JP2018103405A - Three-dimensional molding apparatus and three-dimensional molding method - Google Patents

Three-dimensional molding apparatus and three-dimensional molding method Download PDF

Info

Publication number
JP2018103405A
JP2018103405A JP2016250074A JP2016250074A JP2018103405A JP 2018103405 A JP2018103405 A JP 2018103405A JP 2016250074 A JP2016250074 A JP 2016250074A JP 2016250074 A JP2016250074 A JP 2016250074A JP 2018103405 A JP2018103405 A JP 2018103405A
Authority
JP
Japan
Prior art keywords
light
photocurable resin
transmission window
light transmission
dimensional modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016250074A
Other languages
Japanese (ja)
Other versions
JP6866152B2 (en
Inventor
英生 源田
Hideo Genda
英生 源田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016250074A priority Critical patent/JP6866152B2/en
Priority to US15/681,760 priority patent/US11130286B2/en
Priority to KR1020170109802A priority patent/KR102225135B1/en
Priority to CN201710792463.XA priority patent/CN107791512B/en
Publication of JP2018103405A publication Critical patent/JP2018103405A/en
Application granted granted Critical
Publication of JP6866152B2 publication Critical patent/JP6866152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional molding apparatus that can form a three-dimensional object by laminating a plurality of layers formed by photo-curing, and can solve a problem of requiring a long time for three-dimensional molding because it is difficult to promptly replenish a liquid resin material for forming a next layer to a three-dimensional formation area.SOLUTION: A plurality of protrusions 31 are formed on an inner surface of a light transmission window 4, that is, on the side in contact with a liquid photo-curable resin 2. A plurality of protrusions 31 and spaces 32 are arranged so that the spaces 32 separating the protrusions 31 communicate with an outside of the light transmission window 4 when viewed in a horizontal direction. The protrusions 31 are formed of a material which permeates curing light and a curing inhibitor. The provided spaces 32 make it possible to reduce a flow resistance of the liquid photo-curable resin to promptly replenish the liquid resin material for forming the next layer.SELECTED DRAWING: Figure 3

Description

本発明は、光硬化性の液状樹脂材料に露光画像を投射して、三次元造形物を製造する三次元造形装置に関する。   The present invention relates to a three-dimensional modeling apparatus that manufactures a three-dimensional structure by projecting an exposure image onto a photocurable liquid resin material.

近年、所謂3Dプリンタへの期待が高まっている。中でも、光硬化性の液状樹脂材料に露光画像を投射して三次元造形物を製造する方式の装置開発が盛んである。   In recent years, expectations for so-called 3D printers have increased. In particular, the development of a device for producing a three-dimensional structure by projecting an exposure image onto a photocurable liquid resin material is actively performed.

例えば、特許文献1には、液状の光硬化性樹脂材料を充填した容器の底を光透過性にしておき、底を通して樹脂に露光画像を投射して所望形状の樹脂硬化層を形成する装置が開示されている。かかる装置では、樹脂硬化層を1層形成すると、造形物を持ち上げて、造形物と容器の底の間に液状の光硬化性樹脂を流入させて補充し、補充が完了すると次の露光画像を投射して樹脂硬化層を積層する。こうしたプロセスを繰り返して、三次元造形物を形成していた。かかる装置の場合は、容器の底を通じて光を照射するので、樹脂の液面が変動したとしても光学的な露光条件は影響を受けないという利点がある。   For example, Patent Document 1 discloses an apparatus for forming a resin-cured layer having a desired shape by making a bottom of a container filled with a liquid photocurable resin material light-transmissive and projecting an exposure image onto the resin through the bottom. It is disclosed. In such an apparatus, when one cured resin layer is formed, the modeled object is lifted, and a liquid photocurable resin is poured between the modeled object and the bottom of the container to replenish, and when the replenishment is completed, the next exposure image is displayed. The resin cured layer is laminated by projecting. Such a process was repeated to form a three-dimensional structure. In such an apparatus, since light is irradiated through the bottom of the container, there is an advantage that the optical exposure conditions are not affected even if the liquid level of the resin fluctuates.

また、特許文献1には、光透過性の容器底を通じて重合阻害剤を供給することにより、容器底の近傍の液状樹脂材料に重合禁止領域を形成し、容器底に硬化した樹脂が付着するのを防止する技術が提案されている。   Further, in Patent Document 1, by supplying a polymerization inhibitor through a light transmissive container bottom, a polymerization prohibition region is formed in the liquid resin material near the container bottom, and the cured resin adheres to the container bottom. Techniques for preventing this have been proposed.

特表2016−509962号公報JP-T-2006-509996

ところで、3Dプリンタには、産業界から造形速度の高速化を求める要請が高まっており、光硬化性の液状樹脂材料を原料として用いる方式も例外ではない。
一般に、光硬化性の液状樹脂材料に光を照射して形成される硬化層の厚みは、一層あたり0.02mmから0.2mm程度であり、造形物を完成するには多数の層を積層させる必要がある。そこで、三次元造形速度を高めるには、一層の硬化層を形成した後、次の硬化層を形成するための準備工程をいかに短時間で完了するかが重要である。言い換えれば、次の一層分の液状樹脂材料を、いかに高速に造形領域に補給するかが重要である。というのも、光硬化性の液状樹脂材料は、一般に粘度が高いため、流動に時間がかかるからである。
By the way, there is an increasing demand for a 3D printer to increase the modeling speed, and a method using a photocurable liquid resin material as a raw material is no exception.
In general, the thickness of a cured layer formed by irradiating a photocurable liquid resin material with light is about 0.02 mm to 0.2 mm per layer, and a large number of layers are laminated to complete a model. There is a need. Therefore, in order to increase the three-dimensional modeling speed, it is important how to complete the preparation process for forming the next hardened layer in a short time after forming one hardened layer. In other words, it is important how to supply the next one layer of liquid resin material to the modeling region at high speed. This is because a photocurable liquid resin material generally has a high viscosity and thus takes a long time to flow.

特に、大型の三次元造形物を形成する場合には、造形領域の面積が大型化するため、次の層形成のための光硬化性の液状樹脂材料の補給に要する時間が長くなる。また、積層する層数も大きくなるので、補給する回数もそれだけ増加し、三次元造形物の完成に要する時間が長くなる。   In particular, when forming a large three-dimensional structure, the area of the modeling region is increased, and therefore the time required for replenishing the photocurable liquid resin material for forming the next layer is increased. Further, since the number of layers to be stacked is increased, the number of times of replenishment is increased accordingly, and the time required for completing the three-dimensional structure is increased.

特許文献1の装置の場合は、容器底の近傍に形成される重合禁止領域の厚さは30μmから100μm程度と小さく、次の層形成の準備のため硬化層を持ち上げた際に、容器の底と硬化層の間隔が狭いためコンダクタンスが小さい。そのため、周囲から液状樹脂材料が補給されるのに時間がかかるという問題があった。   In the case of the apparatus of Patent Document 1, the thickness of the polymerization prohibition region formed in the vicinity of the bottom of the container is as small as about 30 μm to 100 μm, and when the hardened layer is lifted for preparation of the next layer formation, The conductance is small because the distance between the hardened layers is narrow. Therefore, there is a problem that it takes time to replenish the liquid resin material from the surroundings.

この問題を解決するため、粘度が低い液状樹脂材料を用いる試みもなされているが、固化時の収縮が大きくなり造形物の変形が起きたり、光硬化時の重合度が上がらずに十分な強度が得られなかったり、耐熱性が低下してしまう等の問題が発生していた。光硬化による造形の後処理工程として、光や熱を加えて強度を向上させるポストキュア法も試みられたが、寸法精度の低下や変形の問題が発生していた。
また、容器に充填した液状樹脂材料全体の温度を高めておき、流動性を高める試みもされたが、熱により樹脂材料が劣化したり硬化が進んでしまったり、固化後の冷却で造形物が変形してしまう問題があった。
In order to solve this problem, attempts have been made to use a liquid resin material having a low viscosity, but the shrinkage at the time of solidification is increased, resulting in deformation of the molded article, and sufficient strength without increasing the degree of polymerization at the time of photocuring. Cannot be obtained or the heat resistance is lowered. As a post-processing step of modeling by photocuring, a post-cure method in which the strength is improved by applying light or heat has been attempted, but there has been a problem of deterioration in dimensional accuracy and deformation.
Also, attempts have been made to increase the temperature of the entire liquid resin material filled in the container to increase the fluidity, but the resin material deteriorates or hardens due to heat, and the molded object is cooled by cooling after solidification. There was a problem of deformation.

このため、複数層を積層して三次元造形物を形成する際、造形領域に層形成のための液状樹脂材料を劣化させることなく速やかに補充する方法が求められていた。   For this reason, when laminating a plurality of layers to form a three-dimensional structure, there has been a demand for a method of quickly replenishing the modeling region without deteriorating the liquid resin material for layer formation.

本発明の三次元造形装置は、液状の光硬化性樹脂を保持する容器と、前記液状の光硬化性樹脂を光硬化させた三次元造形物を支持する基台と、前記基台を移動させるための移動部と、前記液状の光硬化性樹脂を硬化させる硬化光を発光する光源ユニットと、前記容器の一部として前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備え、前記光透過窓は、硬化光と硬化阻害剤を透過する材料からなる基部と、硬化光と硬化阻害剤を透過する材料からなり前記液状の光硬化性樹脂と接する複数の凸部とを有し、前記複数の凸部の各凸部を隔てる空間は、前記光透過窓の主面と平行な面内で、光透過窓の外部と連通していることを特徴とする。   The three-dimensional modeling apparatus of the present invention includes a container that holds a liquid photocurable resin, a base that supports a three-dimensional modeled photocured liquid photocurable resin, and the base is moved. And a light source unit that emits curing light that cures the liquid photocurable resin, and is provided between the light source unit and the base as a part of the container, and the liquid photocurable A light transmissive window in contact with the resin, the light transmissive window comprising a base made of a material that transmits the curing light and the curing inhibitor, and the liquid photocurable resin made of a material that transmits the curing light and the curing inhibitor. A plurality of convex portions in contact with each other, and a space separating the convex portions of the plurality of convex portions communicates with the outside of the light transmitting window in a plane parallel to the main surface of the light transmitting window. It is characterized by.

また、本発明の三次元造形方法は、液状の光硬化性樹脂を保持する容器と、前記液状の光硬化性樹脂を光硬化させた三次元造形物を支持する基台と、前記基台を移動させるための移動部と、前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、前記容器の一部として前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備えた三次元造形装置を用いる三次元造形方法であって、前記光源ユニットを発光させて前記容器の内に保持された前記液状の光硬化性樹脂の一部を光硬化させた後に、前記基台を前記光透過窓から離間する方向に移動させ、前記液状の光硬化性樹脂を、前記光透過窓に設けられた硬化光と硬化阻害剤を透過する材料からなる複数の凸部の間の空間を通じて、前記液状の光硬化性樹脂を前記光透過窓と前記三次元造形物との間に補充することを特徴とする。   The three-dimensional modeling method of the present invention includes a container that holds a liquid photocurable resin, a base that supports a three-dimensional modeled product obtained by photocuring the liquid photocurable resin, and the base. A moving part for moving; a light source unit that emits light for photocuring the liquid photocurable resin; and the liquid light provided between the light source unit and the base as a part of the container. A three-dimensional modeling method using a three-dimensional modeling apparatus having a light transmission window in contact with a curable resin, wherein the liquid photocurable resin is held in the container by causing the light source unit to emit light. After the part is photocured, the base is moved in a direction away from the light transmission window, and the liquid photocurable resin is transmitted through the curing light and the curing inhibitor provided in the light transmission window. The liquid is passed through a space between a plurality of convex portions made of material. Characterized by a light curable resin replenished between the 3D object and the light transmission window.

本発明によれば、三次元造形物を形成する際、造形領域に層形成のための液状樹脂材料を劣化させることなく速やかに補充することができる。そのため、三次元造形物の形成に要する時間を、大幅に短縮できる。   According to the present invention, when forming a three-dimensional structure, the liquid resin material for layer formation can be quickly replenished in the modeling area without deteriorating. Therefore, the time required for forming the three-dimensional structure can be greatly shortened.

第一の実施形態にかかる三次元造形装置の模式的断面図。1 is a schematic cross-sectional view of a three-dimensional modeling apparatus according to a first embodiment. 第一の実施形態にかかる三次元造形装置の制御ブロック図。The control block diagram of the three-dimensional modeling apparatus concerning 1st embodiment. (a)第一の実施形態の光透過窓の垂直方向の模式的断面図。(b)第一の実施形態の光透過窓の水平方向の模式的段面図。(A) The typical sectional view of the perpendicular direction of the light transmission window of a first embodiment. (B) The schematic step surface figure of the horizontal direction of the light transmission window of 1st embodiment. 第二の実施形態にかかる三次元造形装置の模式的断面図。The typical sectional view of the three-dimensional fabrication device concerning a second embodiment. (a)第二の実施形態の光透過窓の垂直方向の模式的断面図。(b)第二の実施形態の光透過窓の水平方向の模式的段面図。(A) The typical sectional view of the perpendicular direction of the light transmission window of a second embodiment. (B) The schematic step surface figure of the horizontal direction of the light transmissive window of 2nd embodiment. (a)第三の実施形態の光透過窓の垂直方向の模式的断面図。(b)第三の実施形態の光透過窓の水平方向の模式的段面図。(A) The typical cross section of the perpendicular direction of the light transmission window of 3rd embodiment. (B) The schematic step surface figure of the horizontal direction of the light transmissive window of 3rd embodiment.

