JP2018104815A - Estimation method of proper granulation moisture content during sintered raw material manufacturing and manufacturing method of sintered raw material - Google Patents
Estimation method of proper granulation moisture content during sintered raw material manufacturing and manufacturing method of sintered raw material Download PDFInfo
- Publication number
- JP2018104815A JP2018104815A JP2017241864A JP2017241864A JP2018104815A JP 2018104815 A JP2018104815 A JP 2018104815A JP 2017241864 A JP2017241864 A JP 2017241864A JP 2017241864 A JP2017241864 A JP 2017241864A JP 2018104815 A JP2018104815 A JP 2018104815A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- ratio
- mass
- raw material
- composition ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、下方吸引式のドワイトロイド型焼結機を用いて、高炉用焼結鉱を製造する技術に関し、具体的には、上記焼結機に装入する焼結原料を製造する時の適正造粒水分量の推定方法と上記方法を用いた焼結原料の製造方法に関するものである。 The present invention relates to a technique for producing a blast furnace sintered ore using a downward suction type droidoid sintering machine, specifically, when producing a sintered raw material charged into the sintering machine. The present invention relates to a method for estimating an appropriate amount of granulated water and a method for producing a sintered raw material using the above method.
ドワイトロイド式焼結機を用いて焼結鉱を製造する際、造粒した焼結原料の構造や性状が、装入層の通気性に大きく影響し、結果的に焼結鉱の品質や生産性、歩留を大きく左右することが知られている。特に、焼結鉱製造用原料を造粒して擬似粒子である焼結原料を製造するときに添加する水分は、擬似粒子を生成する際のバインダーとしての役割を果たすことから、この水分量を適正に制御することは非常に重要である。 When producing a sinter using a Dwytroid-type sintering machine, the structure and properties of the granulated sintered raw material greatly affect the permeability of the charged layer, resulting in the quality and production of the sinter. It is known to greatly affect sex and yield. In particular, the moisture added when granulating the raw material for sinter ore production to produce a sintered raw material that is a pseudo-particle plays a role as a binder when generating the pseudo-particle. Proper control is very important.
そのため、従来から、擬似粒子を製造する際の造粒水分を適正化する検討がなされてきた。例えば、特許文献1は、適正水分濃度[Wopt]を、鉄鉱石、SiO2系副原料に関する下記推定式;
[Wopt]=(吸収水分)+(付着水分)+(補正項)
から算出することを提案している。
For this reason, conventionally, studies have been made to optimize the granulation moisture when producing pseudo particles. For example, Patent Document 1 discloses the following estimation formula for the appropriate water concentration [Wopt] with respect to iron ore and SiO 2 -based auxiliary materials;
[Wopt] = (Absorbed moisture) + (Adhered moisture) + (Correction term)
It is proposed to calculate from
また、特許文献2は、上記式中の(吸収水分)を粉鉱石中の核粒子の構成比率、(付着水分)を粉鉱石中の微粉の構成比率として推定式の係数を求めるのに加え、上記微粉中のAl2O3やSiO2の構成比率等も項目(変数)として追加した推定式を提案している。 In addition, Patent Document 2 obtains the coefficient of the estimation formula using (absorbed moisture) in the above formula as the component ratio of the core particles in the fine ore and (adhesion moisture) as the component ratio of the fine powder in the fine ore, as Al 2 O 3 and component ratio of SiO 2 or the like in the fines also proposes the added estimation equation as items (variables).
しかしながら、上記特許文献1に開示の技術では、適正造粒水分量の推定式を、鉄鉱石、副原料の吸収水分と付着水分のみに注目し、変数を2つに包括して立てているため、定期的な原料性状の変化に追従できず、最適化できない原料配合パターンが出てくる可能性がある。また、特許文献2に開示の技術も、特許文献1の技術と同様の考え方で、さらに推定式の説明変数を細分化して詳しい係数を立てているが、実績の適正造粒水分量と一致しない事例が多々発生するという問題があった。 However, in the technique disclosed in Patent Document 1, the estimation formula for the proper granulation water amount focuses on only the absorbed moisture and adhering moisture of iron ore and auxiliary materials, and the variables are comprehensively set in two. Therefore, there is a possibility that a raw material blending pattern that cannot be optimized due to regular changes in raw material properties may appear. In addition, the technique disclosed in Patent Document 2 is also based on the same concept as that of Patent Document 1, and further subdivides the explanatory variables of the estimation formula and sets a detailed coefficient, but does not match the actual appropriate granulated moisture content. There was a problem that many cases occurred.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、焼結鉱製造用原料に水分を添加し、造粒して焼結原料を製造する際、焼結鉱製造用原料に添加する適正造粒水分量を精度よく推定する方法を提案するとともに、その方法を用いた焼結原料の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to add moisture to a raw material for producing sintered ore and granulate it to produce a sintered raw material. In addition to proposing a method for accurately estimating an appropriate amount of granulated water to be added to a raw material for ore production, a method for producing a sintered raw material using the method is proposed.
発明者らは、上記課題を解決するべく、推定式の中に取り込む項目(変数)に着目して鋭意検討を重ねた。その結果、上記焼結鉱製造用原料に添加する適正造粒水分量を、焼結鉱製造用原料の主原料である粉鉱石の吸収水分量、付着水分量および粘土質鉱物へ転化する成分であるSiO2およびAl2O3の構成比率加えて、焼結鉱製造用原料を構成するその他の原料である副原料、固体燃料および返鉱それぞれの構成比率も説明変数として取り入れて重回帰分析を行い、推定式を導出することで、目的変数である適正造粒水分量を精度よく求めることができることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the inventors have made extensive studies focusing on items (variables) to be taken into the estimation formula. As a result, the appropriate amount of granulated water added to the raw material for producing sinter is converted into the absorbed water amount, adhering water amount and clayey mineral of the fine ore that is the main raw material for producing sinter ore. In addition to the constituent ratios of certain SiO 2 and Al 2 O 3 , the constituent ratios of the secondary raw materials, solid fuel, and return ore, which are other raw materials that make up the raw materials for sinter ore production, are also incorporated as explanatory variables for multiple regression analysis It was found that by deriving the estimation formula, the appropriate granulated water content as the objective variable can be obtained with high accuracy, and the present invention has been completed.
すなわち、本発明は、粉鉱石、石灰石および/または生石灰を含む副原料、リサイクル成品である返鉱、および、コークスや無煙炭からなる固体燃料(凝結材)を含む焼結鉱製造用原料に水分を添加し、混合し、造粒して擬似粒子である焼結原料を製造するときの適正造粒水分量を推定する方法において、
上記焼結鉱製造用原料に添加する適正造粒水分量を、粉鉱石における吸収水分量および付着水分量、粘土質鉱物へ転化する成分であるSiO2およびAl2O3の構成比率加えて、
焼結鉱製造用原料中に占める上記粉鉱石、副原料、固体燃料および返鉱それぞれの構成比率に基づいて推定することを特徴とする、焼結原料製造時の適正造粒水分量の推定方法を提案する。
That is, the present invention provides moisture to a raw material for producing sintered ore including a secondary raw material containing fine ore, limestone and / or quicklime, a return product that is a recycled product, and a solid fuel (condensation material) made of coke or anthracite. In the method of estimating the appropriate amount of granulation water when adding, mixing and granulating to produce a sintered raw material that is pseudo particles,
Appropriate amount of granulated water added to the raw material for manufacturing the sintered ore is added to the absorbed moisture amount and the attached moisture amount in the fine ore, and the constituent ratio of SiO 2 and Al 2 O 3 which are components to be converted into clay minerals,
A method for estimating an appropriate amount of granulated water at the time of manufacturing a sintered raw material, characterized in that the estimation is based on the constituent ratios of the above-mentioned fine ore, secondary raw material, solid fuel and return mineral in the raw material for manufacturing the sintered ore. Propose.
