JP2018103270A - Multilayer porous plate and manufacturing method of the same - Google Patents

Multilayer porous plate and manufacturing method of the same Download PDF

Info

Publication number
JP2018103270A
JP2018103270A JP2016249152A JP2016249152A JP2018103270A JP 2018103270 A JP2018103270 A JP 2018103270A JP 2016249152 A JP2016249152 A JP 2016249152A JP 2016249152 A JP2016249152 A JP 2016249152A JP 2018103270 A JP2018103270 A JP 2018103270A
Authority
JP
Japan
Prior art keywords
porous layer
porous
average pore
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016249152A
Other languages
Japanese (ja)
Inventor
哲也 牧
Tetsuya Maki
哲也 牧
克広 池田
Katsuhiro Ikeda
克広 池田
尚司 寺田
Shoji Terada
尚司 寺田
貴幸 石井
Takayuki Ishii
貴幸 石井
和哉 池上
Kazuya Ikegami
和哉 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2016249152A priority Critical patent/JP2018103270A/en
Publication of JP2018103270A publication Critical patent/JP2018103270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum chuck which achieves partial adsorption performance and wet type usage performance.SOLUTION: A porous plate 20 of a vacuum chuck 10 has: a surface porous layer 21 which holds a workpiece W with a surface 21a; and a base material porous layer 22 which is provided laminating on the rear surface 21b side of the surface porous layer 21. An average hole diameter of the surface porous layer 21 is smaller than an average hole diameter of the base material porous layer 22. The average hole diameter of the surface porous layer 21 and the average hole diameter of the base material porous layer 22 are set in sizes such that a process liquid of the workpiece W can penetrate. A thickness of the surface porous layer 21 is smaller than a thickness of the base material porous layer 22.SELECTED DRAWING: Figure 1

Description

本発明は、ワークを真空引きして吸着保持するための多層多孔質板、及び当該多層多孔質板の製造方法に関する。   The present invention relates to a multilayer porous plate for vacuum-holding and holding a workpiece and a method for producing the multilayer porous plate.

従来、ワークを真空引きして吸着保持するため、真空チャックが用いられている。真空チャックのうち多孔質板を用いたものは、多孔質板の表面にあるワークを裏面側から真空引きすることで、当該ワークを吸着保持する。かかる場合、ワークを面内均一に吸着保持できるため、多孔質板を用いた真空チャックは薄型化されたワークに対して特に有用となる。   Conventionally, a vacuum chuck has been used to evacuate and hold a workpiece by suction. A vacuum chuck using a porous plate sucks and holds the workpiece by evacuating the workpiece on the surface of the porous plate from the back side. In such a case, since the workpiece can be adsorbed and held uniformly in the surface, the vacuum chuck using the porous plate is particularly useful for a thin workpiece.

通常の真空チャックに用いられる多孔質板は、その平均空孔径が50μm〜60μm程度であり圧力損失が低い。かかる場合、例えばワークのサイズが多孔質板の表面よりも小さくなった場合、ワークを保持していない部分から多孔質板の内部に空気が流入し、その結果真空度が低下してワークを吸着保持できない場合がある。以下の説明においては、このように多孔質板の一部分でワークを吸着保持する状態を部分吸着という。そこで、例えば非特許文献1には、多孔質板の平均空孔径を数μm程度に小さくすることで多孔質板の圧力損失を高くし、部分吸着性能を向上させた真空チャックが提案されている。   A porous plate used for a normal vacuum chuck has an average pore diameter of about 50 μm to 60 μm and a low pressure loss. In such a case, for example, when the size of the workpiece becomes smaller than the surface of the porous plate, air flows into the porous plate from the part not holding the workpiece, and as a result, the degree of vacuum decreases and the workpiece is adsorbed. It may not be possible to keep it. In the following description, such a state in which the workpiece is sucked and held by a part of the porous plate is referred to as partial suction. In view of this, for example, Non-Patent Document 1 proposes a vacuum chuck in which the pressure loss of the porous plate is increased and the partial adsorption performance is improved by reducing the average pore diameter of the porous plate to about several μm. .

一方、例えば真空チャックに吸着保持されたワークに対し、処理液を用いて所定の処理を行う要求がある。以下の説明においては、このように処理液を使用する状況下で真空チャックを使用することを湿式使用という。しかしながら、上述したように平均空孔径が数μm程度まで小さい多孔質板を用いる場合、処理液が多孔質板の空孔内に進入すると適切に排出されず目詰まり状態になるため、真空チャックでワークを適切に真空引きできず吸着保持できない。そこで、例えば非特許文献2には、多孔質板の平均空孔径を10μmまで大きくすることで、湿式使用にも対応可能な真空チャックが提案されている。   On the other hand, for example, there is a demand to perform a predetermined process using a processing liquid on a work that is sucked and held by a vacuum chuck. In the following description, using a vacuum chuck under such a condition of using a processing liquid is called wet use. However, as described above, when a porous plate having an average pore diameter as small as about several μm is used, if the treatment liquid enters the pores of the porous plate, it will not be properly discharged and will become clogged. The work cannot be evacuated properly and cannot be held by suction. Thus, for example, Non-Patent Document 2 proposes a vacuum chuck that can be used for wet use by increasing the average pore diameter of the porous plate to 10 μm.

“多孔質セラミック真空チャック”、[online]、日本タングステン株式会社、[2016年7月11日検索]インターネット〈URL:http://www.nittan.co.jp/products/ceramic_chuck_001_018.html〉“Porous ceramic vacuum chuck”, [online], Nippon Tungsten Co., Ltd. [searched July 11, 2016] Internet <URL: http://www.nittan.co.jp/products/ceramic_chuck_001_018.html> “多孔質セラミック真空チャックの紹介”、[online]、日本タングステン株式会社、[2016年7月11日検索]インターネット〈URL:http://www.nittan.co.jp/tech/gihou/takoushitu_ceramics_066.html〉“Introduction of Porous Ceramic Vacuum Chuck”, [online], Nippon Tungsten Co., Ltd. [searched July 11, 2016] Internet <URL: http://www.nittan.co.jp/tech/gihou/takoushitu_ceramics_066. html>

しかしながら、非特許文献2に記載された平均空孔径が10μmの多孔質板を用いた場合、真空チャックは湿式使用に対応でき、ある程度の部分吸着性能も有するものの、やはり十分な部分吸着性能を発揮しない。特にワークのサイズが小さくなると、この真空チャックでは吸着保持できなくなる。したがって、多孔質板の空孔径を調整するだけでは、相反する部分吸着性能と湿式使用性能を両立させるには限界がある。   However, when a porous plate with an average pore diameter of 10 μm described in Non-Patent Document 2 is used, the vacuum chuck is compatible with wet use and has some partial adsorption performance, but still exhibits sufficient partial adsorption performance. do not do. In particular, if the size of the workpiece is reduced, this vacuum chuck cannot be held by suction. Therefore, there is a limit to satisfy both conflicting partial adsorption performance and wet use performance only by adjusting the pore diameter of the porous plate.

本発明は、かかる点に鑑みてなされたものであり、部分吸着性能と湿式使用性能を両立させる真空チャックを提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the vacuum chuck which makes a partial adsorption | suction performance and wet use performance compatible.

