JP2018101693A - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP2018101693A
JP2018101693A JP2016246902A JP2016246902A JP2018101693A JP 2018101693 A JP2018101693 A JP 2018101693A JP 2016246902 A JP2016246902 A JP 2016246902A JP 2016246902 A JP2016246902 A JP 2016246902A JP 2018101693 A JP2018101693 A JP 2018101693A
Authority
JP
Japan
Prior art keywords
polishing
particles
mass
composition according
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016246902A
Other languages
Japanese (ja)
Other versions
JP6797665B2 (en
Inventor
翼 大山
Tsubasa Oyama
翼 大山
陽彦 土居
Akihiko Doi
陽彦 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016246902A priority Critical patent/JP6797665B2/en
Publication of JP2018101693A publication Critical patent/JP2018101693A/en
Application granted granted Critical
Publication of JP6797665B2 publication Critical patent/JP6797665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid composition which can suppress the agglomeration of ceria particles used to increase the polishing selectivity of a stopper film (silicon nitride) for a polished film (silicon oxide) in formation of a shallow-trench element isolation structure and therefore enables the increase in polishing speed.SOLUTION: A polishing liquid composition comprises: complex particles including silica particles and ceria particles disposed on surfaces of the silica particles; an inorganic salt; and an aqueous medium. The polishing liquid composition can suppress the particle agglomeration without reducing an inter-particle repulsive force. The use of a polishing liquid composition containing ceria-coated silica particles and an inorganic salt for polishing can suppress the occurrence of a polishing flaw and increase the polishing speed.SELECTED DRAWING: None

Description

本開示は、研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法に関する。   The present disclosure relates to a polishing liquid composition, a method for producing a semiconductor substrate using the same, and a polishing method.

ケミカルメカニカルポリッシング(CMP)技術とは、加工しようとする被研磨基板の表面と研磨パッドとを接触させた状態で研磨液をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面凹凸部分を化学的に反応させると共に機械的に除去して平坦化させる技術である。   Chemical mechanical polishing (CMP) technology is a method in which a polishing substrate and a polishing pad are relatively moved while supplying a polishing liquid to these contact portions in a state where the surface of the substrate to be polished and the polishing pad are in contact with each other. This is a technique in which the surface unevenness portion of the substrate to be polished is chemically reacted and mechanically removed and flattened by being moved.

現在では、半導体素子の製造工程における、層間絶縁膜の平坦化、シャロートレンチ素子分離構造(以下「素子分離構造」ともいう)の形成、プラグ及び埋め込み金属配線の形成等を行う際には、このCMP技術が必須の技術となっている。近年、半導体素子の多層化、高精細化が飛躍的に進み、半導体素子の歩留まり及びスループット(収量)の更なる向上が要求されるようになってきている。それに伴い、CMP工程に関しても、研磨傷フリーで且つより高速な研磨が望まれるようになってきている。例えば、シャロートレンチ素子分離構造の形成工程では、高研磨速度と共に、被研磨膜(例えば、酸化珪素膜)に対する研磨ストッパ膜(例えば、窒化珪素膜)の研磨選択性(換言すると、研磨ストッパ膜の方が被研磨膜よりも研磨されにくいという研磨の選択性)の向上が望まれている。   At present, when performing planarization of an interlayer insulating film, formation of a shallow trench isolation structure (hereinafter also referred to as “element isolation structure”), formation of a plug and a buried metal wiring, etc. in a semiconductor element manufacturing process, CMP technology is an essential technology. In recent years, the multi-layered and high-definition of semiconductor elements have progressed dramatically, and further improvements in the yield and throughput of semiconductor elements have been demanded. Along with this, with respect to the CMP process, there is a demand for polishing without scratches and at a higher speed. For example, in the formation process of the shallow trench isolation structure, the polishing selectivity of the polishing stopper film (for example, a silicon nitride film) with respect to the film to be polished (for example, the silicon oxide film) (in other words, the polishing stopper film of the polishing stopper film as well as the high polishing rate). It is desired to improve the selectivity of polishing (which is harder to polish than the film to be polished).

例えば、特許文献1には、酸化セリウム(セリア)等の無機研磨剤、導電率調整剤、及び分散剤を配合してなり、導電率が8〜1000mS/mで、pHが3.0〜7.0のCMP用研磨液が開示されている。   For example, Patent Document 1 contains an inorganic abrasive such as cerium oxide (ceria), a conductivity adjusting agent, and a dispersant, and has a conductivity of 8 to 1000 mS / m and a pH of 3.0 to 7. 0.0 polishing liquid for CMP is disclosed.

特許文献2には、シリカ粒子0.1〜40重量%、熱可塑性ポリマー0.001〜2重量%、及びポリビニルピロリドン0.001〜1重量%を含む、半導体基材の研磨に適した研磨液組成物が開示されている。   Patent Document 2 discloses a polishing liquid suitable for polishing a semiconductor substrate, containing 0.1 to 40% by weight of silica particles, 0.001 to 2% by weight of a thermoplastic polymer, and 0.001 to 1% by weight of polyvinylpyrrolidone. A composition is disclosed.

特許文献3には、酸化珪素膜の研磨に用いられる研磨液組成物として、(A)セリアを含む研磨剤粒子、(B)線状及び分岐状のアルキレンオキサイドホモポリマーとコポリマーから選ばれる少なくとも1種の水溶性又は水分散性ポリマー、及び(C)アニオン性リン酸塩分散剤を含む水性研磨液組成物が開示されている。   In Patent Document 3, as a polishing composition used for polishing a silicon oxide film, at least one selected from (A) abrasive particles containing ceria, (B) linear and branched alkylene oxide homopolymers and copolymers. Disclosed is an aqueous polishing composition comprising a seed water-soluble or water-dispersible polymer and (C) an anionic phosphate dispersant.

特許文献4には、非晶質シリカ粒子の表面上に配置された結晶質セリア粒子を含み、結晶質セリア粒子の平均一次粒子径が5〜40nmの研磨粒子を含有する酸化珪素膜用研磨液組成物が開示されている。   Patent Document 4 discloses a polishing liquid for silicon oxide film containing crystalline ceria particles arranged on the surface of amorphous silica particles, and containing abrasive particles having an average primary particle diameter of 5 to 40 nm. A composition is disclosed.

特開2009−218558号公報JP 2009-218558 A 特開2005−244229号公報JP 2005-244229 A 特表2013−540849号公報Special table 2013-540849 gazette 特開2016−127139号公報JP 2006-127139 A

近年、CMPに用いられる研磨粒子としてはシリカ粒子が一般的であったが、研磨選択性に優れたセリア粒子が用いられるようになっている。しかし、セリア粒子は凝集しやすいため、セリア粒子を含む研磨液組成物で研磨すると、被研磨基板に多くの研磨傷が生じる傾向にあった。さらに、研磨速度について改善の余地があった。   In recent years, silica particles have been commonly used as abrasive particles used in CMP, but ceria particles having excellent polishing selectivity have been used. However, since ceria particles are likely to aggregate, when polished with a polishing composition containing ceria particles, many polishing flaws tend to occur on the substrate to be polished. Furthermore, there was room for improvement in the polishing rate.

本開示は、粒子の凝集を抑制でき、研磨速度を向上できる研磨液組成物、並びにこれを用いた半導体基板の製造方法及び研磨方法を提供する。   The present disclosure provides a polishing liquid composition that can suppress particle aggregation and improve a polishing rate, and a semiconductor substrate manufacturing method and polishing method using the same.

本開示は、一態様において、セリア粒子を表面上に配置したシリカ粒子からなる複合粒子A、無機塩B、及び水系媒体を含有する、研磨液組成物に関する。   In one aspect, the present disclosure relates to a polishing liquid composition containing composite particles A composed of silica particles having ceria particles arranged on the surface, an inorganic salt B, and an aqueous medium.

本開示は、一態様において、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法に関する。   In one aspect, the present disclosure relates to a method for manufacturing a semiconductor substrate, including a step of polishing a substrate to be polished using the polishing composition according to the present disclosure.

本開示は、一態様において、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程を含む、基板の研磨方法に関する。   In one aspect, the present disclosure relates to a method for polishing a substrate, including a step of polishing a substrate to be polished using the polishing composition according to the present disclosure.

本開示によれば、粒子の凝集を抑制でき、研磨速度を向上できる研磨液組成物を提供できるという効果を奏し得る。   According to the present disclosure, it is possible to provide an effect that it is possible to provide a polishing liquid composition that can suppress aggregation of particles and improve a polishing rate.

図1は、セリアコートシリカ粒子の透過型電子顕微鏡(以下「TEM」ともいう)観察写真の一例である。FIG. 1 is an example of a transmission electron microscope (hereinafter also referred to as “TEM”) observation photograph of ceria-coated silica particles.

本発明者らが鋭意検討した結果、研磨粒子としてセリアコートシリカ粒子を含有する研磨液組成物に無機塩を含有させると、粒子の凝集を抑制し、研磨速度を向上できるということを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, it has been found that when an inorganic salt is contained in a polishing composition containing ceria-coated silica particles as polishing particles, aggregation of particles can be suppressed and polishing rate can be improved. The invention has been completed.