本発明の上記焼結原料製造時の適正造粒水分量の推定方法は、上記適正造粒水分量を、下記(1)式;
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
ここで、〔Mpre〕:焼結原料製造時の適正造粒水分量(mass%)
〔LOI〕:結晶水含有量(JIS M 8850による)
〔SiO2〕:SiO2の構成比率(mass%)
〔Al2O3〕:Al2O3の構成比率(mass%)
〔−0.1mm〕:0.1mm未満の粉鉱石の構成比率(mass%)
〔1−0.1mm〕:0.1〜1mmの粉鉱石の構成比率(mass%)
〔粉鉱石比〕:全粉鉱石の構成比率(mass%)
〔石灰石比〕:石灰石の構成比率(mass%)
〔返鉱比〕:返鉱の構成比率(mass%)
〔凝結材比〕:コークスの構成比率(mass%)
〔生石灰比〕:生石灰の構成比率(mass%)
α、δ、ε:吸収水分および付着水分項(係数)
β、γ:粘土質鉱物転化項(係数)
ζ、η、θ、ι、κ:焼結鉱製造用原料の構成比率項(係数)
λ:補正項
を用いて推定することを特徴とする。
The method for estimating the appropriate granulated moisture content during the production of the sintered raw material of the present invention is the following formula (1):
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η · [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
[M pre ]: Appropriate amount of granulated water during mass production (mass%)
[LOI]: Crystal water content (according to JIS M 8850)
[SiO 2 ]: Composition ratio of SiO 2 (mass%)
[Al 2 O 3 ]: Composition ratio of Al 2 O 3 (mass%)
[−0.1 mm]: Composition ratio of powder ore of less than 0.1 mm (mass%)
[1-0.1 mm]: Composition ratio (mass%) of 0.1-1 mm fine ore
[Powder ore ratio]: Composition ratio of all powder ore (mass%)
[Limestone ratio]: Composition ratio of limestone (mass%)
[Returning ratio]: Composition ratio of returning ore (mass%)
[Condensed material ratio]: Composition ratio of coke (mass%)
[Quicklime ratio]: Composition ratio of quicklime (mass%)
α, δ, ε: Absorbed moisture and attached moisture terms (coefficients)
β, γ: Clay mineral conversion terms (coefficients)
ζ, η, θ, ι, κ: Composition ratio terms (coefficients) of raw materials for sinter production
λ: Estimated using a correction term.
また、本発明は、主原料の粉鉱石、石灰および/または生石灰を含む副原料、リサイクル成品である返鉱、および、コークスや無煙炭からなる固体燃料(凝結材)を含む焼結鉱製造用原料に水分を添加し、混合し、造粒して擬似粒子である焼結原料を製造する方法において、上記焼結鉱製造用原料に添加する適正造粒水分量を、粉鉱石における吸収水分量および付着水分量、粘土質鉱物へ転化する成分であるSiO2およびAl2O3の構成比率に加えて、焼結鉱製造用原料中に占める上記粉鉱石、副原料、固体燃料および返鉱それぞれの構成比率に基づいて決定することを特徴とする焼結原料の製造方法を提案する。 In addition, the present invention provides a raw material for producing sintered ore including a main raw material powdered ore, a secondary raw material containing lime and / or quicklime, a recycled product that is recycled, and a solid fuel (condensed material) made of coke or anthracite. In the method of manufacturing a sintered raw material that is pseudo particles by adding water to, mixing, and granulating, the appropriate granulated water amount to be added to the raw material for manufacturing the sintered ore is the amount of absorbed water in the fine ore and In addition to the amount of adhering moisture and the composition ratio of SiO 2 and Al 2 O 3 which are components converted into clay minerals, the above-mentioned fine ore, sub-raw materials, solid fuel and return ore in the raw materials for sinter ore production A method for producing a sintered raw material is proposed, which is determined based on the composition ratio.
本発明の上記焼結原料の製造方法における上記適正造粒水分量は、下記(1)式;
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
ここで、〔Mpre〕:焼結原料製造時の適正造粒水分量(mass%)
〔LOI〕:結晶水含有量(JIS M 8850による)
〔SiO2〕:SiO2の構成比率(mass%)
〔Al2O3〕:Al2O3の構成比率(mass%)
〔−0.1mm〕:0.1mm未満の粉鉱石の構成比率(mass%)
〔1−0.1mm〕:0.1〜1mmの粉鉱石の構成比率(mass%)
〔粉鉱石比〕:全粉鉱石の構成比率(mass%)
〔石灰石比〕:石灰石の構成比率(mass%)
〔返鉱比〕:返鉱の構成比率(mass%)
〔凝結材比〕:コークスの構成比率(mass%)
〔生石灰比〕:生石灰の構成比率(mass%)
α、δ、ε:吸収水分および付着水分項(係数)
β、γ:粘土質鉱物転化項(係数)
ζ、η、θ、ι、κ:焼結鉱製造用原料の構成比率項(係数)
λ:補正項
を満足することを特徴とする
The proper granulated water content in the method for producing the sintered raw material of the present invention is expressed by the following formula (1):
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η · [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
[M pre ]: Appropriate amount of granulated water during mass production (mass%)
[LOI]: Crystal water content (according to JIS M 8850)
[SiO 2 ]: Composition ratio of SiO 2 (mass%)
[Al 2 O 3 ]: Composition ratio of Al 2 O 3 (mass%)
[−0.1 mm]: Composition ratio of powder ore of less than 0.1 mm (mass%)
[1-0.1 mm]: Composition ratio (mass%) of 0.1-1 mm fine ore
[Powder ore ratio]: Composition ratio of all powder ore (mass%)
[Limestone ratio]: Composition ratio of limestone (mass%)
[Returning ratio]: Composition ratio of returning ore (mass%)
[Condensed material ratio]: Composition ratio of coke (mass%)
[Quicklime ratio]: Composition ratio of quicklime (mass%)
α, δ, ε: Absorbed moisture and attached moisture terms (coefficients)
β, γ: Clay mineral conversion terms (coefficients)
ζ, η, θ, ι, κ: Composition ratio terms (coefficients) of raw materials for sinter production
λ: Characteristic that satisfies the correction term
本発明によれば、焼結鉱製造用原料を造粒して擬似粒子である焼結原料を製造する際の適正造粒水分量を高い精度で推定することができるので、水分添加不足による微粉粒子の増加や、水分過剰添加による擬似粒子崩壊のない造粒粒子(焼結原料)を製造することが可能となり、焼結鉱の歩留り向上や品質向上ならびに生産性向上に大いに寄与する。 According to the present invention, it is possible to accurately estimate the amount of granulated water when granulating a raw material for producing sintered ore to produce a sintered raw material that is a pseudo-particle. It is possible to produce granulated particles (sintered raw material) that do not have pseudo particles collapse due to the increase of particles or excessive addition of water, which greatly contributes to the improvement in yield, quality and productivity of sintered ore.