前記の目的を達成するため、本発明は、ワークを真空引きして吸着保持するための多層多孔質板であって、表面でワークを保持する表層多孔質層と、前記表層多孔質層の裏面側に積層して設けられた基材多孔質層と、を有し、前記表層多孔質層の平均空孔径は前記基材多孔質層の平均空孔径よりも小さく、前記表層多孔質層の平均空孔径と前記基材多孔質層の平均空孔径は、それぞれワークの処理液が透過可能な大きさであることを特徴としている。   In order to achieve the above object, the present invention provides a multilayer porous plate for evacuating and holding a workpiece by suction, a surface porous layer holding the workpiece on the surface, and a back surface of the surface porous layer Substrate porous layer provided on the side, and the average pore diameter of the surface porous layer is smaller than the average pore diameter of the substrate porous layer, the average of the surface porous layer The pore diameter and the average pore diameter of the substrate porous layer are characterized in that each has a size that allows the treatment liquid of the workpiece to pass therethrough.

発明者らが鋭意検討したところ、多孔質板を薄くすると、平均空孔径が小さくても処理液による目詰まりを抑制できることを見出した。すなわち、多孔質板を薄くすると、部分吸着性能と湿式使用性能を両立させることができる。なお、この理由については後述の実施の形態において説明する。   As a result of extensive studies by the inventors, it has been found that when the porous plate is made thin, clogging by the treatment liquid can be suppressed even if the average pore diameter is small. That is, when the porous plate is thinned, both the partial adsorption performance and the wet use performance can be achieved. This reason will be described in an embodiment described later.

しかしながら、多孔質板の厚みを薄くするにも、強度や精度の面で構造上の限界がある。そこで、本発明では多孔質板を多層構造にしている。表層多孔質層ではその平均空孔径を小さくして圧力損失を高くすることができ、ワークを部分吸着することができる。一方で、表層多孔質層を支持する基材多孔質層により、当該表層多孔質層を薄くすることができ、しかも表層多孔質層の平均空孔径は処理液が透過可能な大きさであるため、表層多孔質層から処理液を適切に排出して目詰まりを抑制することができる。したがって、本発明の多層多孔質板を備えた真空チャックを用いることにより、部分吸着性能と湿式使用性能を両立させることができる。   However, even if the thickness of the porous plate is reduced, there are structural limitations in terms of strength and accuracy. Therefore, in the present invention, the porous plate has a multilayer structure. In the surface porous layer, the average pore diameter can be reduced to increase the pressure loss, and the workpiece can be partially adsorbed. On the other hand, the substrate porous layer that supports the surface porous layer can make the surface porous layer thin, and the average pore size of the surface porous layer is such that the treatment liquid can permeate. The clogging can be suppressed by appropriately discharging the treatment liquid from the surface porous layer. Therefore, by using the vacuum chuck provided with the multilayer porous plate of the present invention, both the partial adsorption performance and the wet use performance can be achieved.

なお、基材多孔質層においてはその平均空孔径が大きく、しかも基材多孔質層の平均空孔径は処理液が透過可能な大きさであるため、基材多孔質層から処理液を適切に排出することができる。   In addition, since the average pore diameter of the substrate porous layer is large and the average pore diameter of the substrate porous layer is a size that allows the treatment liquid to pass through, the treatment liquid is appropriately removed from the substrate porous layer. Can be discharged.

前記表層多孔質層の厚みは前記基材多孔質層の厚みより小さくてもよい。   The thickness of the surface porous layer may be smaller than the thickness of the substrate porous layer.

前記基材多孔質層の平均空孔径に対する前記表層多孔質層の平均空孔径の比率は、1/20〜1/10であるのが好ましい。   The ratio of the average pore diameter of the surface porous layer to the average pore diameter of the substrate porous layer is preferably 1/20 to 1/10.

前記表層多孔質層の空孔率と前記基材多孔質層の空孔率は、それぞれ30%〜50%であるのが好ましい。   The porosity of the surface porous layer and the porosity of the substrate porous layer are preferably 30% to 50%, respectively.

前記表層多孔質層と前記基材多孔質層の間には、1つ以上の中間多孔質層が設けられ、前記中間多孔質層の平均空孔径は、前記表層多孔質層の平均空孔径より大きく、且つ前記基材多孔質層の平均空孔径より小さくてもよい。   One or more intermediate porous layers are provided between the surface porous layer and the substrate porous layer, and the average pore diameter of the intermediate porous layer is larger than the average pore diameter of the surface porous layer. It may be larger and smaller than the average pore size of the porous substrate layer.

別な観点による本発明は、ワークを真空引きして吸着保持するための多層多孔質板の製造方法であって、表面でワークを保持する表層多孔質層に対し、当該表層多孔質層の裏面側に基材多孔質層を積層し、前記表層多孔質層の平均空孔径が前記基材多孔質層の平均空孔径よりも小さく、且つ前記表層多孔質層の平均空孔径と前記基材多孔質層の平均空孔径が、それぞれワークの処理液が透過可能な大きさとなるように前記多層多孔質板を製造することを特徴としている。   Another aspect of the present invention is a method for producing a multilayer porous plate for evacuating and holding a workpiece by vacuum suction, wherein the back surface of the surface porous layer is a surface porous layer that holds the workpiece on the surface. The substrate porous layer is laminated on the side, the average pore diameter of the surface porous layer is smaller than the average pore diameter of the substrate porous layer, and the average pore diameter of the surface porous layer and the substrate porosity The multilayer porous plate is manufactured such that the average pore diameter of the porous layer is such that each of the workpiece treatment liquids can pass therethrough.

前記表層多孔質層と前記基材多孔質層に少なくとも熱又は圧力をかけて、当該表層多孔質層と基材多孔質層を接合してもよい。或いは、前記基材多孔質層の表面に塗布液を塗布して前記表層多孔質層を形成してもよい。或いは、前記基材多孔質層の表面に溶射材を溶射して前記表層多孔質層を形成してもよい。   The surface porous layer and the substrate porous layer may be bonded to each other by applying at least heat or pressure to the surface porous layer and the substrate porous layer. Alternatively, the surface porous layer may be formed by applying a coating solution on the surface of the substrate porous layer. Alternatively, the surface porous layer may be formed by spraying a thermal spray material on the surface of the substrate porous layer.

前記表層多孔質層の厚みが前記基材多孔質層の厚みより小さくなるように前記多層多孔質板を製造してもよい。   The multilayer porous plate may be manufactured such that the thickness of the surface porous layer is smaller than the thickness of the substrate porous layer.

前記基材多孔質層の平均空孔径に対する前記表層多孔質層の平均空孔径の比率が、1/20〜1/10となるように前記多層多孔質板を製造するのが好ましい。   The multilayer porous plate is preferably manufactured such that the ratio of the average pore diameter of the surface porous layer to the average pore diameter of the substrate porous layer is 1/20 to 1/10.

前記表層多孔質層の空孔率と前記基材多孔質層の空孔率が、それぞれ30%〜50%となるように前記多層多孔質板を製造するのが好ましい。   The multilayer porous plate is preferably manufactured so that the porosity of the surface porous layer and the porosity of the base porous layer are 30% to 50%, respectively.