すなわち、本開示は、一態様において、セリア粒子を表面上に配置したシリカ粒子からなる複合粒子A、無機塩B、及び水系媒体を含有する、研磨液組成物(以下、「本開示に係る研磨液組成物」ともいう)に関する。本開示に係る研磨液組成物によれば、粒子の凝集を抑制でき、研磨速度を向上できる。また、粒子の凝集を抑制できるため、研磨傷を低減できる。   That is, in one aspect, the present disclosure provides a polishing liquid composition (hereinafter referred to as “polishing according to the present disclosure”) containing composite particles A composed of silica particles having ceria particles arranged on the surface, an inorganic salt B, and an aqueous medium. Also referred to as “liquid composition”. According to the polishing liquid composition according to the present disclosure, particle aggregation can be suppressed and the polishing rate can be improved. Moreover, since the aggregation of particles can be suppressed, polishing scratches can be reduced.

本開示の効果発現のメカニズムの詳細は明らかではないが、以下のように推定される。
通常、セリア粒子は凝集しやすく、セリア粒子を含有する研磨液組成物で研磨すると、多くの研磨傷が発生してしまう。これに対し、本開示では、複合粒子Aと無機塩Bとを併用することで、研磨液組成物中で粒子同士の反発力が低下せず、粒子の凝集が抑制されると考えられる。そして、複合粒子A及び無機塩Bを含有する研磨液組成物を用いて研磨することで、研磨傷の発生を抑制でき、さらに研磨速度を向上できると考えられる。
The details of the mechanism of the effect of the present disclosure are not clear, but are estimated as follows.
Normally, ceria particles are likely to aggregate, and when polished with a polishing composition containing ceria particles, many polishing scratches are generated. On the other hand, in the present disclosure, it is considered that the combined use of the composite particles A and the inorganic salt B does not reduce the repulsive force between the particles in the polishing composition and suppresses the aggregation of the particles. And it is thought by grinding | polishing using the polishing liquid composition containing the composite particle A and the inorganic salt B that generation | occurrence | production of a polishing flaw can be suppressed and a grinding | polishing rate can be improved further.

[複合粒子A]
本開示に係る研磨液組成物は、研磨粒子として、セリア粒子を表面上に配置したシリカ粒子からなる複合粒子A(以下、単に「粒子A」ともいう)を含有する。複合粒子Aの表面電位は、研磨速度向上、粒子の凝集抑制、及び研磨傷低減の観点から、負であることが好ましい。表面電位は、例えば、「ゼータサイザーNano ZS」(シスメックス社製)を用いて測定できる。なお、通常、セリア粒子の表面電位は正である。粒子Aは、1種単独で又は2種以上混合して使用することができる。
[Composite particle A]
The polishing liquid composition according to the present disclosure contains composite particles A (hereinafter also simply referred to as “particles A”) made of silica particles having ceria particles arranged on the surface as abrasive particles. The surface potential of the composite particle A is preferably negative from the viewpoints of improving the polishing rate, suppressing particle aggregation, and reducing polishing scratches. The surface potential can be measured using, for example, “Zetasizer Nano ZS” (manufactured by Sysmex Corporation). Usually, the surface potential of the ceria particles is positive. The particles A can be used singly or in combination of two or more.

粒子Aの動的光散乱法(DLS)により測定される平均粒子径(以下、「DLS粒子径」ともいう)は、研磨速度向上、粒子の凝集抑制、及び研磨傷低減の観点から、30nm以上が好ましく、45nm以上がより好ましく、50nm以上が更に好ましく、そして、同様の観点から、500nm以下が好ましく、400nm以下がより好ましく、300nm以下が更に好ましい。粒子AのDLS粒子径は、後述する実施例に記載の方法により測定できる。   The average particle diameter (hereinafter also referred to as “DLS particle diameter”) of the particle A measured by the dynamic light scattering method (DLS) is 30 nm or more from the viewpoint of improving the polishing rate, suppressing particle aggregation, and reducing polishing scratches. Is preferably 45 nm or more, more preferably 50 nm or more, and from the same viewpoint, 500 nm or less is preferable, 400 nm or less is more preferable, and 300 nm or less is still more preferable. The DLS particle diameter of the particle A can be measured by the method described in Examples described later.

粒子Aに含まれるセリアは、研磨速度向上及び研磨傷低減の観点から、結晶性を有することが好ましい。そして、セリアの形状は、研磨速度向上及び研磨傷低減の観点から、粒状であり、略球状が好ましい。よって、粒子Aとしては、例えば、シリカ粒子の表面の少なくとも一部が粒状セリアで被覆されたセリアコートシリカ粒子が挙げられる。   The ceria contained in the particles A preferably has crystallinity from the viewpoint of improving the polishing rate and reducing polishing scratches. The shape of the ceria is granular from the viewpoint of improving the polishing rate and reducing polishing scratches, and is preferably approximately spherical. Accordingly, examples of the particles A include ceria-coated silica particles in which at least a part of the surface of the silica particles is coated with granular ceria.

粒子Aに含まれるセリアの透過型電子顕微観察により測定される平均一次粒子径は、研磨速度向上、及びセリアの合成容易性の観点から、5nm以上が好ましく、7.5nm以上がより好ましく、10nm以上が更に好ましく、そして、研磨傷低減の観点から、40nm以下が好ましく、30nm以下がより好ましく、25nm以下が更に好ましい。セリアの平均一次粒子径は、後述する実施例に記載の方法により測定できる。   The average primary particle size measured by transmission electron microscopic observation of ceria contained in the particles A is preferably 5 nm or more, more preferably 7.5 nm or more, more preferably 10 nm from the viewpoint of improving the polishing rate and ease of ceria synthesis. The above is more preferable, and from the viewpoint of reducing polishing scratches, 40 nm or less is preferable, 30 nm or less is more preferable, and 25 nm or less is more preferable. The average primary particle diameter of ceria can be measured by the method described in Examples described later.

粒子Aに含まれるシリカ粒子は、研磨速度向上、及び研磨傷低減の観点から、コロイダルシリカであると好ましい。そして、同様の観点から、シリカ粒子の形状は略球状が好ましい。   The silica particles contained in the particles A are preferably colloidal silica from the viewpoint of improving the polishing rate and reducing polishing scratches. From the same viewpoint, the shape of the silica particles is preferably approximately spherical.

粒子Aの調製に使用するシリカ粒子の透過型電子顕微観察により測定される平均一次粒子径は、研磨速度向上の観点から、15nm以上が好ましく、20nm以上がより好ましく、40nm以上が更に好ましく、そして、研磨傷低減の観点から、300nm以下が好ましく、200nm以下がより好ましく、150nm以下が更に好ましい。シリカ粒子の平均一次粒子径は、後述する実施例に記載の方法により測定できる。粒子Aに含まれるシリカ粒子の透過型電子顕微鏡観察により測定される平均一次粒子径は、粒子Aの調製に使用するシリカ粒子と同様とすることができる。   From the viewpoint of improving the polishing rate, the average primary particle diameter measured by transmission electron microscopic observation of the silica particles used for the preparation of the particles A is preferably 15 nm or more, more preferably 20 nm or more, further preferably 40 nm or more, and From the viewpoint of reducing polishing scratches, it is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 150 nm or less. The average primary particle diameter of the silica particles can be measured by the method described in Examples described later. The average primary particle diameter measured by transmission electron microscope observation of the silica particles contained in the particles A can be the same as the silica particles used for the preparation of the particles A.

粒子Aの調製に使用するシリカ粒子の会合度は、研磨速度の確保、及び研磨傷低減の観点から、3.0以下が好ましく、2.5以下がより好ましく、2.3以下が更に好ましく、そして、同様の観点から、1.0以上が好ましく、1.2以上がより好ましく、1.3以上が更に好ましい。会合度とは、粒子の形状を表す係数であり、下記式により算出される。粒子Aに含まれるシリカ粒子の会合度は、粒子Aの調製に使用するシリカ粒子と同様とすることができる。
会合度=DLS粒子径/平均一次粒子径
The degree of association of the silica particles used for the preparation of the particles A is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.3 or less, from the viewpoints of ensuring the polishing rate and reducing polishing scratches. And from the same viewpoint, 1.0 or more is preferable, 1.2 or more is more preferable, and 1.3 or more is still more preferable. The degree of association is a coefficient representing the shape of the particle and is calculated by the following formula. The degree of association of the silica particles contained in the particles A can be the same as that of the silica particles used for the preparation of the particles A.
Degree of association = DLS particle size / average primary particle size

会合度の調整方法としては、特に限定されないが、例えば、特開平6−254383号公報、特開平11−214338号公報、特開平11−60232号公報、特開2005−060217号公報、特開2005−060219号公報等に記載の方法を採用することができる。   The method for adjusting the degree of association is not particularly limited. For example, JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, JP-A-2005. The method described in JP-A-060219 can be employed.

粒子Aに含まれるシリカとセリアとの質量比(シリカ/セリア)は、研磨速度向上の観点から、0.25以上が好ましく、0.5以上がより好ましく、0.8以上が更に好ましく、そして、粒子の凝集抑制及び研磨傷低減の観点から、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。   The mass ratio (silica / ceria) of silica and ceria contained in the particle A is preferably 0.25 or more, more preferably 0.5 or more, still more preferably 0.8 or more, from the viewpoint of improving the polishing rate. From the viewpoint of suppressing particle aggregation and reducing polishing scratches, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is even more preferable.