本発明の実施形態について、図面を参照しながら説明する。
尚、以下の説明では、固化していない液状の光硬化性樹脂を、液状光硬化性樹脂と記す。また、液状光硬化性樹脂を光硬化させた固体造形物を、三次元造形物と記す。三次元造形物は、完成品に限らず、途中の層まで積層した段階における半完成品も含む。
Embodiments of the present invention will be described with reference to the drawings.
In the following description, a liquid photocurable resin that is not solidified is referred to as a liquid photocurable resin. Moreover, the solid modeling thing which photocured liquid photocurable resin is described as a three-dimensional modeling thing. The three-dimensional structure includes not only a finished product but also a semi-finished product at a stage where layers are laminated to the middle.

[第一の実施形態]
図1は、本発明の第一の実施形態にかかる三次元造形装置の構造を説明するため、装置の断面を模式的に示した図である。
[First embodiment]
FIG. 1 is a diagram schematically showing a cross section of the apparatus for explaining the structure of the three-dimensional modeling apparatus according to the first embodiment of the present invention.

(装置の構成)
図1において、1は容器、2は液状光硬化性樹脂、3は樹脂供給部、4は光透過窓、5は遮光部、6は凸部形成領域、7は光源、8はミラー部、9はレンズ部、10は光源ユニット、11は基台、12は昇降アーム、13は昇降部、14は三次元造形物である。
容器1は、液状光硬化性樹脂2を保持するための容器であり、液状光硬化性樹脂を固化させる波長域の光を遮る材料で形成されている。
樹脂供給部3は、液状光硬化性樹脂を貯蔵するタンクとポンプを備え、容器1に適量の液状光硬化性樹脂2が保持されるように、液状光硬化性樹脂を供給する。
(Device configuration)
In FIG. 1, 1 is a container, 2 is a liquid photocurable resin, 3 is a resin supply unit, 4 is a light transmission window, 5 is a light shielding unit, 6 is a convex formation region, 7 is a light source, 8 is a mirror unit, 9 Is a lens unit, 10 is a light source unit, 11 is a base, 12 is a lifting arm, 13 is a lifting unit, and 14 is a three-dimensional structure.
The container 1 is a container for holding the liquid photocurable resin 2, and is formed of a material that blocks light in a wavelength region that solidifies the liquid photocurable resin.
The resin supply unit 3 includes a tank and a pump for storing the liquid photocurable resin, and supplies the liquid photocurable resin so that an appropriate amount of the liquid photocurable resin 2 is held in the container 1.

液状光硬化性樹脂2は、特定の波長域の光を照射されると、硬化(固化)する液状の樹脂である。液状光硬化性樹脂2は、光透過窓4と遮光部5を底部とする容器1内に満たされており、気泡が入り込まないように保持されている。光透過窓4と遮光部5は、容器1の底として機能する。   The liquid photocurable resin 2 is a liquid resin that is cured (solidified) when irradiated with light in a specific wavelength range. The liquid photocurable resin 2 is filled in the container 1 having the light transmission window 4 and the light shielding portion 5 as the bottom, and is held so that bubbles do not enter. The light transmission window 4 and the light shielding part 5 function as the bottom of the container 1.

光透過窓4は、液状光硬化性樹脂2を固化させる波長域の光を透過させ、かつ液状光硬化性樹脂の硬化を阻害するガスを透過させる窓である。例えば、PFA,PTFE,PEなど、フルオロポリマーやシリコーンポリマー等の樹脂、あるいは多孔質ガラスを材料として形成される。   The light transmission window 4 is a window that transmits light in a wavelength region that solidifies the liquid photocurable resin 2 and transmits gas that inhibits the curing of the liquid photocurable resin. For example, PFA, PTFE, PE, etc., such as fluoropolymer or silicone polymer, or porous glass is used as a material.

光透過窓4の近傍の液状光硬化性樹脂は、光透過窓4を透過した硬化阻害ガスの作用で、光硬化の感度が低下する。硬化阻害作用を発揮するガスは、たとえば酸素なので、光透過窓4の外には通常の大気が存在すればよい。ただし、ガスの作用をより効果的にするために、光透過窓の外気の組成や圧力を制御する機構を設けてもよい。   The liquid photocurable resin in the vicinity of the light transmission window 4 is less sensitive to photocuring due to the action of the curing inhibiting gas that has passed through the light transmission window 4. Since the gas exhibiting the curing inhibiting action is, for example, oxygen, it is sufficient that normal air exists outside the light transmission window 4. However, in order to make the action of gas more effective, a mechanism for controlling the composition and pressure of the outside air of the light transmission window may be provided.

より詳しく説明すると、光硬化性樹脂を硬化させて硬化物を得るには、光硬化性樹脂の硬化させたい部分にエネルギー線を照射する。そうすると、まず、エネルギー線の照射によって光硬化性樹脂に含まれる重合開始剤が開裂し、ラジカルが発生する。次に、光硬化性樹脂に含まれる重合禁止剤や溶存酸素がラジカルと反応し、ラジカルと共に消費される。この状態が続くと、やがて光硬化性樹脂に含まれる重合禁止剤や溶存酸素がほとんど無い状態に至る。続いて、エネルギー線照射を続けると、発生したラジカルは光硬化性樹脂に含まれる重合性化合物と反応し、ラジカル重合反応が起きる。その後、ラジカル重合反応が連鎖して起きることにより、低分子であった重合性化合物が高分子化する。以上の化学反応を物理現象で見ると、液体状態であった光硬化性樹脂にエネルギー線を照射すると、光硬化性樹脂が硬化し固体状態に至る。   More specifically, in order to cure the photocurable resin to obtain a cured product, the portion of the photocurable resin to be cured is irradiated with energy rays. Then, first, the polymerization initiator contained in the photocurable resin is cleaved by irradiation with energy rays, and radicals are generated. Next, the polymerization inhibitor and dissolved oxygen contained in the photocurable resin react with the radicals and are consumed together with the radicals. If this state continues, it will eventually reach a state where there is almost no polymerization inhibitor or dissolved oxygen contained in the photocurable resin. Subsequently, when the energy beam irradiation is continued, the generated radicals react with the polymerizable compound contained in the photocurable resin to cause radical polymerization reaction. Thereafter, a radical polymerization reaction occurs in a chain, whereby the low molecular weight polymerizable compound is polymerized. In view of the above chemical reaction as a physical phenomenon, when the photocurable resin that has been in a liquid state is irradiated with energy rays, the photocurable resin is cured and becomes a solid state.

一方、酸素を含む気体中、例えば大気中で光硬化性樹脂にエネルギー線を照射すると、十分にエネルギー線を照射しても大気に触れている表面部分が硬化しないという現象が起きる。これは、エネルギー線の照射によって光硬化性樹脂に含まれる重合禁止剤や溶存酸素がラジカルと反応し、消費されると同時に、大気中の酸素が光硬化性樹脂に溶け込み続け、溶存酸素が無い状態に至らない。これにより、ラジカルが重合性化合物と反応しないためである。   On the other hand, when a photocurable resin is irradiated with energy rays in a gas containing oxygen, for example, in the atmosphere, a phenomenon occurs in which the surface portion in contact with the atmosphere is not cured even when the energy rays are sufficiently irradiated. This is because the polymerization inhibitor and dissolved oxygen contained in the photocurable resin react with radicals and are consumed by irradiation of energy rays, and at the same time, oxygen in the atmosphere continues to dissolve in the photocurable resin and there is no dissolved oxygen. It does not reach the state. This is because the radical does not react with the polymerizable compound.

光透過窓から常に光硬化性樹脂の硬化阻害剤を供給することにより、光透過窓と造形物の間に硬化阻害領域(未硬化層)を維持することができる。この現象を利用することで、連続的な三次元造形物の形成を容易に実施できる。例えば、光透過窓の材料として酸素透過係数[m・m/m・s・Pa]の高い材料を用い、透過窓の光硬化性樹脂と接触していない側に酸素を含む気体、例えば大気を充填する。これにより、光透過窓から常に酸素を供給し、光透過窓と造形物の間に硬化阻害領域を維持し、連続的に三次元造形物を造形することができる。 By always supplying a curing inhibitor of a photocurable resin from the light transmission window, a curing inhibition region (uncured layer) can be maintained between the light transmission window and the modeled object. By using this phenomenon, it is possible to easily form a continuous three-dimensional structure. For example, a material having a high oxygen transmission coefficient [m 3 · m / m 2 · s · Pa] is used as a material for the light transmission window, and a gas containing oxygen on the side of the transmission window that is not in contact with the photocurable resin, for example, Fill the atmosphere. Thereby, oxygen can always be supplied from the light transmission window, a curing inhibition area can be maintained between the light transmission window and the modeled object, and a three-dimensional modeled object can be continuously modeled.

ここで、未硬化層の厚みは酸素の供給と酸素の消費が釣り合う位置で規定される。酸素の供給を制御する因子としては酸素分圧、光透過窓の酸素透過係数、光硬化性樹脂の酸素透過係数が主に挙げられる。酸素の消費を制御する因子としてはエネルギー線強度、重合開始剤濃度、重合開始剤の開裂エネルギーが主に挙げられる。これらの制御因子について、光透過窓として十分な酸素透過係数をもつ材質を用い、1気圧の大気を用い、一般的に光造形に用いられる光硬化性樹脂及びプロセスを用いると、およそ30μm程度の未硬化層が維持される。これに対して、1気圧の純酸素を用い、エネルギー線強度を造形可能な最低限度である通常条件の4分の1とすると、およそ100μm程度の未硬化層が維持される。   Here, the thickness of the uncured layer is defined at a position where supply of oxygen and consumption of oxygen are balanced. Factors that control the supply of oxygen mainly include the oxygen partial pressure, the oxygen transmission coefficient of the light transmission window, and the oxygen transmission coefficient of the photocurable resin. Factors that control the consumption of oxygen mainly include energy ray intensity, polymerization initiator concentration, and cleavage energy of the polymerization initiator. About these control factors, using a material having a sufficient oxygen transmission coefficient as a light transmission window, using atmospheric pressure of 1 atm, and using a photocurable resin and a process generally used for optical modeling, it is about 30 μm. An uncured layer is maintained. On the other hand, when pure oxygen at 1 atm is used and the energy ray intensity is set to a quarter of the normal condition that is the minimum possible level, an uncured layer of about 100 μm is maintained.

次に、遮光部5は、液状光硬化性樹脂2を固化させる波長域の光を遮る部材より成る部分である。本実施形態では、容器の底として機能する部分のうち、光源ユニット10と基台11の間の光路となる部分に光透過窓4を設け、それ以外の領域には遮光部5を設けている。   Next, the light shielding portion 5 is a portion made of a member that blocks light in a wavelength region that solidifies the liquid photocurable resin 2. In the present embodiment, the light transmission window 4 is provided in a portion serving as the optical path between the light source unit 10 and the base 11 in the portion functioning as the bottom of the container, and the light shielding portion 5 is provided in the other region. .

光透過窓4の上面すなわち液状光硬化性樹脂と接する側の面には、エネルギー線であるUV光と、硬化阻害剤である酸素ガスを透過する凸部形成領域6が設けられている。凸部形成領域6については、後に詳述する。   On the upper surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin, a convex portion forming region 6 that transmits UV light as energy rays and oxygen gas as a curing inhibitor is provided. The convex portion forming region 6 will be described in detail later.

光源7、ミラー部8およびレンズ部9は、造形すべき三次元モデルの形状に対応させた光を液状光硬化性樹脂に照射するための光源ユニット10を構成している。光源7は、液状光硬化性樹脂を固化させる波長域の光を発する光源である。たとえば、光硬化性樹脂として紫外光に感度を有する材料を用いる場合には、He−CdレーザやArレーザ等の紫外光源が用いられる。ミラー部8は、光源7が発する光を造形すべき三次元モデルの形状に対応させて変調する部分で、マイクロミラーデバイスをアレイ状に配置したデバイスが用いられる。レンズ部9は、変調された光を、光透過窓近傍の硬化阻害領域よりも上の所定位置に集光するためのレンズである。所定位置にある液状光硬化性樹脂2は、集光された十分な強度の紫外光を照射されると、硬化する。   The light source 7, the mirror unit 8, and the lens unit 9 constitute a light source unit 10 for irradiating the liquid photocurable resin with light corresponding to the shape of the three-dimensional model to be modeled. The light source 7 is a light source that emits light in a wavelength region that solidifies the liquid photocurable resin. For example, when a material having sensitivity to ultraviolet light is used as the photocurable resin, an ultraviolet light source such as a He—Cd laser or an Ar laser is used. The mirror unit 8 is a part that modulates the light emitted from the light source 7 in correspondence with the shape of the three-dimensional model to be modeled, and a device in which micromirror devices are arranged in an array is used. The lens unit 9 is a lens for condensing the modulated light at a predetermined position above the curing inhibition region near the light transmission window. The liquid photocurable resin 2 in a predetermined position is cured when irradiated with a condensed ultraviolet light having a sufficient intensity.