前記表層多孔質層と前記基材多孔質層の間に、1つ以上の中間多孔質層を設け、前記中間多孔質層の平均空孔径が、前記表層多孔質層の平均空孔径より大きく、且つ前記基材多孔質層の平均空孔径より小さくなるように前記多層多孔質板を製造してもよい。   One or more intermediate porous layers are provided between the surface porous layer and the substrate porous layer, and the average pore diameter of the intermediate porous layer is larger than the average pore diameter of the surface porous layer, And the said multilayer porous board may be manufactured so that it may become smaller than the average hole diameter of the said base material porous layer.

本発明の多層多孔質板を備えた真空チャックを用いることにより、部分吸着性能と湿式使用性能を両立させることができる。   By using the vacuum chuck provided with the multilayer porous plate of the present invention, it is possible to achieve both partial adsorption performance and wet use performance.

本実施の形態にかかる多孔質板を備えた真空チャックの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the vacuum chuck provided with the porous board concerning this Embodiment. 多孔質板の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of a porous board. 多孔質板の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of a porous board. 多孔質板の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of a porous board. 多孔質板の設計方法を説明するためのグラフである。It is a graph for demonstrating the design method of a porous board. 他の実施の形態にかかる多孔質板を備えた真空チャックの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the vacuum chuck provided with the porous board concerning other embodiment.

以下、本発明の実施の形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。   Embodiments of the present invention will be described below. In addition, this invention is not limited by embodiment shown below.

<1.真空チャック>
先ず、本実施の形態にかかる多層多孔質板を備えた真空チャックの構成について説明する。図1は、真空チャック10の構成の概略を示す縦断面図である。真空チャック10は、当該真空チャック10の吸着部分よりも小さい複数のワークWを真空引きして吸着保持する。
<1. Vacuum chuck>
First, the structure of the vacuum chuck provided with the multilayer porous board concerning this Embodiment is demonstrated. FIG. 1 is a longitudinal sectional view showing an outline of the configuration of the vacuum chuck 10. The vacuum chuck 10 sucks and holds a plurality of workpieces W smaller than the suction portion of the vacuum chuck 10 by vacuuming.

真空チャック10は、多孔質板20と、多孔質板20の裏面側に設けられた本体部30を有している。多孔質板20は、表層多孔質層21と基材多孔質層22が積層された2層構造を有している。なお、この多孔質板20の詳細な構成については後述する。   The vacuum chuck 10 has a porous plate 20 and a main body portion 30 provided on the back side of the porous plate 20. The porous plate 20 has a two-layer structure in which a surface porous layer 21 and a substrate porous layer 22 are laminated. The detailed configuration of the porous plate 20 will be described later.

本体部30の内部には、多孔質板20との間において吸引空間31が形成されている。吸引空間31には吸引管40が接続され、吸引管40は例えば真空ポンプ41に接続されている。そして真空ポンプ41を作動させると、吸引管40から吸引空間31と多孔質板20を介して、表層多孔質層21の表面21aに載置された複数のワークWが真空引きされ、真空チャック10に一括して吸着保持される。   A suction space 31 is formed between the main body 30 and the porous plate 20. A suction tube 40 is connected to the suction space 31, and the suction tube 40 is connected to a vacuum pump 41, for example. When the vacuum pump 41 is operated, the plurality of workpieces W placed on the surface 21 a of the surface porous layer 21 are evacuated from the suction pipe 40 through the suction space 31 and the porous plate 20, and the vacuum chuck 10. Are held together.

なお、真空チャック10を湿式使用する場合、真空ポンプ41を作動させると、処理液は多孔質板20と吸引空間31を介して吸引管40から排出される。そして吸引管40内の処理液は、当該吸引管40に接続された排液槽(図示せず)に回収される。   When the vacuum chuck 10 is used in a wet manner, when the vacuum pump 41 is operated, the processing liquid is discharged from the suction tube 40 through the porous plate 20 and the suction space 31. Then, the processing liquid in the suction pipe 40 is collected in a drain tank (not shown) connected to the suction pipe 40.

<2.多層多孔質板の構成>
次に、上述した多孔質板20の構成について説明する。多孔質板20は、真空チャック10の部分吸着性能と湿式使用性能を両立させるように構成されており、発明者らは鋭意検討した結果、以下の知見に基づいて多層の多孔質板20に至った。当該知見の説明に際しては、図2〜図4に示した多孔質板100を用いて説明する。
<2. Configuration of multilayer porous plate>
Next, the configuration of the porous plate 20 described above will be described. The porous plate 20 is configured to achieve both the partial adsorption performance and the wet use performance of the vacuum chuck 10. As a result of intensive studies, the inventors have arrived at the multilayer porous plate 20 based on the following knowledge. It was. The explanation of the knowledge will be described using the porous plate 100 shown in FIGS.

真空チャック10の部分吸着性能を発揮させるためには、図2に示すように平均空孔径を小さくした多孔質板100を用いる必要がある。平均空孔径を小さくすると、多孔質板100の圧力損失が高くなる。かかる場合、真空ポンプ41を作動させて多孔質板100の表面の複数のワークWを真空引きする際、ワークWの裏面に負圧が発生し、ワークWの表面における大気圧との圧力差により、ワークWが吸着保持される。したがって、多孔質板100の平均空孔径を小さくすることで、真空チャック10の部分吸着性能が発揮される。   In order to exhibit the partial adsorption performance of the vacuum chuck 10, it is necessary to use a porous plate 100 having a reduced average pore diameter as shown in FIG. When the average pore diameter is reduced, the pressure loss of the porous plate 100 is increased. In such a case, when the plurality of workpieces W on the surface of the porous plate 100 are evacuated by operating the vacuum pump 41, a negative pressure is generated on the back surface of the workpiece W, and the pressure difference from the atmospheric pressure on the surface of the workpiece W The workpiece W is sucked and held. Therefore, the partial suction performance of the vacuum chuck 10 is exhibited by reducing the average pore diameter of the porous plate 100.

しかしながら、単に多孔質板100の平均空孔径を小さくしただけでは、当該平均空孔径が処理液を透過可能な大きさであっても、真空チャック10を湿式使用できない場合がある。   However, if the average pore diameter of the porous plate 100 is simply reduced, the vacuum chuck 10 may not be used wet even if the average pore diameter is a size that allows the treatment liquid to pass therethrough.

図3に示すように処理液Lを多孔質板100の表面100aに供給すると、処理液Lは多孔質板100の内部に進入し、多孔質板100の裏面100bから排出される。このとき、例えばワークW1のサイズが大きい場合、処理液Lは、多孔質板100においてワークW1の下方にある程度浸透するが、多孔質板100の裏面100bから排出される。すなわち処理液Lは、ワークW1の下方の多孔質板100の裏面100bを完全には塞がない。したがって、ワークW1を真空引きして吸着保持することができる。   As shown in FIG. 3, when the processing liquid L is supplied to the surface 100 a of the porous plate 100, the processing liquid L enters the porous plate 100 and is discharged from the back surface 100 b of the porous plate 100. At this time, for example, when the size of the workpiece W1 is large, the treatment liquid L penetrates to some extent below the workpiece W1 in the porous plate 100, but is discharged from the back surface 100b of the porous plate 100. That is, the processing liquid L does not completely block the back surface 100b of the porous plate 100 below the workpiece W1. Therefore, the workpiece W1 can be vacuumed and held by suction.