粒子Aは、例えば、シリア粒子にセリアを沈着させることで得られうる。よって、粒子Aの製造方法としては、シリカ粒子上に水酸化セリウム又は酸化セリウムを生成できる方法であれば、従来から公知の方法を用いることができる。具体的な粒子Aの製造方法としては、硝酸セリウムを溶解させた水溶液をシリカ粒子の分散液に滴下してシリカ粒子上にセリアを沈着させる方法や、硝酸アンモニウムセリウムの熱加水分解による方法やアルコキシドを用いた方法等が挙げられる。シリカ粒子上に水酸化セリウムを生成する場合、例えば、水熱処理や焼成により水酸化セリウムを酸化セリウムにすることができる。これらの方法で生成された粒子Aは、焼成によって相互にくっついた粒子同士が分離するようにほぐされてから用いてもよい。粒子Aの製造方法としては、例えば、特開2015−063451号公報、特開2013−119131号公報等に記載の方法を採用することができる。   The particles A can be obtained, for example, by depositing ceria on Syria particles. Therefore, as a manufacturing method of the particle A, a conventionally known method can be used as long as it can generate cerium hydroxide or cerium oxide on the silica particle. Specific methods for producing the particles A include a method in which an aqueous solution in which cerium nitrate is dissolved is dropped onto a dispersion of silica particles to deposit ceria on the silica particles, a method by thermal hydrolysis of ammonium cerium nitrate, and an alkoxide. The method used etc. are mentioned. When producing cerium hydroxide on silica particles, for example, cerium hydroxide can be converted to cerium oxide by hydrothermal treatment or firing. The particles A produced by these methods may be used after being loosened so that the particles adhered to each other are separated by firing. As a method for producing the particles A, for example, methods described in JP-A No. 2015-063451, JP-A No. 2013-119131 and the like can be employed.

本開示に係る研磨液組成物中の粒子Aの含有量は、粒子Aと無機塩Bと水系媒体との合計質量を100質量%とすると、研磨速度の確保、及び研磨選択性向上の観点から、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.25質量%以上が更に好ましく、0.5質量%以上が更により好ましく、そして、5.0質量%以下が好ましく、2.5質量%以下がより好ましく、2.0質量%以下が更に好ましく、1.5質量%以下が更により好ましい。   The content of the particles A in the polishing liquid composition according to the present disclosure is set from the viewpoint of securing the polishing rate and improving the polishing selectivity when the total mass of the particles A, the inorganic salt B, and the aqueous medium is 100% by mass. 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.25% by mass or more, still more preferably 0.5% by mass or more, and 5.0% by mass or less. Preferably, 2.5 mass% or less is more preferable, 2.0 mass% or less is further more preferable, and 1.5 mass% or less is still more preferable.

[無機塩B]
本開示に係る研磨液組成物は、無機塩Bを含有する。無機塩Bとしては、研磨速度の確保及び粒子の凝集抑制の観点から、例えば、無機金属塩及び無機アンモニウム塩から選ばれる1種以上が挙げられる。無機金属塩としては、例えば、塩化カリウム、塩化ナトリウムから選ばれる1種以上が挙げられる。無機アンモニウム塩としては、例えば、塩化アンモニウム、臭化アンモニウム及びヨウ化アンモニウムから選ばれる1種以上が挙げられる。金属元素を含まない観点からは、無機塩Bとしては、無機アンモニウム塩が好ましく、塩化アンモニウムがより好ましい。
[Inorganic salt B]
The polishing liquid composition according to the present disclosure contains the inorganic salt B. Examples of the inorganic salt B include one or more selected from an inorganic metal salt and an inorganic ammonium salt from the viewpoint of ensuring a polishing rate and suppressing particle aggregation. Examples of the inorganic metal salt include one or more selected from potassium chloride and sodium chloride. Examples of the inorganic ammonium salt include one or more selected from ammonium chloride, ammonium bromide, and ammonium iodide. From the viewpoint of not containing a metal element, the inorganic salt B is preferably an inorganic ammonium salt, and more preferably ammonium chloride.

本開示に係る研磨液組成物中の無機塩Bの含有量は、研磨速度向上、粒子の凝集抑制、及び研磨傷低減の観点から、粒子A100質量部に対して、0.2質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が更に好ましく、5質量部以上が更に好ましく、そして、同様の観点から、80質量部以下が好ましく、60質量部以下がより好ましく、20質量部以下が更に好ましい。   The content of the inorganic salt B in the polishing composition according to the present disclosure is 0.2 parts by mass or more with respect to 100 parts by mass of the particles A from the viewpoint of improving the polishing rate, suppressing aggregation of the particles, and reducing polishing scratches. Preferably, 1 part by mass or more is more preferable, 2 parts by mass or more is more preferable, 5 parts by mass or more is further preferable, and from the same viewpoint, 80 parts by mass or less is preferable, 60 parts by mass or less is more preferable, 20 parts by mass Part or less is more preferable.

本開示に係る研磨液組成物中の無機塩Bの含有量は、研磨速度向上、粒子の凝集抑制、及び研磨傷低減の観点から、粒子Aの表面積に対して、1μmol/m2以上が好ましく、5μmol/m2以上がより好ましく、10μmol/m2以上が更に好ましく、25μmol/m2以上が更に好ましく、そして、同様の観点から、400μmol/m2以下が好ましく、300μmol/m2以下がより好ましく、100μmol/m2以下が更に好ましい。 The content of the inorganic salt B in the polishing liquid composition according to the present disclosure is preferably 1 μmol / m 2 or more with respect to the surface area of the particles A from the viewpoints of improving the polishing rate, suppressing particle aggregation, and reducing polishing scratches. , more preferably from 5 [mu] mol / m 2 or more, more preferably 10 .mu.mol / m 2 or more, more preferably 25 [mu] mol / m 2 or more, and, from the same viewpoint, preferably 400μmol / m 2 or less, and more is 300 [mu] mol / m 2 or less 100 μmol / m 2 or less is more preferable.

本開示に係る研磨液組成物中の無機塩Bの含有量は、粒子Aと無機塩Bと水系媒体との合計質量を100質量%とすると、研磨速度の確保、及び研磨選択性向上の観点から、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.025質量%以上が更に好ましく、そして、0.4質量%以下が好ましく、0.3質量%以下がより好ましく、0.1質量%以下が更に好ましい。   The content of the inorganic salt B in the polishing liquid composition according to the present disclosure is that the polishing mass is secured and the polishing selectivity is improved when the total mass of the particles A, the inorganic salt B, and the aqueous medium is 100% by mass. Therefore, 0.001% by mass or more is preferable, 0.005% by mass or more is more preferable, 0.01% by mass or more is further preferable, 0.025% by mass or more is further preferable, and 0.4% by mass or less is preferable. Preferably, 0.3 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.

[水系媒体]
本開示に係る研磨液組成物は、水系媒体を含有する。水系媒体としては、例えば、水、及び水と水に可溶な溶媒との混合物等が挙げられる。水に可溶な溶媒としては、メタノール、エタノール、イソプロパノール等の低級アルコールが挙げられ、研磨工程での安全性の観点から、エタノールが好ましい。水系媒体としては、半導体基板の品質向上の観点から、イオン交換水、蒸留水、超純水等の水からなるとより好ましい。本開示に係る研磨液組成物における水系媒体の含有量は、粒子Aと無機塩Bと後述する任意成分と水系媒体との合計質量を100質量%とすると、粒子A、無機塩B及び後述する任意成分を除いた残余とすることができる。
[Aqueous medium]
The polishing liquid composition according to the present disclosure contains an aqueous medium. Examples of the aqueous medium include water and a mixture of water and a water-soluble solvent. Examples of the water-soluble solvent include lower alcohols such as methanol, ethanol, and isopropanol, and ethanol is preferable from the viewpoint of safety in the polishing process. The aqueous medium is more preferably water such as ion-exchanged water, distilled water or ultrapure water from the viewpoint of improving the quality of the semiconductor substrate. The content of the aqueous medium in the polishing liquid composition according to the present disclosure is that the particle A, the inorganic salt B, and an inorganic salt B, and an optional component described later and an aqueous medium are 100% by mass. It can be set as the remainder except arbitrary components.

[任意成分]
本開示に係る研磨液組成物は、研磨速度の確保及び研磨選択性の向上の観点から、研磨助剤として、アニオン性基を有する化合物C(以下、単に「化合物C」ともいう)を含有することが好ましい。化合物Cには、無機塩Bは含まれない。
[Optional ingredients]
The polishing composition according to the present disclosure contains a compound C having an anionic group (hereinafter, also simply referred to as “compound C”) as a polishing aid from the viewpoint of ensuring a polishing rate and improving polishing selectivity. It is preferable. Compound C does not include inorganic salt B.