硬化物の形状の精度を確保するためには、集光レンズの焦点位置は光透過窓の近傍にするのが望ましいが、近すぎると硬化阻害領域と重なる可能性がある。そこで、レンズ部9の焦点位置は、光透過窓4の上面から60μm乃至110μm上方に設定するのが望ましい。   In order to ensure the accuracy of the shape of the cured product, it is desirable that the focal position of the condenser lens is in the vicinity of the light transmission window. Therefore, it is desirable that the focal position of the lens unit 9 is set 60 μm to 110 μm above the upper surface of the light transmission window 4.

尚、光源ユニット10は、液状光硬化性樹脂を固化させる波長域の光を、造形すべき三次元モデルの形状に対応させて変調し、所定の位置に集光する機能を有するものであれば、上記の例に限るものではない。たとえば、紫外光源と透過型液晶シャッターあるいは反射型液晶素子の組み合わせや、半導体レーザダイオードアレイ、走査ミラー、結像ミラー等を用いたものでもよい。   The light source unit 10 may have any function for modulating the light in the wavelength region for solidifying the liquid photocurable resin in accordance with the shape of the three-dimensional model to be modeled and condensing it at a predetermined position. However, the present invention is not limited to the above example. For example, a combination of an ultraviolet light source and a transmissive liquid crystal shutter or a reflective liquid crystal element, a semiconductor laser diode array, a scanning mirror, an imaging mirror, or the like may be used.

基台11は、その下面に三次元造形物14を吊下して支持する台で、昇降アーム12を介して昇降部13と連結している。昇降部13は、昇降アーム12を上下に移動させて基台11の高さを調整する機構であり、基台を移動させる移動部である。   The base 11 is a base that supports the three-dimensional structure 14 by suspending it on the lower surface thereof, and is connected to the lift unit 13 via the lift arm 12. The elevating unit 13 is a mechanism that adjusts the height of the base 11 by moving the elevating arm 12 up and down, and is a moving unit that moves the base.

図2は、三次元造形装置のブロック図である。21は制御部、22は外部装置、23は操作パネル、3は樹脂供給部、10は光源ユニット、13は昇降部である。   FIG. 2 is a block diagram of the three-dimensional modeling apparatus. 21 is a control unit, 22 is an external device, 23 is an operation panel, 3 is a resin supply unit, 10 is a light source unit, and 13 is an elevating unit.

制御部21は、CPU、制御プログラムや制御用数値テーブルを記憶した不揮発性メモリであるROM、演算等に使用する揮発性メモリであるRAM、装置各部や外部と通信するためのI/Oポート、等を備えている。なお、ROMには、3次元造形装置の基本動作を制御するためのプログラムが記憶されている。
外部装置22からは、三次元造形物の形状データが、I/Oポートを介して三次元造形装置の制御部21に入力される。
The control unit 21 includes a CPU, a ROM which is a non-volatile memory storing a control program and a numerical value table for control, a RAM which is a volatile memory used for calculation, an I / O port for communicating with each unit and the outside, Etc. The ROM stores a program for controlling basic operations of the three-dimensional modeling apparatus.
From the external device 22, the shape data of the three-dimensional structure is input to the control unit 21 of the three-dimensional structure apparatus via the I / O port.

操作パネル23は、三次元造形装置の操作者が装置に指示を与えるための入力部と、操作者に情報を表示するための表示部を有する。入力部は、キーボードや操作ボタンを備えている。表示部は、三次元造形装置の動作状況等を表示する表示パネルを備えている。
制御部21は、樹脂供給部3、光源ユニット10、昇降部13を制御して、三次元造形プロセスを実行させることができる。
The operation panel 23 includes an input unit for an operator of the 3D modeling apparatus to give an instruction to the apparatus and a display unit for displaying information to the operator. The input unit includes a keyboard and operation buttons. The display unit includes a display panel that displays an operation status of the three-dimensional modeling apparatus.
The control part 21 can control the resin supply part 3, the light source unit 10, and the raising / lowering part 13, and can perform a three-dimensional modeling process.

(凸部形成領域)
光透過窓4の上面すなわち液状光硬化性樹脂と接する側の面は、凸部形成領域6を備えている。図3(a)は、図1の光透過窓4の近傍を模式的に示した断面図である。
凸部形成領域6は、硬化光及び硬化阻害剤を透過する複数の凸部31と、平面視で光透過窓の外部と連通し液状光硬化性樹脂2が満たされた空間32を含んでいる。
(Projection formation area)
The upper surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin is provided with a convex portion forming region 6. FIG. 3A is a cross-sectional view schematically showing the vicinity of the light transmission window 4 of FIG.
The convex portion forming region 6 includes a plurality of convex portions 31 that transmit the curing light and the curing inhibitor, and a space 32 that communicates with the outside of the light transmission window in a plan view and is filled with the liquid photocurable resin 2. .

図3(b)は、図3(a)の点線Aに沿った水平方向断面の一部を拡大して模式的に示した上面図である。尚、点線Aは、光透過窓の主面と平行な面を示している。また、図3(a)は、図3(b)の点線Bに沿った垂直方向断面を模式的に示した側面図である。これらの図は、説明の便宜のため模式化してあるため、凸部の数、形状、配置は、必ずしも正確に示されているわけではない。   FIG. 3B is a top view schematically showing an enlarged part of the horizontal section along the dotted line A in FIG. A dotted line A indicates a plane parallel to the main surface of the light transmission window. FIG. 3A is a side view schematically showing a vertical section along the dotted line B in FIG. Since these drawings are schematically shown for convenience of explanation, the number, shape, and arrangement of the convex portions are not necessarily shown accurately.

第一の実施形態では、光透過窓4の基部と凸部31は、同一の材料で一体に形成されている。基部の厚さt1は、通常は、1mm乃至10mmに設定される。そして、六角柱状の凸部31が、互いに間隔をあけて六方最密配列されている。
凸部形成領域6は、以下の態様を有している。
(1)凸部同士を隔てる空間32は、水平方向すなわち光透過窓の主面と平行な面内で、光透過窓の外部に連通している。
(2)望ましくは、隣り合う凸部の距離L1は、60μm以上で200μm以下の範囲内にある。
(3)望ましくは、光透過窓の主面に平行な断面における凸部の断面積(水平方向断面積)が、光透過窓の主面において硬化光に照射される領域の面積に対して、45%以上で80%以下である。
In the first embodiment, the base portion and the convex portion 31 of the light transmission window 4 are integrally formed of the same material. The base thickness t1 is usually set to 1 mm to 10 mm. The hexagonal columnar convex portions 31 are arranged in a hexagonal close-packed manner at intervals.
The convex part formation area 6 has the following aspects.
(1) The space 32 that separates the convex portions communicates with the outside of the light transmission window in the horizontal direction, that is, in a plane parallel to the main surface of the light transmission window.
(2) Desirably, the distance L1 between adjacent convex portions is in the range of 60 μm to 200 μm.
(3) Desirably, the cross-sectional area (horizontal cross-sectional area) of the convex portion in the cross section parallel to the main surface of the light transmitting window is relative to the area of the region irradiated with the curing light on the main surface of the light transmitting window. 45% or more and 80% or less.

かかる態様の凸部形成領域を設けると、光透過窓4と三次元造形物14の間に十分な厚さの硬化阻害領域が維持されるのと同時に、空間32内にも硬化阻害領域を形成することができる。   Providing the convex formation area in this mode maintains a sufficiently thick curing inhibition area between the light transmission window 4 and the three-dimensional structure 14, and simultaneously forms a curing inhibition area in the space 32. can do.

ここで、空間32は、平面視で光透過窓の外部と連通しているため、三次元造形物14を光透過窓から離間させる方向すなわちZ方向に移動した際に、空間32を、三次元造形領域に液状光硬化樹脂を供給するための流路とすることができる。第一の実施形態では、図3(b)に示されるように、空間32は、光透過窓の周囲で遮光部5の上部空間と連通しているため、遮光部5の上部空間に存在する液状光硬化性樹脂は連通路を通じて空間32に容易に流入する。凸部形成領域6を設けることにより、三次元造形領域に液状光硬化樹脂を供給する際のコンダクタンスを大きくすることができる。   Here, since the space 32 communicates with the outside of the light transmission window in plan view, when the three-dimensional structure 14 is moved away from the light transmission window, that is, in the Z direction, the space 32 is three-dimensional. It can be set as the flow path for supplying liquid photocurable resin to a modeling area | region. In the first embodiment, as shown in FIG. 3B, the space 32 communicates with the upper space of the light shielding portion 5 around the light transmission window, and therefore exists in the upper space of the light shielding portion 5. The liquid photocurable resin easily flows into the space 32 through the communication path. By providing the convex portion forming region 6, conductance when supplying the liquid photocurable resin to the three-dimensional modeling region can be increased.

ここで、凸部同士を隔てる距離が200μm以下であり、凸部31の水平方向断面積の割合が45%以上であるのが望ましい。   Here, it is desirable that the distance separating the convex portions is 200 μm or less, and the ratio of the horizontal sectional area of the convex portions 31 is 45% or more.

凸部31の水平方向断面積の割合とは、図3(b)において、光透過窓4の全面積に占める斜線部の割合である。尚、第一の実施形態では、柱状の凸部31はZ方向のどの高さにおいても水平方向断面積は等しいが、高さによって断面積の大きさが変化する形態の凸部を用いる場合には、最小の断面積をもって水平方向断面積の割合を計算するものとする。   The ratio of the horizontal sectional area of the convex part 31 is the ratio of the hatched part in the total area of the light transmission window 4 in FIG. In the first embodiment, the columnar convex portion 31 has the same horizontal cross-sectional area at any height in the Z direction, but uses a convex portion whose cross sectional area changes depending on the height. Shall calculate the ratio of the horizontal cross-sectional area with the smallest cross-sectional area.

水平方向断面積の割合を45%以上とすることにより、光透過窓の上に十分な厚さの硬化阻害領域を維持できる。また、凸部31の上面だけでなく、側面からも硬化阻害剤である酸素が拡散して液状光硬化性樹脂に供給され、空間32内にも硬化阻害領域を形成し維持することができる。   By setting the ratio of the horizontal sectional area to 45% or more, it is possible to maintain a sufficiently thick curing-inhibiting region on the light transmission window. Further, not only the upper surface of the protrusion 31 but also the side surface diffuses oxygen as a curing inhibitor and is supplied to the liquid photocurable resin, so that a curing inhibition region can be formed and maintained in the space 32.

一方、凸部同士を隔てる距離が200μmより大きいと、空間32を満たす液状光硬化性樹脂への酸素供給が不十分になり、空間32内の硬化阻害領域を維持することが困難となり、凸部31と空間32の上方の硬化阻害領域の平坦性も低下する。このため、凸部同士を隔てる距離は200μm以下にするのが望ましい。   On the other hand, if the distance separating the convex portions is larger than 200 μm, the oxygen supply to the liquid photocurable resin filling the space 32 becomes insufficient, and it becomes difficult to maintain the curing inhibition region in the space 32. The flatness of the hardening inhibition area above 31 and the space 32 is also reduced. For this reason, it is desirable that the distance separating the convex portions be 200 μm or less.

また、凸部同士を隔てる距離L1を60μm以上とし、流路のコンダクタンスを十分に確保することが望ましい。凸部同士を隔てる距離L1が60μmより小さいと、流路が狭くなり、供給路として十分な効果を得ることができないためである。   In addition, it is desirable that the distance L1 separating the convex portions be 60 μm or more and sufficiently ensure the conductance of the flow path. This is because if the distance L1 separating the convex portions is smaller than 60 μm, the flow path becomes narrow and a sufficient effect as a supply path cannot be obtained.

また、凸部31の水平方向断面積の割合は、45%から80%の範囲であるのが好ましい。凸部31の水平方向断面積の割合が80%より大きいと、流路が狭くなり、空間32が光硬化性樹脂の供給路として十分な効果を発揮することができないためである。さらに好ましくは、45%から70%の範囲であるのがよい。   Moreover, it is preferable that the ratio of the horizontal direction cross-sectional area of the convex part 31 is 45 to 80% of range. This is because if the ratio of the horizontal cross-sectional area of the convex portion 31 is greater than 80%, the flow path becomes narrow and the space 32 cannot exhibit a sufficient effect as a photocurable resin supply path. More preferably, it is in the range of 45% to 70%.

また、凸部31の垂直方向の高さt2は、50μm以上で800μm以下の範囲内であるのが好ましい。凸部31の高さt2が50μmより小さいと、流路として活用できる空間32が小さく、供給路として十分な効果を得ることができない。また、高さt2が800μmより大きいと、空間32内の硬化阻害領域を維持することが困難になるためである。   Moreover, it is preferable that the vertical height t2 of the convex portion 31 is in the range of 50 μm or more and 800 μm or less. If the height t2 of the convex portion 31 is smaller than 50 μm, the space 32 that can be used as a flow path is small, and a sufficient effect as a supply path cannot be obtained. Moreover, it is because it will become difficult to maintain the hardening inhibition area | region in the space 32 when height t2 is larger than 800 micrometers.

以上のように、凸部形成領域を備えた本実施態様によれば、三次元造形物14を光透過窓から離間させる方向すなわちZ方向に移動した際に、三次元造形領域に液状光硬化樹脂を供給する速度が速まり、三次元造形に要する時間を著しく短縮することができる。   As described above, according to the present embodiment provided with the convex portion forming region, when the three-dimensional structure 14 is moved in the direction away from the light transmission window, that is, in the Z direction, the liquid photocurable resin is formed in the three-dimensional structure region. The speed for supplying is increased, and the time required for three-dimensional modeling can be remarkably shortened.