一方、例えばワークW2のサイズが小さい場合、処理液Lは多孔質板100においてワークW2の下方に浸透し、当該処理液Lによりワークの下方の裏面100bが目詰まりする。このため、ワークW2を真空引きすることができず吸着保持することができない。   On the other hand, for example, when the size of the workpiece W2 is small, the processing liquid L permeates below the workpiece W2 in the porous plate 100, and the back surface 100b below the workpiece is clogged by the processing liquid L. For this reason, the workpiece W2 cannot be evacuated and cannot be sucked and held.

そこで、図4に示すように多孔質板100を薄くする。かかる場合、サイズの小さいワークW2に対し、処理液Lは多孔質板100の裏面100bから排出され、ワークW2の下方の多孔質板100の裏面100bを完全には塞がない。したがって、ワークW2を真空引きして吸着保持することができる。   Therefore, the porous plate 100 is thinned as shown in FIG. In such a case, the processing liquid L is discharged from the back surface 100b of the porous plate 100 with respect to the work W2 having a small size, and does not completely block the back surface 100b of the porous plate 100 below the work W2. Therefore, the workpiece W2 can be vacuumed and held.

以上のように多孔質板100を薄くすると、平均空孔径が小さくても処理液Lによる多孔質板100の目詰まりを抑制することができ、すなわち真空チャック10の部分吸着性能と湿式使用性能を両立させることができる。但し、多孔質板100の厚みを薄くするにも、強度や精度の面で構造上の限界がある。具体的には、例えば多孔質板100が平面視において300mm径の円形状を有する場合、使用条件にも拠るが、厚み2mmが構造上の限界である。   As described above, when the porous plate 100 is thinned, the clogging of the porous plate 100 by the processing liquid L can be suppressed even when the average pore diameter is small, that is, the partial adsorption performance and the wet use performance of the vacuum chuck 10 are improved. Both can be achieved. However, in order to reduce the thickness of the porous plate 100, there are structural limitations in terms of strength and accuracy. Specifically, for example, when the porous plate 100 has a circular shape with a diameter of 300 mm in plan view, a thickness of 2 mm is a structural limit, although it depends on use conditions.

なお、真空チャック10を湿式使用する際に部分吸着性能を向上させるには、吸引管40の径を大きくしたり、或いは真空ポンプ41の能力(容量)を向上させることも考えられる。しかしながら、これらを吸引管40の径と真空ポンプ41の能力を調整するには構造上や原理上の限界があり、真空チャック10の部分吸着性能を十分に向上させるには至らない。   In order to improve the partial suction performance when the vacuum chuck 10 is used in a wet manner, it is conceivable to increase the diameter of the suction tube 40 or to improve the capacity (capacity) of the vacuum pump 41. However, adjusting the diameter of the suction tube 40 and the capacity of the vacuum pump 41 has structural and theoretical limitations, and the partial suction performance of the vacuum chuck 10 cannot be sufficiently improved.

以上の知見に基づき、図1に示したように本実施の形態では、多孔質板20を表層多孔質層21と基材多孔質層22の2層構造にする。すなわち、表層多孔質層21の平均空孔径を小さくし、且つ表層多孔質層21を薄くする。さらに表層多孔質層21を薄くした分、その強度不足を補うため、表層多孔質層21の裏面21b側に基材多孔質層22を積層する。   Based on the above knowledge, as shown in FIG. 1, in the present embodiment, the porous plate 20 has a two-layer structure of a surface porous layer 21 and a substrate porous layer 22. That is, the average pore diameter of the surface porous layer 21 is reduced, and the surface porous layer 21 is thinned. Further, the base porous layer 22 is laminated on the back surface 21b side of the surface porous layer 21 in order to compensate for the lack of strength due to the thinning of the surface porous layer 21.

表層多孔質層21の平均空孔径は、例えば1μm〜10μmである。平均空孔径には処理液Lが透過可能な大きさが必要であり、このためには平均空孔径1μm以上が必要である。一方、表層多孔質層21には、部分吸着性能を確保するために十分な圧力損失が必要であり、このためには平均空孔径10μm以下であることが必要である。   The average pore diameter of the surface porous layer 21 is, for example, 1 μm to 10 μm. The average pore diameter needs to be large enough to allow the treatment liquid L to pass through. For this purpose, an average pore diameter of 1 μm or more is required. On the other hand, the surface porous layer 21 needs to have a sufficient pressure loss in order to ensure partial adsorption performance. For this purpose, it is necessary that the average pore diameter is 10 μm or less.

表層多孔質層21の空孔率は、例えば30%〜50%である。空孔率は表層多孔質層21の圧力損失に影響し、空孔率が小さいほど圧力損失は大きくなり、平均空孔率を小さくした場合と同様に、部分吸着性能が向上する。但し製作上、30%〜50%が限界である。   The porosity of the surface porous layer 21 is, for example, 30% to 50%. The porosity affects the pressure loss of the surface porous layer 21. The smaller the porosity, the larger the pressure loss, and the partial adsorption performance improves as in the case where the average porosity is reduced. However, 30% to 50% is a limit in production.

表層多孔質層21は基材多孔質層22に支持されている分、十分に薄くすることができ、表層多孔質層21の厚みは例えば50μm〜0.5mmである。表層多孔質層21には十分な圧力損失が必要であり、このためには、例えば平均空孔径1μmに対して厚みが50μm以上必要である。一方、表層多孔質層21は処理液Lによる目詰まりを抑制する必要があり、このためには、例えば処理液Lが純水で、ワークWのサイズが5mm×5mmである場合、厚みが0.5mm以下であることが望ましい。   The surface porous layer 21 can be made sufficiently thin as long as it is supported by the substrate porous layer 22, and the thickness of the surface porous layer 21 is, for example, 50 μm to 0.5 mm. The surface porous layer 21 needs to have a sufficient pressure loss. For this purpose, for example, a thickness of 50 μm or more is required for an average pore diameter of 1 μm. On the other hand, the surface porous layer 21 needs to suppress clogging by the processing liquid L. For this purpose, for example, when the processing liquid L is pure water and the size of the workpiece W is 5 mm × 5 mm, the thickness is 0. It is desirable that it is 5 mm or less.

なお、表層多孔質層21には、例えばアルミナセラミックスやSiC(炭化ケイ素)などのセラミックが用いられる。   The surface porous layer 21 is made of ceramic such as alumina ceramics or SiC (silicon carbide).

基材多孔質層22の平均空孔径は、表層多孔質層21の平均空孔径よりも大きい。これはもちろん処理液Lが透過可能な大きさである。具体的には、基材多孔質層22の平均空孔径に対する表層多孔質層21の平均空孔径の比率は、1/20〜1/10であって、基材多孔質層22の平均空孔径は例えば10μm〜230μmである。かかる場合、表層多孔質層21の空孔と基材多孔質層22の空孔が厚み方向に連続し、表層多孔質層21から基材多孔質層22への空気や処理液Lの流通が妨げられない。   The average pore diameter of the substrate porous layer 22 is larger than the average pore diameter of the surface porous layer 21. Of course, this is a size through which the treatment liquid L can permeate. Specifically, the ratio of the average pore diameter of the surface porous layer 21 to the average pore diameter of the substrate porous layer 22 is 1/20 to 1/10, and the average pore diameter of the substrate porous layer 22 is Is, for example, 10 μm to 230 μm. In such a case, the pores of the surface porous layer 21 and the pores of the substrate porous layer 22 are continuous in the thickness direction, and the flow of air and the processing liquid L from the surface porous layer 21 to the substrate porous layer 22 is performed. I can't interfere.