化合物Cのアニオン性基としては、カルボン酸基、スルホン酸基、硫酸エステル基、リン酸エステル基、ホスホン酸基等が挙げられる。これらのアニオン性基は中和された塩の形態を取ってもよい。アニオン性基が塩の形態を取る場合の対イオンとしては、金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられ、半導体基板の品質向上の観点から、アンモニウムイオンが好ましい。   Examples of the anionic group of Compound C include a carboxylic acid group, a sulfonic acid group, a sulfate ester group, a phosphate ester group, and a phosphonic acid group. These anionic groups may take the form of neutralized salts. Examples of the counter ion when the anionic group is in the form of a salt include metal ions, ammonium ions, alkylammonium ions, and the like. From the viewpoint of improving the quality of the semiconductor substrate, ammonium ions are preferable.

化合物Cとしては、例えば、クエン酸及びアニオン性ポリマーから選ばれる少なくとも1種が挙げられる。化合物Cがアニオン性ポリマーである場合の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、(メタ)アクリル酸とモノメトキシポリエチレングリコールモノ(メタ)アクリレートとの共重合体、アニオン基を有する(メタ)アクリレートとモノメトキシポリエチレングリコールモノ(メタ)アクリレートとの共重合体、アルキル(メタ)アクリレートと(メタ)アクリル酸とモノメトキシポリエチレングリコールモノ(メタ)アクリレートとの共重合体、これらのアルカリ金属塩、及びこれらのアンモニウム塩から選ばれる少なくとも1種が挙げられ、半導体基板の品質向上の観点から、ポリアクリル酸及びそのアンモニウム塩から選ばれる少なくとも1種が好ましい。   Examples of compound C include at least one selected from citric acid and anionic polymers. Specific examples when Compound C is an anionic polymer include polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, a copolymer of (meth) acrylic acid and monomethoxypolyethylene glycol mono (meth) acrylate, an anionic group Copolymers of (meth) acrylate and monomethoxypolyethylene glycol mono (meth) acrylate having a copolymer, copolymers of alkyl (meth) acrylate, (meth) acrylic acid and monomethoxypolyethylene glycol mono (meth) acrylate, and the like And at least one selected from these ammonium salts, and from the viewpoint of improving the quality of the semiconductor substrate, at least one selected from polyacrylic acid and its ammonium salt is preferred.

化合物Cの重量平均分子量は、研磨速度の確保及び研磨選択性の向上の観点から、1,000以上が好ましく、10,000以上がより好ましく、20,000以上が更に好ましく、そして、550万以下が好ましく、100万以下がより好ましく、10万以下が更に好ましい。   The weight average molecular weight of Compound C is preferably 1,000 or more, more preferably 10,000 or more, still more preferably 20,000 or more, and 5.5 million or less, from the viewpoint of ensuring a polishing rate and improving polishing selectivity. Is preferable, 1 million or less is more preferable, and 100,000 or less is still more preferable.

本開示において化合物Cの重量平均分子量は、液体クロマトグラフィー(株式会社日立製作所製、L−6000型高速液体クロマトグラフィー)を使用し、ゲル・パーミエーション・クロマトグラフィー(GPC)によって下記条件で測定できる。
<測定条件>
検出器:ショーデックスRI SE−61示差屈折率検出器
カラム:東ソー株式会社製のG4000PWXLとG2500PWXLを直列につないだものを使用した。
溶離液:0.2Mリン酸緩衝液/アセトニトリル=90/10(容量比)で0.5g/100mLの濃度に調整し、20μLを用いた。
カラム温度:40℃
流速:1.0mL/min
標準ポリマー:分子量が既知の単分散ポリエチレングリコール
In the present disclosure, the weight average molecular weight of Compound C can be measured under the following conditions by gel permeation chromatography (GPC) using liquid chromatography (manufactured by Hitachi, Ltd., L-6000 type high performance liquid chromatography). .
<Measurement conditions>
Detector: Shodex RI SE-61 Differential refractive index detector Column: G4000PWXL and G2500PWXL manufactured by Tosoh Corporation were used in series.
Eluent: 0.2 M phosphate buffer / acetonitrile = 90/10 (volume ratio) was adjusted to a concentration of 0.5 g / 100 mL, and 20 μL was used.
Column temperature: 40 ° C
Flow rate: 1.0 mL / min
Standard polymer: Monodispersed polyethylene glycol with known molecular weight

本開示に係る研磨液組成物中の化合物Cの含有量は、研磨速度の確保及び研磨選択性の向上の観点から、粒子A100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましく、そして、同様の観点から、100質量部以下が好ましく、10質量部以下がより好ましく、1質量部以下が更に好ましい。   The content of the compound C in the polishing composition according to the present disclosure is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the particles A from the viewpoint of ensuring the polishing rate and improving the polishing selectivity. 05 parts by mass or more is more preferable, 0.1 parts by mass or more is more preferable, and from the same viewpoint, 100 parts by mass or less is preferable, 10 parts by mass or less is more preferable, and 1 part by mass or less is more preferable.

本開示に係る研磨液組成物中の化合物Cの含有量は、研磨速度の確保及び研磨選択性の向上の観点から、粒子Aと無機塩Bと化合物Cと水系媒体との合計質量を100質量%とすると、0.001質量%以上が好ましく、0.0015質量%以上がより好ましく、0.0025質量%以上が更に好ましく、そして、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.6質量%以下が更に好ましい。   The content of the compound C in the polishing composition according to the present disclosure is 100 masses of the total mass of the particles A, the inorganic salt B, the compound C, and the aqueous medium from the viewpoint of ensuring the polishing rate and improving the polishing selectivity. % Is preferably 0.001% by mass or more, more preferably 0.0015% by mass or more, still more preferably 0.0025% by mass or more, and preferably 1.0% by mass or less, and 0.8% by mass or less. Is more preferable, and 0.6 mass% or less is still more preferable.

本開示に係る研磨液組成物は、本開示の効果を損なわない範囲で、pH調整剤、化合物C以外の研磨助剤等の任意成分を含有することができる。これらの任意成分の含有量は、研磨速度確保の観点から、0.001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、研磨選択性向上の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。   The polishing liquid composition according to the present disclosure can contain optional components such as a pH adjuster and a polishing aid other than Compound C as long as the effects of the present disclosure are not impaired. The content of these optional components is preferably 0.001% by mass or more, more preferably 0.0025% by mass or more, still more preferably 0.01% by mass or more, from the viewpoint of ensuring the polishing rate, and improves polishing selectivity. From a viewpoint, 1 mass% or less is preferable, 0.5 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.

pH調整剤としては、例えば、酸性化合物及びアルカリ化合物が挙げられる。酸性化合物としては、例えば、塩酸、硝酸、硫酸等の無機酸;酢酸、シュウ酸、クエン酸、及びリンゴ酸等の有機酸;等が挙げられる。なかでも、汎用性の観点から、塩酸、硝酸及び酢酸から選ばれる少なくとも1種が好ましく、塩酸及び酢酸から選ばれる少なくとも1種がより好ましい。アルカリ化合物としては、例えば、アンモニア、及び水酸化カリウム等の無機アルカリ化合物;アルキルアミン、及びアルカノールアミン等の有機アルカリ化合物;等が挙げられる。なかでも、半導体基板の品質向上の観点から、アンモニア及びアルキルアミンから選ばれる少なくとも1種が好ましく、アンモニアがより好ましい。   Examples of the pH adjuster include acidic compounds and alkali compounds. Examples of the acidic compound include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; organic acids such as acetic acid, oxalic acid, citric acid, and malic acid; Among these, from the viewpoint of versatility, at least one selected from hydrochloric acid, nitric acid and acetic acid is preferable, and at least one selected from hydrochloric acid and acetic acid is more preferable. Examples of the alkali compound include inorganic alkali compounds such as ammonia and potassium hydroxide; organic alkali compounds such as alkylamine and alkanolamine; and the like. Among these, from the viewpoint of improving the quality of the semiconductor substrate, at least one selected from ammonia and alkylamine is preferable, and ammonia is more preferable.

化合物C以外の研磨助剤としては、化合物C以外のアニオン性界面活性剤及びノニオン性界面活性剤等が挙げられる。化合物C以外のアニオン性界面活性剤としては、例えば、アルキルエーテル酢酸塩、アルキルエーテルリン酸塩、及びアルキルエーテル硫酸塩等が挙げられる。ノニオン性界面活性剤としては、例えば、ポリアクリルアミド等のノニオン性ポリマー、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル等が挙げられる。   Examples of polishing aids other than Compound C include anionic surfactants other than Compound C and nonionic surfactants. Examples of anionic surfactants other than Compound C include alkyl ether acetates, alkyl ether phosphates, and alkyl ether sulfates. Examples of nonionic surfactants include nonionic polymers such as polyacrylamide, polyoxyalkylene alkyl ethers, polyoxyethylene distyrenated phenyl ethers, and the like.