(光硬化性樹脂)
本実施形態に用いる光硬化性樹脂は、少なくとも重合性化合物を含み、その他、樹脂材料や、重合開始剤、重合禁止剤、酸化防止剤、耐熱安定剤、耐光安定剤、離型剤等の各種添加剤を含んでいてもよい。
本発明に用いる重合性化合物としては、例えば、アクリル化合物、メタクリル化合物、ビニル化合物等が挙げられるが、これらに限定されない。
(Photo-curing resin)
The photocurable resin used in the present embodiment contains at least a polymerizable compound, and in addition, various kinds of resin materials, polymerization initiators, polymerization inhibitors, antioxidants, heat stabilizers, light stabilizers, release agents, and the like. An additive may be included.
Examples of the polymerizable compound used in the present invention include, but are not limited to, acrylic compounds, methacrylic compounds, vinyl compounds, and the like.

また、前記樹脂材料は、例えば、アクリル樹脂、メタクリル樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリイミド樹脂等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
本発明の光硬化性樹脂に含有される樹脂の含有量は、0.0重量%以上で99重量%以下が好ましく、0.0重量%以上で50重量%以下がさらに好ましい。
Examples of the resin material include acrylic resin, methacrylic resin, polyolefin resin, polyester resin, polyamide resin, polycarbonate resin, and polyimide resin. These may be used alone or in combination of two or more.
The content of the resin contained in the photocurable resin of the present invention is preferably 0.0% by weight or more and 99% by weight or less, and more preferably 0.0% by weight or more and 50% by weight or less.

重合開始剤としては、光照射によりラジカル種を発生するものやカチオン種を発生するもの、熱によりラジカル種を発生するもの等が挙げられるがこれらに限定されない。例えば、2―ベンジル―2―ジメチルアミノ―1―(4―モルフォリノフェニル)―1―ブタノン、1―ヒドロキシ―シクロヘキシル―フェニルケトン、等が挙げられるが、これらに限定されない。   Examples of the polymerization initiator include, but are not limited to, those that generate radical species by irradiation with light, those that generate cationic species, and those that generate radical species by heat. Examples include, but are not limited to, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxy-cyclohexyl-phenyl ketone, and the like.

なお、重合可能な樹脂成分に対する光重合開始剤の添加比率は、光照射量、更には、付加的な加熱温度に応じて適宜選択することができる。また、得られる重合体の目標とする平均分子量に応じて、調整することもできる。   The addition ratio of the photopolymerization initiator to the polymerizable resin component can be appropriately selected according to the amount of light irradiation and further the additional heating temperature. Moreover, it can also adjust according to the average molecular weight made into the target of the polymer obtained.

本実施形態の光学材料の硬化・成形に用いる光重合開始剤の添加量は、重合可能な成分に対して0.01重量%以上で10.00重量%以下の範囲が好ましい。光重合開始剤は樹脂の反応性、光照射の波長によって1種類のみで使用することもできるし、2種類以上を併用して使用することもできる。   The addition amount of the photopolymerization initiator used for curing / molding the optical material of the present embodiment is preferably in the range of 0.01 wt% to 10.00 wt% with respect to the polymerizable component. The photopolymerization initiator can be used alone or in combination of two or more depending on the reactivity of the resin and the wavelength of light irradiation.

(三次元造形プロセス)
次に、上記の三次元造形装置を用いた三次元造形プロセスについて説明する。
まず、制御部21は、不図示のセンサーを用いて、容器1内に所定量の液状光硬化性樹脂が収容されているか確認する。不足している場合には、樹脂供給部3を動作させ、容器1内の所定水準まで液状光硬化性樹脂2を補充する。
(Three-dimensional modeling process)
Next, a three-dimensional modeling process using the above three-dimensional modeling apparatus will be described.
First, the control unit 21 confirms whether a predetermined amount of the liquid photocurable resin is accommodated in the container 1 using a sensor (not shown). If it is insufficient, the resin supply unit 3 is operated to replenish the liquid photocurable resin 2 to a predetermined level in the container 1.

次に、制御部21は、昇降部13を動作させ、基台11の上面の高さが光源ユニット10の焦点位置よりもZ方向で僅かに上になるように、基台11の位置をセットする。たとえば、積層造形で三次元造形物を形成する際の一層の厚みを40μmとするとき、レンズの焦点位置よりも10μm乃至30μm程度Z方向の上方に、基台11の上面が位置するように調整する。   Next, the control unit 21 operates the elevating unit 13 to set the position of the base 11 so that the height of the upper surface of the base 11 is slightly above the focal position of the light source unit 10 in the Z direction. To do. For example, when the thickness of one layer when forming a three-dimensional structure by layered modeling is 40 μm, the upper surface of the base 11 is adjusted to be 10 μm to 30 μm above the focal position of the lens in the Z direction. To do.

制御部21は、外部装置22から入力された三次元造形モデル形状データに基づいて、積層造形プロセスで用いる各層の形状データ(スライスデータ)を作成する。   The control unit 21 creates shape data (slice data) of each layer used in the additive manufacturing process based on the 3D modeling model shape data input from the external device 22.

そして、光源ユニット10を駆動して発光させ、三次元造形物の第一層目の形状データに基づいて変調された紫外光を、液状光硬化性樹脂2に照射する。照射された部位の液状光硬化性樹脂2が硬化し、基台11の下面に、三次元造形物の第一層目部分が形成される。   Then, the light source unit 10 is driven to emit light, and the liquid photocurable resin 2 is irradiated with ultraviolet light modulated based on the shape data of the first layer of the three-dimensional structure. The liquid photocurable resin 2 at the irradiated site is cured, and the first layer portion of the three-dimensional structure is formed on the lower surface of the base 11.

液状光硬化性樹脂を硬化し得るエネルギー線であれば、紫外光でなくてもよいが、365nm、385nm、405nmの紫外線や、高圧水銀ランプやハロゲンランプなどの多波長の電磁波が混在した波長が好適に用いられる。エネルギー線の強度は格別限定されないが、0.1mW/cm2から1000mW/cm2が好ましく、1mW/cm2から100mW/cm2がさらに好ましい。   As long as it is an energy ray that can cure the liquid photocurable resin, it may not be ultraviolet light. Preferably used. The intensity of the energy beam is not particularly limited, but is preferably 0.1 mW / cm 2 to 1000 mW / cm 2, and more preferably 1 mW / cm 2 to 100 mW / cm 2.

次に、第二層目を形成するための準備として、制御部21は昇降部13を動作させ、第一層目部分が形成された基台11を、光透過窓から離間する方向すなわちZ方向の上方に40μm上昇させる。上昇する基台11と光透過窓4の間の空間には、周囲から液状光硬化性樹脂2が流入する。   Next, as preparation for forming the second layer, the control unit 21 operates the elevating unit 13 to move the base 11 on which the first layer portion is formed away from the light transmission window, that is, the Z direction. Is raised by 40 μm. The liquid photocurable resin 2 flows from the surroundings into the space between the rising base 11 and the light transmission window 4.

尚、基台11の移動動作は速度制御や荷重制御を単独または併用して行うことができる。移動動作の速度は、0.001mm/秒から10mm/秒が好ましく、0.01mm/秒から1mm/秒がさらに好ましい。移動動作の際の荷重は、0.01Nから10000Nが好ましく、0.1Nから1000Nがさらに好ましい。   The moving operation of the base 11 can be performed by speed control or load control alone or in combination. The speed of the moving operation is preferably 0.001 mm / second to 10 mm / second, and more preferably 0.01 mm / second to 1 mm / second. The load during the moving operation is preferably 0.01N to 10000N, and more preferably 0.1N to 1000N.

本実施形態によれば、光透過窓4の上面、すなわち液状光硬化性樹脂2と接触する面に、凸部形成領域を設けているため、液状光硬化性樹脂2の流動抵抗が低減されている。このため、液状光硬化性樹脂2の流入速度が速く、第二層目を形成するための準備工程の所要時間を短縮することが可能である。   According to the present embodiment, since the convex portion forming region is provided on the upper surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin 2, the flow resistance of the liquid photocurable resin 2 is reduced. Yes. For this reason, the inflow speed of the liquid photocurable resin 2 is fast, and it is possible to shorten the time required for the preparation process for forming the second layer.

三次元造形領域への液状光硬化性樹脂2の流入すなわち補充が完了したタイミングで、制御部21は、光源ユニット10を駆動して、三次元造形物の第二層目の形状データに基づいて変調された紫外光を照射する。照射された部位の液状光硬化性樹脂2が硬化し、三次元造形物の第一層目の上に、第二層目部分が積層形成される。   At the timing when the liquid photocurable resin 2 flows into the three-dimensional modeling area, that is, when the replenishment is completed, the control unit 21 drives the light source unit 10 based on the shape data of the second layer of the three-dimensional modeling object. Irradiate modulated ultraviolet light. The liquid photocurable resin 2 at the irradiated portion is cured, and the second layer portion is laminated on the first layer of the three-dimensional structure.

以下、同様の工程を繰り返すことで、多数層を積層し、所望の形状の三次元造形物を形成することが可能である。得られた三次元造形物は、未反応の光硬化性樹脂の付着を取り除くための洗浄を行ってもよい。また、硬化不足の光硬化性樹脂の硬化や、成形時の残留応力を緩和させるため、加熱アニール、紫外線の追加照射、無酸素雰囲気での加熱や紫外線照射などを行ってもよい。   Hereinafter, by repeating the same process, it is possible to laminate a large number of layers and form a three-dimensional structure having a desired shape. The obtained three-dimensional structure may be washed to remove adhesion of unreacted photocurable resin. In addition, in order to relieve the curing of the insufficiently cured photo-curable resin or the residual stress at the time of molding, heating annealing, additional irradiation with ultraviolet rays, heating in an oxygen-free atmosphere, ultraviolet irradiation, or the like may be performed.

尚、上述のように基台11の移動とエネルギー線の照射を交互に繰り返し実施して1層目から順次積層してもよいが、基台11を移動しながら同時にエネルギー線の照射を行い、連続的に三次元造形物を堆積させてもよい。その場合には、あらかじめ設定された位置に対する二次元形状データを、基台11の位置に合わせて投影する。基台11の位置と所望の二次元形状の投影を合わせる方法としては、例えば、基台11の移動速度と二次元形状の投影速度をあらかじめ合わせておく方法や、基台11の位置を計測し、計測された位置に対する二次元形状を投影する方法がある。   In addition, as described above, the movement of the base 11 and the irradiation of the energy beam may be alternately repeated and sequentially stacked from the first layer. However, the energy beam is irradiated simultaneously while moving the base 11, You may deposit a three-dimensional structure continuously. In that case, two-dimensional shape data for a preset position is projected in accordance with the position of the base 11. As a method of matching the position of the base 11 with the projection of the desired two-dimensional shape, for example, a method of matching the moving speed of the base 11 and the projection speed of the two-dimensional shape in advance, or the position of the base 11 is measured. There is a method of projecting a two-dimensional shape with respect to a measured position.

本実施形態では、光透過窓の内面に、UV光と硬化阻害剤を透過する複数の凸部と、複数の凸部の間に周囲から連通路を介して液状光硬化性樹脂を導入可能な空間とを設けることにより、三次元造形領域への液状光硬化性樹脂の補充を高速化できる。   In the present embodiment, a liquid photocurable resin can be introduced into the inner surface of the light transmission window from the periphery through a communication path between a plurality of convex portions that transmit UV light and a curing inhibitor and between the plurality of convex portions. By providing the space, replenishment of the liquid photocurable resin to the three-dimensional modeling region can be speeded up.

[第二の実施形態]
図4は、本発明の第二の実施形態にかかる三次元造形装置の構造を説明するため、装置の断面を模式的に示した図である。
[Second Embodiment]
FIG. 4 is a diagram schematically showing a cross section of the apparatus for explaining the structure of the three-dimensional modeling apparatus according to the second embodiment of the present invention.

(装置の構成)
第一の実施形態では、光透過窓は容器の底として機能したが、第二の実施形態では、光透過窓は容器の上部に設けられており、蓋として機能している。第二の実施形態では、光源ユニット10は光透過窓44の上方に配され、基台11は上面で三次元造形物14を支持する。
(Device configuration)
In the first embodiment, the light transmission window functions as the bottom of the container. However, in the second embodiment, the light transmission window is provided in the upper part of the container and functions as a lid. In the second embodiment, the light source unit 10 is disposed above the light transmission window 44, and the base 11 supports the three-dimensional structure 14 on the upper surface.

第一の実施形と同様に、第二の実施形態でも、光透過窓には硬化阻害剤である酸素等のガスを透過する性質を備えた材料を用い、光透過窓近傍の液状光硬化性樹脂に光透過窓を通じてガスを供給する。液状光硬化性樹脂として、たとえば酸素等のガスを含むと光硬化の感度が低下するラジカル重合型樹脂材料を使用し、光透過窓近傍に硬化が阻害される領域を形成する。   As in the first embodiment, in the second embodiment, a material having a property of transmitting a gas such as oxygen, which is a curing inhibitor, is used for the light transmission window, and the liquid photocuring property in the vicinity of the light transmission window is used. Gas is supplied to the resin through the light transmission window. As the liquid photocurable resin, for example, a radical polymerization type resin material whose photocuring sensitivity is lowered when a gas such as oxygen is included is used, and a region where the curing is inhibited is formed in the vicinity of the light transmission window.

