JP2018101490A - Heater unit and manufacturing method thereof - Google Patents

Heater unit and manufacturing method thereof Download PDF

Info

Publication number
JP2018101490A
JP2018101490A JP2016245669A JP2016245669A JP2018101490A JP 2018101490 A JP2018101490 A JP 2018101490A JP 2016245669 A JP2016245669 A JP 2016245669A JP 2016245669 A JP2016245669 A JP 2016245669A JP 2018101490 A JP2018101490 A JP 2018101490A
Authority
JP
Japan
Prior art keywords
heater unit
adhesive layer
insulating material
electrode plate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016245669A
Other languages
Japanese (ja)
Inventor
康行 松浦
Yasuyuki Matsuura
康行 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2016245669A priority Critical patent/JP2018101490A/en
Publication of JP2018101490A publication Critical patent/JP2018101490A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heater unit having excellent temperature rising characteristics.SOLUTION: Preferably, A heater unit has a layer configuration in which a metal electrode plate is provided on the upper and lower surfaces of a flat plate-like positive temperature coefficient ceramic element via a first adhesive layer, and a metal heat radiation plate is provided on the further outer side of the metal electrode plate via a second adhesive layer, and the second adhesive layer contains particulate insulating material in a dispersed state. In this case, a proportion of the insulating material in the second adhesive layer is 5 to 50% by weight, and the insulating material is glass beads having an average particle size of 30 to 100 μm.SELECTED DRAWING: Figure 1

Description

本発明は、優れた昇温特性を有するヒーターユニット、特に正温度係数(Positive Temperature Coefficient, PTC)ヒーター素子を発熱源に用いたヒーターユニットおよびその製造方法に関する。   The present invention relates to a heater unit having excellent temperature rise characteristics, and more particularly, to a heater unit using a positive temperature coefficient (PTC) heater element as a heat source and a method for manufacturing the same.

これまでに、定温ヒーターや局所加熱ヒーターとして、自己温度制御機能を備えたPTCヒーター素子を発熱源に用いた平板状ヒーターが多くの分野で使用されてきており、例えば下記の特許文献1には、車載用ヒーターとして、電極面を有する発熱素子と、その電極面に接して発熱素子に重ね合わされた電極部材と、発熱素子と電極部材とを包む絶縁性シートと、絶縁性シートに包まれた発熱素子及び電極部材を収容する中空部と、発熱素子からの熱が伝導される放熱面と、を有する筒体と、少なくともフィンを含み筒体の放熱面上に設けられた放熱体ユニットと、を備えたものが開示されている。
このような従来の平板状ヒーターは、図2に示されるように、PTCヒーター素子1とヒーターユニットを絶縁するために、PTCヒーター素子1の主表面に形成した電極と金属電極板3を接着層6で接着し、その周りに絶縁性シート7(例えば、東レ・デュポン株式会社製のポリイミドシート、商品名:カプトン(登録商標))を巻いて絶縁し、さらに熱を伝えるために角形パイプ状の金属8で圧接した構造を有しているが、このような構造であるために、熱抵抗が発生し、ヒーターの昇温特性に問題が有った。
Up to now, flat heaters using PTC heater elements having a self-temperature control function as a heat source have been used in many fields as constant temperature heaters and local heaters. As an in-vehicle heater, a heating element having an electrode surface, an electrode member that is in contact with the electrode surface and superimposed on the heating element, an insulating sheet that wraps the heating element and the electrode member, and an insulating sheet A hollow body that accommodates the heat generating element and the electrode member, a cylinder having a heat radiating surface through which heat from the heat generating element is conducted, and a heat radiating unit provided on the heat radiating surface of the cylinder including at least fins; What is provided is disclosed.
As shown in FIG. 2, such a conventional flat heater is composed of an electrode formed on the main surface of the PTC heater element 1 and a metal electrode plate 3 in order to insulate the PTC heater element 1 from the heater unit. 6 is bonded, and an insulating sheet 7 (for example, a polyimide sheet manufactured by Toray DuPont Co., Ltd., trade name: Kapton (registered trademark)) is wound around the insulating sheet 7 to form a rectangular pipe shape for conducting heat. Although it has a structure in which the metal 8 is press-contacted, such a structure causes a thermal resistance and has a problem in the temperature rise characteristics of the heater.