[研磨液組成物]
本開示に係る研磨液組成物は、例えば、粒子A、無機塩B、水系媒体、並びに所望により上述した任意成分を公知の方法で配合する工程を含む製造方法によって製造できる。例えば、本開示に係る研磨液組成物は、少なくとも粒子A、無機塩B及び水系媒体を配合してなるものとすることができる。本開示において「配合する」とは、粒子A、無機塩B、水系媒体、並びに必要に応じて上述した任意成分を同時に又は順に混合することを含む。混合する順序は特に限定されない。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本開示に係る研磨液組成物の製造方法における各成分の配合量は、上述した本開示に係る研磨液組成物中の各成分の含有量と同じとすることができる。
[Polishing liquid composition]
The polishing liquid composition according to the present disclosure can be produced by, for example, a production method including a step of blending the particles A, the inorganic salt B, the aqueous medium, and, if desired, the optional components described above by a known method. For example, the polishing liquid composition according to the present disclosure may be formed by blending at least the particles A, the inorganic salt B, and an aqueous medium. In the present disclosure, “mixing” includes mixing the particles A, the inorganic salt B, the aqueous medium, and optionally the above-described optional components simultaneously or sequentially. The order of mixing is not particularly limited. The said mixing | blending can be performed using mixers, such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill, for example. The compounding quantity of each component in the manufacturing method of the polishing liquid composition which concerns on this indication can be made the same as content of each component in the polishing liquid composition which concerns on this indication mentioned above.

本開示に係る研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。   The embodiment of the polishing liquid composition according to the present disclosure may be a so-called one-component type that is supplied to the market in a state where all components are mixed in advance, or may be a so-called two-component type that is mixed at the time of use. It may be.

本開示に係る研磨液組成物のpHは、研磨速度の確保及び研磨選択性の向上の観点から、4.0以上が好ましく、5.0以上がより好ましく、6.0以上が更に好ましく、そして、10.0以下が好ましく、9.0以下がより好ましく、8.0以下が更に好ましい。本開示において、研磨液組成物のpHは、25℃における値であって、pHメータを用いて測定した値である。本開示における研磨液組成物のpHは、具体的には、実施例に記載の方法で測定できる。   The pH of the polishing composition according to the present disclosure is preferably 4.0 or more, more preferably 5.0 or more, still more preferably 6.0 or more, from the viewpoint of ensuring a polishing rate and improving polishing selectivity. 10.0 or less is preferable, 9.0 or less is more preferable, and 8.0 or less is still more preferable. In the present disclosure, the pH of the polishing composition is a value at 25 ° C. and is a value measured using a pH meter. Specifically, the pH of the polishing composition in the present disclosure can be measured by the method described in Examples.

本開示において「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。本開示に係る研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて前述の水系媒体で適宜希釈して研磨工程で使用することができる。希釈割合としては5〜100倍が好ましい。   In the present disclosure, the “content of each component in the polishing liquid composition” refers to the content of each component at the time when the polishing liquid composition is used for polishing. The polishing composition according to the present disclosure may be stored and supplied in a concentrated state as long as its stability is not impaired. In this case, it is preferable in that the production / transport cost can be reduced. This concentrated liquid can be appropriately diluted with the above-mentioned aqueous medium as necessary and used in the polishing step. The dilution ratio is preferably 5 to 100 times.

本開示に係る研磨液組成物の研磨対象としては、例えば、酸化珪素膜が挙げられる。したがって、本開示に係る研磨液組成物は、半導体基板の素子分離構造を形成する工程で行われる酸化珪素膜の研磨に好適に使用できる。   Examples of the polishing target of the polishing liquid composition according to the present disclosure include a silicon oxide film. Therefore, the polishing composition according to the present disclosure can be suitably used for polishing a silicon oxide film performed in the step of forming an element isolation structure of a semiconductor substrate.

[研磨液キット]
本開示は、一態様において、研磨液組成物を製造するためのキットであって、粒子A、無機塩B、水系媒体及び必要に応じて上記任意成分を含み、粒子A、無機塩B、水系媒体及び上記任意成分のうちの少なくとも1成分は、他の成分と混合されない状態で含まれており、使用時に他の成分と混合される、研磨液キットに関する。本開示に係る研磨液キットによれば、研磨速度を向上でき、粒子の凝集を抑制可能な研磨液組成物が得られうる研磨液キットを提供できる。
[Polishing liquid kit]
In one aspect, the present disclosure is a kit for producing a polishing liquid composition, which includes a particle A, an inorganic salt B, an aqueous medium, and, if necessary, the above-described optional components, and includes a particle A, an inorganic salt B, and an aqueous system. The medium and at least one of the above optional components are contained in a state where they are not mixed with other components, and relate to a polishing liquid kit that is mixed with other components at the time of use. According to the polishing liquid kit according to the present disclosure, it is possible to provide a polishing liquid kit capable of improving the polishing rate and obtaining a polishing liquid composition capable of suppressing particle aggregation.

本開示に係る研磨液キットの一実施形態としては、例えば、粒子A及び水系媒体を含有する分散液(第1液)と、無機塩B及び水系媒体を含有する溶液(第2液)とを、相互に混合されていない状態で含み、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。本開示に係る研磨液キットの他の実施形態としては、例えば、粒子A、無機塩B及び水系媒体を含有する分散液(第1液)と、成分C及び水系媒体を含有する溶液(第2液)とを、相互に混合されていない状態で含み、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。前記第1液と前記第2液との混合は、研磨対象の表面への供給前に行われてもよいし、別々に供給されて被研磨基板の表面上で混合されてもよい。前記第1液と前記第2液とが混合された後、必要に応じて水系媒体で希釈されてもよい。前記第1液及び前記第2液のそれぞれには、必要に応じて上述した任意成分が含まれていてもよい。   As one embodiment of the polishing liquid kit according to the present disclosure, for example, a dispersion liquid (first liquid) containing particles A and an aqueous medium, and a solution (second liquid) containing an inorganic salt B and an aqueous medium are used. A polishing liquid kit (a two-component polishing liquid composition) is included that is included in a state where they are not mixed with each other and that is mixed when used. As other embodiments of the polishing liquid kit according to the present disclosure, for example, a dispersion liquid (first liquid) containing particles A, an inorganic salt B and an aqueous medium, and a solution (second liquid) containing component C and an aqueous medium. Liquid) in a state where they are not mixed with each other, and a polishing liquid kit (two-component polishing liquid composition) in which these are mixed at the time of use. The first liquid and the second liquid may be mixed before being supplied to the surface to be polished, or may be separately supplied and mixed on the surface of the substrate to be polished. After the first liquid and the second liquid are mixed, the liquid may be diluted with an aqueous medium as necessary. Each of the first liquid and the second liquid may contain the above-described optional components as necessary.

[半導体基板の製造方法]
本開示は、一態様において、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本開示に係る研磨液組成物を用いた研磨工程」ともいう)を含む、半導体基板の製造方法(以下、「本開示に係る半導体基板の製造方法」ともいう。)に関する。本開示に係る半導体基板の製造方法によれば、本開示の研磨液組成物を用いることで、研磨工程における研磨速度を向上でき、さらに、粒子の凝集を抑制して研磨傷を低減できるため、基板品質が向上した半導体基板を効率よく製造できるという効果が奏されうる。
[Method for Manufacturing Semiconductor Substrate]
In one aspect, the present disclosure includes a step of polishing a substrate to be polished using the polishing liquid composition according to the present disclosure (hereinafter, also referred to as “polishing step using the polishing liquid composition according to the present disclosure”). The present invention relates to a method for manufacturing a semiconductor substrate (hereinafter also referred to as “method for manufacturing a semiconductor substrate according to the present disclosure”). According to the method for producing a semiconductor substrate according to the present disclosure, by using the polishing liquid composition of the present disclosure, it is possible to improve the polishing rate in the polishing step, and further, it is possible to reduce the polishing scratches by suppressing the aggregation of particles, The effect that a semiconductor substrate with improved substrate quality can be produced efficiently can be achieved.

本開示に係る半導体基板の製造方法の具体例としては、まず、シリコン基板を酸化炉内で酸素に晒すことよりその表面に二酸化シリコン層を成長させ、次いで、当該二酸化シリコン層上に窒化珪素(Si34)膜又はポリシリコン膜等の研磨ストッパ膜を、例えば化学気相成長法(CVD法)にて形成する。次に、シリコン基板と前記シリコン基板の一方の主面側に配置された研磨ストッパ膜とを含む基板、例えば、シリコン基板の二酸化シリコン層上に研磨ストッパ膜が形成された基板に、フォトリソグラフィー技術を用いてトレンチを形成する。次いで、例えば、シランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の被研磨膜である酸化珪素(SiO2)膜を形成し、研磨ストッパ膜が被研磨膜(酸化珪素膜)で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、研磨ストッパ膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも研磨ストッパ膜のシリコン基板側の面の反対面が露出するまで研磨し、より好ましくは、酸化珪素膜の表面と研磨ストッパ膜の表面とが面一になるまで酸化珪素膜を研磨する。本開示に係る研磨液組成物は、このCMP法による研磨を行う工程に用いることができる。 As a specific example of the method of manufacturing a semiconductor substrate according to the present disclosure, first, a silicon dioxide layer is grown on the surface of the silicon substrate by exposing the silicon substrate to oxygen in an oxidation furnace, and then silicon nitride ( A polishing stopper film such as a Si 3 N 4 ) film or a polysilicon film is formed by, for example, a chemical vapor deposition method (CVD method). Next, a photolithography technique is applied to a substrate including a silicon substrate and a polishing stopper film disposed on one main surface side of the silicon substrate, for example, a substrate in which a polishing stopper film is formed on a silicon dioxide layer of a silicon substrate. Is used to form a trench. Next, a silicon oxide (SiO 2 ) film, which is a film to be polished for trench filling, is formed by, for example, a CVD method using silane gas and oxygen gas, and the polishing stopper film is covered with the film to be polished (silicon oxide film). A polished substrate is obtained. By forming the silicon oxide film, the trench is filled with silicon oxide of the silicon oxide film, and the surface opposite to the surface of the polishing stopper film on the silicon substrate side is covered with the silicon oxide film. The surface opposite to the surface on the silicon substrate side of the silicon oxide film thus formed has a step formed corresponding to the unevenness of the lower layer. Next, the silicon oxide film is polished by CMP until at least the opposite surface of the surface of the polishing stopper film on the silicon substrate side is exposed. More preferably, the surface of the silicon oxide film and the surface of the polishing stopper film are flush with each other. The silicon oxide film is polished until The polishing composition according to the present disclosure can be used in the step of polishing by the CMP method.