図1は、焼結鉱製造用原料を造粒して擬似粒子である造粒粒子を製造する際に添加する水分量と、得られる擬似粒子の形態との関係を、模式的に示した図である。
図1の(A)の領域においては、水分を添加しても、得られる擬似粒子の粒径や通気度は変化しない。これは、粉鉱石の表面には、微細な開気孔が存在し、添加された水分は、最初にこの空隙内に浸透し、吸収水となってしまうからである。この吸収水は、気孔量、空隙量が多いほど多くなるため、造粒に必要な水分量も多くなる。
FIG. 1 is a diagram schematically showing the relationship between the amount of water added when granulating raw materials for producing sinter ore and producing granulated particles that are pseudo particles, and the form of pseudo particles obtained. It is.
In the region of FIG. 1A, even if moisture is added, the particle size and air permeability of the obtained pseudo particles do not change. This is because fine open pores exist on the surface of the fine ore, and the added water first permeates into the voids and becomes absorbed water. Since this absorbed water increases as the amount of pores and voids increases, the amount of water necessary for granulation also increases.
図1の(A)の状態からさらに水分を増加すると、図1の(B)の領域となる。この領域では、図1の右側に示すように、粉鉱石の粒子表面を濡らす付着水となり、隣接する粉鉱石粒子と接触すれば、架橋水として作用する。粉鉱石粒子同士の接触が進み、微粉の核粒子への付着が進行するに従い、擬似粒子の径が増加し、造粒後の微粉率が低下する。その結果、この擬似粒子を焼結原料とした場合には、通気度も良好となる。 When moisture is further increased from the state shown in FIG. 1A, the region shown in FIG. In this region, as shown on the right side of FIG. 1, the adhering water wets the particle surface of the fine ore, and acts as bridging water when it comes into contact with the adjacent fine ore particles. As the contact between the fine ore particles proceeds and the fine particles adhere to the core particles, the diameter of the pseudo particles increases and the fine powder rate after granulation decreases. As a result, when these pseudo particles are used as a sintering raw material, the air permeability is also good.
しかし、図1の(B)の状態から、さらに水を添加すると、図1の(C)の状態となり、図1の右側に示すように、水分過剰の為に添加水分が連続して存在する、いわゆるスラリー域となる。この領域では、粒径は大きくなるものの、過剰水の為に空隙率が低下する。そのため、この状態の擬似粒子を焼結原料とした場合には、通気度が大きく低下(悪化)することになる。
このように、焼結原料を製造する際の造粒水分には適正値が存在し、その適正造粒水分量に制御することによって、焼結鉱の生産性や品質を高めることができる。
However, when water is further added from the state shown in FIG. 1B, the state shown in FIG. 1C is obtained, and as shown on the right side of FIG. It becomes a so-called slurry region. In this region, the particle size increases, but the porosity decreases due to excess water. Therefore, when the pseudo particles in this state are used as a sintering raw material, the air permeability is greatly reduced (deteriorated).
As described above, there is an appropriate value for the granulated moisture when the sintered raw material is produced, and the productivity and quality of the sintered ore can be enhanced by controlling the amount of the granulated moisture.
ところで、上記の図1の説明からわかるように、造粒時に添加された水分は、水分の粉鉱石粒子への作用の仕方から、吸収水分と付着水分とに大別される。
そこで、適正造粒水分量の推定式を求めるにあたり、上記適正造粒水分量は、特許文献1と同様、下記式;
適正造粒水分量=(吸収水分量)+(付着水分量)
で表されるとの基本的な考えの下、上記吸収水分量および付着水分量に影響する因子、すなわち、重回帰分析する際に取り上げる変数について再検討することとした。
By the way, as can be seen from the description of FIG. 1 above, the moisture added at the time of granulation is roughly divided into absorbed moisture and adhering moisture, depending on how the moisture acts on the fine ore particles.
Then, in obtaining the estimation formula of the appropriate granulation moisture amount, the appropriate granulation moisture amount is the following formula as in Patent Document 1;
Proper granulation water content = (absorption water content) + (adhesion water content)
Based on the basic idea that it is expressed as follows, it was decided to reexamine the factors affecting the absorbed water amount and the attached water amount, that is, the variables taken up in the multiple regression analysis.
<吸収水分に影響する因子>
鉄鉱石中に含まれる水分の量(含水率)は、一般に、図2に示したように、鉄鉱石の粒径dの逆数で整理され、粒径が小さいほど高くなり、その傾きは、鉄鉱石の種類(産地)によらずほぼ一定である。
<Factors affecting absorbed moisture>
As shown in FIG. 2, the amount of water contained in iron ore (water content) is generally arranged by the reciprocal of the particle size d of iron ore, and the smaller the particle size, the higher the gradient, It is almost constant regardless of the type of stone (production area).
吸収水分量は、図3に示したように、鉄鉱石の結晶水含水率(LOI)と強い相関関係が認められる。これは、結晶水含水率LOIが高い鉄鉱石は、多孔質で、比表面積が大きい傾向にあるためと考えられる。
また、図4は、鉄鉱石中のAl2O3含有率と、吸収水分との関係を示したものであり、やはり、強い相関関係が認められる。これは、鉄鉱石中のAl2O3は、粘度鉱物(Kaolinite:Al4Si4O10(OH)8)と関係があり、水分の吸収に寄与するためと考えられる。
一方、SiO2も粘度鉱物(Kaolinite)と関係があり、付着性を向上するので、SiO2を含む原料が主に付着粒子として振る舞う場合には、造粒水分を低減する方向に寄与すると考えられる。
そこで、本発明においては、適正造粒水分量中の吸収水分に関係する因子(変数)として、鉄鉱石の結晶水含水率(LOI)、Al2O3含有率およびSiO2の構成比率を採用する。
As shown in FIG. 3, the absorbed water amount has a strong correlation with the crystal water content (LOI) of iron ore. This is presumably because iron ores with a high crystal water content LOI tend to be porous and have a large specific surface area.
FIG. 4 shows the relationship between the Al 2 O 3 content in iron ore and the absorbed moisture, and a strong correlation is also recognized. This is presumably because Al 2 O 3 in iron ore is related to viscosity mineral (Kaolinite: Al 4 Si 4 O 10 (OH) 8 ) and contributes to moisture absorption.
On the other hand, since SiO 2 is also related to viscosity mineral (Kaolinite) and improves adhesion, it is considered that when the raw material containing SiO 2 mainly acts as adhered particles, it contributes to the direction of reducing granulated moisture. .
Therefore, in the present invention, the crystal water content of iron ore (LOI), the Al 2 O 3 content, and the composition ratio of SiO 2 are adopted as factors (variables) related to the absorbed water in the appropriate granulated water content. To do.