図4において、1は容器、2は液状光硬化性樹脂、3は樹脂供給部、44は光透過窓、5は遮光部、46は凸部形成領域、7は光源、8はミラー部、9はレンズ部、10は光源ユニット、11は基台、12は昇降アーム、13は昇降部、14は三次元造形物である。
第一の実施形態の装置と同様の機能を有する部分には、同一の番号を付した。これらについては、詳しい説明は省略する。
また、第二の実施形態の三次元造形装置の制御ブロックは、第一の実施形態で説明した図2と同様であるため、説明を省略する。
In FIG. 4, 1 is a container, 2 is a liquid photocurable resin, 3 is a resin supply part, 44 is a light transmission window, 5 is a light shielding part, 46 is a convex part forming area, 7 is a light source, 8 is a mirror part, 9 Is a lens unit, 10 is a light source unit, 11 is a base, 12 is a lifting arm, 13 is a lifting unit, and 14 is a three-dimensional structure.
Parts having the same functions as those of the apparatus of the first embodiment are assigned the same numbers. Detailed description of these will be omitted.
Moreover, since the control block of the three-dimensional modeling apparatus of 2nd embodiment is the same as that of FIG. 2 demonstrated in 1st embodiment, description is abbreviate | omitted.

(凸部形成領域)
光透過窓44の下面すなわち液状光硬化性樹脂と接する側の面は、凸部形成領域46を備えている。図5(a)は、図4の光透過窓44の近傍を拡大して模式的に示した断面図である。
凸部形成領域46は、硬化光及び硬化阻害剤を透過する複数の凸部51と、平面視で光透過窓の外部と連通し液状光硬化性樹脂2が満たされた空間52を含んでいる。
(Projection formation area)
The lower surface of the light transmission window 44, that is, the surface in contact with the liquid photocurable resin is provided with a convex portion forming region 46. FIG. 5A is a cross-sectional view schematically showing the vicinity of the light transmission window 44 in FIG. 4 in an enlarged manner.
The convex portion forming region 46 includes a plurality of convex portions 51 that transmit the curing light and the curing inhibitor, and a space 52 that communicates with the outside of the light transmission window in a plan view and is filled with the liquid photocurable resin 2. .

図5(b)は、図5(a)の点線Cに沿った水平方向断面の一部を拡大して模式的に示した上面図である。尚、点線Cは、光透過窓の主面と平行な面を示している。また、図5(a)は、図5(b)の点線Dに沿った垂直方向断面を模式的に示した側面図である。これらの図は、説明の便宜のため模式化してあるため、凸部の数、形状、配置は、必ずしも正確に示されているわけではない。   FIG. 5B is a top view schematically showing an enlarged part of a horizontal cross section along the dotted line C in FIG. A dotted line C indicates a plane parallel to the main surface of the light transmission window. FIG. 5A is a side view schematically showing a vertical cross section along the dotted line D in FIG. Since these drawings are schematically shown for convenience of explanation, the number, shape, and arrangement of the convex portions are not necessarily shown accurately.

第一の実施形態では、光透過窓の基部と凸部31は、同一の材料で一体に形成されていたが、第二の実施形態においては、光透過窓44の基部と凸部51は別種の材料で形成されている。
また、第一の実施形態では、六角柱状の凸部が六方最密配列されていたが、第二の実施形態では、円柱状の凸部が格子状に配列されている。
In the first embodiment, the base portion and the convex portion 31 of the light transmission window are integrally formed of the same material. However, in the second embodiment, the base portion and the convex portion 51 of the light transmission window 44 are different types. It is made of material.
In the first embodiment, the hexagonal columnar projections are arranged in a hexagonal close-packed manner, but in the second embodiment, the columnar projections are arranged in a lattice pattern.

第二の実施形態においても、凸部形成領域46は、以下の態様を有している。
(1)凸部同士を隔てる空間52は、水平方向すなわち光透過窓の主面と平行な面内で、光透過窓の外部に連通している。
(2)望ましくは、隣り合う凸部の距離L1は、60μm以上で200μm以下の範囲内にある。
(3)望ましくは、光透過窓の主面に平行な断面における凸部の断面積(水平方向断面積)が、光透過窓の主面において硬化光に照射される領域の面積に対して、45%以上で80%以下である。
Also in 2nd embodiment, the convex part formation area | region 46 has the following aspects.
(1) The space 52 that separates the protrusions communicates with the outside of the light transmission window in the horizontal direction, that is, in a plane parallel to the main surface of the light transmission window.
(2) Desirably, the distance L1 between adjacent convex portions is in the range of 60 μm to 200 μm.
(3) Desirably, the cross-sectional area (horizontal cross-sectional area) of the convex portion in the cross section parallel to the main surface of the light transmitting window is relative to the area of the region irradiated with the curing light on the main surface of the light transmitting window. 45% or more and 80% or less.

かかる態様の凸部形成領域46を設けると、光透過窓44と三次元造形物14の間に十分な厚さの硬化阻害領域が維持されるのと同時に、空間52内にも硬化阻害領域を形成することができる。   Providing the convex formation area 46 of this aspect maintains a curing inhibition area having a sufficient thickness between the light transmission window 44 and the three-dimensional structure 14, and at the same time, provides a curing inhibition area in the space 52. Can be formed.

ここで、空間52は、平面視で光透過窓の外部と連通しているため、三次元造形物14を光透過窓から離間させる方向すなわちZ方向と反対方向に移動した際に、空間52を、三次元造形領域に液状光硬化樹脂を供給するための流路とすることができる。本実施形態においても、図5(b)に示されるように、空間52は、光透過窓の周囲で遮光部5の下部空間と連通しているため、遮光部5の下部空間に存在する液状光硬化性樹脂は連通路を通じて空間52に容易に流入する。凸部形成領域46を設けることにより、三次元造形領域に液状光硬化樹脂を供給する際のコンダクタンスを大きくすることができる。   Here, since the space 52 communicates with the outside of the light transmission window in a plan view, the space 52 is moved when the three-dimensional structure 14 is moved away from the light transmission window, that is, in the direction opposite to the Z direction. And it can be set as the flow path for supplying liquid photocurable resin to a three-dimensional modeling area | region. Also in the present embodiment, as shown in FIG. 5B, the space 52 communicates with the lower space of the light shielding portion 5 around the light transmission window, so that the liquid existing in the lower space of the light shielding portion 5 is present. The photocurable resin easily flows into the space 52 through the communication path. By providing the convex formation region 46, the conductance when supplying the liquid photocurable resin to the three-dimensional modeling region can be increased.

ここで、凸部同士を隔てる距離が200μm以下であり、凸部51の水平方向断面積の割合が45%以上であるのが望ましい。   Here, it is desirable that the distance separating the convex portions is 200 μm or less, and the ratio of the horizontal sectional area of the convex portions 51 is 45% or more.

凸部51の水平方向断面積の割合とは、図5(b)において、光透過窓44の全面積に占める斜線部の割合である。尚、第一の実施形態では、凸部51はZ方向のどの高さにおいても水平方向断面積は等しいが、高さによって断面積の大きさが変化する形態の凸部を用いる場合には、最小の断面積をもって水平方向断面積の割合を計算するものとする。   The ratio of the cross-sectional area in the horizontal direction of the convex portion 51 is the ratio of the hatched portion in the entire area of the light transmission window 44 in FIG. In the first embodiment, the convex portion 51 has the same horizontal cross-sectional area at any height in the Z direction, but when using a convex portion in which the size of the cross-sectional area changes depending on the height, The ratio of the horizontal cross-sectional area shall be calculated with the smallest cross-sectional area.

水平方向断面積の割合を45%以上とすることにより、光透過窓の下に十分な厚さの硬化阻害領域を維持できる。また、凸部51の下端面だけでなく、側面からも硬化阻害剤である酸素が拡散して液状光硬化性樹脂に供給され、空間52内にも硬化阻害領域を形成し維持することができる。   By setting the ratio of the horizontal sectional area to 45% or more, it is possible to maintain a sufficiently thick curing-inhibiting region under the light transmission window. Further, not only the lower end surface of the convex portion 51 but also the oxygen as a curing inhibitor is diffused from the side surface and supplied to the liquid photocurable resin, and a curing inhibition region can be formed and maintained in the space 52. .

一方、凸部同士を隔てる距離が200μmより大きいと、空間52を満たす液状光硬化性樹脂への酸素供給が不十分になり、空間52内の硬化阻害領域を維持することが困難となり、凸部51と空間52の下方の硬化阻害領域の平坦性も低下する。このため、凸部同士を隔てる距離は200μm以下にするのが望ましい。   On the other hand, if the distance separating the convex portions is larger than 200 μm, the oxygen supply to the liquid photocurable resin filling the space 52 becomes insufficient, and it becomes difficult to maintain the curing inhibition region in the space 52. The flatness of the hardening inhibition area below 51 and the space 52 is also lowered. For this reason, it is desirable that the distance separating the convex portions be 200 μm or less.

また、凸部同士を隔てる距離L1を60μm以上とし、流路のコンダクタンスを十分に確保することが望ましい。凸部同士を隔てる距離L1が60μmより小さいと、流路が狭くなり、供給路として十分な効果を得ることができないためである。   In addition, it is desirable that the distance L1 separating the convex portions be 60 μm or more and sufficiently ensure the conductance of the flow path. This is because if the distance L1 separating the convex portions is smaller than 60 μm, the flow path becomes narrow and a sufficient effect as a supply path cannot be obtained.

また、凸部51の水平方向断面積の割合は、45%から80%の範囲であるのが好ましい。凸部51の水平方向断面積の割合が80%より大きいと、流路が狭くなり、空間52が光硬化性樹脂の供給路として十分な効果を発揮することができないためである。さらに好ましくは、45%から70%の範囲であるのがよい。   Moreover, it is preferable that the ratio of the horizontal cross-sectional area of the convex part 51 is in the range of 45% to 80%. This is because if the ratio of the cross-sectional area in the horizontal direction of the convex portion 51 is larger than 80%, the flow path becomes narrow, and the space 52 cannot exhibit a sufficient effect as a photocurable resin supply path. More preferably, it is in the range of 45% to 70%.

また、凸部51の垂直方向の高さt2は、50μm以上で800μm以下の範囲内であるのが好ましい。凸部31の高さt2が50μmより小さいと、流路として活用できる空間32が小さく、供給路として十分な効果を得ることができない。また、高さt2が800μmより大きいと、空間32内の硬化阻害領域を維持することが困難になるためである。   The vertical height t2 of the convex portion 51 is preferably in the range of 50 μm or more and 800 μm or less. If the height t2 of the convex portion 31 is smaller than 50 μm, the space 32 that can be used as a flow path is small, and a sufficient effect as a supply path cannot be obtained. Moreover, it is because it will become difficult to maintain the hardening inhibition area | region in the space 32 when height t2 is larger than 800 micrometers.

第二の実施形態においては、光透過窓44の基部と凸部51は別種の材料で形成されている。第一の実施形態では、凸部31は基部と同種の材料で形成され、空間32には液状光硬化性樹脂が存在するため、両者の屈折率の差が大きい場合には、硬化光の光路が乱れて造形形状の精度が低下する可能性があった。   In the second embodiment, the base portion and the convex portion 51 of the light transmission window 44 are formed of different materials. In the first embodiment, the convex portion 31 is formed of the same material as the base portion, and since the liquid photocurable resin is present in the space 32, the optical path of the curing light when the difference between the refractive indexes is large. There is a possibility that the accuracy of the modeling shape is deteriorated due to disturbance.

第二の実施形態では、凸部51には、硬化阻害剤を透過し、かつ光透過窓44の基部よりも光硬化性樹脂に近い屈折率を有する材料を用いる。好適には、光透過窓の基部として板状の樹脂部材を準備し、その表面に、液状光硬化性樹脂に近い屈折率を有する別種の樹脂を用いて凸部51を形成する。   In the second embodiment, a material that transmits the curing inhibitor and has a refractive index closer to the photocurable resin than the base of the light transmission window 44 is used for the convex portion 51. Preferably, a plate-shaped resin member is prepared as the base of the light transmission window, and the convex portion 51 is formed on the surface thereof using another type of resin having a refractive index close to that of the liquid photocurable resin.

液状光硬化性樹脂としては、第一の実施形態と同様の材料を用いることが可能で、屈折率Ndが1.3〜1.5の範囲で多種のものが存在している。また、酸素及び紫外光を透過する材料には、例えばフルオロポリマー(Nd=1.3〜1.4)、シリコーンポリマー(Nd=1.35〜1.45)、多孔質ガラス(Nd=1.3〜1.4)が挙げられる。そこで、光透過窓の基部と、原料として使用する液状光硬化性樹脂の屈折率に差がある場合には、基部よりも液状硬化性樹脂に屈折率が高い材料を選択して凸部を形成すればよい。   As the liquid photocurable resin, it is possible to use the same material as that of the first embodiment, and various types exist with a refractive index Nd in the range of 1.3 to 1.5. Examples of materials that transmit oxygen and ultraviolet light include fluoropolymers (Nd = 1.3 to 1.4), silicone polymers (Nd = 1.35 to 1.45), and porous glass (Nd = 1. 3-1.4). Therefore, if there is a difference in the refractive index between the base of the light transmissive window and the liquid photocurable resin used as the raw material, a material with a higher refractive index than the base is selected to form the convex portion. do it.