CMP法による研磨では、被研磨基板の表面と研磨パッドとを接触させた状態で、本開示に係る研磨液組成物をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面の凹凸部分を平坦化させる。本開示に係る半導体基板の製造方法において、シリコン基板の二酸化シリコン層と研磨ストッパ膜との間に他の絶縁膜が形成されていてもよいし、被研磨膜(例えば、酸化珪素膜)と研磨ストッパ膜(例えば、窒化珪素膜)との間に他の絶縁膜が形成されていてもよい。   In polishing by the CMP method, the surface of the substrate to be polished and the polishing pad are in contact with each other, and the polishing substrate composition and the polishing pad are relatively moved while supplying the polishing composition according to the present disclosure to these contact portions. By doing so, the uneven portions on the surface of the substrate to be polished are flattened. In the method for manufacturing a semiconductor substrate according to the present disclosure, another insulating film may be formed between the silicon dioxide layer of the silicon substrate and the polishing stopper film, or the polishing target film (for example, a silicon oxide film) and the polishing may be performed. Another insulating film may be formed between the stopper film (for example, silicon nitride film).

本開示に係る研磨液組成物を用いた研磨工程において、研磨パッドの回転数は、例えば、30〜200r/分、被研磨基板の回転数は、例えば、30〜200r/分、研磨パッドを備えた研磨装置に設定される研磨荷重は、例えば、20〜500g重/cm2、研磨液組成物の供給速度は、例えば、10〜500mL/分以下に設定できる。研磨液組成物が2液型研磨液組成物の場合、第1液及び第2液のそれぞれの供給速度(又は供給量)を調整することで、被研磨膜及び研磨ストッパ膜のそれぞれの研磨速度や、被研磨膜と研磨ストッパ膜との研磨速度比(研磨選択性)を調整できる。 In the polishing process using the polishing composition according to the present disclosure, the polishing pad has a rotation speed of, for example, 30 to 200 r / min, and the rotation speed of the substrate to be polished is, for example, 30 to 200 r / min. The polishing load set in the polishing apparatus can be set to, for example, 20 to 500 g weight / cm 2 , and the supply rate of the polishing composition can be set to, for example, 10 to 500 mL / min or less. When the polishing liquid composition is a two-part polishing liquid composition, the respective polishing speeds of the film to be polished and the polishing stopper film are adjusted by adjusting the respective supply speeds (or supply amounts) of the first liquid and the second liquid. In addition, the polishing rate ratio (polishing selectivity) between the film to be polished and the polishing stopper film can be adjusted.

本開示に係る研磨液組成物を用いた研磨工程において、被研磨膜(例えば、酸化珪素膜)の研磨速度は、生産性向上の観点から、好ましくは2000Å/分以上、より好ましくは3000Å/分以上、更に好ましくは4000Å/分以上である。   In the polishing step using the polishing composition according to the present disclosure, the polishing rate of the film to be polished (for example, silicon oxide film) is preferably 2000 kg / min or more, more preferably 3000 kg / min, from the viewpoint of improving productivity. More preferably, it is 4000 kg / min or more.

本開示に係る研磨液組成物を用いた研磨工程において、研磨ストッパ膜(例えば、窒化珪素膜)の研磨速度は、研磨選択性向上及び研磨時間の短縮化の観点から、好ましくは500Å/分以下、より好ましくは300Å/分以下、更に好ましくは150Å/分以下である。   In the polishing process using the polishing liquid composition according to the present disclosure, the polishing rate of the polishing stopper film (for example, silicon nitride film) is preferably 500 mm / min or less from the viewpoint of improving the polishing selectivity and shortening the polishing time. More preferably, it is 300 kg / min or less, and still more preferably 150 kg / min or less.

本開示に係る研磨液組成物を用いた研磨工程において、研磨速度比(被研磨膜の研磨速度/研磨ストッパ膜の研磨速度)は、研磨時間の短縮化の観点から、5.0以上が好ましく、10.0以上がより好ましく、20.0以上が更に好ましく、40.0以上が更により好ましい。本開示において研磨選択性は、研磨ストッパの研磨速度に対する被研磨膜の研磨速度の比(被研磨膜の研磨速度/研磨ストッパ膜の研磨速度)と同義であり、研磨選択性が高いとは、研磨速度比が大きいことを意味する。   In the polishing step using the polishing composition according to the present disclosure, the polishing rate ratio (polishing rate of the film to be polished / polishing rate of the polishing stopper film) is preferably 5.0 or more from the viewpoint of shortening the polishing time. 10.0 or more are more preferable, 20.0 or more are still more preferable, and 40.0 or more are still more preferable. In the present disclosure, the polishing selectivity is synonymous with the ratio of the polishing rate of the film to be polished to the polishing rate of the polishing stopper (polishing rate of the film to be polished / polishing rate of the polishing stopper film), and high polishing selectivity means This means that the polishing rate ratio is large.

[研磨方法]
本開示は、一態様において、本開示に係る研磨液組成物を用いた研磨工程を含む、基板の研磨方法(以下、本開示に係る研磨方法ともいう)に関する。本開示に係る研磨方法を使用することにより、研磨工程における研磨速度を向上でき、さらに、粒子の凝集を抑制して研磨傷を低減できるため、基板品質が向上した半導体基板を効率よく製造できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本開示に係る半導体基板の製造方法と同じようにすることができる。
[Polishing method]
In one aspect, the present disclosure relates to a substrate polishing method (hereinafter, also referred to as a polishing method according to the present disclosure) including a polishing step using the polishing composition according to the present disclosure. By using the polishing method according to the present disclosure, it is possible to improve the polishing rate in the polishing process, and further to suppress the aggregation of particles and reduce polishing scratches, so that it is possible to efficiently manufacture a semiconductor substrate with improved substrate quality. An effect can be produced. Specific polishing methods and conditions can be the same as those of the semiconductor substrate manufacturing method according to the present disclosure described above.

以下、実施例により本開示を更に詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。   Hereinafter, the present disclosure will be described in more detail by way of examples. However, these examples are illustrative, and the present disclosure is not limited to these examples.

1.研磨粒子の製造方法又はその詳細
実施例1〜11及び比較例1〜7の研磨液組成物の調製に用いた研磨粒子の製造方法又は詳細は下記の通りである。
<セリアコートシリカ粒子Aの製造方法>
まず、球状シリカ粒子(平均一次粒子径:80nm、会合度:1.4)の20質量%水分散液を調製し、当該球状シリカ粒子水分散液に、CeO2原料である硝酸セリウムを溶解させた水溶液(濃度:6質量%)を滴下(供給速度:2g/min)し、同時に3質量%アンモニア水溶液を別途滴下して、pHを約8に維持しながらセリア(平均一次粒子径:15nm)を球状シリカ粒子上に沈着させた。この滴下の間、球状シリカ水分散液は加温により50℃に維持した。滴下終了後、反応液を加熱により100℃・4時間熟成して、沈着させたセリアを結晶化させた。その後、得られた粒子について、濾別、水での洗浄を十分行ったのち、乾燥機にて100℃で乾燥させた。得られた乾燥粉を研磨液組成物の調製に使用してもよいが、ここでは更に乾燥粉について1000℃で2時間焼成を行った後、焼成によって相互にくっついた粒子同士を分離するためにほぐして、セリアコートシリカ粒子A(DLS粒子径:140nm)を得た。粒子Aを透過型電子顕微鏡(TEM)にて観察したところ、図1に示すとおり、シリカ粒子表面が粒状セリアで被覆されていた。粒子Aにおけるシリカとセリアとの質量比は0.87であった。
<粉砕セリア>
粉砕セリア(DLS粒子径:130nm)
1. Manufacturing method or details of abrasive particles The manufacturing method or details of the abrasive particles used in the preparation of the polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 7 are as follows.
<Method for producing ceria-coated silica particles A>
First, a 20% by mass aqueous dispersion of spherical silica particles (average primary particle size: 80 nm, association degree: 1.4) is prepared, and cerium nitrate as a CeO 2 raw material is dissolved in the spherical silica particle aqueous dispersion. Aqueous solution (concentration: 6% by mass) was added dropwise (feed rate: 2 g / min), and at the same time, a 3% by mass aqueous ammonia solution was added dropwise separately to maintain the pH at about 8 (average primary particle size: 15 nm) Was deposited on spherical silica particles. During this dropping, the spherical silica aqueous dispersion was maintained at 50 ° C. by heating. After completion of the dropwise addition, the reaction solution was aged by heating at 100 ° C. for 4 hours to crystallize the deposited ceria. Thereafter, the obtained particles were sufficiently filtered and washed with water, and then dried at 100 ° C. with a dryer. The obtained dry powder may be used for the preparation of the polishing composition, but here, after further drying the dried powder at 1000 ° C. for 2 hours, the particles adhered to each other by baking are separated. By loosening, ceria-coated silica particles A (DLS particle diameter: 140 nm) were obtained. When the particle A was observed with a transmission electron microscope (TEM), the silica particle surface was covered with granular ceria as shown in FIG. The mass ratio of silica to ceria in Particle A was 0.87.
<Crushing ceria>
Ground ceria (DLS particle size: 130nm)