<付着水分に影響する因子>
先述したように、鉄鉱石中に含まれる含水率は、吸収水分と付着水分の和であり、付着水分は、鉄鉱石の粒径dの逆数(1/d)と相関関係にある。また、上記付着水分は、隣接する粉鉱石粒子と接触することで架橋水として働く。この架橋水としての作用は、粒子間の毛細管力に起因するものであり、毛細管力Hよりも重力Gの方が小さいときに発現する。図5は、付着水の架橋水としての働きについて説明する図であり、(a)に示したように大きな核粒子に小さな粒径dの微粉が付着したときの、粒径dと(毛細管力H/重力G)との関係を(b)に示したものである。この図から、付着水は、付着粒子の粒径dが1mm以下に架橋水として作用する。したがって、架橋水として働く付着水分量は、鉄鉱石中に占める、−1mmの微粉鉄鉱石の構成比率に左右され、その量が多いほど、造粒に必要な水分も多くする必要があることを意味している。
<Factors affecting adhesion moisture>
As described above, the moisture content contained in the iron ore is the sum of the absorbed moisture and the adhering moisture, and the adhering moisture is correlated with the reciprocal (1 / d) of the particle size d of the iron ore. Moreover, the said adhering water | moisture content acts as bridge | crosslinking water by contacting with the adjacent fine ore particle | grains. This action as the crosslinking water is caused by the capillary force between the particles, and is manifested when the gravity G is smaller than the capillary force H. FIG. 5 is a diagram for explaining the function of adhering water as cross-linking water. As shown in FIG. 5A, when fine powder having a small particle diameter d adheres to large core particles, the particle diameter d and (capillary force) The relationship with H / gravity G) is shown in FIG. From this figure, the adhering water acts as crosslinking water when the particle size d of the adhering particles is 1 mm or less. Therefore, the amount of moisture adhering to the bridging water depends on the composition ratio of the fine iron ore of -1 mm in the iron ore, and the larger the amount, the more water necessary for granulation needs to be increased. I mean.
上記−1mmの微粉鉄鉱石の構成比率は、鉄鉱石の種類(銘柄、産地)によって異なるため、−1mmの微粉鉄鉱石の構成比率を付着水分量を決定する因子(説明変数)として採用することは重要な意味をもつ。しかし、発明者らの知見によれば、−1mmの微粉鉄鉱石でも、−0.1mmと0.1〜1mmの粒度分布は、図6に示したように、鉄鉱石の種類(銘柄、産地)によって大きく異なる。そこで、架橋水としての作用する付着水分量を評価するには、単なる−1mmの微粉鉄鉱石の構成比率ではなく、−0.1mmと0.1〜1mmそれぞれの微粉鉄鉱石の構成比率を用いることが重要である。
そこで、本発明では、適正造粒水分量中の付着水分に影響する因子(変数)として、−0.1mmと0.1〜1mmそれぞれの微粉鉄鉱石の構成比率を採用する。
Since the composition ratio of the fine iron ore of -1 mm differs depending on the type of iron ore (brand, production area), the composition ratio of the fine iron ore of -1 mm should be adopted as a factor (explanatory variable) that determines the amount of attached water. Has an important meaning. However, according to the knowledge of the inventors, even in a fine iron ore of -1 mm, the particle size distributions of -0.1 mm and 0.1 to 1 mm are as shown in FIG. ) Vary greatly. Therefore, in order to evaluate the amount of adhering moisture that acts as the crosslinking water, the constituent ratios of the fine iron ores of -0.1 mm and 0.1-1 mm are used instead of the constituent ratio of the mere -1 mm of fine iron ore. This is very important.
Therefore, in the present invention, as the factor (variable) affecting the adhering moisture in the appropriate granulated moisture content, the composition ratios of fine iron ore of -0.1 mm and 0.1-1 mm are employed.
<焼結鉱製造用原料の構成比率の因子>
ところで、適正造粒水分量に影響する因子としては、上記吸収水分に影響する因子と、付着水分に影響する因子の他に、焼結鉱製造用原料を構成する粉鉱石、副原料、固体燃料および返鉱の構成比率がある。従来技術においては、焼結鉱製造用原料を構成する粉鉱石(鉄鉱石)にのみ着目しており、これらの項目については殆ど考慮していない。
そこで、本発明においては、粉鉱石、副原料、固体燃料および返鉱の構成比率を表す因子として、全焼結鉱製造用原料に対する粉鉱石比(全粉鉱石の構成比率(mass%)、石灰石比(石灰石の構成比率(mass%))、返鉱比(返鉱の構成比率(mass%)、凝結材比(コークスの構成比率(mass%))および生石灰比(生石灰の構成比率(mass%))を因子(変数)として採用することとした。
<Factors of composition ratio of raw materials for sinter production>
By the way, as factors affecting the appropriate amount of granulated water, in addition to the above factors affecting the absorbed moisture and the factors affecting the adhering moisture, the fine ore, the auxiliary material, and the solid fuel constituting the raw material for producing the sintered ore And there is a composition ratio of return ore. In the prior art, attention is paid only to the fine ore (iron ore) constituting the raw material for producing the sintered ore, and these items are hardly considered.
Therefore, in the present invention, as a factor representing the constituent ratio of fine ore, auxiliary raw material, solid fuel and return ore, the ratio of fine ore to the raw material for producing all sintered ore (the constituent ratio of total fine ore (mass%), limestone ratio (Composition ratio of limestone (mass%)), return ratio (composition ratio of return mineral (mass%)), coagulant ratio (composition ratio of coke (mass%)) and quicklime ratio (composition ratio of quicklime (mass%)) ) As a factor (variable).
なお、上記焼結鉱製造用原料には、高炉ダスト、製鋼ダスト、熱延ダスト等の雑原料を含んでもよいが、量的には少ないため、適正造粒水分量〔Mpre〕の推定式の個別変数としては取り上げず、「粉鉱石」を構成する一部として考える。因みに、「粉鉱石」は、通常、以下の成分からなる。
・購入粉:購入した鉄鉱石粉(約56mass%)
・篩下粉:購入した塊鉱石を製鉄所内で篩ったときの篩下の鉄鉱石粉(約32mass%)
・雑原料:高炉ダストや製鋼ダスト、熱延ダスト等、製鉄所内で発生したダスト、側溝等から回収したスラッジ等(約10mass%)
・低シリカドロマイト(MgO源):成分調整用添加材(約1.5mass%)
・ニッケルスラグ(SiO2源):成分調整用添加材(約0.5mass%)
In addition, although the raw materials for sinter production may include miscellaneous raw materials such as blast furnace dust, steelmaking dust, hot-rolled dust, etc., since the amount is small, an estimation formula for an appropriate granulated water content [M pre ] It is not taken up as an individual variable, and is considered as a part of “fine ore”. Incidentally, “fine ore” usually consists of the following components.