基材多孔質層22の空孔率は、表層多孔質層21の空孔率と同様に例えば30%〜50%である。これは製作上の限界である。   The porosity of the base porous layer 22 is, for example, 30% to 50%, similarly to the porosity of the surface porous layer 21. This is a production limit.

基材多孔質層22は表層多孔質層21を支持するため、厚い方が好ましく、基材多孔質層22の厚みは表層多孔質層21の厚みよりも大きい。具体的には、基材多孔質層22は例えば2mm〜10mmである。   Since the substrate porous layer 22 supports the surface porous layer 21, the substrate porous layer 22 is preferably thicker, and the thickness of the substrate porous layer 22 is larger than the thickness of the surface porous layer 21. Specifically, the base porous layer 22 is 2 mm to 10 mm, for example.

なお、基材多孔質層22には、例えばアルミナセラミックスやSiC(炭化ケイ素)などのセラミックが用いられる。   The base porous layer 22 is made of ceramic such as alumina ceramics or SiC (silicon carbide).

表層多孔質層21と基材多孔質層22の接合面では、空気や処理液Lの流通を適切に行うため、表層多孔質層21の空孔と基材多孔質層22の空孔が目詰まりをおこすことなく密に接合されている。   At the joint surface between the surface porous layer 21 and the base material porous layer 22, the air holes in the surface layer porous layer 21 and the air holes in the base material porous layer 22 are visible in order to appropriately flow air and the processing liquid L. Closely joined without clogging.

以上のように構成された多孔質板20を用いた場合、表層多孔質層21ではその平均空孔径が小さいので必要な圧力損失をもち、部分吸着使用においても、ワークWを適切に吸着保持することができる。   When the porous plate 20 configured as described above is used, the surface porous layer 21 has a small average pore diameter, and thus has a necessary pressure loss, and appropriately holds the workpiece W by suction even in partial suction use. be able to.

しかも、多孔質板20を湿式使用した場合、処理液Lが表層多孔質層21を透過する際には、表層多孔質層21が薄いので、処理液Lを適切に排出して目詰まりを抑制することができる。さらに処理液Lが基材多孔質層22を透過する際には、基材多孔質層22の平均空孔径が十分に大きいので、処理液Lを適切に排出することができる。   In addition, when the porous plate 20 is used in a wet manner, when the treatment liquid L permeates the surface porous layer 21, the surface porous layer 21 is thin, so that the treatment liquid L is appropriately discharged to prevent clogging. can do. Furthermore, when the processing liquid L permeates the base material porous layer 22, the processing liquid L can be appropriately discharged because the average pore diameter of the base material porous layer 22 is sufficiently large.

したがって、本実施の形態の多孔質板20を用いることで、真空チャック10の部分吸着性能と湿式使用性能を両立させることができる。そして、従来のように単層の多孔質板を用いた場合に比べて、より小さいサイズのワークWを吸着保持することができる。具体的に発明者らは、多孔質板20を用いた場合、例えば5mm×5mm角のワークWを湿式使用においても保持できることを確認している。   Therefore, by using the porous plate 20 of the present embodiment, both the partial adsorption performance and the wet use performance of the vacuum chuck 10 can be achieved. Then, the work W having a smaller size can be sucked and held as compared with the case where a single-layer porous plate is used as in the prior art. Specifically, the inventors have confirmed that when the porous plate 20 is used, for example, a workpiece W of 5 mm × 5 mm square can be held even in wet use.

また、多孔質板20では表層多孔質層21に基材多孔質層22を積層させているので、従来のように単層の多孔質板を用いた場合に比べて、その構造を強固なものにできる。例えば多孔質板20に熱負荷や圧力付加がかかっても、それに耐え得る。   In addition, since the base plate porous layer 22 is laminated on the surface layer porous layer 21 in the porous plate 20, the structure thereof is stronger than in the case of using a single layer porous plate as in the prior art. Can be. For example, even if a heat load or pressure is applied to the porous plate 20, it can withstand it.

さらに、多孔質板20を湿式使用した場合でも、表層多孔質層21の平均空孔径が小さいので処理液Lが表層多孔質層21に浸透しにくく、当該処理液Lの使用量を抑制することができる。さらに吸引管40の径を小さく、真空ポンプ41の容量を小さくすることもできる。   Furthermore, even when the porous plate 20 is used in a wet manner, the average pore diameter of the surface porous layer 21 is small, so that the processing liquid L hardly penetrates into the surface porous layer 21, and the amount of the processing liquid L used is suppressed. Can do. Furthermore, the diameter of the suction tube 40 can be reduced, and the capacity of the vacuum pump 41 can be reduced.

ここで、図5を用いて、本実施の形態の多孔質板20の設計方法について説明する。図5は、本実施の形態の多孔質板20の性能と比較例1、2の多孔質板の性能を検証するため、発明者らが行った実験の結果である。比較例1の多孔質板は非特許文献2に記載された多孔質板であって、平均空孔径が10μmの単層の多孔質板である。比較例2の多孔質板は、平均空孔径が1μmの単層の多孔質板である。   Here, the design method of the porous plate 20 of this Embodiment is demonstrated using FIG. FIG. 5 shows the results of experiments conducted by the inventors to verify the performance of the porous plate 20 of the present embodiment and the performance of the porous plates of Comparative Examples 1 and 2. The porous plate of Comparative Example 1 is a porous plate described in Non-Patent Document 2, and is a single-layer porous plate having an average pore diameter of 10 μm. The porous plate of Comparative Example 2 is a single-layer porous plate having an average pore diameter of 1 μm.

実験では、先ず、ドライ環境で真空ポンプにより多孔質板を真空引きし、多孔質板の圧力損失を計測する。続いて15秒間多孔質板を水中に浸漬させ、多孔質板を水で目詰まりさせる。その後、多孔質板を水中から取り出しドライ環境で放置する。この際、真空ポンプにより多孔質板を真空引きして、30秒ごとに多孔質板の圧力損失を計測し、目詰まりからの復帰時間、すなわち排液性能を確認する。なお、この実験では多孔質板にワークWを載置していない。   In the experiment, first, the porous plate is evacuated by a vacuum pump in a dry environment, and the pressure loss of the porous plate is measured. Subsequently, the porous plate is immersed in water for 15 seconds, and the porous plate is clogged with water. Thereafter, the porous plate is taken out of water and left in a dry environment. At this time, the porous plate is evacuated by a vacuum pump, the pressure loss of the porous plate is measured every 30 seconds, and the recovery time from clogging, that is, the drainage performance is confirmed. In this experiment, the workpiece W is not placed on the porous plate.

図5において縦軸は圧力損失を示し、横軸は時間を示している。比較例1では、平均空孔径が大きいため、目詰まりしてからの復帰時間が短く、排液性能は高い。しかしながら、多孔質板の圧力損失が小さく、部分吸着性能は低い。比較例2では、平均空孔径が小さいため、多孔質板の圧力損失が大きく部分吸着性能は高い。しかしながら、目詰まりしてからの復帰時間が長く、排液性能は低い。したがって、比較例1、2共に、部分吸着性能と湿式使用性能を両立させることができない。   In FIG. 5, the vertical axis indicates pressure loss, and the horizontal axis indicates time. In Comparative Example 1, since the average pore diameter is large, the return time after clogging is short, and the drainage performance is high. However, the pressure loss of the porous plate is small and the partial adsorption performance is low. In Comparative Example 2, since the average pore diameter is small, the pressure loss of the porous plate is large and the partial adsorption performance is high. However, the recovery time after clogging is long, and the drainage performance is low. Therefore, both the comparative examples 1 and 2 cannot achieve both the partial adsorption performance and the wet use performance.