2.研磨液組成物(実施例1〜11及び比較例1〜7)の調製
研磨粒子(セリアコートシリカ粒子A又は粉砕セリア)と無機塩Bとイオン交換水とを均一に混合し、必要に応じてpH調整剤を添加して、25℃におけるpH6.0の研磨液組成物(実施例1〜11及び比較例1〜7)を得た。pH調整剤としては、pHを低く調整する場合は1mol/L塩酸を用い、pHを高く調整する場合は1質量%アンモニア水を用いた。実施例1〜11及び比較例1〜7の各研磨液組成物中の研磨粒子及び無機塩Bの含有量及び種類は、表1に記載の通りとした。
2. Preparation of polishing liquid compositions (Examples 1 to 11 and Comparative Examples 1 to 7) Abrasive particles (ceria-coated silica particles A or pulverized ceria), inorganic salt B, and ion-exchanged water are uniformly mixed, and if necessary. The pH adjuster was added and the polishing liquid composition (Examples 1-11 and Comparative Examples 1-7) of pH 6.0 in 25 degreeC was obtained. As a pH adjuster, 1 mol / L hydrochloric acid was used when adjusting the pH low, and 1 mass% aqueous ammonia was used when adjusting the pH high. The contents and types of the abrasive particles and inorganic salt B in each of the polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 7 were as shown in Table 1.

3.各種パラメータの測定方法
研磨液組成物のpH、研磨粒子のDLS粒子径、研磨粒子のBET比表面積、シリカ粒子の平均一次粒子径、及び、セリア粒子の平均一次粒子径は、以下の方法により測定した。
3. Measuring method of various parameters The pH of the polishing composition, the DLS particle diameter of the abrasive particles, the BET specific surface area of the abrasive particles, the average primary particle diameter of the silica particles, and the average primary particle diameter of the ceria particles are measured by the following methods. did.

(a)研磨液組成物のpH
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定した値であり、pHメータの電極を研磨液組成物へ浸漬して1分後の数値である。
(A) pH of polishing composition
The pH value of the polishing composition at 25 ° C. is a value measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and 1 minute after the electrode of the pH meter is immersed in the polishing composition. It is a numerical value.

(b)研磨粒子のDLS粒子径
研磨粒子のDLS粒子径は、研磨粒子の濃度が0.1質量%となるよう研磨粒子と超純水とを撹拌混合して得られた研磨粒子スラリーをマルバーン社製の「ゼータサイザーナノZS」(動的光散乱法)にて測定し、得られた体積平均粒子径を研磨粒子のDLS粒子径とした。
(B) DLS particle size of abrasive particles The DLS particle size of the abrasive particles is Malvern obtained by stirring and mixing abrasive particles and ultrapure water so that the concentration of abrasive particles is 0.1% by mass. Measurement was performed with “Zeta Sizer Nano ZS” (dynamic light scattering method) manufactured by the company, and the obtained volume average particle size was defined as the DLS particle size of the abrasive particles.

(c)研磨粒子のBET比表面積
比表面積は、研磨粒子分散液を120℃で3時間熱風乾燥した後、メノウ乳鉢で細かく粉砕しサンプルを得た。測定直前に120℃の雰囲気下で15分間乾燥した後、マイクロメリティック自動比表面積測定装置「フローソーブIII2305」、(島津製作所製)を用いて窒素吸着法(BET法)により測定した。
(C) BET specific surface area of abrasive particles The specific surface area of the abrasive particle dispersion was dried with hot air at 120 ° C for 3 hours, and then finely pulverized in an agate mortar to obtain a sample. The sample was dried for 15 minutes in an atmosphere of 120 ° C. immediately before the measurement, and then measured by a nitrogen adsorption method (BET method) using a micromeritic automatic specific surface area measuring device “Flowsorb III2305” (manufactured by Shimadzu Corporation).

(d)シリカ粒子の平均一次粒子径
複合粒子の原料として使用したシリカ粒子の平均一次粒子径、及び、複合粒子中のシリカ粒子の平均一次粒子径は、TEMより得られる画像を用い、シリカ粒子50個の大きさを計測し、これらを平均して得た。シリカ粒子の平均一次粒子径は、セリアによる被覆前後で変動はなかった。
(D) Average primary particle diameter of silica particles The average primary particle diameter of the silica particles used as the raw material of the composite particles and the average primary particle diameter of the silica particles in the composite particles are obtained by using an image obtained from TEM. 50 sizes were measured and averaged. The average primary particle diameter of the silica particles did not change before and after coating with ceria.

(e)セリア粒子の平均一次粒子径
シリカ粒子上のセリア粒子の平均一次粒子径は、TEMより得られる画像を用い、シリカ粒子上のセリア粒子100個の粒子径を計測し、これらを平均して得た。別法として、セリアコートシリカ粒子の粉体を粉末X線回折測定にかけ、29〜30°付近に出現するセリアの(1,1,1)面のピークの半値幅、回折角度を用い、シェラー式より得られる結晶子径を平均一次粒子径としてもよい。
シェラー式:結晶子径(Å)=K×λ/(β×cosθ)
K:シェラー定数
λ:X線の波長=1.54056Å、β:半値幅、θ:回折角2θ/θ
(E) Average primary particle diameter of the ceria particles The average primary particle diameter of the ceria particles on the silica particles is obtained by measuring the particle diameters of 100 ceria particles on the silica particles using an image obtained from TEM, and averaging these. I got it. As another method, powder of ceria-coated silica particles is subjected to powder X-ray diffraction measurement, and the half width of the peak of ceria (1,1,1) plane appearing in the vicinity of 29-30 ° and the diffraction angle are used. It is good also considering the crystallite diameter obtained more as an average primary particle diameter.
Scherrer formula: crystallite diameter (Å) = K × λ / (β × cos θ)
K: Scherrer constant λ: wavelength of X-ray = 1.54056Å, β: half width, θ: diffraction angle 2θ / θ

4.研磨液組成物(実施例1〜11及び比較例1〜7)の評価
[試験片の作成]
シリコンウェーハの片面に、TEOS−プラズマCVD法で厚さ2000nmの酸化珪素膜を形成したものから、40mm×40mmの正方形片を切り出し、酸化珪素膜試験片を得た。
4). Evaluation of polishing composition (Examples 1 to 11 and Comparative Examples 1 to 7) [Creation of test pieces]
A 40 mm × 40 mm square piece was cut out from a silicon oxide film having a thickness of 2000 nm formed on one side of a silicon wafer by TEOS-plasma CVD method to obtain a silicon oxide film test piece.

[酸化珪素の研磨速度の測定]
研磨装置として、定盤径300mmのムサシノ電子社製「MA−300」を用いた。また、研磨パッドとしては、ニッタ・ハース社製の硬質ウレタンパッド「IC−1000/Sub400」を用いた。前記研磨装置の定盤に、前記研磨パッドを貼り付けた。前記試験片を直径120mmの装置のホルダーにセットし、試験片の酸化珪素膜を形成した面が下になるように(酸化珪素膜が研磨パッドに面するように)ホルダーを研磨パッドに載せた。さらに、試験片にかかる荷重が300g重/cm2となるように、錘をホルダーに載
せた。研磨パッドを貼り付けた定盤の中心に、研磨液組成物を50mL/minの速度で滴下しながら、定盤及びホルダーのそれぞれを同じ回転方向に90r/minで2分間回転させて、試験片の研磨を行った。研磨後、超純水を用いて洗浄し、乾燥して、試験片を後述の光干渉式膜厚測定装置による測定対象とした。
[Measurement of polishing rate of silicon oxide]
As a polishing apparatus, “MA-300” manufactured by Musashino Electronics Co., Ltd. having a surface plate diameter of 300 mm was used. As the polishing pad, a hard urethane pad “IC-1000 / Sub400” manufactured by Nitta Haas was used. The polishing pad was attached to the surface plate of the polishing apparatus. The test piece was set in a holder of an apparatus having a diameter of 120 mm, and the holder was placed on the polishing pad so that the surface of the test piece on which the silicon oxide film was formed faced down (so that the silicon oxide film faces the polishing pad) . Further, a weight was placed on the holder so that the load applied to the test piece was 300 g weight / cm 2 . While dropping the polishing composition at a speed of 50 mL / min on the center of the surface plate to which the polishing pad was attached, each of the surface plate and the holder was rotated in the same rotational direction at 90 r / min for 2 minutes to obtain a test piece. Was polished. After polishing, the sample was washed with ultrapure water and dried, and the test piece was used as a measurement object by an optical interference film thickness measuring device described later.