(三次元造形プロセス)
第二の実施形態においては、三次元造形の過程で基台をZ方向と反対方向に移動させる点が第一実施形態と異なるが、他は共通するので、詳細な説明は省略する。
(Three-dimensional modeling process)
The second embodiment is different from the first embodiment in that the base is moved in the direction opposite to the Z direction in the process of three-dimensional modeling, but the other details are the same and will not be described in detail.

以上のように、凸部形成領域を備えた本実施態様によれば、三次元造形物14を光透過窓から離間させる方向すなわちZ方向と反対の方向に移動した際に、硬化阻害領域を維持しながら三次元造形領域に液状光硬化樹脂を供給する速度が速まる。このため、三次元造形に要する時間を著しく短縮することができる。また、光透過窓の基材と光硬化性樹脂の屈折率差が大きい場合でも、光硬化性樹脂に近い屈折率の材料で凸部を形成することにより、硬化光の照射特性を劣化させることが少なく、三次元造形物の形状精度を良好に保つことができる。   As described above, according to the present embodiment including the convex portion formation region, the curing inhibition region is maintained when the three-dimensional structure 14 is moved in the direction away from the light transmission window, that is, in the direction opposite to the Z direction. However, the speed | rate which supplies liquid photocurable resin to a three-dimensional modeling area | region increases. For this reason, the time required for three-dimensional modeling can be significantly shortened. In addition, even when the difference in refractive index between the base material of the light transmission window and the photocurable resin is large, the irradiation characteristics of the curing light may be deteriorated by forming the convex portion with a material having a refractive index close to that of the photocurable resin. The shape accuracy of the three-dimensional structure can be kept good.

[第三の実施形態]
第三の実施形態は、第一の実施形態と同様に図1、図2の三次元造形装置を用いる。図1および図2の説明は共通するので省略する。
第三の実施形態においては、第一の実施形態とは光透過窓の形態が異なるので、図6を用いて説明する。
[Third embodiment]
3rd embodiment uses the three-dimensional modeling apparatus of FIG. 1, FIG. 2 similarly to 1st embodiment. The description of FIG. 1 and FIG. 2 is common and will be omitted.
The third embodiment is different from the first embodiment in the shape of the light transmission window, and will be described with reference to FIG.

(凸部形成領域)
光透過窓4の上面すなわち液状光硬化性樹脂と接する側の面は、凸部形成領域6を備えている。図6(a)は、図1の光透過窓4の近傍を拡大して模式的に示した断面図である。
凸部形成領域6は、硬化光及び硬化阻害剤を透過する複数の凸部61と、平面視で光透過窓の外部と連通し液状光硬化性樹脂2が満たされた空間62を含んでいる。
(Projection formation area)
The upper surface of the light transmission window 4, that is, the surface in contact with the liquid photocurable resin is provided with a convex portion forming region 6. FIG. 6A is a cross-sectional view schematically showing an enlarged vicinity of the light transmission window 4 of FIG.
The convex portion forming region 6 includes a plurality of convex portions 61 that transmit the curing light and the curing inhibitor, and a space 62 that communicates with the outside of the light transmission window in a plan view and is filled with the liquid photocurable resin 2. .

図6(b)は、図6(a)の点線Eに沿った水平方向断面の一部を拡大して模式的に示した上面図である。尚、点線Eは、光透過窓の主面と平行な面を示している。また、図6(a)は、図6(b)の点線Fに沿った垂直方向断面を模式的に示した側面図である。これらの図は、説明の便宜のため模式化してあるため、凸部の数、形状、配置は、必ずしも正確に示されているわけではない。   FIG. 6B is an enlarged top view schematically showing a part of the horizontal cross section along the dotted line E in FIG. A dotted line E indicates a plane parallel to the main surface of the light transmission window. FIG. 6A is a side view schematically showing a cross section in the vertical direction along the dotted line F in FIG. Since these drawings are schematically shown for convenience of explanation, the number, shape, and arrangement of the convex portions are not necessarily shown accurately.

第一の実施形態では、光透過窓の基部と凸部31は、同一の材料で一体に形成されていたが、第三の実施形態においては、凸部61は、基部64よりも屈折率が液状光硬化性樹脂に近い材料で形成されている。さらに、空間62の底面も、凸部61と同一の材料で形成されている。   In the first embodiment, the base portion and the convex portion 31 of the light transmission window are integrally formed of the same material. However, in the third embodiment, the convex portion 61 has a refractive index higher than that of the base portion 64. It is made of a material close to a liquid photocurable resin. Furthermore, the bottom surface of the space 62 is also formed of the same material as the convex portion 61.

第一の実施形態では、凸部31は基部と同種の材料で形成され、空間32には液状光硬化性樹脂が存在するため、両者の屈折率の差が大きい場合には、硬化光の光路が乱れて造形形状の精度が低下する可能性があった。   In the first embodiment, the convex portion 31 is formed of the same material as the base portion, and since the liquid photocurable resin is present in the space 32, the optical path of the curing light when the difference between the refractive indexes is large. There is a possibility that the accuracy of the modeling shape is deteriorated due to disturbance.

第三の実施形態では、凸部61及び空間62の底面と成る部分には、硬化阻害剤を透過し、かつ光透過窓4の基部64よりも光硬化性樹脂に近い屈折率を有する材料を用いる。好適には、光透過窓の基部64として板状の樹脂部材を準備し、その表面に、より液状光硬化性樹脂に近い屈折率を有する別種の樹脂を一定厚で形成し、その一部に凸部61を形成して用いる。
また、第一の実施形態では、六角柱状の凸部が六方最密配列されていたが、第三の実施形態では、直方体状の凸部が平行に配列されている。
In the third embodiment, a material that transmits the curing inhibitor and has a refractive index closer to that of the photocurable resin than the base portion 64 of the light transmitting window 4 is formed in the portion that becomes the bottom surface of the convex portion 61 and the space 62. Use. Preferably, a plate-like resin member is prepared as the base portion 64 of the light transmission window, and another type of resin having a refractive index closer to that of the liquid photocurable resin is formed on the surface thereof at a constant thickness. The convex part 61 is formed and used.
In the first embodiment, the hexagonal columnar convex portions are arranged in a hexagonal close-packed manner, but in the third embodiment, the rectangular parallelepiped convex portions are arranged in parallel.

第三の実施形態においても、凸部形成領域6は、以下の態様を有している。
(1)凸部同士を隔てる空間62は、水平方向すなわち光透過窓の主面と平行な面内で、光透過窓の外部に連通している。
(2)望ましくは、隣り合う凸部の距離L1は、60μm以上で200μm以下の範囲内にある。
(3)望ましくは、光透過窓の主面に平行な断面における凸部の断面積(水平方向断面積)が、光透過窓の主面において硬化光に照射される領域の面積に対して、45%以上で80%以下である。
Also in 3rd embodiment, the convex part formation area 6 has the following aspects.
(1) The space 62 separating the protrusions communicates with the outside of the light transmission window in the horizontal direction, that is, in a plane parallel to the main surface of the light transmission window.
(2) Desirably, the distance L1 between adjacent convex portions is in the range of 60 μm to 200 μm.
(3) Desirably, the cross-sectional area (horizontal cross-sectional area) of the convex portion in the cross section parallel to the main surface of the light transmitting window is relative to the area of the region irradiated with the curing light on the main surface of the light transmitting window. 45% or more and 80% or less.

かかる態様の凸部形成領域6を設けると、光透過窓4と三次元造形物14の間に十分な厚さの硬化阻害領域が維持されるのと同時に、空間62内にも硬化阻害領域を形成することができる。   Providing the convex formation region 6 of this aspect maintains a curing inhibition region having a sufficient thickness between the light transmission window 4 and the three-dimensional structure 14, and at the same time, provides a curing inhibition region in the space 62. Can be formed.

ここで、空間62は、平面視で光透過窓の外部と連通しているため、三次元造形物14を光透過窓から離間させる方向すなわちZ方向に移動した際に、空間62を、三次元造形領域に液状光硬化樹脂を供給するための流路とすることができる。本実施形態においては、空間62はY方向に沿って延伸しているが、空間の両端で遮光部5の上部空間と連通しており、遮光部5の上部空間に存在する液状光硬化性樹脂は、連通路を通じて空間62に容易に流入する。凸部形成領域6を設けることにより、三次元造形領域に液状光硬化樹脂を供給する際のコンダクタンスを大きくすることができる。   Here, since the space 62 communicates with the outside of the light transmission window in plan view, when the three-dimensional structure 14 is moved away from the light transmission window, that is, in the Z direction, the space 62 is It can be set as the flow path for supplying liquid photocurable resin to a modeling area | region. In the present embodiment, the space 62 extends along the Y direction, but communicates with the upper space of the light shielding portion 5 at both ends of the space, and is a liquid photocurable resin that exists in the upper space of the light shielding portion 5. Easily flows into the space 62 through the communication path. By providing the convex portion forming region 6, conductance when supplying the liquid photocurable resin to the three-dimensional modeling region can be increased.

ここで、凸部同士を隔てる距離が200μm以下であり、凸部61の水平方向断面積の割合が45%以上であるのが望ましい。   Here, it is desirable that the distance separating the convex portions is 200 μm or less, and the ratio of the horizontal sectional area of the convex portions 61 is 45% or more.

凸部61の水平方向断面積の割合とは、図6(b)において、光透過窓の全面積に占める斜線部の割合である。尚、第三の実施形態では、凸部61はZ方向のどの高さにおいても水平方向断面積は等しいが、高さによって断面積の大きさが変化する形態の凸部を用いる場合には、最小の断面積をもって水平方向断面積の割合を計算するものとする。   The ratio of the cross-sectional area in the horizontal direction of the protrusion 61 is the ratio of the hatched portion in the entire area of the light transmission window in FIG. In the third embodiment, the convex portion 61 has the same horizontal cross-sectional area at any height in the Z direction, but when using a convex portion in which the size of the cross-sectional area changes depending on the height, The ratio of the horizontal cross-sectional area shall be calculated with the smallest cross-sectional area.

水平方向断面積の割合を45%以上とすることにより、光透過窓の上に十分な厚さの硬化阻害領域を維持できる。また、凸部61の上端面だけでなく、側面からも硬化阻害剤である酸素が拡散して液状光硬化性樹脂に供給され、空間62内にも硬化阻害領域を形成し維持することができる。   By setting the ratio of the horizontal sectional area to 45% or more, it is possible to maintain a sufficiently thick curing-inhibiting region on the light transmission window. Further, not only the upper end surface of the convex portion 61 but also the side surface diffuses oxygen, which is a curing inhibitor, and is supplied to the liquid photocurable resin, so that a curing inhibition region can be formed and maintained in the space 62. .

一方、凸部同士を隔てる距離が200μmより大きいと、空間62を満たす液状光硬化性樹脂への酸素供給が不十分になり、空間62内の硬化阻害領域を維持することが困難となり、凸部61と空間62の上方の硬化阻害領域の平坦性も低下する。このため、凸部同士を隔てる距離は200μm以下にするのが望ましい。   On the other hand, if the distance separating the convex portions is larger than 200 μm, the oxygen supply to the liquid photocurable resin filling the space 62 becomes insufficient, and it becomes difficult to maintain the curing inhibition region in the space 62. The flatness of the curing inhibition region above 61 and the space 62 is also reduced. For this reason, it is desirable that the distance separating the convex portions be 200 μm or less.

また、凸部同士を隔てる距離L1を60μm以上とし、流路のコンダクタンスを十分に確保することが望ましい。凸部同士を隔てる距離L1が60μmより小さいと、流路が狭くなり、供給路として十分な効果を得ることができないためである。   In addition, it is desirable that the distance L1 separating the convex portions be 60 μm or more and sufficiently ensure the conductance of the flow path. This is because if the distance L1 separating the convex portions is smaller than 60 μm, the flow path becomes narrow and a sufficient effect as a supply path cannot be obtained.

また、凸部61の水平方向断面積の割合は、45%から80%の範囲であるのが好ましい。凸部61の水平方向断面積の割合が80%より大きいと、流路が狭くなり、空間62が光硬化性樹脂の供給路として十分な効果を発揮することができないためである。さらに好ましくは、45%から70%の範囲であるのがよい。   Moreover, it is preferable that the ratio of the horizontal direction cross-sectional area of the convex part 61 is in the range of 45% to 80%. This is because if the ratio of the horizontal cross-sectional area of the convex portion 61 is greater than 80%, the flow path becomes narrow, and the space 62 cannot exert a sufficient effect as a photocurable resin supply path. More preferably, it is in the range of 45% to 70%.

また、凸部61の垂直方向の高さt2は、50μm以上で800μm以下の範囲内であるのが好ましい。凸部61の高さt2が50μmより小さいと、流路として活用できる空間62が小さく、供給路として十分な効果を得ることができない。また、高さt2が800μmより大きいと、空間62内の硬化阻害領域を維持することが困難になるためである。   The vertical height t2 of the convex portion 61 is preferably in the range of 50 μm to 800 μm. If the height t2 of the convex portion 61 is smaller than 50 μm, the space 62 that can be used as a flow path is small, and a sufficient effect as a supply path cannot be obtained. Moreover, it is because it will become difficult to maintain the hardening inhibition area | region in the space 62 when height t2 is larger than 800 micrometers.