これに対して、本実施の形態の多孔質板20では、多孔質板の圧力損失が大きく部分吸着性能は高い。しかも、目詰まりしてからの復帰時間が短く、排液性能も高い。したがって、部分吸着性能と湿式使用性能を両立させることができる。   On the other hand, in the porous plate 20 of the present embodiment, the pressure loss of the porous plate is large and the partial adsorption performance is high. Moreover, the recovery time after clogging is short, and the drainage performance is high. Therefore, it is possible to achieve both partial adsorption performance and wet use performance.

なお、多孔質板20における表層多孔質層21の平均空孔径と厚みを最適化するためには、図5のグラフにおいて、全体的に圧力損失を大きくしつつ、目詰まりしてからの復帰時間を短くすればよい。すなわち、グラフを全体的に下方にしつつ、圧力損失が最大になってからのグラフの傾きをできるだけ大きくすればよい。   In order to optimize the average pore diameter and thickness of the surface porous layer 21 in the porous plate 20, in the graph of FIG. 5, the return time after clogging is increased while increasing the pressure loss as a whole. Should be shortened. That is, it is only necessary to make the slope of the graph as large as possible after the pressure loss is maximized while making the graph as a whole downward.

<3.多層多孔質板の製造方法>
次に、上述した多孔質板20の製造方法について説明する。多孔質板20の製造には種々の方法があり、特に限定されるものではないが、本実施の形態では3つの製造方法について説明する。
<3. Manufacturing method of multilayer porous plate>
Next, the manufacturing method of the porous board 20 mentioned above is demonstrated. There are various methods for manufacturing the porous plate 20 and the method is not particularly limited. In the present embodiment, three manufacturing methods will be described.

1つ目の製造方法は、平板状の表層多孔質層21と平板状の基材多孔質層22を予め用意しておき、これらを接合する方法である。表層多孔質層21は、所望の厚さよりも厚いものを用意しておく。表層多孔質層21と基材多孔質層22の接合面では空孔の連続性を持たせるため、接着剤等の付加物を使用することはできない。そこで、表層多孔質層21と基材多孔質層22に少なくとも熱又は圧力をかけて接合する。その後、表層多孔質層21と基材多孔質層22が接合された状態で表層多孔質層21の表面をラッピングし(研磨し)、当該表層多孔質層21を所望の厚さに仕上げる。   The first manufacturing method is a method of preparing a flat surface layer porous layer 21 and a flat substrate porous layer 22 in advance, and joining them. The surface porous layer 21 is prepared to be thicker than a desired thickness. In order to provide continuity of pores at the joint surface between the surface porous layer 21 and the base material porous layer 22, an additive such as an adhesive cannot be used. Therefore, the surface porous layer 21 and the substrate porous layer 22 are joined by applying at least heat or pressure. Thereafter, the surface porous layer 21 is lapped (polished) with the surface porous layer 21 and the substrate porous layer 22 joined to finish the surface porous layer 21 to a desired thickness.

2つ目の製造方法は、平板状の基材多孔質層22の表面に所定の塗布液を塗布する方法である。塗布液には、例えば溶剤にセラミックスの粒子を溶解させた液が用いられる。基材多孔質層22に塗布液を塗布する方法は特に限定されないが、例えばスピン塗布法が用いられる。スピン塗布法は、スピンチャックに保持された基材多孔質層22を回転させながら、当該基材多孔質層22の中心部に塗布液を供給し、遠心力を利用して基材多孔質層22の表面全面に塗布液を拡散させる方法である。その後、基材多孔質層22上に塗布された塗布液を焼成して、表層多孔質層21を形成する。   The second manufacturing method is a method in which a predetermined coating solution is applied to the surface of the flat substrate porous layer 22. As the coating solution, for example, a solution in which ceramic particles are dissolved in a solvent is used. The method for applying the coating liquid to the substrate porous layer 22 is not particularly limited, and for example, a spin coating method is used. In the spin coating method, while rotating the substrate porous layer 22 held by the spin chuck, the coating liquid is supplied to the central portion of the substrate porous layer 22 and the substrate porous layer is utilized using centrifugal force. 22 is a method of diffusing the coating liquid over the entire surface of the surface 22. Thereafter, the coating liquid applied on the substrate porous layer 22 is baked to form the surface porous layer 21.

3つ目の製造方法は、平板状の基材多孔質層22の表面に所定の溶射材、例えばセラミックスを溶射する方法である。これには一般的なセラミック溶射方法が用いられる。そして、基材多孔質層22上に表層多孔質層21を形成する。   The third manufacturing method is a method in which a predetermined thermal spray material, for example, ceramics is sprayed on the surface of the flat substrate-like porous layer 22. For this, a general ceramic spraying method is used. Then, the surface porous layer 21 is formed on the substrate porous layer 22.

以上のいずれの場合でも多孔質板20を製造することができる。なお、1つ目の製造方法においては、表層多孔質層21の厚みを任意に調整することができ、比較的厚い層も形成することができる。また、2つ目と3つ目の製造方法においては、使用される塗布液や溶射材の粒子サイズを調整することで、表層多孔質層21の平均空孔径を任意に調整することができる。   In any of the above cases, the porous plate 20 can be manufactured. In the first manufacturing method, the thickness of the surface porous layer 21 can be arbitrarily adjusted, and a relatively thick layer can be formed. Further, in the second and third production methods, the average pore diameter of the surface porous layer 21 can be arbitrarily adjusted by adjusting the particle size of the coating liquid and sprayed material used.

<4.他の実施の形態>
次に、本発明の他の実施の形態について説明する。
<4. Other embodiments>
Next, another embodiment of the present invention will be described.

<4−1.他の実施の形態>
以上の実施の形態では、多孔質板20は2層構造を有していたが、3層以上が積層されていてもよい。図6に示すように表層多孔質層21と基材多孔質層22の間には中間多孔質層23が設けられる。中間多孔質層23の平均空孔径は、表層多孔質層21の平均空孔径より大きく、且つ基材多孔質層22の平均空孔径より小さい。
<4-1. Other embodiments>
In the above embodiment, the porous plate 20 has a two-layer structure, but three or more layers may be laminated. As shown in FIG. 6, an intermediate porous layer 23 is provided between the surface porous layer 21 and the substrate porous layer 22. The average pore diameter of the intermediate porous layer 23 is larger than the average pore diameter of the surface porous layer 21 and smaller than the average pore diameter of the base porous layer 22.

かかる場合、平均空孔径が表層多孔質層21、中間多孔質層23、基材多孔質層22の順に大きくなっていくので、多孔質板20において空気や処理液Lをより円滑に透過させることができる。   In such a case, the average pore diameter increases in the order of the surface porous layer 21, the intermediate porous layer 23, and the base material porous layer 22, so that air and the treatment liquid L can be more smoothly permeated through the porous plate 20. Can do.