研磨前及び研磨後において、光干渉式膜厚測定装置(大日本スクリーン社製「ラムダエースVM−1000」)を用いて、酸化珪素の膜厚を測定した。酸化珪素膜の研磨速度は下記式により算出した。各研磨液組成物を用いた酸化珪素膜の研磨速度は、比較例1の研磨粒子を用いた場合の研磨速度を100とした相対値を表1に示す。尚、表1において、相対値は5単位で表示した。
酸化珪素膜の研磨速度(nm/min)
=[研磨前の酸化珪素膜厚さ(nm)−研磨後の酸化珪素膜厚さ(nm)]/研磨時間(min)
Before and after polishing, the film thickness of silicon oxide was measured using an optical interference type film thickness measuring device (“Lambda Ace VM-1000” manufactured by Dainippon Screen). The polishing rate of the silicon oxide film was calculated by the following formula. As for the polishing rate of the silicon oxide film using each polishing composition, Table 1 shows relative values with the polishing rate being 100 when the polishing particles of Comparative Example 1 are used. In Table 1, the relative value is shown in 5 units.
Polishing rate of silicon oxide film (nm / min)
= [Silicon oxide film thickness before polishing (nm) -silicon oxide film thickness after polishing (nm)] / polishing time (min)

[沈降高さの測定]
まず、表1に記載の研磨液組成物100mLを調製してガラス製試料ビン(マルエム社製「スクリュー管No.8」)に注ぎ、振とうして均一にした後、1時間静置した。そして、研磨液組成物に含まれる成分の沈降により生じる沈降層の高さである沈降高さ(mm)をノギスで計測した。結果を表1に示す。
[Measurement of sedimentation height]
First, 100 mL of the polishing liquid composition shown in Table 1 was prepared, poured into a glass sample bottle (“Screw tube No. 8” manufactured by Maruem Co., Ltd.), shaken to be uniform, and allowed to stand for 1 hour. And the sedimentation height (mm) which is the height of the sedimentation layer produced by sedimentation of the component contained in polishing liquid composition was measured with calipers. The results are shown in Table 1.

表1に示されるように、セリアコートシリカ粒子A及び無機塩Bを含有する実施例1〜11の研磨液組成物は、研磨粒子の凝集が抑制されていた。そして、実施例1〜11の研磨液組成物を用いて研磨すると、比較例1〜7に比べて、研磨速度を向上できた。   As shown in Table 1, in the polishing composition of Examples 1 to 11 containing ceria-coated silica particles A and inorganic salt B, aggregation of abrasive particles was suppressed. And when it grind | polished using the polishing liquid composition of Examples 1-11, the polishing rate was able to be improved compared with Comparative Examples 1-7.

本開示に係る研磨液組成物は、高密度化又は高集積化用の半導体基板の製造方法において有用である。   The polishing composition according to the present disclosure is useful in a method for manufacturing a semiconductor substrate for high density or high integration.

Claims (12)

セリア粒子を表面上に配置したシリカ粒子からなる複合粒子A、無機塩B、及び水系媒体を含有する、研磨液組成物。   Polishing liquid composition containing the composite particle A which consists of the silica particle which arrange | positioned the ceria particle on the surface, inorganic salt B, and an aqueous medium. 酸化珪素膜の研磨に用いられる、請求項1に記載の研磨液組成物。   The polishing composition according to claim 1, which is used for polishing a silicon oxide film. 無機塩Bの含有量が、複合粒子A100質量部に対して、0.2質量部以上80質量部以下である、請求項1又は2に記載の研磨液組成物。   The polishing composition according to claim 1 or 2, wherein the content of the inorganic salt B is 0.2 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the composite particles A. 無機塩Bの含有量が、複合粒子Aの表面積に対して、1μmol/m2以上400μmol/m2以下である、請求項1から3のいずれかに記載の研磨液組成物。 The content of the inorganic salt B is, with respect to the surface area of the composite particles A, is 1 [mu] mol / m 2 or more 400μmol / m 2 or less, the polishing liquid composition according to any one of claims 1 to 3. 研磨液組成物中の無機塩Bの含有量が、0.001質量%以上0.4質量%以下である、請求項1から4のいずれかに記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 4, wherein the content of the inorganic salt B in the polishing composition is 0.001 mass% or more and 0.4 mass% or less. 無機塩Bが、塩化アンモニウムである、請求項1から5のいずれかに記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 5, wherein the inorganic salt B is ammonium chloride. 複合粒子Aに含まれるシリカとセリアとの質量比(シリカ/セリア)が、0.25以上3.0以下である、請求項1から6のいずれかに記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 6, wherein a mass ratio (silica / ceria) of silica and ceria contained in the composite particle A is 0.25 or more and 3.0 or less. 複合粒子Aの動的光散乱法により測定される平均粒子径が、30nm以上500nm以下である、請求項1から7のいずれかに記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 7, wherein the average particle diameter of the composite particles A measured by a dynamic light scattering method is 30 nm or more and 500 nm or less. 複合粒子Aに含まれるシリカ粒子の会合度が、1.0以上3.0以下である、請求項1から8のいずれかに記載の研磨液組成物。   The polishing liquid composition according to any one of claims 1 to 8, wherein the degree of association of silica particles contained in the composite particles A is 1.0 or more and 3.0 or less. pHが、4.0以上10.0以下である、請求項1から9のいずれかに記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 9, wherein the pH is 4.0 or more and 10.0 or less. 請求項1から10のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法。   The manufacturing method of a semiconductor substrate including the process of grind | polishing a to-be-polished board | substrate using the polishing liquid composition in any one of Claim 1 to 10. 請求項1から10のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、基板の研磨方法。   A method for polishing a substrate, comprising a step of polishing a substrate to be polished using the polishing composition according to claim 1.
JP2016246902A 2016-12-20 2016-12-20 Abrasive liquid composition Active JP6797665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246902A JP6797665B2 (en) 2016-12-20 2016-12-20 Abrasive liquid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246902A JP6797665B2 (en) 2016-12-20 2016-12-20 Abrasive liquid composition

Publications (2)

Publication Number Publication Date
JP2018101693A true JP2018101693A (en) 2018-06-28
JP6797665B2 JP6797665B2 (en) 2020-12-09

Family

ID=62714463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246902A Active JP6797665B2 (en) 2016-12-20 2016-12-20 Abrasive liquid composition

Country Status (1)

Country Link
JP (1) JP6797665B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
US20130171824A1 (en) * 2010-09-08 2013-07-04 Basf Se Process for chemically mechanically polishing substrates containing silicon oxide dielectric films and polysilicon and/or silicon nitride films
JP2016056292A (en) * 2014-09-10 2016-04-21 株式会社フジミインコーポレーテッド Polishing composition and production process therefor, polishing method, and substrate and production process therefor
WO2016159167A1 (en) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
US20130171824A1 (en) * 2010-09-08 2013-07-04 Basf Se Process for chemically mechanically polishing substrates containing silicon oxide dielectric films and polysilicon and/or silicon nitride films
JP2016056292A (en) * 2014-09-10 2016-04-21 株式会社フジミインコーポレーテッド Polishing composition and production process therefor, polishing method, and substrate and production process therefor
WO2016159167A1 (en) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion

Also Published As

Publication number Publication date
JP6797665B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6352060B2 (en) Polishing liquid composition for polishing silicon oxide film
JP6510812B2 (en) Polishing particles for polishing silicon oxide film
JP6375623B2 (en) Abrasive, abrasive set, and substrate polishing method
JP6422325B2 (en) Polishing liquid composition for semiconductor substrate
WO2018124017A1 (en) Cerium oxide abrasive grains
WO2018062403A1 (en) Polishing liquid composition
JP6207345B2 (en) Method for producing silica particles
TW201518488A (en) Polishing composition and method for producing same
JP6563957B2 (en) Polishing liquid composition for polishing silicon oxide film
JP7356932B2 (en) Polishing composition and polishing method
JP6618355B2 (en) Polishing liquid composition
JP2014130957A (en) Polishing liquid composition for semiconductor substrate
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
JP2019089670A (en) Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP7236270B2 (en) Polishing liquid composition
JP6811090B2 (en) Abrasive liquid composition for silicon oxide film
JP6783609B2 (en) Metal oxide particle dispersion
JP6797665B2 (en) Abrasive liquid composition
JP2019102476A (en) Polishing liquid composition
WO2013175976A1 (en) Polishing agent composition for cmp and method for manufacturing a device wafer using said polishing agent composition for cmp
JP2019071366A (en) Cerium oxide-containing composite abrasive
WO2018124013A1 (en) Cerium oxide abrasive grain
JP2023038579A (en) Chemical mechanical polishing particles
JP2022137999A (en) Polishing liquid composition for silicon oxide film
TW202219207A (en) Silica-based slurry for selective polishing of carbon-based films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R151 Written notification of patent or utility model registration

Ref document number: 6797665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250