield arc welding of thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077883A JP2014200812A (en) 2013-04-03 2013-04-03 Solid wire for gas shield arc welding of thin steel sheet

Publications (1)

Publication Number Publication Date
JP2014200812A true JP2014200812A (en) 2014-10-27

Family

ID=52351750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077883A Pending JP2014200812A (en) 2013-04-03 2013-04-03 Solid wire for gas shield arc welding of thin steel sheet

Country Status (1)

Country Link
JP (1) JP2014200812A (en)

Similar Documents

Publication Publication Date Title
US9321119B2 (en) Combination welding method using combination of gas metal arc welding and submerged-arc welding and combination arc welding machine
US9339887B2 (en) Method for bonding dissimilar metals to each other
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
CN107921569B (en) Vertical narrow groove gas shielded arc welding method
JP5925703B2 (en) Solid wire for gas shielded arc welding of thin steel sheet
KR100513214B1 (en) A bond flux for submerged arc welding
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP5968934B2 (en) Welding method of galvanized steel sheet
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP2007083303A (en) Shielding gas for mig brazing and welding method using the shielding gas
JP6188626B2 (en) Two-electrode horizontal fillet gas shielded arc welding method
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
JP5037369B2 (en) Solid wire for pulse MAG welding
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP2014200812A (en) Solid wire for gas shield arc welding of thin steel sheet
JP5086881B2 (en) High-speed gas shield arc welding method for thin steel sheet
JP2015100813A (en) Solid wire for gas shield arc weld for thin steel plate
JP5287656B2 (en) Method of lap fillet arc welding of galvanized steel sheet and lap fillet arc welded joint
JP5280060B2 (en) Gas shield arc welding method
JP6676552B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
KR102049215B1 (en) Vertical narrow gap gas shielded arc welding method