特に上述した多孔質板20の製造方法において、2つ目の塗布方法と3つ目の溶射方法を用いる場合、基材多孔質層22の多孔質材料の粒径と成膜する表層多孔質層21の粒径がかけ離れている場合、基材多孔質層22の空孔に表層多孔質層21の粒子が入り込んでしまって、基材多孔質層22が目詰まりしたり、表層多孔質層21の厚みが不均一になるおそれがある。このため、本実施の形態のように中間多孔質層23を設けることにより、基材多孔質層22の目詰まりや表層多孔質層21の厚み不均一を抑制することができる。   In particular, when the second coating method and the third thermal spraying method are used in the method for manufacturing the porous plate 20 described above, the particle size of the porous material of the substrate porous layer 22 and the surface porous layer to be formed are formed. When the particle size of 21 is far away, the particles of the surface porous layer 21 enter the pores of the substrate porous layer 22 and the substrate porous layer 22 is clogged or the surface porous layer 21 is clogged. There is a possibility that the thickness of the material becomes non-uniform. For this reason, by providing the intermediate porous layer 23 as in the present embodiment, clogging of the base porous layer 22 and uneven thickness of the surface porous layer 21 can be suppressed.

なお、表層多孔質層21と基材多孔質層22の間において、複数の中間多孔質層23が設けられていてもよい。かかる場合、複数の中間多孔質層23の平均空孔径は、表層多孔質層21側から基材多孔質層22側に向けて大きくなる。   A plurality of intermediate porous layers 23 may be provided between the surface porous layer 21 and the substrate porous layer 22. In such a case, the average pore diameter of the plurality of intermediate porous layers 23 increases from the surface porous layer 21 side toward the substrate porous layer 22 side.

<4−2.他の実施の形態>
以上の実施の形態の真空チャック10は、例えばヒータ(図示せず)を備えていてもよい。ヒータは、多孔質板20に内部に設けられていてもよいし、外部に設けられていてもよい。
<4-2. Other embodiments>
The vacuum chuck 10 of the above embodiment may be provided with a heater (not shown), for example. The heater may be provided inside the porous plate 20 or may be provided outside.

また、以上の実施の形態の多孔質板20(真空チャック10)は、種々の処理に対して適用できる。例えば半導体製造装置に適用してもよいし、検査装置に適用してもよい。適用する処理に応じて、ワークWの種類も変わり、また用いられる処理液Lも変わる。また、例えば処理液Lには、半導体装置を製造する際の洗浄液等が用いられてもよい。さらに、処理液Lは加熱されていてもよく、上述した洗浄液の場合、例えば約80℃に加熱されていてもよい。さらに多孔質板20の平面形状も特に限定されるものではなく、例えば円形状であってもよいし、矩形状であってもよい。   Moreover, the porous plate 20 (vacuum chuck 10) of the above embodiment is applicable with respect to various processes. For example, it may be applied to a semiconductor manufacturing apparatus or an inspection apparatus. Depending on the processing to be applied, the type of the workpiece W also changes, and the processing liquid L used also changes. Further, for example, as the processing liquid L, a cleaning liquid at the time of manufacturing a semiconductor device may be used. Further, the treatment liquid L may be heated, and in the case of the cleaning liquid described above, for example, it may be heated to about 80 ° C. Furthermore, the planar shape of the porous plate 20 is not particularly limited, and may be, for example, a circular shape or a rectangular shape.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

10 真空チャック
20 多孔質板
21 表層多孔質層
22 基材多孔質層
23 中間多孔質層
30 本体部
31 吸引空間
40 吸引管
41 真空ポンプ
L 処理液
W ワーク
DESCRIPTION OF SYMBOLS 10 Vacuum chuck 20 Porous board 21 Surface layer porous layer 22 Base material porous layer 23 Intermediate porous layer 30 Main body part 31 Suction space 40 Suction pipe 41 Vacuum pump L Processing liquid W Workpiece

Claims (13)