(三次元造形プロセス)
本実施形態においても、液状光硬化性樹脂は、第一の実施形態と同様の材料を用いることが可能である。第三の実施形態の三次元造形プロセスは、第一実施形態と共通するので、詳細な説明は省略する。
(Three-dimensional modeling process)
Also in this embodiment, the liquid photocurable resin can use the same material as in the first embodiment. Since the three-dimensional modeling process of the third embodiment is common to the first embodiment, detailed description is omitted.

以上のように、凸部形成領域を備えた本実施態様によれば、三次元造形物14を光透過窓から離間させる方向すなわちZ方向に移動した際に、硬化阻害領域を維持しつつ三次元造形領域に液状光硬化樹脂を供給する速度が速まる。このため、三次元造形に要する時間を著しく短縮することができる。   As described above, according to the present embodiment including the convex portion forming region, the three-dimensional structure 14 is moved in the direction away from the light transmission window, that is, in the Z direction, and the three-dimensional shape is maintained while maintaining the curing inhibition region. The speed at which the liquid photo-curing resin is supplied to the modeling region is increased. For this reason, the time required for three-dimensional modeling can be significantly shortened.

[その他の実施形態]
窓の凸部の形状は、第一の実施形態のような六角柱でなくてもよく、例えば四角柱などの他の多角柱でもよい。また、第二の実施形態のような断面形状が真円の円柱でなくてもよく、断面形状が楕円形でもよい。要は、複数の凸部を隔てる空間が光透過窓と連通するように、凸部の形状や配置を構成すればよい。
[Other Embodiments]
The shape of the convex portion of the window may not be a hexagonal column as in the first embodiment, and may be another polygonal column such as a quadrangular column. Further, the cross-sectional shape may not be a perfect circular cylinder as in the second embodiment, and the cross-sectional shape may be an ellipse. In short, the shape and arrangement of the protrusions may be configured so that the space separating the plurality of protrusions communicates with the light transmission window.

光透過窓の基材と凸部の材料は、第一の実施形態のように同一材料でも、第二、第三の実施形態のように異種材料でもよい。材料と断面形状は、上記実施形態の組み合わせの例に限らず、適宜変更することが可能である。   The material of the base material and the convex part of the light transmission window may be the same material as in the first embodiment, or different materials as in the second and third embodiments. The material and the cross-sectional shape are not limited to the examples of combinations of the above-described embodiments, and can be changed as appropriate.

また、三次元造形装置は、第一の実施形態や第二の実施形態の例に限らず、適宜変更することが可能である。たとえば、光透過窓を液状光硬化性樹脂の容器の底面や上面ではなく、側面に設けてもよい。
三次元造形装置の光透過窓の配置位置と、光透過窓の組合せは、上記実施形態の例に限らず変更することが可能である。
The three-dimensional modeling apparatus is not limited to the examples of the first embodiment and the second embodiment, and can be changed as appropriate. For example, the light transmission window may be provided on the side surface instead of the bottom surface or top surface of the liquid photocurable resin container.
The arrangement position of the light transmission window of the three-dimensional modeling apparatus and the combination of the light transmission windows are not limited to the example of the above-described embodiment, and can be changed.

以下に、本発明の実施例について説明する。
本発明の実施例として、図1のレイアウトの三次元造形装置を用いて各種の光透過窓を用いて三次元造形を実施し、三次元造形速度と得られた三次元造形物の形状精度を評価した。
Examples of the present invention will be described below.
As an example of the present invention, three-dimensional modeling is performed using various light transmission windows using the three-dimensional modeling apparatus having the layout of FIG. 1, and the three-dimensional modeling speed and the shape accuracy of the obtained three-dimensional model are obtained. evaluated.

光硬化性樹脂として、ムトーエンジニアリング社製の光造形3Dプリンタ用紫外線硬化樹脂クリアMR−CL12(製品名)を用いた。
エネルギー線照射装置の光源として、波長が405nmのLEDを用いた。画像形成素子として、テキサスインスツルメンツ社製のFull−HDデジタルミラーデバイス(製品名)を用いた。投影レンズとして、一画素のサイズを60μm×60μmに拡大投影する光学系を設計したレンズを用いた。エネルギー線が照射される最大のサイズはおよそ115mm×65mmである。
As the photocurable resin, UV-curable resin clear MR-CL12 (product name) for optical modeling 3D printer manufactured by Mutoh Engineering Co., Ltd. was used.
An LED having a wavelength of 405 nm was used as a light source of the energy beam irradiation device. As an image forming element, a Full-HD digital mirror device (product name) manufactured by Texas Instruments Incorporated was used. As the projection lens, a lens designed as an optical system for enlarging and projecting the size of one pixel to 60 μm × 60 μm was used. The maximum size irradiated with energy rays is approximately 115 mm × 65 mm.

まず、光透過樹脂を液槽に100ml投入した。次に、基台を光透過窓との間隔が50μmとなるまで接近させた。続いて、投影画像が直径30mmとなるようにエネルギー線を、光透過窓を通して光硬化性樹脂に照射した。このとき、エネルギー線の強度は50mW/cm2であった。エネルギー線の照射を開始してから3秒後、エネルギー線の照射を続けながら基台を150Nの荷重制御で光透過窓から離間させた。基台を30mm光透過窓から離間させたところで、エネルギー線の照射を停止させた。その後、基台を十分に光透過窓から離間させて、基台から三次元造形物を剥離し、直径が約30mm、高さが約30mmの三次元造形物を得た。   First, 100 ml of light transmitting resin was put into the liquid tank. Next, the base was moved closer to the light transmission window until the distance became 50 μm. Subsequently, the energy ray was irradiated to the photocurable resin through the light transmission window so that the projected image had a diameter of 30 mm. At this time, the intensity of the energy beam was 50 mW / cm 2. Three seconds after the start of the energy beam irradiation, the base was separated from the light transmission window by 150 N load control while continuing the energy beam irradiation. When the base was separated from the 30 mm light transmission window, the irradiation of energy rays was stopped. Thereafter, the base was sufficiently separated from the light transmission window, and the three-dimensional structure was peeled off from the base to obtain a three-dimensional structure having a diameter of about 30 mm and a height of about 30 mm.

[実施例1]
三次元造形装置の光透過窓として、材質がデュポン製TeflonAF2400[製品名]、寸法が80mm×80mm×1mm厚みの平板で、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、六角柱の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。上記装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は平均0.82mm/秒であった。
[Example 1]
As a light transmission window of the three-dimensional modeling apparatus, a Teflon AF2400 [product name] made by DuPont, a flat plate having a size of 80 mm × 80 mm × 1 mm thickness, and having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed pattern, the hexagonal prism spacing is 120 μm, the convex height is 400 μm, the horizontal cross-sectional area near the top surface of the convex is 45%, and the bottom horizontal The ratio of the directional cross-sectional area is 52%. Three-dimensional modeling was carried out with the above apparatus to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base was an average of 0.82 mm / sec under a load control of 150 N.

[実施例2]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である円柱が格子状配列された構造であり、凸部の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が48%、底部の水平方向断面積の割合が60%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.53mm/秒であった。
[Example 2]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex cylinders are arranged in a grid pattern, the convex spacing is 120 μm, the convex height is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex is 48%, the bottom horizontal direction The ratio of the cross-sectional area is 60%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base was 0.53 mm / sec under a load control of 150 N.

[実施例3]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。溝と凸部である壁の繰り返し構造であり、凸部の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.44mm/秒であった。
[Example 3]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. It is a repeating structure of walls that are grooves and convex portions, the interval between the convex portions is 120 μm, the height of the convex portions is 400 μm, the ratio of the horizontal sectional area near the top surface of the convex portions is 45%, and the horizontal sectional area of the bottom portion Is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.44 mm / second.

[実施例4]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が60μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.33mm/秒であった。
[Example 4]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed structure, the spacing between the convex portions is 60 μm, the height of the convex portions is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex portions is 45%, and the bottom horizontal The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base was 0.33 mm / sec under a load control of 150 N.

[実施例5]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が200μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.86mm/秒であった。
[Example 5]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Hexagonal cylinders that are convex portions are arranged in a hexagonal close-packed structure, the spacing between the convex portions is 200 μm, the height of the convex portions is 400 μm, the ratio of the horizontal sectional area near the top surface of the convex portions is 45%, The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.86 mm / sec.

[実施例6]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が62%、底部の水平方向断面積の割合が70%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.38mm/秒であった。
[Example 6]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed structure, the spacing between the convex portions is 120 μm, the height of the convex portions is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex portions is 62%, the bottom horizontal The ratio of the directional cross-sectional area is 70%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.38 mm / sec.

[実施例7]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が120μm、凸部の高さが50μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.31mm/秒であった。
[Example 7]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Hexagonal cylinders that are convex portions are arranged in a hexagonal close-packed pattern, the spacing between the convex portions is 120 μm, the height of the convex portions is 50 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex portions is 45%, and the bottom horizontal The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base was 0.31 mm / sec under a load control of 150 N.

[実施例8]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が120μm、凸部の高さが800μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は1.40mm/秒であった。
[Example 8]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed pattern, the spacing between the convex portions is 120 μm, the height of the convex portions is 800 μm, the ratio of the horizontal cross-sectional area in the vicinity of the top surface of the convex portions is 45%, the bottom horizontal The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 1.40 mm / sec.

[実施例9]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が60%、底部の水平方向断面積の割合が80%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.22mm/秒であった。
[Example 9]
As the light transmission window, one having the following structure on the light transmission window upper surface was used. Hexagonal cylinders that are convex parts are arranged in a hexagonal close-packed pattern, the spacing between the convex parts is 120 μm, the height of the convex parts is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex parts is 60%, the bottom horizontal The ratio of the directional cross-sectional area is 80%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.22 mm / sec.

[実施例10]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が300μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が45%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.86mm/秒であった。
[Example 10]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed structure, the spacing between the convex portions is 300 μm, the height of the convex portions is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex portions is 45%, and the bottom horizontal The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.86 mm / sec.

[実施例11]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。凸部である六角柱が六方細密配列された構造であり、凸部の間隔が120μm、凸部の高さが400μm、凸部の上面近傍の水平方向断面積の割合が35%、底部の水平方向断面積の割合が52%である。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.83mm/秒であった。
[Example 11]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. Convex hexagonal prisms are arranged in a hexagonal close-packed structure, the spacing between the convex portions is 120 μm, the height of the convex portions is 400 μm, the ratio of the horizontal cross-sectional area near the top surface of the convex portions is 35%, and the bottom horizontal The ratio of the directional cross-sectional area is 52%. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.83 mm / sec.

[比較例1]
光透過窓として、光透過窓上面に凸部形成領域をもたない、平坦なものを用いた。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.16mm/秒であった。
[Comparative Example 1]
As the light transmission window, a flat window having no convex portion formation region on the upper surface of the light transmission window was used. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.16 mm / second.

[比較例2]
光透過窓として、光透過窓上面に以下の構造を設けたものを用いた。円柱形状の凹部が六方細密配列された構造であり、構造の繰り返しピッチが120μm、凹部の深さが400μmである。凹部には、液状光硬化性樹脂が満たされているが、各凹部は孤立して配置されており、水平方向視で凹部は光透過性窓の周囲とは連通していない。光透過窓以外は実施例1と同様の装置で三次元造形を実施し、三次元造形物を得た。このとき、150Nの荷重制御で基台の光透過窓からの離間速度は0.16mm/秒であった。
[Comparative Example 2]
As the light transmission window, one having the following structure on the upper surface of the light transmission window was used. It is a structure in which cylindrical recesses are arranged in a hexagonal close-packed pattern, with a repeating pitch of 120 μm and a depth of the recesses of 400 μm. The recess is filled with a liquid photocurable resin, but each recess is disposed in isolation, and the recess does not communicate with the periphery of the light transmissive window as viewed in the horizontal direction. Except for the light transmission window, three-dimensional modeling was performed with the same apparatus as in Example 1 to obtain a three-dimensional modeled object. At this time, the separation speed from the light transmission window of the base with a load control of 150 N was 0.16 mm / second.

[結果]
各実施例と比較例について、得られた結果を表1に示す。
表1において、造形速度として示すのは、基台の光透過窓からの離間速度、すなわち液状光硬化樹脂を造形領域に供給する速度について、比較例の速度を基準とした倍率である。
[result]
The obtained results are shown in Table 1 for each example and comparative example.
In Table 1, what is shown as the modeling speed is a magnification based on the speed of the comparative example with respect to the separation speed from the light transmission window of the base, that is, the speed at which the liquid photocurable resin is supplied to the modeling area.

また、形状精度とは、得られた三次元造形物について、基台に密着していない外面の形状精度を計測した結果である。面粗さの最大値Rzが10μm以下のものをA、10μmよりも大きいものをBと記載した。   Further, the shape accuracy is a result of measuring the shape accuracy of the outer surface that is not in close contact with the base for the obtained three-dimensional structure. A surface roughness whose maximum value Rz is 10 μm or less is indicated as A, and a surface roughness larger than 10 μm is indicated as B.

Figure 2018103405
Figure 2018103405

表1の結果から明らかなように、本発明の三次元造形装置及びそれを用いた三次元造形方法では、三次元造形を高速に実施することができ、得られた三次元造形物の形状精度は良好である。特に、実施例1乃至9において、造形速度と形状精度の両面できわめて良好な結果が得られた。   As is clear from the results in Table 1, in the 3D modeling apparatus of the present invention and the 3D modeling method using the same, 3D modeling can be performed at high speed, and the shape accuracy of the obtained 3D modeled object is obtained. Is good. In particular, in Examples 1 to 9, extremely good results were obtained in both the modeling speed and the shape accuracy.