・ Purchase: Purchased iron ore powder (approx. 56 mass%)
-Under sieve powder: Iron ore powder under sieve (about 32 mass%) when the purchased ore is sieved in the steelworks
・ Miscellaneous raw materials: Blast furnace dust, steelmaking dust, hot rolled dust, dust generated in steelworks, sludge collected from gutters, etc. (about 10 mass%)
・ Low silica dolomite (MgO source): additive for adjusting ingredients (about 1.5 mass%)
Nickel slag (SiO 2 source): additive for adjusting ingredients (about 0.5 mass%)
このように焼結製造用全原料の構成比率の項を追加することによって、熱量調整を目的とした粉コークスの配合量変更や、塩基度調整を目的とした石灰または生石灰配合量変更にも柔軟に対応できる。また、粒子なので、鉄鉱石のみではなく、石灰粉や粉コークス、返鉱量なども加味しているので、造粒時の適正造粒水分量の推定精度をより高めることができる。 In this way, by adding the term of the composition ratio of all raw materials for sintering production, it is possible to flexibly change the amount of powdered coke blended for calorie adjustment and lime or quicklime blended amount for basicity adjustment. It can correspond to. Moreover, since it is a particle | grain, since not only iron ore but lime powder, powder coke, the amount of returned minerals, etc. are considered, the estimation precision of the appropriate granulation water content at the time of granulation can be improved more.
上記の検討結果から、本発明では、適正造粒水分量〔Mpre〕の推定式として、下記(1)式;
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
ここで、〔Mpre〕:焼結原料製造時の適正造粒水分量(mass%)
〔LOI〕:結晶水含有量(JIS M 8850による)
〔SiO2〕:SiO2の構成比率(mass%)
〔Al2O3〕:Al2O3の構成比率(mass%)
〔−0.1mm〕:0.1mm未満の粉鉱石の構成比率(mass%)
〔1−0.1mm〕:0.1〜1mmの粉鉱石の構成比率(mass%)
〔粉鉱石比〕:全粉鉱石の構成比率(mass%)
〔石灰石比〕:石灰石の構成比率(mass%)
〔返鉱比〕:返鉱の構成比率(mass%)
〔凝結材比〕:コークスの構成比率(mass%)
〔生石灰比〕:生石灰の構成比率(mass%)
α、δ、ε:吸収水分および付着水分項(係数)
β、γ:粘土質鉱物転化項(係数)
ζ、η、θ、ι、κ:焼結鉱製造用原料構成比率項(係数)
λ:補正項
を用いることとした。
From the above examination results, in the present invention, the following formula (1) is used as an estimation formula of the appropriate granulated water content [M pre ]:
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η · [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
[M pre ]: Appropriate amount of granulated water during mass production (mass%)
[LOI]: Crystal water content (according to JIS M 8850)
[SiO 2 ]: Composition ratio of SiO 2 (mass%)
[Al 2 O 3 ]: Composition ratio of Al 2 O 3 (mass%)
[−0.1 mm]: Composition ratio of powder ore of less than 0.1 mm (mass%)
[1-0.1 mm]: Composition ratio (mass%) of 0.1-1 mm fine ore
[Powder ore ratio]: Composition ratio of all powder ore (mass%)
[Limestone ratio]: Composition ratio of limestone (mass%)
[Returning ratio]: Composition ratio of returning ore (mass%)
[Condensed material ratio]: Composition ratio of coke (mass%)
[Quicklime ratio]: Composition ratio of quicklime (mass%)
α, δ, ε: Absorbed moisture and attached moisture terms (coefficients)
β, γ: Clay mineral conversion terms (coefficients)
ζ, η, θ, ι, κ: Raw material composition ratio term (coefficient) for sinter production
λ: A correction term was used.
ここで、上記(1)式を用いて、適正造粒水分量〔Mpre〕を推定するためには、適正造粒水分量〔Mpre〕を目的変数、結晶水含有量〔LOI〕、SiO2の構成比率SiO2〕(mass%)、Al2O3の構成比率〔Al2O3〕(mass%)、0.1mm未満の粉鉱石の構成比率〔−0.1mm〕(mass%)、0.1〜1mmの粉鉱石の構成比率〔1−0.1mm〕(mass%)、全粉鉱石の構成比率〔粉鉱石比〕(mass%)、石灰石の構成比率〔石灰石比〕(mass%)、返鉱の構成比率〔返鉱比〕(mass%)、コークスの構成比率〔凝結材比〕(mass%)および生石灰の構成比率〔生石灰比〕(mass%)を説明変数として実操業データを重回帰分析し、上記(1)式中の係数α〜κおよび補正項λを算出することが必要である。 Here, in order to estimate the proper granulated water content [M pre ] using the above equation (1), the proper granulated water content [M pre ] is set as the objective variable, the crystal water content [LOI], SiO 2 2 of component ratio SiO 2] (mass%), the constituent ratio [Al 2 O 3] (mass%) of Al 2 O 3, the component ratio [-0.1mm of less than 0.1mm fine ore] (mass%) , Composition ratio of 0.1 to 1 mm fine ore [1-0.1 mm] (mass%), composition ratio of all fine ore [powdery ore ratio] (mass%), composition ratio of limestone [limestone ratio] (mass %), Composition ratio of return mineral [return ratio] (mass%), composition ratio of coke [coagulation ratio] (mass%) and composition ratio of quick lime [mass ratio] (mass%) The data was subjected to multiple regression analysis, and the coefficients α to κ and (1) It is necessary to calculate the correction term lambda.
ところで、上記のようにして求めた推定式を用いることによって、種々の異なる焼結鉱製造用原料の適正造粒水分量を推定することができる。しかし、この適正造粒水分量は、焼結鉱製造用原料に由来する水分量と、造粒時に添加される水分量の和である。したがって、造粒時の水分量を推定式から算出した適正造粒水分量に制御するためには、造粒時に添加する水分量を、焼結鉱製造用原料に由来する水分量に応じて調整する必要があり、そのためには、焼結鉱製造用原料中に含まれる水分量を予め求めておくことが必要である。この方法としては、造粒前の鉄鉱石、副原料等に含まれる水分量を測定しておき、その値を鉄鉱石、副原料等の構成比率に掛けて、足し合わせることで求めることができる。 By the way, by using the estimation formula obtained as described above, it is possible to estimate the appropriate granulated moisture content of various different raw materials for sintered ore production. However, the appropriate granulated moisture content is the sum of the moisture content derived from the raw material for producing sinter and the moisture content added during granulation. Therefore, in order to control the moisture content during granulation to the proper granulation moisture content calculated from the estimation formula, the moisture content added during granulation is adjusted according to the moisture content derived from the raw material for sinter ore production. For this purpose, it is necessary to determine in advance the amount of water contained in the raw material for producing the sintered ore. As this method, the amount of water contained in the iron ore and auxiliary raw material before granulation is measured, and the value is multiplied by the composition ratio of the iron ore and auxiliary raw material, and the sum can be obtained. .