ワークを真空引きして吸着保持するための多層多孔質板であって、
表面でワークを保持する表層多孔質層と、
前記表層多孔質層の裏面側に積層して設けられた基材多孔質層と、を有し、
前記表層多孔質層の平均空孔径は前記基材多孔質層の平均空孔径よりも小さく、
前記表層多孔質層の平均空孔径と前記基材多孔質層の平均空孔径は、それぞれワークの処理液が透過可能な大きさであることを特徴とする、多層多孔質板。
A multilayer porous plate for evacuating and holding a workpiece by suction,
A porous surface layer that holds the workpiece on the surface;
A substrate porous layer provided on the back side of the surface porous layer,
The average pore size of the surface porous layer is smaller than the average pore size of the substrate porous layer,
The multilayer porous plate according to claim 1, wherein the average pore diameter of the surface porous layer and the average pore diameter of the substrate porous layer are sizes that allow the workpiece processing liquid to pass through.
前記表層多孔質層の厚みは前記基材多孔質層の厚みより小さいことを特徴とする、請求項1に記載の多層多孔質板。 The multilayer porous plate according to claim 1, wherein the thickness of the surface porous layer is smaller than the thickness of the substrate porous layer. 前記基材多孔質層の平均空孔径に対する前記表層多孔質層の平均空孔径の比率は、1/20〜1/10であることを特徴とする、請求項1又は2に記載の多層多孔質板。 The multilayer porous material according to claim 1 or 2, wherein the ratio of the average pore diameter of the surface porous layer to the average pore diameter of the base porous layer is 1/20 to 1/10. Board. 前記表層多孔質層の空孔率と前記基材多孔質層の空孔率は、それぞれ30%〜50%であることを特徴とする、請求項1〜3のいずれか一項に記載の多層多孔質板。 The multilayer according to any one of claims 1 to 3, wherein the porosity of the surface porous layer and the porosity of the porous substrate layer are 30% to 50%, respectively. Porous plate. 前記表層多孔質層と前記基材多孔質層の間には、1つ以上の中間多孔質層が設けられ、
前記中間多孔質層の平均空孔径は、前記表層多孔質層の平均空孔径より大きく、且つ前記基材多孔質層の平均空孔径より小さいことを特徴とする、請求項1〜4のいずれか一項に記載の多層多孔質板。
Between the surface porous layer and the substrate porous layer, one or more intermediate porous layers are provided,
The average pore diameter of the intermediate porous layer is larger than the average pore diameter of the surface porous layer and smaller than the average pore diameter of the base porous layer, 5. The multilayer porous plate according to one item.
ワークを真空引きして吸着保持するための多層多孔質板の製造方法であって、
表面でワークを保持する表層多孔質層に対し、当該表層多孔質層の裏面側に基材多孔質層を積層し、
前記表層多孔質層の平均空孔径が前記基材多孔質層の平均空孔径よりも小さく、且つ前記表層多孔質層の平均空孔径と前記基材多孔質層の平均空孔径が、それぞれワークの処理液が透過可能な大きさとなるように前記多層多孔質板を製造することを特徴とする、多層多孔質板の製造方法。
A method for producing a multilayer porous plate for vacuum-holding and holding a work,
For the surface porous layer that holds the workpiece on the surface, the substrate porous layer is laminated on the back side of the surface porous layer,
The average pore size of the surface porous layer is smaller than the average pore size of the substrate porous layer, and the average pore size of the surface porous layer and the average pore size of the substrate porous layer are respectively A method for producing a multilayer porous plate, comprising producing the multilayer porous plate so as to have a size that allows a treatment liquid to pass therethrough.
前記表層多孔質層と前記基材多孔質層に少なくとも熱又は圧力をかけて、当該表層多孔質層と基材多孔質層を接合することを特徴とする、請求項6に記載の多層多孔質板の製造方法。 The multilayer porous body according to claim 6, wherein the surface porous layer and the substrate porous layer are joined by applying at least heat or pressure to the surface porous layer and the substrate porous layer. A manufacturing method of a board. 前記基材多孔質層の表面に塗布液を塗布して前記表層多孔質層を形成することを特徴とする、請求項6に記載の多層多孔質板の製造方法。 The method for producing a multilayer porous plate according to claim 6, wherein the surface porous layer is formed by applying a coating solution on a surface of the substrate porous layer. 前記基材多孔質層の表面に溶射材を溶射して前記表層多孔質層を形成することを特徴とする、請求項6に記載の多層多孔質板の製造方法。 The method for producing a multilayer porous plate according to claim 6, wherein the surface porous layer is formed by spraying a thermal spray material on the surface of the substrate porous layer. 前記表層多孔質層の厚みが前記基材多孔質層の厚みより小さくなるように前記多層多孔質板を製造することを特徴とする、請求項6〜9のいずれか一項に記載の多層多孔質板の製造方法。 The multilayer porous plate according to any one of claims 6 to 9, wherein the multilayer porous plate is manufactured so that the thickness of the surface porous layer is smaller than the thickness of the porous substrate layer. A method of manufacturing a slab. 前記基材多孔質層の平均空孔径に対する前記表層多孔質層の平均空孔径の比率が、1/20〜1/10となるように前記多層多孔質板を製造することを特徴とする、請求項6〜10のいずれか一項に記載の多層多孔質板の製造方法。 The multilayer porous plate is manufactured such that a ratio of an average pore diameter of the surface porous layer to an average pore diameter of the base porous layer is 1/20 to 1/10. The manufacturing method of the multilayer porous board as described in any one of claim | item 6 -10. 前記表層多孔質層の空孔率と前記基材多孔質層の空孔率が、それぞれ30%〜50%となるように前記多層多孔質板を製造することを特徴とする、請求項6〜11のいずれか一項に記載の多層多孔質板の製造方法。 The multilayer porous plate is manufactured such that the porosity of the surface porous layer and the porosity of the substrate porous layer are 30% to 50%, respectively. The method for producing a multilayer porous plate according to any one of 11. 前記表層多孔質層と前記基材多孔質層の間に、1つ以上の中間多孔質層を設け、
前記中間多孔質層の平均空孔径が、前記表層多孔質層の平均空孔径より大きく、且つ前記基材多孔質層の平均空孔径より小さくなるように前記多層多孔質板を製造することを特徴とする、請求項6〜12のいずれか一項に記載の多層多孔質板の製造方法。
One or more intermediate porous layers are provided between the surface porous layer and the substrate porous layer,
The multilayer porous plate is manufactured such that an average pore diameter of the intermediate porous layer is larger than an average pore diameter of the surface porous layer and smaller than an average pore diameter of the base porous layer. The manufacturing method of the multilayer porous board as described in any one of Claims 6-12.
JP2016249152A 2016-12-22 2016-12-22 Multilayer porous plate and manufacturing method of the same Pending JP2018103270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249152A JP2018103270A (en) 2016-12-22 2016-12-22 Multilayer porous plate and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249152A JP2018103270A (en) 2016-12-22 2016-12-22 Multilayer porous plate and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2018103270A true JP2018103270A (en) 2018-07-05

Family

ID=62786232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249152A Pending JP2018103270A (en) 2016-12-22 2016-12-22 Multilayer porous plate and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2018103270A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667944A (en) * 1985-08-29 1987-05-26 Vichem Corporation Means for handling semiconductor die and the like
JPH09150339A (en) * 1995-11-30 1997-06-10 Kyocera Corp Vacuum suction device
JP2006026981A (en) * 2004-07-13 2006-02-02 Nitto Denko Corp Sucking and fixing sheet and its manufacturing method
JP2007283493A (en) * 2006-04-12 2007-11-01 Nitto Denko Corp Method for producing sheet for adsorption fixing
JP2008211098A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
JP2009224402A (en) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp Vacuum suction device
KR20110133120A (en) * 2010-06-04 2011-12-12 한국기계연구원 The porous ceramics materials with double-layered pore structure for vacuum chuck and method for manufacturing the same
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same
JP2015017008A (en) * 2013-07-10 2015-01-29 旭化成ケミカルズ株式会社 Porous laminate, adsorption buffer material, and adsorption method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667944A (en) * 1985-08-29 1987-05-26 Vichem Corporation Means for handling semiconductor die and the like
JPH09150339A (en) * 1995-11-30 1997-06-10 Kyocera Corp Vacuum suction device
JP2006026981A (en) * 2004-07-13 2006-02-02 Nitto Denko Corp Sucking and fixing sheet and its manufacturing method
US20080075935A1 (en) * 2004-07-13 2008-03-27 Hiroyuki Iida Sheet For Suction And Fixation, And Method Of Producing The Same
JP2007283493A (en) * 2006-04-12 2007-11-01 Nitto Denko Corp Method for producing sheet for adsorption fixing
JP2008211098A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
JP2009224402A (en) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp Vacuum suction device
KR20110133120A (en) * 2010-06-04 2011-12-12 한국기계연구원 The porous ceramics materials with double-layered pore structure for vacuum chuck and method for manufacturing the same
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same
JP2015017008A (en) * 2013-07-10 2015-01-29 旭化成ケミカルズ株式会社 Porous laminate, adsorption buffer material, and adsorption method

Similar Documents

Publication Publication Date Title
JP5652832B2 (en) Chuck device and chuck method
US8500182B2 (en) Vacuum wafer carriers for strengthening thin wafers
US7708854B2 (en) Work carrier and method of processing a workpiece
JP2009033178A5 (en)
JP6010811B2 (en) Suction board
KR102541126B1 (en) Electrostatic attachment chuck, method for manufacturing the same, and semiconductor device manufacturing method
JP6092857B2 (en) Channel member, adsorption device and cooling device using the same
JP5730071B2 (en) Adsorption member
JP6663442B2 (en) Temporarily bonded wafer carrier
JP2018518060A5 (en)
JP2007297657A (en) Adsorption pat and substrate treatment device
JP2018103270A (en) Multilayer porous plate and manufacturing method of the same
US20130270756A1 (en) Retaining system for retaining and holding a wafer
JP2008300426A (en) Vacuum chuck
TWI677050B (en) Carrier for temporary bonded wafers
JP2004283936A (en) Vacuum sucking device
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP2017105200A (en) Porous sheet for adsorption and surface layer for exchange used in porous sheet for adsorption
TW202013580A (en) Wafer leveling chuck structure and method thereof by applying secondary wafer leveling to enhance flatness of processed portion
JP4476595B2 (en) Vacuum suction jig
WO2019069570A1 (en) Carbon foam, layered carbon foam, and production method for layered carbon foam
JP2010042469A (en) Support plate
TWI685915B (en) Carrier for temporary bonded wafers
JP6934342B2 (en) Manufacturing method of silicon carbide member
JP4475895B2 (en) Vacuum suction jig

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511