特許第4455473号公報Japanese Patent No. 4455473

本発明は、従来技術における上記の問題点を解決し、優れた昇温特性を有する正温度係数ヒーターユニット(PTCヒーターユニット)を提供することを課題とする。また、本発明の課題は、上記のヒーターユニットを製造するための方法を提供することでもある。
本発明者は、種々検討を行った結果、PTCヒーター素子の主表面に形成した電極と金属電極板を接着剤で接着した上に、さらに粒子状の絶縁材料を混合分散させた接着層で金属放熱板を接着させることにより、PTCヒーター素子との絶縁を確保し、かつPTCヒーター素子にて発生する熱をより早く均一に被加熱物に伝達できることを見出して、本発明を完成した。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a positive temperature coefficient heater unit (PTC heater unit) having excellent temperature rise characteristics. Another object of the present invention is to provide a method for manufacturing the heater unit.
As a result of various studies, the present inventor has adhered the electrode formed on the main surface of the PTC heater element and the metal electrode plate with an adhesive, and in addition, an adhesive layer in which a particulate insulating material is further mixed and dispersed. The present invention has been completed by finding that by adhering a heat sink, insulation from the PTC heater element can be secured and heat generated by the PTC heater element can be transmitted to the heated object more quickly and uniformly.

前記の課題を解決可能な本発明のヒーターユニットは、平板状のPTCヒーター素子の上面および下面にそれぞれ第1接着層を介して金属電極板が設けられており、前記金属電極板のさらに外側に第2接着層を介して金属放熱板が設けられた層構成を有していること、及び、前記の第2接着層が粒子状の絶縁材料を分散された状態で含むことを特徴とする。   In the heater unit of the present invention capable of solving the above-described problems, a metal electrode plate is provided on the upper surface and the lower surface of a flat PTC heater element via a first adhesive layer, respectively, and further outside the metal electrode plate. It has a layer structure in which a metal heat dissipation plate is provided via a second adhesive layer, and the second adhesive layer includes a particulate insulating material in a dispersed state.

また、本発明は、上記の特徴を有したヒーターユニットにおいて、前記第2接着層に占める前記絶縁材料の割合が5〜50重量%であることを特徴とするものである。   In the heater unit having the above-described characteristics, the ratio of the insulating material in the second adhesive layer is 5 to 50% by weight.

また、本発明は、上記の特徴を有したヒーターユニットにおいて、前記絶縁材料が、平均粒径30〜100μmのガラスビーズであることを特徴とするものである。   In the heater unit having the above characteristics, the present invention is characterized in that the insulating material is glass beads having an average particle diameter of 30 to 100 μm.

更に、本発明は、上記の特徴を有したヒーターユニットを製造するための方法であって、当該製造方法が、以下の工程:
平板状の正温度係数セラミック素子の上面および下面に接着剤を塗布して金属電極板を貼り付ける工程、及び
粒子状の絶縁材料を混合分散させた接着剤を用意し、当該接着剤を前記金属電極板の表面に塗布した後、金属放熱板を貼り付ける工程
を含むことを特徴とする。
Furthermore, the present invention is a method for manufacturing a heater unit having the above-described characteristics, and the manufacturing method includes the following steps:
A step of applying an adhesive on the upper and lower surfaces of a flat plate-like positive temperature coefficient ceramic element and attaching a metal electrode plate; and an adhesive in which a particulate insulating material is mixed and dispersed; After applying to the surface of an electrode plate, the process of sticking a metal heat sink is characterized.

本発明によれば、従来例より昇温特性の優れたヒーターユニットを得ることができる。この特性は、PTCヒーター素子に接着させた金属電極板の表面に、粒子状の絶縁材料を含んだ接着層を用いて金属放熱板を接着させることで、熱抵抗を最小限に抑えることができる。   According to the present invention, it is possible to obtain a heater unit having superior temperature rise characteristics than the conventional example. This property can minimize the thermal resistance by adhering the metal heat sink to the surface of the metal electrode plate adhered to the PTC heater element by using an adhesive layer containing a particulate insulating material. .

本発明のヒーターユニットの一実施の形態に係る構成を示す図である。It is a figure which shows the structure which concerns on one embodiment of the heater unit of this invention. 従来のヒーターユニットの構成を示す図である。It is a figure which shows the structure of the conventional heater unit. 実施例にて作製した本発明のヒーターユニットおよび従来品についての昇温特性を比較したグラフである。It is the graph which compared the temperature rising characteristic about the heater unit of this invention produced in the Example, and the conventional product.

以下、図面を用いて、本発明の実施例を詳細に説明する。
図1に示されるように、本発明のヒーターユニットにおいては、平板状のPTCヒーター素子1の上面および下面(両電極面)にそれぞれ第1接着層2を介して金属電極板3が設けられており、この金属電極板3のさらに外側には、第2接着層4を介して金属放熱板5が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, in the heater unit of the present invention, the metal electrode plate 3 is provided on the upper surface and the lower surface (both electrode surfaces) of the flat PTC heater element 1 via the first adhesive layer 2. A metal heat radiating plate 5 is provided on the outer side of the metal electrode plate 3 with a second adhesive layer 4 interposed therebetween.

本発明における平板状のPTCヒーター素子1は、正温度特性を有したセラミック素子であり、この素子は、キューリー点以上の温度になると急激に抵抗が増加して通電する電流を抑制する結果、それ以上の温度上昇が制限される機能を有している。PTCヒーター素子1の上記機能により、温度制御回路や過熱防止回路を省略することができ、消費電力を小さくすることができる。
また、上記のPTCヒーター素子1の上面および下面に設けられる第1接着層2は、耐熱性、導電性及び熱伝導性の点からシリコン系接着剤を用いて形成されることが好ましく、金属電極板3はアルミニウムやステンレスなどから成る金属板であり、金属電極板3の厚みとしては0.2〜0.5mmが好ましい。
The flat PTC heater element 1 according to the present invention is a ceramic element having a positive temperature characteristic. This element has a resistance that increases abruptly when the temperature reaches a Curie point or higher, and suppresses the energized current. It has a function to limit the above temperature rise. With the above function of the PTC heater element 1, the temperature control circuit and the overheat prevention circuit can be omitted, and the power consumption can be reduced.
The first adhesive layer 2 provided on the upper and lower surfaces of the PTC heater element 1 is preferably formed using a silicon-based adhesive from the viewpoint of heat resistance, conductivity, and thermal conductivity. The plate 3 is a metal plate made of aluminum or stainless steel, and the thickness of the metal electrode plate 3 is preferably 0.2 to 0.5 mm.

そして、第2接着層4(好ましくは厚み50〜500μm)には、接着剤に粒子状の絶縁材料が分散された状態にて、5〜50重量%の割合、好ましくは15〜30重量%の割合で含まれている。本発明における第2接着層4を形成するのに使用される接着剤としては、耐熱性、導電性及び熱伝導性の点からシリコン系接着剤が好ましく、粒子状の絶縁材料は有機絶縁材料であっても無機絶縁材料であっても良いが、平均粒径が30〜100μmである球状のガラスビーズが好ましく、平均粒径40〜60μmのガラスビーズが特に好ましい。このような球状のガラスビーズとしては市販品が広く使用でき、上記の平均粒径は、光学顕微鏡による画像解析法(JIS Z8827−1)により測定されたものである。   The second adhesive layer 4 (preferably having a thickness of 50 to 500 μm) has a ratio of 5 to 50% by weight, preferably 15 to 30% by weight, in a state where the particulate insulating material is dispersed in the adhesive. Included as a percentage. The adhesive used for forming the second adhesive layer 4 in the present invention is preferably a silicon-based adhesive from the viewpoint of heat resistance, conductivity and thermal conductivity, and the particulate insulating material is an organic insulating material. However, spherical glass beads having an average particle diameter of 30 to 100 μm are preferable, and glass beads having an average particle diameter of 40 to 60 μm are particularly preferable. As such spherical glass beads, commercially available products can be widely used, and the above average particle diameter is measured by an image analysis method using an optical microscope (JIS Z8827-1).

また、上記の第2接着層4によって上記金属電極板3の外側面に貼着される金属放熱板5としては、例えばアルミニウムやステンレスなどの熱伝導性に優れた金属からなるものが一般的であり、好ましい厚みは0.2〜0.5mmである。本発明のヒーターユニットの場合には、上記の第2接着層4中に粒子状の絶縁材料が分散されているために、絶縁性シートを使用しなくても、金属電極板3と絶縁された金属放熱板5を設けることができる。また、放熱性を向上させるため、金属放熱板5の厚みも最小限(好ましくは0.5mm以下)に薄くすることができる。   Moreover, as the metal heat sink 5 adhered to the outer surface of the metal electrode plate 3 by the second adhesive layer 4, for example, one made of a metal having excellent thermal conductivity such as aluminum or stainless steel is generally used. There is a preferable thickness of 0.2 to 0.5 mm. In the case of the heater unit of the present invention, since the particulate insulating material is dispersed in the second adhesive layer 4, it is insulated from the metal electrode plate 3 without using an insulating sheet. A metal heat sink 5 can be provided. Moreover, in order to improve heat dissipation, the thickness of the metal heat sink 5 can also be reduced to a minimum (preferably 0.5 mm or less).

上記のヒーターユニットを製造するための本発明の製造方法は、平板状のPTCセラミック素子の上面および下面に接着剤を塗布して金属電極板を貼り付ける工程と、粒子状の絶縁材料を5〜50重量%混合分散させた接着剤を調製し、当該接着剤を前記金属電極板の表面に塗布した後、金属放熱板を貼り付ける工程を含み、PTCセラミック素子の両主表面に金属電極板を貼り付ける第1の工程にて使用される接着剤としてはシリコン系接着剤が好ましく、金属放熱板を貼り付ける第2の工程にて使用される接着層材料としては、有機または無機の粒子状絶縁材料が均一に分散されたシリコン系接着剤が好ましい。
この際、外側の金属放熱板を接着する接着剤中に5〜50重量%の割合で、ガラスビーズを混合分散させることが好ましい。5重量%より小さいと、絶縁性を保つことが難しく、50重量%を超えると熱伝導性が阻害されることから、絶縁性と熱伝導性の両立を図る観点から第2接着層4に占めるガラスビーズ(絶縁材料)の割合を5〜10重量%にすることが好ましい。また、平均粒径30〜100μmのガラスビーズを混合分散されている接着層材料を使用することが好ましい。このような接着層材料を用いて金属放熱板が貼着されたヒーターユニットは、優れた昇温特性、即ち、短時間で所定の温度に達する速熱性を有している。
以下、本発明のヒーターユニットの製造例を示して本発明を具体的に説明するが、本発明は、これに限定されるものではない。
The manufacturing method of the present invention for manufacturing the heater unit includes a step of applying an adhesive to the upper and lower surfaces of a flat PTC ceramic element and attaching a metal electrode plate, 50% by weight mixed and dispersed adhesive is prepared, and after the adhesive is applied to the surface of the metal electrode plate, a metal heat dissipating plate is attached. The metal electrode plates are formed on both main surfaces of the PTC ceramic element. As the adhesive used in the first step of attaching, a silicon-based adhesive is preferable, and as the adhesive layer material used in the second step of attaching the metal heat sink, organic or inorganic particulate insulation is used. A silicon-based adhesive in which the material is uniformly dispersed is preferable.
At this time, it is preferable to mix and disperse the glass beads at a ratio of 5 to 50% by weight in the adhesive for bonding the outer metal heat sink. If it is less than 5% by weight, it is difficult to maintain insulation, and if it exceeds 50% by weight, the thermal conductivity is hindered. Therefore, it occupies the second adhesive layer 4 from the viewpoint of achieving both insulation and thermal conductivity. The proportion of glass beads (insulating material) is preferably 5 to 10% by weight. Further, it is preferable to use an adhesive layer material in which glass beads having an average particle size of 30 to 100 μm are mixed and dispersed. A heater unit to which a metal heat radiating plate is attached using such an adhesive layer material has excellent temperature rise characteristics, that is, rapid heat that reaches a predetermined temperature in a short time.
Hereinafter, the present invention will be specifically described with reference to production examples of the heater unit of the present invention, but the present invention is not limited thereto.

本発明例として、キュリー点が250℃のPTC素子(15mm×25mm、厚さ2mm)の両主表面に市販のシリコン系接着剤を塗布厚み約50μmにて塗布し、金属電極板(材質:アルミニウム、厚さ0.2mm)を貼り付けた。さらにその上に、市販の平均粒径50μmのガラスビーズを、シリコン系接着剤(同上)の樹脂固形分に対して20重量%の割合(接着層材料中に含まれるガラスビーズの割合)で混合・分散した分散液を塗布厚み約100μmにて塗布し、この塗布面に金属放熱板(材質:アルミニウム、厚さ0.2mm)を貼り付けた。このようにして得られた積層体を150℃の温度で1時間加熱し、シリコン系接着剤を熱硬化することで、図1に示される層構成を有した本発明のPTCヒーターユニットを作製した。
一方、従来例として、上記の本発明例で用いたのと同じPTC素子の両主表面に、上記の本発明例にて使用したのと同じ市販のシリコン系接着剤を塗布し、厚み0.2mmの金属電極板を貼り付けた。このようにして得られた積層体を絶縁性シート(厚さ50μmのカプトン(登録商標)フィルム)を巻いて絶縁し、さらに金属製の角形チューブを被せ、この角形チューブに圧力を加えて上記絶縁性シートと圧接する様にし、図2に示される構成を有したPTCヒーターユニットを作製した。
As an example of the present invention, a commercially available silicon-based adhesive was applied to both main surfaces of a PTC element (15 mm × 25 mm, thickness 2 mm) having a Curie point of 250 ° C. with a coating thickness of about 50 μm, and a metal electrode plate (material: aluminum And a thickness of 0.2 mm). Furthermore, commercially available glass beads having an average particle diameter of 50 μm are mixed at a rate of 20% by weight (ratio of glass beads contained in the adhesive layer material) with respect to the resin solid content of the silicon adhesive (same as above). The dispersed dispersion was applied at a coating thickness of about 100 μm, and a metal heat radiating plate (material: aluminum, thickness 0.2 mm) was attached to the coated surface. The laminated body thus obtained was heated at a temperature of 150 ° C. for 1 hour to thermally cure the silicon-based adhesive, thereby producing the PTC heater unit of the present invention having the layer configuration shown in FIG. .
On the other hand, as a conventional example, the same commercially available silicon-based adhesive as that used in the above-described example of the present invention is applied to both main surfaces of the same PTC element used in the above-described example of the present invention, and the thickness is set to 0. A 2 mm metal electrode plate was attached. The laminated body thus obtained is insulated by winding an insulating sheet (a Kapton (registered trademark) film having a thickness of 50 μm), and further covered with a metal square tube, and pressure is applied to the square tube to insulate the above-mentioned insulation. A PTC heater unit having the configuration shown in FIG.

図3には、上記で得られた本発明例と従来例の各昇温特性が示されている。
図3に示されるように、同じPTC素子を用いた場合でも、本発明例と従来例には大きな差が有り、本発明例の場合には、短時間で所定の温度に達し、この温度が一定に維持される。また、本発明例の場合には、カプトン(登録商標)フィルムの様な絶縁性シートを使用することなく、電極板と絶縁された金属放熱板を設けることができ、この金属放熱板の厚みも放熱性を向上させるため、必要最小限で薄くすることができる。
これに対し、従来例の場合には、角形のパイプに圧力を加えて絶縁性シートに圧接させてこれを金属放熱板としているので、本発明例の様に、角形のパイプを構成する金属放熱板の厚みを1.0mm以下に薄くすることはできない。もし、それ以下に厚みを薄くすると、角形パイプの剛性が低下し、ヒーターユニットの形状が保持できなくなるからである。さらに、この従来例には、角形パイプと絶縁性シートを圧接させる際に印加する圧力により、セラミック製のPTC素子にクラックが発生するおそれが有り、また、この圧接時に絶縁性シートが損傷して、絶縁が保てなくなる可能性も有った。
上記実施例における比較試験からもわかるように、本発明は、従来例における問題点を解消できるものであり、また、本発明では金属放熱板と金属電極板を、最短距離で熱抵抗を最小限にして熱結合できるため、速熱性が要求されるPTCヒーターユニットの構造として従来より優れたものである。
FIG. 3 shows the temperature rise characteristics of the present invention example and the conventional example obtained above.
As shown in FIG. 3, even when the same PTC element is used, there is a large difference between the present invention example and the conventional example. In the present invention example, the temperature reaches a predetermined temperature in a short time, and this temperature is Maintained constant. Further, in the case of the present invention example, a metal heat sink insulated from the electrode plate can be provided without using an insulating sheet such as Kapton (registered trademark) film. In order to improve heat dissipation, it can be made as thin as necessary.
On the other hand, in the case of the conventional example, pressure is applied to the square pipe and pressed against the insulating sheet to form a metal heat radiating plate. Therefore, as in the present invention example, the metal heat radiation constituting the square pipe is used. The thickness of the plate cannot be reduced to 1.0 mm or less. If the thickness is reduced below that, the rigidity of the square pipe is lowered, and the shape of the heater unit cannot be maintained. Furthermore, in this conventional example, there is a risk that cracks may occur in the ceramic PTC element due to the pressure applied when the square pipe and the insulating sheet are pressed, and the insulating sheet is damaged during the pressing. There was also a possibility that insulation could not be maintained.
As can be seen from the comparative tests in the above examples, the present invention can solve the problems in the conventional example, and in the present invention, the metal heat dissipation plate and the metal electrode plate are minimized and the thermal resistance is minimized. Therefore, the structure of the PTC heater unit, which requires quick heat, is superior to the conventional structure.

本発明のヒーターユニットは、短時間で所定の温度に達して当該温度を維持し続ける優れた昇温特性を有しているので、自己温度制御機能を備えた各種製品(例えば、定温ヒーターや局所加熱ヒーターなど)に幅広く利用できる。   The heater unit of the present invention has an excellent temperature rise characteristic that reaches a predetermined temperature in a short time and keeps the temperature. It can be used for a wide range of heaters.

1 PTCセラミック素子(正温度係数セラミック素子)
2 第1接着層
3 金属電極板
4 第2接着層(粒子状の絶縁材料を含む層)
5 金属放熱板
6 接着層
7 絶縁性シート
8 角形パイプ状の金属
1 PTC ceramic element (positive temperature coefficient ceramic element)
2 First adhesive layer 3 Metal electrode plate 4 Second adhesive layer (layer containing particulate insulating material)
5 Metal heat sink 6 Adhesive layer 7 Insulating sheet 8 Square pipe-shaped metal

Claims (4)

平板状の正温度係数セラミック素子の上面および下面にそれぞれ第1接着層を介して金属電極板が設けられており、前記金属電極板のさらに外側に第2接着層を介して金属放熱板が設けられた層構成を有していること、及び、前記の第2接着層が粒子状の絶縁材料を分散された状態で含むことを特徴とするヒーターユニット。   A metal electrode plate is provided on each of the upper surface and the lower surface of the flat positive temperature coefficient ceramic element via a first adhesive layer, and a metal heat sink is provided on the outer side of the metal electrode plate via a second adhesive layer. The heater unit is characterized by having a layered structure, and the second adhesive layer includes a particulate insulating material in a dispersed state. 前記第2接着層に占める前記絶縁材料の割合が5〜50重量%であることを特徴とする請求項1に記載のヒーターユニット。   The heater unit according to claim 1, wherein a ratio of the insulating material in the second adhesive layer is 5 to 50% by weight. 前記絶縁材料が、平均粒径30〜100μmのガラスビーズであることを特徴とする請求項1または2に記載のヒーターユニット。   The heater unit according to claim 1, wherein the insulating material is glass beads having an average particle diameter of 30 to 100 μm. ヒーターユニットを製造するための方法であって、当該製造方法が、以下の工程:
平板状の正温度係数セラミック素子の上面および下面に接着剤を塗布して金属電極板を貼り付ける工程、及び
粒子状の絶縁材料を混合分散させた接着剤を用意し、当該接着剤を前記金属電極板の表面に塗布した後、金属放熱板を貼り付ける工程
を含むことを特徴とするヒーターユニットの製造方法。
A method for producing a heater unit, the production method comprising the following steps:
A step of applying an adhesive on the upper and lower surfaces of a flat plate-like positive temperature coefficient ceramic element and attaching a metal electrode plate; and an adhesive in which a particulate insulating material is mixed and dispersed; A method for manufacturing a heater unit, comprising: applying a metal heat radiating plate after applying to the surface of an electrode plate.
JP2016245669A 2016-12-19 2016-12-19 Heater unit and manufacturing method thereof Pending JP2018101490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245669A JP2018101490A (en) 2016-12-19 2016-12-19 Heater unit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245669A JP2018101490A (en) 2016-12-19 2016-12-19 Heater unit and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018101490A true JP2018101490A (en) 2018-06-28

Family

ID=62714415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245669A Pending JP2018101490A (en) 2016-12-19 2016-12-19 Heater unit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018101490A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125967A (en) * 2005-11-02 2007-05-24 Koshiro Taguchi On-vehicle heater
WO2010038748A1 (en) * 2008-10-02 2010-04-08 日産自動車株式会社 Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
WO2010061740A1 (en) * 2008-11-25 2010-06-03 京セラ株式会社 Wafer heating apparatus, electrostatic chuck, and method for manufacturing wafer heating apparatus
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for magnetic field pole, manufacturing method thereof, permanent-magnet type rotating electric machine equipped with permanent magnet for magnetic field pole
WO2016011927A1 (en) * 2014-07-21 2016-01-28 宋正贤 Electric heating device and preparation method therefor
JP2016512593A (en) * 2013-02-22 2016-04-28 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Automotive sheet heating element using radiant heat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125967A (en) * 2005-11-02 2007-05-24 Koshiro Taguchi On-vehicle heater
WO2010038748A1 (en) * 2008-10-02 2010-04-08 日産自動車株式会社 Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
WO2010061740A1 (en) * 2008-11-25 2010-06-03 京セラ株式会社 Wafer heating apparatus, electrostatic chuck, and method for manufacturing wafer heating apparatus
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for magnetic field pole, manufacturing method thereof, permanent-magnet type rotating electric machine equipped with permanent magnet for magnetic field pole
JP2016512593A (en) * 2013-02-22 2016-04-28 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Automotive sheet heating element using radiant heat
WO2016011927A1 (en) * 2014-07-21 2016-01-28 宋正贤 Electric heating device and preparation method therefor
JP2017525125A (en) * 2014-07-21 2017-08-31 宋正▲賢▼ About one electric heating device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6435507B2 (en) COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET
US5192853A (en) Heating set having positive temperatue coefficient thermistor elements adhesively connected to heat radiator devices
KR20170118883A (en) Thermal Conductive Sheet and Electronic Device
JPS6316156Y2 (en)
JPH0855673A (en) Positive temperature coefficient thermister heat generating device
JP2016110757A (en) Fluororesin film planar heater
CN102555324A (en) High-radiation film type metal compound material and manufacturing method thereof
JP5661967B1 (en) Fluorine resin film sheet heater
WO2013140741A1 (en) Thermally conductive body and electronic device using same
WO2005074322A1 (en) Integrated thin high temperature heaters
JP6301558B2 (en) Thick film heating element with high thermal conductivity on both sides
JP2014203612A (en) Thin-film heater and manufacturing method thereof
JP2018101490A (en) Heater unit and manufacturing method thereof
JP2015122212A (en) Planar heater
JP6889029B2 (en) Heater unit and its manufacturing method
TWM540741U (en) Multi-layer composite heat conduction structure
US20190124723A1 (en) Thermistor heater with heat dissipation structure and assembling method thereof
WO2014061266A1 (en) Heat-dissipating member and method for manufacturing heat-dissipating member
TW200950573A (en) Sheet heater
CN109957343A (en) Compositional type coating, polyimide composite film and air-conditioning ptc heater
JPH11121149A (en) Flat heating device
TWM488831U (en) Heat-dissipating sheet structure and heat-dissipating case
KR20140075255A (en) Thermal diffusion sheet and the manufacturing method thereof
TWI654901B (en) Thermistor heater with heat sink and assembly method thereof
JP2022055710A (en) Manufacturing method for heating device and heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201007