焼結機の稼働率が95%以上であり、かつ、焼結機に装入された各種原料構成からなる焼結原料のうちで、下記式;
JPU=V/S(h/ΔP)0.6
ここで、V:風量[Nm3/min]
S:充填層断面積[m2]
h:充填層高さ[mm]
ΔP:圧力損失[mmH2O]
で定義され、通気性の指標となるJPU(Japan Permeability Unit)の測定値が最大値を示した焼結原料についての造粒実績データおよび焼結機の操業実績データをn数55抽出し、上記造粒実績データの造粒水分量を目的変数とし、結晶水含有量〔LOI〕、SiO2の構成比率〔SiO2〕、Al2O3の構成比率〔Al2O3〕、0.1mm未満の粉鉱石の構成比率〔−0.1mm〕、0.1〜1mmの粉鉱石の構成比率〔1−0.1mm〕、全粉鉱石の構成比率〔粉鉱石比〕、石灰石の構成比率〔石灰石比〕、返鉱の構成比率〔返鉱比〕、コークスの構成比率〔凝結材比〕および生石灰の構成比率〔生石灰比〕を説明変数として重回帰を行い、下記(1)式;
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
における各説明変数の係数α〜κおよび補正項λを求めた。
また、比較として、上記説明変数から全粉鉱石の構成比率〔粉鉱石比〕、石灰石の構成比率〔石灰石比〕、返鉱の構成比率〔返鉱比〕、コークスの構成比率〔凝結材比〕および生石灰の構成比率〔生石灰比〕を除いた、結晶水含有量〔LOI〕、SiO2の構成比率〔SiO2〕、Al2O3の構成比率〔Al2O3〕、0.1mm未満の粉鉱石の構成比率〔−0.1mm〕、0.1〜1mmの粉鉱石の構成比率〔1−0.1mm〕のみを説明変数とした重回帰を行い、下記(2)式;
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+λ ・・・(2)
における各説明変数の係数α〜κおよび補正項λを求めた。
上記重回帰によって得られた各説明変数の係数および補正項を下記表1に示した。
Among the sintered raw materials having an operating rate of the sintering machine of 95% or more and composed of various raw materials charged in the sintering machine, the following formula:
JPU = V / S (h / ΔP) 0.6
Here, V: air volume [Nm 3 / min]
S: sectional area of packed bed [m 2 ]
h: packed bed height [mm]
ΔP: Pressure loss [mmH 2 O]
The granulation performance data and the operation performance data of the sintering machine for the sintered raw material with the maximum measured value of JPU (Japan Permeability Unit), which is defined by and granulated actual granulation moisture content objective variable data, crystal water content [LOI], the constituent ratio of SiO 2 [SiO 2], Al 2 component ratio of O 3 [Al 2 O 3], less than 0.1mm The composition ratio of powdered ore [-0.1 mm], the composition ratio of 0.1 to 1 mm of powder ore [1-0.1 mm], the composition ratio of whole powder ore [the ratio of powder ore], the composition ratio of limestone [limestone Ratio], constituent ratio of return ore [returning ratio], constituent ratio of coke [coagulated material ratio] and constituent ratio of quick lime [quick lime ratio] are used as explanatory variables, and multiple regression is performed.
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η · [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
The coefficients α to κ and the correction term λ of each explanatory variable in FIG.
In addition, as a comparison, from the above explanatory variables, the composition ratio of the whole ore [powder ore ratio], the composition ratio of limestone [limestone ratio], the composition ratio of return ore [returning ratio], the composition ratio of coke [coagulant ratio] and excluding the component ratio of the quick lime [quicklime ratio], crystal water content [LOI], the constituent ratio of SiO 2 [SiO 2], component ratio of Al 2 O 3 [Al 2 O 3], of less than 0.1mm Performing multiple regression with only the constituent ratio of the fine ore [-0.1 mm] and the constituent ratio of the fine ore of 0.1 to 1 mm [1-0.1 mm] as explanatory variables, the following equation (2);
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + λ (2)
The coefficients α to κ and the correction term λ of each explanatory variable in FIG.
Table 1 below shows the coefficients and correction terms for each explanatory variable obtained by the multiple regression.
次いで、上記重回帰により係数を(1)式および(2)式に適用し、重回帰に用いたn数55のそれぞれの実績データを入力して、各条件における適正造粒水分量(推定値)を算出した。
次いで、上記のようにして得た適正造粒水分量(推定値)と、n数55のそれぞれの造粒水分量の実績値との差(推定値−実績値)を求め、その差(Δ造粒水分)と各データ採取時の焼結機の生産性(kt/d)、焼結鉱の強度TI(%)および焼結原料のJPUの実績値との関係を図7に示した。
(1)式を用いた場合(図7(a))には、Δ造粒水分が0の近傍で、焼結機の生産性、焼結鉱の強度およびJPUの実績値がピークを示しており、(1)式を用いることにより、適正造粒水分量を精度よく推定できることがわかる。
これに対して、(2)式を用いた場合(図7(b))には、焼結機の生産性およびJPUの実績値のピークが、Δ造粒水分が約0.2%近傍にある、すなわち、(2)式を用いて適正造粒水分量を推定した場合には、約0.2%の推定誤差を生じていることがわかる。
Next, the coefficients are applied to the equations (1) and (2) by the multiple regression, and the actual data of each of the n number 55 used for the multiple regression is input, and the appropriate granulated moisture content (estimated value) in each condition ) Was calculated.
Subsequently, the difference (estimated value-actual value) between the appropriate granulated water amount (estimated value) obtained as described above and the actual value of each granulated water amount of n number 55 is obtained, and the difference (Δ The relationship between the granulated moisture) and the productivity of the sintering machine (kt / d) at the time of collecting each data, the strength TI (%) of the sintered ore, and the JPU actual value of the sintered raw material is shown in FIG.
When the formula (1) is used (FIG. 7 (a)), the Δ granulation moisture is near 0, and the productivity of the sintering machine, the strength of the sintered ore, and the actual value of JPU show peaks. Thus, it can be seen that the appropriate granulated water content can be accurately estimated by using the equation (1).
On the other hand, when the formula (2) is used (FIG. 7B), the peak of the productivity of the sintering machine and the actual value of the JPU is about Δ% of the granulated moisture. It can be seen that there is an estimated error of about 0.2% when the proper amount of granulated water is estimated using equation (2).
実施例1に用いた稼働率が95%以上の焼結機において、実操業時における実績造粒水分量と、実績操業データ(生産率、JPU、パレット速度)を、1日3回、約8hr毎に測定し、その結果を図8に示した。また、図8中には、実操業時における実績造粒水分量と、実施例1と同様にして、本発明の(1)式と比較例の(2)式から求めた適正造粒水分量〔Mpre〕との差の経時変化も併せて示した。
図8から、本発明において提案した(1)式を用いて推定した適正造粒水分量の値と実績造粒水分量との差の経時変化では、0近傍である期間が2回(図8のA−1、A−2)、また、0から大きく乖離した期間が同じく2回(図8のB−1、B−2)あるが、上記差が0近傍である期間では、いずれの期間でも通気性(JPU)が向上し、パレットスピードが高速化し、その結果、生産率が向上しているのに対して、上記差が0近傍から大きく乖離した期間では、いずれの期間も逆に通気性(JPU)が低下し、パレットスピードが低速化し、その結果、生産率が低下している。
これに対して、従来技術の(2)式を用いて推定した適正造粒水分量の値と実績造粒水分量との差の経時変化では、本発明の(1)式を用いて推定した適正造粒水分量と実績造粒水分量との差の経時変化とは逆の傾向を示している期間もあり、操業実績値との相関が明確に認められない。
因みに、図8の生産率、JPUおよびパレット速度を示すグラフ中には、本発明の(1)式が正しいとしたときの生産率、JPUおよびパレット速度の予測推移パターンを太い実線で、従来の(2)式が正しいとしたときのJPUの予測推移パターンを太い破線で示したが、(1)式を正しいとしたときの予測推移パターンは、時期的な遅れがあるものの、焼結機の実績操業データと傾向が一致しているのに対して、(2)式を正しいとしたときの予測推移パターンは、焼結機の実績操業データとの相関が余り明確ではない。
以上の結果から、適正造粒水分量の推定式として本発明が提案する(1)式を用いることで、焼結原料造粒時の造粒水分が適正化でき、ひいては、焼結機の生産率向上に寄与できることがわかる。
In the sintering machine having an operating rate of 95% or more used in Example 1, the actual granulated moisture content at the actual operation and the actual operation data (production rate, JPU, pallet speed) are obtained about 8 hours three times a day. Each measurement was performed and the result is shown in FIG. Moreover, in FIG. 8, the actual granulation water content at the time of an actual operation and the appropriate granulation water content calculated | required from (1) Formula of this invention and Formula (2) of a comparative example like Example 1. The change with time of the difference from [M pre ] is also shown.