1・・・容器/2・・・液状光硬化性樹脂/3・・・樹脂供給部/4・・・光透過窓/6・・・凸部形成領域/10・・・光源ユニット/11・・・基台/12・・・昇降アーム/14・・・三次元造形物/21・・・制御部/31・・・凸部/32・・・空間/44・・・光透過窓/46・・・凸部形成領域/51・・・凸部/52・・・空間/61・・・凸部/62・・・空間   DESCRIPTION OF SYMBOLS 1 ... Container / 2 ... Liquid photocurable resin / 3 ... Resin supply part / 4 ... Light transmission window / 6 ... Convex part formation area / 10 ... Light source unit / 11. .. Base / 12 ... Lifting arm / 14 ... Three-dimensional structure / 21 ... Control part / 31 ... Convex part / 32 ... Space / 44 ... Light transmission window / 46 ... Projection formation area / 51 ... Projection / 52 ... Space / 61 ... Projection / 62 ... Space

Claims (11)

液状の光硬化性樹脂を保持する容器と、
前記液状の光硬化性樹脂を光硬化させた三次元造形物を支持する基台と、
前記基台を移動させるための移動部と、
前記液状の光硬化性樹脂を硬化させる硬化光を発光する光源ユニットと、
前記容器の一部として前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備え、
前記光透過窓は、硬化光と硬化阻害剤を透過する材料からなる基部と、硬化光と硬化阻害剤を透過する材料からなり前記液状の光硬化性樹脂と接する複数の凸部とを有し、
前記複数の凸部の各凸部を隔てる空間は、前記光透過窓の主面と平行な面内で、光透過窓の外部と連通している、
ことを特徴とする三次元造形装置。
A container for holding a liquid photocurable resin;
A base supporting a three-dimensional structure obtained by photocuring the liquid photocurable resin;
A moving unit for moving the base;
A light source unit that emits curing light for curing the liquid photocurable resin;
A light transmission window provided between the light source unit and the base as a part of the container, and in contact with the liquid photocurable resin;
The light transmission window has a base portion made of a material that transmits curing light and a curing inhibitor, and a plurality of convex portions that are made of a material that transmits the curing light and the curing inhibitor and are in contact with the liquid photocurable resin. ,
The space separating the convex portions of the plurality of convex portions communicates with the outside of the light transmitting window in a plane parallel to the main surface of the light transmitting window.
A three-dimensional modeling apparatus characterized by this.
前記複数の凸部は、隣り合う凸部の距離が60μm以上で200μm以下になるよう配置されている、
ことを特徴とする請求項1に記載の三次元造形装置。
The plurality of protrusions are arranged such that the distance between adjacent protrusions is 60 μm or more and 200 μm or less.
The three-dimensional modeling apparatus according to claim 1.
前記光透過窓の主面に平行な断面における前記複数の凸部の断面積が、前記光透過窓の主面において前記硬化光に照射される領域の面積に対して、45%以上で80%以下である、
ことを特徴とする請求項1または2に記載の三次元造形装置。
The cross-sectional area of the plurality of convex portions in a cross section parallel to the main surface of the light transmission window is 45% or more and 80% with respect to the area of the region irradiated with the curing light on the main surface of the light transmission window. Is
The three-dimensional modeling apparatus according to claim 1 or 2, characterized in that
前記凸部の高さが、50μm以上で800μm以下である、
ことを特徴とする請求項1乃至3のうちの何れか1項に記載の三次元造形装置。
The height of the convex portion is 50 μm or more and 800 μm or less.
The three-dimensional modeling apparatus according to any one of claims 1 to 3, wherein:
前記基部が、フルオロポリマー、シリコーンポリマー、多孔質ガラスのいずれかを含む、
ことを特徴とする請求項1乃至4のうちの何れか1項に記載の三次元造形装置。
The base includes any of a fluoropolymer, a silicone polymer, and porous glass,
The three-dimensional modeling apparatus according to any one of claims 1 to 4, wherein the three-dimensional modeling apparatus is characterized.
前記基部と前記凸部が、同一の材料で形成されている、
ことを特徴とする請求項1乃至5のうちの何れか1項に記載の三次元造形装置。
The base and the convex are formed of the same material,
The three-dimensional modeling apparatus according to any one of claims 1 to 5, wherein the three-dimensional modeling apparatus is characterized.
前記凸部は、前記基部よりも屈折率が前記液状の光硬化性樹脂に近い材料で形成されている、
ことを特徴とする請求項1乃至5のうちの何れか1項に記載の三次元造形装置。
The convex portion is formed of a material whose refractive index is closer to that of the liquid photocurable resin than the base portion.
The three-dimensional modeling apparatus according to any one of claims 1 to 5, wherein the three-dimensional modeling apparatus is characterized.
前記凸部は、多角柱を含む
ことを特徴とする請求項1乃至7のうちの何れか1項に記載の三次元造形装置。
The three-dimensional modeling apparatus according to claim 1, wherein the convex portion includes a polygonal column.
前記凸部は、六角柱を含む、
ことを特徴とする請求項1乃至7のうちの何れか1項に記載の三次元造形装置。
The convex portion includes a hexagonal column,
The three-dimensional modeling apparatus according to any one of claims 1 to 7, wherein
前記凸部は、円柱を含む、
ことを特徴とする請求項1乃至7のうちの何れか1項に記載の三次元造形装置。
The convex portion includes a cylinder,
The three-dimensional modeling apparatus according to any one of claims 1 to 7, wherein
液状の光硬化性樹脂を保持する容器と、
前記液状の光硬化性樹脂を光硬化させた三次元造形物を支持する基台と、
前記基台を移動させるための移動部と、
前記液状の光硬化性樹脂を光硬化させる光を発光する光源ユニットと、
前記容器の一部として前記光源ユニットと前記基台の間に設けられ、前記液状の光硬化性樹脂と接する光透過窓とを備えた三次元造形装置を用いる三次元造形方法であって、
前記光源ユニットを発光させて前記容器の内に保持された前記液状の光硬化性樹脂の一部を光硬化させた後に、
前記基台を前記光透過窓から離間する方向に移動させ、
前記液状の光硬化性樹脂を、前記光透過窓に設けられた硬化光と硬化阻害剤を透過する材料からなる複数の凸部の間の空間を通じて、前記液状の光硬化性樹脂を前記光透過窓と前記三次元造形物との間に補充する、
ことを特徴とする三次元造形方法。
A container for holding a liquid photocurable resin;
A base supporting a three-dimensional structure obtained by photocuring the liquid photocurable resin;
A moving unit for moving the base;
A light source unit that emits light for photocuring the liquid photocurable resin;
A three-dimensional modeling method using a three-dimensional modeling apparatus provided between the light source unit and the base as a part of the container and provided with a light transmission window in contact with the liquid photocurable resin,
After light-curing a part of the liquid photocurable resin held in the container by emitting light from the light source unit,
Moving the base in a direction away from the light transmission window;
The liquid photocurable resin passes through the space between a plurality of convex portions made of a material that transmits the curing light and the curing inhibitor provided in the light transmitting window, and the liquid photocurable resin passes through the light transmitting resin. Replenish between the window and the three-dimensional structure,
A three-dimensional modeling method characterized by this.
JP2016250074A 2016-09-07 2016-12-22 3D modeling device and 3D modeling method Active JP6866152B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016250074A JP6866152B2 (en) 2016-12-22 2016-12-22 3D modeling device and 3D modeling method
US15/681,760 US11130286B2 (en) 2016-09-07 2017-08-21 Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
KR1020170109802A KR102225135B1 (en) 2016-09-07 2017-08-30 Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
CN201710792463.XA CN107791512B (en) 2016-09-07 2017-09-05 Three-dimensional manufacturing apparatus, three-dimensional manufactured object manufacturing method, and container for three-dimensional manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250074A JP6866152B2 (en) 2016-12-22 2016-12-22 3D modeling device and 3D modeling method

Publications (2)

Publication Number Publication Date
JP2018103405A true JP2018103405A (en) 2018-07-05
JP6866152B2 JP6866152B2 (en) 2021-04-28

Family

ID=62786091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250074A Active JP6866152B2 (en) 2016-09-07 2016-12-22 3D modeling device and 3D modeling method

Country Status (1)

Country Link
JP (1) JP6866152B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155641A (en) * 2018-03-08 2019-09-19 キヤノン株式会社 Three-dimensional molding device and three-dimensional molding method
JP7471299B2 (en) 2018-12-11 2024-04-19 アイオー テック グループ リミテッド Systems and methods for preventing oxygen inhibition of photoinitiated polymerization reactions in 3D printing systems using inert gases

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297023U (en) * 1989-01-18 1990-08-02
JPH06226863A (en) * 1993-02-04 1994-08-16 Hitachi Ltd Optical shaping device
JP2008006745A (en) * 2006-06-30 2008-01-17 Toray Ind Inc Core material for frp structure, method for manufacturing core material for frp structure, and frp structure using the same
WO2011086450A2 (en) * 2010-01-12 2011-07-21 Dws S.R.L. Modelling plate for a stereolithography machine, stereolithography machine using said modelling plate and tool for cleaning said modelling plate
US20140361463A1 (en) * 2013-02-12 2014-12-11 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
JP2016509962A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
CN105799168A (en) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 Continuous instantaneous exposure photocuring printer provided with anti-sticking resistance-reducing nano-structured tank bottom
CN107756785A (en) * 2016-08-23 2018-03-06 佳能株式会社 For manufacturing the three-dimensional manufacture device and method of three-dimensional article
KR20180046330A (en) * 2016-10-27 2018-05-08 공석태 3D Dlp printer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297023U (en) * 1989-01-18 1990-08-02
JPH06226863A (en) * 1993-02-04 1994-08-16 Hitachi Ltd Optical shaping device
JP2008006745A (en) * 2006-06-30 2008-01-17 Toray Ind Inc Core material for frp structure, method for manufacturing core material for frp structure, and frp structure using the same
WO2011086450A2 (en) * 2010-01-12 2011-07-21 Dws S.R.L. Modelling plate for a stereolithography machine, stereolithography machine using said modelling plate and tool for cleaning said modelling plate
US20140361463A1 (en) * 2013-02-12 2014-12-11 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
JP2016509962A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
CN105799168A (en) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 Continuous instantaneous exposure photocuring printer provided with anti-sticking resistance-reducing nano-structured tank bottom
CN107756785A (en) * 2016-08-23 2018-03-06 佳能株式会社 For manufacturing the three-dimensional manufacture device and method of three-dimensional article
KR20180046330A (en) * 2016-10-27 2018-05-08 공석태 3D Dlp printer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155641A (en) * 2018-03-08 2019-09-19 キヤノン株式会社 Three-dimensional molding device and three-dimensional molding method
JP7066459B2 (en) 2018-03-08 2022-05-13 キヤノン株式会社 3D modeling device and 3D modeling method
JP7471299B2 (en) 2018-12-11 2024-04-19 アイオー テック グループ リミテッド Systems and methods for preventing oxygen inhibition of photoinitiated polymerization reactions in 3D printing systems using inert gases

Also Published As

Publication number Publication date
JP6866152B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
KR102233625B1 (en) Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
JP6849365B2 (en) Stereolithography equipment, stereolithography method and stereolithography program
KR101155684B1 (en) Rapid Layer upon layer form Stereolithography
JP6058819B2 (en) 3D object production
KR20190019130A (en) System and method for reducing production time of three-dimensional laminate manufacturing
JP2018039188A (en) Three-dimensional molding apparatus and method for manufacturing three-dimensional molded object
JP6866152B2 (en) 3D modeling device and 3D modeling method
CN116802044A (en) Method and machine for producing optical elements by additive manufacturing
CN111168996A (en) Photosensitive resin dip-forming apparatus and method
KR102180817B1 (en) 3d printer and printing system
KR101990431B1 (en) 3D Printer using macro led
US20220350304A1 (en) Method and System for Outputting a Manufacturing File for Producing an Optical Element
JP2017100299A (en) Three-dimensional molding apparatus
JP2019142197A (en) Molding apparatus, container, and manufacturing method of molding
WO2019124526A1 (en) Stereolithography apparatus, stereolithography program, and stereolithography method
JP7066459B2 (en) 3D modeling device and 3D modeling method
KR102428077B1 (en) A bottom-up 3D printing device with heating vat to control high viscosity materials and control method thereof
KR101977327B1 (en) supporting unit for printing mold and 3D printer and printing method using the same
JP2018030278A (en) Three-dimensional molding apparatus and method for manufacturing three-dimensional molded object
CN109203468A (en) A kind of rapid photocuring 3D printing device
CN113276408A (en) Continuous photocuring forming additive manufacturing device in liquid and manufacturing method thereof
KR101874791B1 (en) Method for photo-curable 3D laminated molding and apparatus for photo-curable 3D laminated molding
CN215151851U (en) Continuous photocuring molding additive manufacturing device in liquid
KR102316213B1 (en) A bottom-up 3D printing devices with high viscosity materials and control method thereof
JP2023065128A (en) Three-dimensional molding apparatus and recoater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R151 Written notification of patent or utility model registration

Ref document number: 6866152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151