From FIG. 8, in the time-dependent change of the difference between the value of the proper granulation water amount estimated using the formula (1) proposed in the present invention and the actual granulation water amount, the period near 0 is twice (FIG. 8). A-1 and A-2), and there are also two periods (B-1 and B-2 in FIG. 8) that are greatly deviated from 0. However, the air permeability (JPU) is improved and the pallet speed is increased. As a result, the production rate is improved. (JPU) decreases, pallet speed decreases, and as a result, the production rate decreases.
On the other hand, in the change over time of the difference between the value of the proper granulation water amount estimated using the conventional formula (2) and the actual granulation water amount, the estimation was performed using the formula (1) of the present invention. There is also a period in which the difference between the proper granulated water content and the actual granulated water content shows a tendency opposite to the change with time, and a correlation with the actual operation value is not clearly recognized.
Incidentally, in the graph showing the production rate, JPU and pallet speed in FIG. 8, the predicted transition pattern of the production rate, JPU and pallet speed when the formula (1) of the present invention is correct is shown by a thick solid line. The predicted transition pattern of JPU when the formula (2) is correct is shown by a thick broken line. The predicted transition pattern when the formula (1) is correct has a time delay, but the While the trend is consistent with the actual operation data, the predicted transition pattern when equation (2) is correct is not so clearly correlated with the actual operation data of the sintering machine.
From the above results, by using the formula (1) proposed by the present invention as an estimation formula for the appropriate amount of granulation moisture, the granulation moisture at the time of sintering raw material granulation can be optimized, and consequently the production of the sintering machine. It turns out that it can contribute to a rate improvement.
Claims (4)
上記焼結鉱製造用原料に添加する適正造粒水分量を、粉鉱石における吸収水分量および付着水分量、粘土質鉱物へ転化する成分であるSiO2およびAl2O3の構成比率加えて、
焼結鉱製造用原料中に占める上記粉鉱石、副原料、固体燃料および返鉱それぞれの構成比率に基づいて推定することを特徴とする、焼結原料製造時の適正造粒水分量の推定方法。 Add and mix water to raw materials for powdered ore, limestone and / or quicklime containing raw materials for sinter ore production, including recycled minerals (recycled minerals) and solid fuels (coagulated materials) made of coke and anthracite, In the method of estimating the appropriate amount of granulation water when producing a sintered raw material that is granulated and pseudo-particles,
Appropriate amount of granulated water added to the raw material for manufacturing the sintered ore is added to the absorbed moisture amount and the attached moisture amount in the fine ore, and the constituent ratio of SiO 2 and Al 2 O 3 which are components to be converted into clay minerals,
A method for estimating an appropriate amount of granulated water at the time of manufacturing a sintered raw material, characterized in that the estimation is based on the constituent ratios of the above-mentioned fine ore, secondary raw material, solid fuel and return mineral in the raw material for manufacturing the sintered ore. .
記
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
ここで、〔Mpre〕:焼結原料製造時の適正造粒水分量(mass%)
〔LOI〕:結晶水含有量(JIS M 8850による)
〔SiO2〕:SiO2の構成比率(mass%)
〔Al2O3〕:Al2O3の構成比率(mass%)
〔−0.1mm〕:0.1mm未満の粉鉱石の構成比率(mass%)
〔1−0.1mm〕:0.1〜1mmの粉鉱石の構成比率(mass%)
〔粉鉱石比〕:全粉鉱石の構成比率(mass%)
〔石灰石比〕:石灰石の構成比率(mass%)
〔返鉱比〕:返鉱の構成比率(mass%)
〔凝結材比〕:コークスの構成比率(mass%)
〔生石灰比〕:生石灰の構成比率(mass%)
α、δ、ε:吸収水分および付着水分項(係数)
β、γ:粘土質鉱物転化項(係数)
ζ、η、θ、ι、κ:焼結鉱製造用原料の構成比率項(係数)
λ:補正項 The method for estimating an appropriate granulated water content according to claim 1, wherein the appropriate granulated water content is estimated using the following equation (1).
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η・ [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
[M pre ]: Appropriate amount of granulated water during mass production (mass%)
[LOI]: Crystal water content (according to JIS M 8850)
[SiO 2 ]: Composition ratio of SiO 2 (mass%)
[Al 2 O 3 ]: Composition ratio of Al 2 O 3 (mass%)
[−0.1 mm]: Composition ratio of powder ore of less than 0.1 mm (mass%)
[1-0.1 mm]: Composition ratio (mass%) of 0.1-1 mm fine ore
[Powder ore ratio]: Composition ratio of all powder ore (mass%)
[Limestone ratio]: Composition ratio of limestone (mass%)
[Returning ratio]: Composition ratio of returning ore (mass%)
[Condensed material ratio]: Composition ratio of coke (mass%)
[Quicklime ratio]: Composition ratio of quicklime (mass%)
α, δ, ε: Absorbed moisture and attached moisture terms (coefficients)
β, γ: Clay mineral conversion terms (coefficients)
ζ, η, θ, ι, κ: Composition ratio terms (coefficients) of raw materials for sinter production
λ: Correction term
上記焼結鉱製造用原料に添加する適正造粒水分量を、
粉鉱石における吸収水分量および付着水分量、粘土質鉱物へ転化する成分であるSiO2およびAl2O3の構成比率に加えて、
焼結鉱製造用原料中に占める上記粉鉱石、副原料、固体燃料および返鉱それぞれの構成比率に基づいて決定することを特徴とする焼結原料の製造方法。 Add water to the raw materials for sinter ore production, including the main raw material powdered ore, auxiliaries containing lime and / or quick lime, recycled recycled products, and solid fuel (condensed material) consisting of coke and anthracite. In a method of mixing and granulating to produce a sintered raw material that is a pseudo particle,
Appropriate amount of granulated water to be added to the raw material for manufacturing the sintered ore,
In addition to the amount of water absorbed and adhering in powdered ore, the composition ratio of SiO 2 and Al 2 O 3 that are components converted to clay minerals,
A method for producing a sintered raw material, characterized in that it is determined on the basis of the constituent ratios of the above-mentioned fine ore, secondary raw material, solid fuel and return ore in the raw material for producing sintered ore.
記
〔Mpre〕=α・〔LOI〕+β・〔SiO2〕+γ・〔Al2O3〕+δ・〔−0.1mm〕+ε・〔1−0.1mm〕+ζ・〔粉鉱石比〕+η・〔石灰石比〕+θ・〔返鉱比〕+ι・〔凝結材比〕+κ・〔生石灰比〕+λ ・・・(1)
ここで、〔Mpre〕:焼結原料製造時の適正造粒水分量(mass%)
〔LOI〕:結晶水含有量(JIS M 8850による)
〔SiO2〕:SiO2の構成比率(mass%)
〔Al2O3〕:Al2O3の構成比率(mass%)
〔−0.1mm〕:0.1mm未満の粉鉱石の構成比率(mass%)
〔1−0.1mm〕:0.1〜1mmの粉鉱石の構成比率(mass%)
〔粉鉱石比〕:全粉鉱石の構成比率(mass%)
〔石灰石比〕:石灰石の構成比率(mass%)
〔返鉱比〕:返鉱の構成比率(mass%)
〔凝結材比〕:コークスの構成比率(mass%)
〔生石灰比〕:生石灰の構成比率(mass%)
α、δ、ε:吸収水分および付着水分項(係数)
β、γ:粘土質鉱物転化項(係数)
ζ、η、θ、ι、κ:焼結鉱製造用原料の構成比率項(係数)
λ:補正項 The method for producing a sintered raw material according to claim 3, wherein the appropriate granulated moisture content satisfies the following expression (1).
[M pre ] = α · [LOI] + β · [SiO 2 ] + γ · [Al 2 O 3 ] + δ · [−0.1 mm] + ε · [1-0.1 mm] + ζ · [powder ore ratio] + η・ [Limestone ratio] + θ ・ [Returning ratio] + ι ・ [Condensed material ratio] + κ ・ [Quicklime ratio] + λ (1)
[M pre ]: Appropriate amount of granulated water during mass production (mass%)
[LOI]: Crystal water content (according to JIS M 8850)
[SiO 2 ]: Composition ratio of SiO 2 (mass%)
[Al 2 O 3 ]: Composition ratio of Al 2 O 3 (mass%)
[−0.1 mm]: Composition ratio of powder ore of less than 0.1 mm (mass%)
[1-0.1 mm]: Composition ratio (mass%) of 0.1-1 mm fine ore
[Powder ore ratio]: Composition ratio of all powder ore (mass%)
[Limestone ratio]: Composition ratio of limestone (mass%)
[Returning ratio]: Composition ratio of returning ore (mass%)
[Condensed material ratio]: Composition ratio of coke (mass%)
[Quicklime ratio]: Composition ratio of quicklime (mass%)
α, δ, ε: Absorbed moisture and attached moisture terms (coefficients)
β, γ: Clay mineral conversion terms (coefficients)
ζ, η, θ, ι, κ: Composition ratio terms (coefficients) of raw materials for sinter production
λ: Correction term
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252733 | 2016-12-27 | ||
JP2016252733 | 2016-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104815A true JP2018104815A (en) | 2018-07-05 |
JP6562226B2 JP6562226B2 (en) | 2019-08-21 |
Family
ID=62787048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017241864A Expired - Fee Related JP6562226B2 (en) | 2016-12-27 | 2017-12-18 | Method for estimating proper granulated water content during production of sintered raw material and method for producing sintered raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6562226B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113990404A (en) * | 2021-09-26 | 2022-01-28 | 武汉钢铁有限公司 | Sintered ore raw material consumption calculation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996001333A1 (en) * | 1994-07-06 | 1996-01-18 | Bhp Iron Ore Pty. Ltd. | Sintering an iron ore blend containing porous ores |
JP2010106301A (en) * | 2008-10-29 | 2010-05-13 | Jfe Steel Corp | Method for producing sintered ore |
JP2010189674A (en) * | 2009-02-16 | 2010-09-02 | Jfe Steel Corp | Method for manufacturing granular sintered material |
JP2011162814A (en) * | 2010-02-05 | 2011-08-25 | Jfe Steel Corp | Method of adjusting adequate water amount in production of raw material for sinter granulation |
JP2013204058A (en) * | 2012-03-27 | 2013-10-07 | Jfe Steel Corp | Method for manufacturing pseudo particle for sintered ore, and method for manufacturing the sintered ore |
-
2017
- 2017-12-18 JP JP2017241864A patent/JP6562226B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996001333A1 (en) * | 1994-07-06 | 1996-01-18 | Bhp Iron Ore Pty. Ltd. | Sintering an iron ore blend containing porous ores |
JP2010106301A (en) * | 2008-10-29 | 2010-05-13 | Jfe Steel Corp | Method for producing sintered ore |
JP2010189674A (en) * | 2009-02-16 | 2010-09-02 | Jfe Steel Corp | Method for manufacturing granular sintered material |
JP2011162814A (en) * | 2010-02-05 | 2011-08-25 | Jfe Steel Corp | Method of adjusting adequate water amount in production of raw material for sinter granulation |
JP2013204058A (en) * | 2012-03-27 | 2013-10-07 | Jfe Steel Corp | Method for manufacturing pseudo particle for sintered ore, and method for manufacturing the sintered ore |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113990404A (en) * | 2021-09-26 | 2022-01-28 | 武汉钢铁有限公司 | Sintered ore raw material consumption calculation method |
Also Published As
Publication number | Publication date |
---|---|
JP6562226B2 (en) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5006088B2 (en) | Method for selecting granulated blast furnace slag for cement and method for producing cement composition | |
JP2009185356A (en) | Method for producing sintered ore | |
JP6562226B2 (en) | Method for estimating proper granulated water content during production of sintered raw material and method for producing sintered raw material | |
JP2010095711A (en) | High reactivity pellet coke and method of manufacturing the same | |
JP4518895B2 (en) | Raw material evaluation method and blending design method | |
JP2011162814A (en) | Method of adjusting adequate water amount in production of raw material for sinter granulation | |
JPH1161284A (en) | Evaluation test method of reduction degradation characteristic of sintered ore | |
JP4997712B2 (en) | Blast furnace operation method | |
JP7135770B2 (en) | Method for producing sintered ore | |
KR20150100904A (en) | Method for producing metallurgical coke | |
JP2007270203A (en) | Method for operating blast furnace | |
JP2008196027A (en) | Method for manufacturing sintered ore | |
JP2003049227A (en) | Method for producing sintered ore | |
JP2003313614A (en) | Method for manufacturing sintered ore with little slag | |
JP4661154B2 (en) | Method for producing sintered ore | |
CN110592371A (en) | Sintering process for using large-particle extra-fine powder as sintering bedding material | |
JP6978734B2 (en) | Manufacturing method of granulated sinter raw material and manufacturing method of sinter | |
JP2013256694A (en) | Method for granulating sintering raw material | |
JP3952906B2 (en) | Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same | |
CN106929078B (en) | Coke for melting gasifier and method for producing same | |
KR101590992B1 (en) | A manufacturing method of body using by-products, the body and the binder | |
JP2009114485A (en) | Method for manufacturing sintered ore | |
JP4816119B2 (en) | Method for producing sintered ore | |
JP2009242829A (en) | Method for producing sintered ore | |
JP5011637B2 (en) | Processing method of ore for sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6562226 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |