JP2018096893A - Three-dimensional measurement device and three-dimensional measurement method - Google Patents

Three-dimensional measurement device and three-dimensional measurement method Download PDF

Info

Publication number
JP2018096893A
JP2018096893A JP2016243021A JP2016243021A JP2018096893A JP 2018096893 A JP2018096893 A JP 2018096893A JP 2016243021 A JP2016243021 A JP 2016243021A JP 2016243021 A JP2016243021 A JP 2016243021A JP 2018096893 A JP2018096893 A JP 2018096893A
Authority
JP
Japan
Prior art keywords
measurement
height
phase
conversion information
reference plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016243021A
Other languages
Japanese (ja)
Inventor
平井 篤史
Atsushi Hirai
篤史 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016243021A priority Critical patent/JP2018096893A/en
Publication of JP2018096893A publication Critical patent/JP2018096893A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional measurement device and three-dimensional measurement method that can improve measurement accuracy of a measured object.SOLUTION: A three-dimensional measurement device comprises: a projector (10) that projects pattern light toward a loading face (13) side where a measured object (2) is loaded; an imaging device (9) that images reflection light from the loading face side; a storage device (16) that stores conversion information regarding a relationship expression between a phase for each pixel of an imaging image by the imaging device and a height with respect to a reference face set between the imaging device and the loading face in association with each of a plurality of sections in a direction going across the reference face; and a computation device (15) that calculates the height with respect to the reference face on the basis of a measurement phase obtained from the imaging image of the measured object having the pattern light projected and the conversion information of a section corresponding to the measurement phase.SELECTED DRAWING: Figure 1

Description

本発明は、計測対象物の形状(基準からの高さ)を計測することが可能な3次元計測装置、および、3次元計測方法に関するものである。   The present invention relates to a three-dimensional measurement apparatus and a three-dimensional measurement method that can measure the shape (height from a reference) of a measurement object.

計測対象物の形状を計測する方法としては、位相シフト法に基づく3次元計測が知られている(例えば、特許文献1参照)。この特許文献1に開示されている計測方法では、基準面の位相を全画素について基準位相としてそれぞれ取得し、計測対象物の計測時には当該計測対象物に対して正弦波パターンを投影して得られた撮影画像から算出した位相から基準位相を差し引くことによって計測対象物の高さが得られる。具体的には、計測対象物における所定の位置における位相をφa、基準位相をφb、正弦波パターンの格子のピッチをPitch、正弦波パターンを計測対象物または基準面に投影する際の入射角をαとして、Height=Pitch×(φa−φb)/2π×sinαなる式を用いて計測対象物の高さを算出している。   As a method for measuring the shape of a measurement object, three-dimensional measurement based on a phase shift method is known (for example, see Patent Document 1). In the measurement method disclosed in Patent Document 1, the phase of the reference plane is acquired as the reference phase for all pixels, and a sine wave pattern is obtained by projecting a sine wave pattern onto the measurement target when measuring the measurement target. The height of the measurement object can be obtained by subtracting the reference phase from the phase calculated from the captured image. Specifically, the phase at a predetermined position in the measurement object is φa, the reference phase is φb, the pitch of the sine wave pattern grating is Pitch, and the incident angle when the sine wave pattern is projected onto the measurement object or the reference plane is As α, the height of the measurement object is calculated using an equation of Height = Pitch × (φa−φb) / 2π × sin α.

特開2006−84286号公報JP 2006-84286 A

ところが、高さと位相との関係は、光学的な特性の影響により実際には非線形の特性を示す。このため、上記の一つの式を用いた計測方法では誤差が生じるおそれがあり、その結果、計測対象物の形状を正確に把握することが困難となる場合があった。   However, the relationship between height and phase actually exhibits nonlinear characteristics due to the influence of optical characteristics. For this reason, there is a possibility that an error may occur in the measurement method using the above one equation, and as a result, it may be difficult to accurately grasp the shape of the measurement object.

本発明は、このような事情に鑑みてなされたものであり、その目的は、計測精度を高めることが可能な3次元計測装置、および、3次元計測方法を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the three-dimensional measuring apparatus and three-dimensional measuring method which can raise a measurement precision.

本発明の3次元計測装置は、上記目的を達成するために提案されたものであり、計測対象物の形状を計測する3次元計測装置であって、
前記計測対象物が載置される載置面側に向けてパターン光を投影する投影機と、
前記載置面側からの反射光を撮影する撮影機と、
前記撮影機による撮影画像の画素毎の位相と、前記撮影機と前記載置面との間に設定された基準面に対する高さと、の関係式に係る変換情報を前記基準面に交差する方向の複数の区間にそれぞれ対応させて記憶した記憶装置と、
前記パターン光が投影された前記計測対象物の撮影画像から得られた計測位相と、当該計測位相に対応する区間の前記変換情報と、に基づいて前記計測対象物の前記基準面に対する高さを算出する演算装置と、
を備えることを特徴とする。
The three-dimensional measuring apparatus of the present invention is proposed to achieve the above object, and is a three-dimensional measuring apparatus that measures the shape of a measurement object,
A projector that projects pattern light toward a placement surface on which the measurement object is placed;
A photographing machine for photographing the reflected light from the mounting surface side,
The conversion information relating to the relational expression between the phase of each pixel of the image captured by the camera and the height with respect to the reference surface set between the camera and the placement surface in the direction intersecting the reference surface. A storage device stored corresponding to each of a plurality of sections;
Based on the measurement phase obtained from the captured image of the measurement object onto which the pattern light is projected and the conversion information of the section corresponding to the measurement phase, the height of the measurement object with respect to the reference plane is calculated. A computing device to calculate,
It is characterized by providing.

本発明によれば、従来の1つの近似式に基づいて位相から高さを取得する構成と比較して、複数の区間にそれぞれ対応した関係式により位相から高さを得ることにより、光学的な特性の影響による誤差を低減することができる。これにより、より高い精度で3次元形状の計測が可能となる。   According to the present invention, as compared with the configuration in which the height is obtained from the phase based on one conventional approximate expression, the height is obtained from the phase by the relational expression corresponding to each of the plurality of sections, thereby providing an optical Errors due to the influence of characteristics can be reduced. Thereby, it is possible to measure a three-dimensional shape with higher accuracy.

また、上記構成において、前記変換情報は、前記複数の区間の端をそれぞれ規定する複数の計測点における標本位相および前記基準面に対する高さに基づき前記区間ごとに求められた近似式に関する情報である構成を採用することが望ましい。   In the above configuration, the conversion information is information related to an approximate expression obtained for each section based on the sample phase and the height with respect to the reference plane at a plurality of measurement points that respectively define the ends of the plurality of sections. It is desirable to adopt a configuration.

これによれば、計測点における標本位相および基準面に対する高さに基づき区間ごとに近似式が求められるので、より容易に関係式を取得することができる。   According to this, since the approximate expression is obtained for each section based on the sample phase at the measurement point and the height with respect to the reference plane, the relational expression can be acquired more easily.

さらに、上記構成において、前記変換情報は、同一区間を規定する前記計測点のそれぞれの標本位相および前記基準面に対する高さと、これらの計測点同士の間に設定された区間計測点における標本位相および前記基準面に対する高さと、に基づき最小二乗近似により得られた近似式に関する情報である構成を採用することもできる。   Further, in the above configuration, the conversion information includes the sample phase of each of the measurement points defining the same section and the height relative to the reference plane, the sample phase at the section measurement point set between these measurement points, and A configuration that is information about an approximate expression obtained by least square approximation based on the height with respect to the reference plane may be employed.

これによれば、同一区間を規定する計測点におけるそれぞれの標本位相および基準面に対する高さに、これらの計測点同士の間にさらに設定された区間計測点における標本位相および基準面に対する高さを加えて最小二乗近似により近似式を求めることにより、さらに高い精度で3次元形状の計測が可能となる。   According to this, the sample phase at each measurement point that defines the same section and the height relative to the reference plane are set to the sample phase at the section measurement point further set between these measurement points and the height relative to the reference plane. In addition, the three-dimensional shape can be measured with higher accuracy by obtaining an approximate expression by least square approximation.

また、本発明の3次元計測方法は、計測対象物が載置される載置面側に向けてパターン光を投影する投影機と、前記載置面側からの反射光を撮影する撮影機と、を備えた3次元計測装置において前記計測対象物の形状を計測する3次元計測方法であって、
前記撮影機による撮影画像の画素毎の位相と、前記撮影機と前記載置面との間に設定された基準面に対する高さと、の関係式に係る変換情報を、前記基準面に交差する方向の複数の区間のそれぞれについて取得する変換情報取得工程と、
前記パターン光が投影された前記計測対象物の撮影画像から得られた計測位相と、当該計測位相に対応する区間の前記変換情報と、に基づいて前記計測対象物の前記基準面に対する高さを算出する高さ算出工程と、
を有することを特徴とする。
The three-dimensional measurement method of the present invention includes a projector that projects pattern light toward a placement surface on which a measurement object is placed, and a photographing device that photographs reflected light from the placement surface. A three-dimensional measurement method for measuring the shape of the measurement object in a three-dimensional measurement apparatus comprising:
A direction that intersects the reference plane with conversion information relating to a relational expression between a phase for each pixel of an image captured by the camera and a height relative to a reference plane set between the camera and the mounting surface. Conversion information acquisition step to acquire for each of the plurality of sections,
Based on the measurement phase obtained from the captured image of the measurement object onto which the pattern light is projected and the conversion information of the section corresponding to the measurement phase, the height of the measurement object with respect to the reference plane is calculated. A height calculating step to calculate,
It is characterized by having.

本発明の3次元計測装置の一形態の構成を説明するブロック図である。It is a block diagram explaining the structure of one form of the three-dimensional measuring apparatus of this invention. 変換情報取得工程の流れを説明するフローチャートである。It is a flowchart explaining the flow of a conversion information acquisition process. 各計測点における標本位相と高さとの関係を示すグラフである。It is a graph which shows the relationship between the sample phase and height in each measurement point. 計測対象物の計測工程について説明するフローチャートである。It is a flowchart explaining the measurement process of a measurement object. 第2の実施形態における各計測点の標本位相と高さとの関係を示すグラフである。It is a graph which shows the relationship between the sample phase and height of each measurement point in 2nd Embodiment.

以下、本発明を実施するための形態を、添付図面を参照して説明する。なお、以下に述べる実施の形態では、本発明の好適な具体例として種々の限定がされているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In the embodiments described below, various limitations are made as preferred specific examples of the present invention. However, the scope of the present invention is not limited to the following description unless otherwise specified. However, the present invention is not limited to these embodiments.

図1は、本発明に係る3次元計測装置1の一形態の構成を示すブロック図である。本実施形態における3次元計測装置1は、Zステージ3、計測機群5、コンピューター6、および、液晶ディスプレイ等の表示装置7等を備えており、計測対象物2の形状(基準面からの高さ)を、位相シフト法を用いて計測する。計測対象物2は、Zステージ3上にセットされた載置板12に載置される。この載置板12の上面(計測機群5と対向する面)である載置面13は、後述する計測面としても機能する。そして、載置板12は、Zステージ3の昇降機構によってZ方向、すなわち、計測機群5に近づく方向あるいは遠ざかる方向に移動可能に構成されている。   FIG. 1 is a block diagram showing a configuration of an embodiment of a three-dimensional measuring apparatus 1 according to the present invention. The three-dimensional measuring apparatus 1 in this embodiment includes a Z stage 3, a measuring instrument group 5, a computer 6, a display device 7 such as a liquid crystal display, and the like, and the shape of the measuring object 2 (high from the reference plane). ) Is measured using the phase shift method. The measurement object 2 is placed on the placement plate 12 set on the Z stage 3. The placement surface 13 which is the upper surface of the placement plate 12 (the surface facing the measuring instrument group 5) also functions as a measurement surface described later. The mounting plate 12 is configured to be movable in the Z direction, that is, the direction approaching or moving away from the measuring instrument group 5 by the lifting mechanism of the Z stage 3.

本実施形態における計測機群5は、撮影機9、投影機10、および高さ計測機11を備えている。投影機10は、図示しない光源、パターン格子、レンズ等を備え、載置面13(計測面)または当該載置面13に載置された計測対象物2に向けて輝度値の明暗による縞状の正弦波パターン(本発明におけるパターン光に相当)Pを投影する。以下、計測対象物2または載置面13(計測面)に実際に投影された正弦波パターンPを投影パターンともいう。投影機10は、光軸に対して交差する方向にパターン格子を移動させることにより、投影パターンの位相をシフトさせることができる。撮影機9は、図示しないレンズや撮像素子(CCD)等を備え、投影パターンが投影された載置面13(計測面)や計測対象物2からの反射光を撮像素子で受光して撮影画像データに変換してコンピューター6に出力する。高さ計測機11は、例えばレーザー距離計から構成され、載置面13に向けてレーザー光を照射するとともに当該載置面13で反射された反射光を受光し、この受光状態に基づき計測面としての載置面13までの距離(Z方向における位置)を計測する。高さ計測機11の計測値は、高さデータとして変換されてコンピューター6に出力される。すなわち、高さ計測機11は、計測面のZ方向における高さを計測するために用いられる。なお、高さ計測機11としては、レーザー光を使用するものに限られず、載置面13までの距離を計測できるものであればよい。また、計測面は、必ずしも載置板12の載置面13には限られず、載置面13とは異なる面を採用することも可能である。   The measuring machine group 5 in the present embodiment includes a photographing machine 9, a projector 10, and a height measuring machine 11. The projector 10 includes a light source, a pattern grating, a lens, and the like (not shown), and has a stripe shape due to brightness and darkness of the luminance value toward the placement surface 13 (measurement surface) or the measurement object 2 placed on the placement surface 13. A sine wave pattern P (corresponding to the pattern light in the present invention) P is projected. Hereinafter, the sine wave pattern P actually projected on the measurement object 2 or the placement surface 13 (measurement surface) is also referred to as a projection pattern. The projector 10 can shift the phase of the projection pattern by moving the pattern grating in the direction intersecting the optical axis. The photographing machine 9 includes a lens, an image sensor (CCD), and the like (not shown), receives reflected light from the mounting surface 13 (measurement surface) on which the projection pattern is projected and the measurement object 2 by the image sensor, and takes a captured image. The data is converted and output to the computer 6. The height measuring device 11 is composed of, for example, a laser distance meter, irradiates a laser beam toward the mounting surface 13 and receives reflected light reflected by the mounting surface 13, and measures the measurement surface based on the light receiving state. The distance to the mounting surface 13 (position in the Z direction) is measured. The measurement value of the height measuring device 11 is converted as height data and output to the computer 6. That is, the height measuring device 11 is used to measure the height in the Z direction of the measurement surface. The height measuring device 11 is not limited to one using laser light, and any device that can measure the distance to the mounting surface 13 may be used. Further, the measurement surface is not necessarily limited to the placement surface 13 of the placement plate 12, and a surface different from the placement surface 13 may be employed.

本実施形態におけるコンピューター6は、演算部15(本発明における演算装置に相当)および記憶部16(本発明における記憶装置に相当)を備えている。記憶部16は、例えばハードディスクドライブ等から構成され、この記憶部16には、オペレーションシステム、各種アプリケーションプログラム、その他演算用のデータ等が記憶されている。そして、演算部15は、図示しないCPU、ROM、RAM等を有しており、記憶部16に記憶されたオペレーションシステムに従い、画像処理などの各種の処理を行う。また、撮影機9から入力された計測面または計測対象物2の撮影画像データ(以下、単に撮影画像と称する)は、記憶部16に記憶される。また、記憶部16には、後述するように投影パターンの位相とZ方向における高さ(基準面に対する相対位置)との関係式に係る変換情報が、計測器群5と載置面13との間における複数の区間のそれぞれに対応させて記憶される。   The computer 6 in this embodiment includes a calculation unit 15 (corresponding to the calculation device in the present invention) and a storage unit 16 (corresponding to the storage device in the present invention). The storage unit 16 includes, for example, a hard disk drive, and the storage unit 16 stores an operation system, various application programs, other calculation data, and the like. The calculation unit 15 includes a CPU, a ROM, a RAM, and the like (not shown), and performs various processes such as image processing according to the operation system stored in the storage unit 16. Further, photographic image data (hereinafter simply referred to as a photographic image) of the measurement surface or measurement object 2 input from the photographic machine 9 is stored in the storage unit 16. Further, as will be described later, the storage unit 16 stores conversion information related to the relational expression between the phase of the projection pattern and the height in the Z direction (relative position with respect to the reference surface) between the measuring instrument group 5 and the mounting surface 13. It is stored in correspondence with each of a plurality of sections in between.

次に、上記構成の3次元計測装置1において実際に計測対象物2の計測を行う前に実行される上記変換情報の取得工程について説明する。   Next, the conversion information acquisition step that is executed before the measurement target 2 is actually measured in the three-dimensional measurement apparatus 1 having the above-described configuration will be described.

図2は、変換情報取得工程の流れを説明するフローチャートである。まず、Z方向における下死点まで降下した載置板12の載置面13と計測機群5との間のZ方向における所定の範囲内で複数の区間が設定される(ステップS1)。上記所定の範囲は、計測対象物2の大きさ(高さ)に基づいて任意に定められる。すなわち、Z方向において計測対象物2が入る範囲に定められる。本実施形態においては、上記所定の範囲が後述する仮想的な基準面に対して±1mmの範囲に設定される。そして、上記の下死点における載置面13が、この範囲の下限値である計測点Aとされ、ここからZ方向における上方(計測機群5側)に向けて一定の間隔(例えば、0.5mm間隔)で順にB、C、D、およびEの合計5点の計測点が設定される。このため、本実施形態においては、計測点Aと計測点Bとの間の区間AB、計測点Bと計測点Cとの間の区間BC、計測点Cと計測点Dとの間の区間CD、および計測点Dと計測点Eとの間の区間DEの合計4つの区間が設定される。計測点A〜Eは、各区間の端を規定するものである。また、以下で説明する標本位相の取得の際に各計測点に配置される載置面13は、計測面として機能する。そして、上記計測点のうち、計測点Cに位置するときの計測面が本実施形態においては基準面とされる。つまり計測点Cを0(基準面)として±1mmの計測範囲が定められる。勿論、基準面の位置、区間の数(計測点の数)、その間隔についても、計測対象物2の表面の凹凸の高低差等に基づいて任意に定めることができる。   FIG. 2 is a flowchart for explaining the flow of the conversion information acquisition process. First, a plurality of sections are set within a predetermined range in the Z direction between the mounting surface 13 of the mounting plate 12 lowered to the bottom dead center in the Z direction and the measuring instrument group 5 (step S1). The predetermined range is arbitrarily determined based on the size (height) of the measurement object 2. That is, it is determined in the range in which the measurement object 2 enters in the Z direction. In the present embodiment, the predetermined range is set to a range of ± 1 mm with respect to a virtual reference plane described later. The placement surface 13 at the bottom dead center is set as a measurement point A that is the lower limit value of this range, and from there, a fixed interval (for example, 0) toward the upper side in the Z direction (the measuring instrument group 5 side). A total of 5 measurement points of B, C, D, and E are set in order. For this reason, in this embodiment, the section AB between the measurement point A and the measurement point B, the section BC between the measurement point B and the measurement point C, and the section CD between the measurement point C and the measurement point D. , And a total of four sections of a section DE between the measurement point D and the measurement point E are set. Measurement points A to E define the end of each section. In addition, the placement surface 13 arranged at each measurement point at the time of acquiring the sample phase described below functions as a measurement surface. And the measurement surface when located in the measurement point C among the said measurement points is made into a reference plane in this embodiment. That is, a measurement range of ± 1 mm is determined with the measurement point C as 0 (reference plane). Of course, the position of the reference plane, the number of sections (the number of measurement points), and the interval between them can be arbitrarily determined based on the height difference of the unevenness of the surface of the measurement object 2.

次に、計測面としての載置面13が上記のように設定された各計測点に順次移動・配置されて、それぞれにおいて位相シフト法により標本位相が取得される。すなわち、予め定められた計測順に従い、例えば、計測点Aが最初の指定高さに指定されている場合には、Zステージ3により載置面13が計測点Aに移動・配置される(ステップS2)。載置面13の高さは、高さ計測機11により検出される距離情報に基づき調節される。なお、本実施形態において、計測点における載置面13(計測面)の高さは、高さ計測機11の検出値に基づくものであるため、例えば、載置面13がZ方向に対して多少傾いていることにより当該面内においてZ方向の位置が一定ではない場合においても、「計測点における載置面13の高さ」と言う場合には、一律に高さ計測機11の検出値に基づく高さであるものとする。   Next, the mounting surface 13 as a measurement surface is sequentially moved and arranged at each measurement point set as described above, and the sample phase is acquired by the phase shift method in each. That is, according to a predetermined measurement order, for example, when the measurement point A is designated at the first designated height, the placement surface 13 is moved and arranged at the measurement point A by the Z stage 3 (step S2). The height of the mounting surface 13 is adjusted based on distance information detected by the height measuring device 11. In the present embodiment, since the height of the mounting surface 13 (measurement surface) at the measurement point is based on the detection value of the height measuring instrument 11, for example, the mounting surface 13 is in the Z direction. Even when the position in the Z direction is not constant in the plane due to the slight inclination, when it is referred to as “the height of the mounting surface 13 at the measurement point”, it is uniformly detected by the height measuring device 11. It is assumed that the height is based on

続いて、当該計測点において、位相シフト法により標本位相φが取得される(ステップS3)。すなわち、演算部15は、投影機10により計測点に配置された計測面としての載置面13に向けて正弦波パターンPを投影し、撮影機9により計測面上の投影パターンを撮影する。この際、正弦波パターンPの位相は一定間隔で複数回シフトされてその都度撮影され、撮影画像が記憶部16に記憶される。例えば、位相を2π/3ずつずらして3つの投影パターンの撮影画像が取得される。そして、各撮影画像の輝度値から位相が標本位相として画素毎に求められる。位相の算出方法については周知の種々の方法を採用することができる。そして、標本位相が全画素について求められ、各画素の座標(X,Y)にそれぞれ対応付けられて、計測点Aにおける標本位相φAとして記憶部16に記憶される。なお、計測面や計測対象物2に対する正弦波パターンPの入射角や方向については、例示したものには限られず、計測対象物2の表面の凹凸形状等に応じてより適した入射角等に設定することができる。   Subsequently, the sample phase φ is obtained by the phase shift method at the measurement point (step S3). That is, the calculation unit 15 projects the sine wave pattern P toward the placement surface 13 as the measurement surface arranged at the measurement point by the projector 10 and images the projection pattern on the measurement surface by the photographing device 9. At this time, the phase of the sine wave pattern P is shifted a plurality of times at regular intervals and photographed each time, and the photographed image is stored in the storage unit 16. For example, captured images of three projection patterns are acquired by shifting the phase by 2π / 3. Then, the phase is obtained for each pixel as the sample phase from the luminance value of each captured image. Various well-known methods can be adopted as a method for calculating the phase. Then, the sample phase is obtained for all the pixels, is associated with the coordinates (X, Y) of each pixel, and is stored in the storage unit 16 as the sample phase φA at the measurement point A. Note that the incident angle and direction of the sine wave pattern P with respect to the measurement surface and the measurement object 2 are not limited to those illustrated, but may be a more suitable incident angle according to the uneven shape of the surface of the measurement object 2. Can be set.

次に、予め定められた計測点の全てについて標本位相φが取得されたか否かが判定され(ステップS4)、まだ標本位相φが取得されていない計測点がある場合(No)、ステップS2に戻り、載置面13が次の計測点に移動・配置され(ステップS2)、当該計測点において上記と同様に位相シフト法により標本位相が全画素についてそれぞれ取得される(ステップS3)。一方、ステップS4において、予め定められた計測点の全てについて標本位相が取得されたと判定された場合(Yes)、続いて、各計測点における標本位相に基づいて区間毎に全画素について位相と高さの関係式(近似式)が算出される(ステップS5)。   Next, it is determined whether or not the sample phase φ has been acquired for all of the predetermined measurement points (step S4). If there is a measurement point for which the sample phase φ has not yet been acquired (No), the process proceeds to step S2. Returning, the placement surface 13 is moved / placed to the next measurement point (step S2), and the sample phase is acquired for all the pixels by the phase shift method at the measurement point in the same manner as described above (step S3). On the other hand, if it is determined in step S4 that the sample phase has been acquired for all of the predetermined measurement points (Yes), then the phase and high values for all pixels are determined for each section based on the sample phase at each measurement point. A relational expression (approximate expression) is calculated (step S5).

図3は、所定の画素についての各計測点における標本位相とZ方向における計測点の高さ(基準面からの相対位置)との関係を示すグラフである。同図において、横軸は位相、縦軸は高さをそれぞれ示している。上記のように、各計測点A〜Eにそれぞれ対応する標本位相φA〜φEが画素毎に取得されているので、図3に示されるようにプロットすることができる。そして、演算部15は、計測点A〜Eの高さと標本位相φA〜φBとに基づき、各区間AB,BC,CD,DEのそれぞれについて、位相と高さについての近似式(関係式)を算出する。すなわち、例えば、区間ABの近似式は、高さをHab、傾きをSab、切片をIabとして、以下(1)のような一次式になる。
Hab=Sab×φ+Iab ...(1)
同様にして、区間BC,CD,DEの近似式は、それぞれ以下のように得られる。
Hbc=Sbc×φ+Ibc ...(2)
Hcd=Scd×φ+Icd ...(3)
Hde=Sde×φ+Ide ...(4)
区間毎に近似式が求められたならば、演算部15は、例えば近似式の傾きおよび切片を、位相と高さについての変換情報として、区間毎および画素毎に対応付けて記憶部16に記憶させる(ステップS6)。勿論、変換情報としては近似式の傾きおよび切片に限られず、近似式を一意に特定することができる情報であればよい。以上のようにして、変換情報取得工程が行われる。なお、変換情報に関し、3次元計測装置1の製品としての出荷前の段階で予め取得されてプリセットとして記憶部16に記憶され、計測対象の凹凸のサイズ(高低差)や計測用途に応じてプリセットが読みだされる構成を採用することもできる。これにより、より迅速に計測を行うことが可能となる。
FIG. 3 is a graph showing the relationship between the sample phase at each measurement point and the height of the measurement point in the Z direction (relative position from the reference plane) for a predetermined pixel. In the figure, the horizontal axis indicates the phase, and the vertical axis indicates the height. As described above, since the sample phases φA to φE corresponding to the respective measurement points A to E are acquired for each pixel, it can be plotted as shown in FIG. Then, the calculation unit 15 calculates an approximate expression (relational expression) for the phase and height for each of the sections AB, BC, CD, and DE based on the height of the measurement points A to E and the sample phases φA to φB. calculate. That is, for example, the approximate expression of the section AB is a linear expression such as the following (1) where the height is Hab, the slope is Sab, and the intercept is Iab.
Hab = Sab × φ + Iab (1)
Similarly, approximate expressions for the sections BC, CD, and DE are obtained as follows.
Hbc = Sbc × φ + Ibc (2)
Hcd = Scd × φ + Icd (3)
Hde = Sde × φ + Ide (4)
If an approximate expression is obtained for each section, the calculation unit 15 stores, for example, the inclination and intercept of the approximate expression in the storage unit 16 in association with each section and each pixel as conversion information about the phase and height. (Step S6). Of course, the conversion information is not limited to the slope and intercept of the approximate expression, and any information that can uniquely identify the approximate expression may be used. The conversion information acquisition process is performed as described above. In addition, regarding the conversion information, it is acquired in advance at the stage before shipment as a product of the three-dimensional measurement apparatus 1 and is stored in the storage unit 16 as a preset, and is preset according to the size (height difference) of the unevenness to be measured and the measurement application. Can be adopted. Thereby, it becomes possible to measure more rapidly.

図4は、上記変換情報を用いて実際に計測対象物2の形状を計測する工程(本発明における高さ算出工程に相当)について説明するフローチャートである。まず、計測対象物2が載置面13に載置される(ステップS10)。続いて、載置面13が計測点に配置される(ステップS11)。例えば、Aが計測点に指定されている場合には、Zステージ3により載置面13が計測点Aに移動・配置される。続いて、計測点に配置された載置面13上の計測対象物2について投影パターンの撮影画像に基づいて画素毎に位相が計測位相として取得される(ステップS12)。すなわち、演算部15は、投影機10により計測対象物2に正弦波パターンPを投影し、撮影機9により計測対象物2を撮影する。そして、投影パターンの位相が異なる撮影画像がそれぞれ取得され、各撮影画像から計測位相φxが画素毎に求められる。得られた計測位相φxは、画素の座標にそれぞれ対応付けられて記憶部16に記憶される。   FIG. 4 is a flowchart for explaining a step of actually measuring the shape of the measurement object 2 using the conversion information (corresponding to a height calculation step in the present invention). First, the measurement object 2 is placed on the placement surface 13 (step S10). Subsequently, the placement surface 13 is arranged at the measurement point (step S11). For example, when A is designated as a measurement point, the mounting surface 13 is moved and arranged at the measurement point A by the Z stage 3. Subsequently, the phase is acquired as the measurement phase for each pixel based on the captured image of the projection pattern of the measurement object 2 on the placement surface 13 arranged at the measurement point (step S12). That is, the calculation unit 15 projects the sine wave pattern P onto the measurement object 2 using the projector 10 and images the measurement object 2 using the camera 9. Then, captured images with different phases of the projection pattern are acquired, and a measurement phase φx is obtained for each pixel from each captured image. The obtained measurement phase φx is stored in the storage unit 16 in association with the coordinates of the pixels.

次に、演算部15は、上記のようにして得られた計測位相φxが該当する区間を探索し(ステップS13)、記憶部16に記憶されている変換情報の中から該当する区間に対応する変換情報を読み出す。例えば、図3に示されるように、計測位相φxが標本位相φCとφDとの間の値であった場合、当該計測位相φxは、区間CDに該当すると判定される。これに応じて、記憶部16に記憶されている変換情報の中から当該区間CDに対応する変換情報、すなわち、上記式(3)に関する傾きScd、切片Icdが読みだされる。そして、演算部15は、読みだした変換情報から特定される式に計測位相φxを代入することにより、当該計測位相φxに対応する高さHxを取得する。すなわち、図3の場合、演算部15は、傾きScd、切片Icdから把握される上記式(3)に計測位相φxを代入することにより、当該計測位相φxに対応する高さHx(基準面からの高さ)を算出する。このように、演算部15は、各画素の計測位相φxについて区間の探索を行い、該当する区間の変換情報に基づき高さHxを算出する。   Next, the calculation unit 15 searches for a section corresponding to the measurement phase φx obtained as described above (step S13), and corresponds to the corresponding section from the conversion information stored in the storage unit 16. Read conversion information. For example, as shown in FIG. 3, when the measurement phase φx is a value between the sample phases φC and φD, it is determined that the measurement phase φx corresponds to the section CD. In response to this, the conversion information corresponding to the section CD, that is, the slope Scd and the intercept Icd related to the equation (3) are read out from the conversion information stored in the storage unit 16. And the calculating part 15 acquires height Hx corresponding to the said measurement phase (phi) x by substituting measurement phase (phi) x to the formula identified from the read conversion information. That is, in the case of FIG. 3, the calculation unit 15 substitutes the measurement phase φx into the above equation (3) obtained from the slope Scd and the intercept Icd, thereby obtaining the height Hx (from the reference plane) corresponding to the measurement phase φx. Is calculated). As described above, the calculation unit 15 searches for a section for the measurement phase φx of each pixel, and calculates the height Hx based on the conversion information of the corresponding section.

以上のようにして、計測対象物2について投影パターンの撮影画像から得られた各画素の高さHxに基づいて、当該計測対象物2の3次元の形状が把握される。本発明に係る3次元計測装置1および3次元計測方法によれば、従来の一つの近似式により高さを算出する構成と比較して、複数の区間に応じた近似式により位相から高さを得ることにより、光学的な特性の影響による誤差を低減することができる。これにより、より高い精度で3次元形状の計測が可能となる。また、本実施形態においては、同一区間を規定する2点の計測点におけるそれぞれの標本位相および基準面に対する高さに基づき近似式(一次式)が求められるので、より容易に関係式(変換情報)を取得することができる。   As described above, the three-dimensional shape of the measurement object 2 is grasped based on the height Hx of each pixel obtained from the captured image of the projection pattern for the measurement object 2. According to the three-dimensional measuring apparatus 1 and the three-dimensional measuring method according to the present invention, the height from the phase is calculated by an approximate expression corresponding to a plurality of sections, as compared with the conventional configuration in which the height is calculated by one approximate expression. As a result, errors due to the influence of optical characteristics can be reduced. Thereby, it is possible to measure a three-dimensional shape with higher accuracy. In the present embodiment, an approximate expression (primary expression) is obtained based on the respective sample phases and heights with respect to the reference plane at two measurement points that define the same section. ) Can be obtained.

なお、上記第1の実施形態においては、各区間の近似式(変換情報)を2点の計測点から求めた例を示したが、これには限られない。図5に示されるように、各区間においてさらに複数の区間計測点を設定し、それぞれの区間計測点における標本位相および高さから最小二乗近似により近似式(関係式)を算出することも可能である。例えば、計測点Cを基準(0)として、計測点A(−1mm)と計測点B(−0.5mm)で規定される区間ABを、0.1mm間隔でさらに−0.9mm(高さha)、−0.8mm(高さhb)、−0.7mm(高さhc)、−0.6mm(高さhd)の各区間計測点を設定し、これらの区間計測点でそれぞれ標本位相φa〜φdをそれぞれ算出して、合計6つの標本位相と各計測点の高さから最小二乗近似によって近似式(関係式)を算出することができる。この構成によれば、誤差をより低減することができるので、さらに高い精度で3次元形状の計測が可能となる。   In the first embodiment, the example in which the approximate expression (conversion information) of each section is obtained from two measurement points has been described, but the present invention is not limited to this. As shown in FIG. 5, it is also possible to set a plurality of section measurement points in each section and calculate an approximate expression (relational expression) by least square approximation from the sample phase and height at each section measurement point. is there. For example, with the measurement point C as the reference (0), a section AB defined by the measurement point A (−1 mm) and the measurement point B (−0.5 mm) is further reduced by −0.9 mm (height) at intervals of 0.1 mm. ha), -0.8 mm (height hb), -0.7 mm (height hc), and -0.6 mm (height hd) are set for each section measurement point, and the sample phase is set at each of the section measurement points. φa to φd are calculated, and an approximate expression (relational expression) can be calculated from the total of six sample phases and the height of each measurement point by least square approximation. According to this configuration, the error can be further reduced, so that a three-dimensional shape can be measured with higher accuracy.

なお、本発明は、上記した実施形態に限定されるものではなく、特許請求の範囲の記載に基づいて種々の変形が可能である。
例えば、計測点の設定数や、区間計測点の設定数は、計測対象物のサイズや必要とする計測精度に応じて任意に変更することができる。
また、上記実施形態においては、Zステージ3により載置面13および計測対象物2を計測機群5に対して上下させる構成を例示したが、これには限られず、要するに、計測機群5と載置面13および計測対象物2とを相対的に移動させる(近接させるまたは離間させる)構成であればよい。このため、上記で説明した計測面および基準面は、載置面13および計測対象物2と計測機群5との相対位置(距離)に応じて定まる面であると言える。
In addition, this invention is not limited to above-described embodiment, A various deformation | transformation is possible based on description of a claim.
For example, the set number of measurement points and the set number of section measurement points can be arbitrarily changed according to the size of the measurement object and the required measurement accuracy.
Moreover, in the said embodiment, although the structure which raises / lowers the mounting surface 13 and the measurement target object 2 with respect to the measuring instrument group 5 with the Z stage 3 was illustrated, it is not restricted to this, In short, the measuring instrument group 5 and Any configuration may be employed as long as the placement surface 13 and the measurement target 2 are relatively moved (adjacent or separated). For this reason, it can be said that the measurement surface and the reference surface described above are surfaces determined according to the relative position (distance) between the mounting surface 13 and the measurement object 2 and the measuring instrument group 5.

1...三次元計測装置,2...計測対象物,3...Zステージ,5...計測機群,6...コンピューター,7...表示装置,9...撮影機,10...投影機,11...高さ計測機,12...載置板,15...演算部,16...記憶部   DESCRIPTION OF SYMBOLS 1 ... Three-dimensional measuring device, 2 ... Measurement object, 3 ... Z stage, 5 ... Measuring machine group, 6 ... Computer, 7 ... Display apparatus, 9 ... Photographing 10 ... projector 11 ... height measuring machine 12 ... mounting plate 15 ... calculation unit 16 ... storage unit

Claims (4)

計測対象物の形状を計測する3次元計測装置であって、
前記計測対象物が載置される載置面側に向けてパターン光を投影する投影機と、
前記載置面側からの反射光を撮影する撮影機と、
前記撮影機による撮影画像の画素毎の位相と、前記撮影機と前記載置面との間に設定された基準面に対する高さと、の関係式に係る変換情報を前記基準面に交差する方向の複数の区間にそれぞれ対応させて記憶した記憶装置と、
前記パターン光が投影された前記計測対象物の撮影画像から得られた計測位相と、当該計測位相に対応する区間の前記変換情報と、に基づいて前記計測対象物の前記基準面に対する高さを算出する演算装置と、
を備えることを特徴とする3次元計測装置。
A three-dimensional measuring device for measuring the shape of a measurement object,
A projector that projects pattern light toward a placement surface on which the measurement object is placed;
A photographing machine for photographing the reflected light from the mounting surface side,
The conversion information relating to the relational expression between the phase of each pixel of the image captured by the camera and the height with respect to the reference surface set between the camera and the placement surface in the direction intersecting the reference surface. A storage device stored corresponding to each of a plurality of sections;
Based on the measurement phase obtained from the captured image of the measurement object onto which the pattern light is projected and the conversion information of the section corresponding to the measurement phase, the height of the measurement object with respect to the reference plane is calculated. A computing device to calculate,
A three-dimensional measuring apparatus comprising:
前記変換情報は、前記複数の区間の端をそれぞれ規定する複数の計測点における標本位相および前記基準面に対する高さに基づき前記区間ごとに求められた近似式に関する情報であることを特徴とする請求項1に記載の3次元計測装置。   The conversion information is information related to an approximate expression obtained for each section based on sample phases and heights with respect to the reference plane at a plurality of measurement points that respectively define ends of the plurality of sections. Item 3. The three-dimensional measurement apparatus according to item 1. 前記変換情報は、同一区間を規定する前記計測点のそれぞれの標本位相および前記基準面に対する高さと、これらの計測点同士の間に設定された区間計測点における標本位相および前記基準面に対する高さと、に基づき最小二乗近似により得られた近似式に関する情報であることを特徴とする請求項2に記載の3次元計測装置。   The conversion information includes the respective sample phases of the measurement points that define the same section and the height with respect to the reference plane, and the sample phase at the section measurement points set between these measurement points and the height with respect to the reference plane. The three-dimensional measuring apparatus according to claim 2, wherein the information is related to an approximate expression obtained by least square approximation based on. 計測対象物が載置される載置面側に向けてパターン光を投影する投影機と、前記載置面側からの反射光を撮影する撮影機と、を備えた3次元計測装置において前記計測対象物の形状を計測する3次元計測方法であって、
前記撮影機による撮影画像の画素毎の位相と、前記撮影機と前記載置面との間に設定された基準面に対する高さと、の関係式に係る変換情報を、前記基準面に交差する方向の複数の区間のそれぞれについて取得する変換情報取得工程と、
前記パターン光が投影された前記計測対象物の撮影画像から得られた計測位相と、当該計測位相に対応する区間の前記変換情報と、に基づいて前記計測対象物の前記基準面に対する高さを算出する高さ算出工程と、
を有することを特徴とする3次元計測方法。
The measurement in a three-dimensional measurement apparatus comprising: a projector that projects pattern light toward a placement surface on which a measurement object is placed; and a photographing device that photographs reflected light from the placement surface. A three-dimensional measurement method for measuring the shape of an object,
A direction that intersects the reference plane with conversion information relating to a relational expression between a phase for each pixel of an image captured by the camera and a height relative to a reference plane set between the camera and the mounting surface. Conversion information acquisition step to acquire for each of the plurality of sections,
Based on the measurement phase obtained from the captured image of the measurement object onto which the pattern light is projected and the conversion information of the section corresponding to the measurement phase, the height of the measurement object with respect to the reference plane is calculated. A height calculating step to calculate,
A three-dimensional measurement method comprising:
JP2016243021A 2016-12-15 2016-12-15 Three-dimensional measurement device and three-dimensional measurement method Pending JP2018096893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243021A JP2018096893A (en) 2016-12-15 2016-12-15 Three-dimensional measurement device and three-dimensional measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243021A JP2018096893A (en) 2016-12-15 2016-12-15 Three-dimensional measurement device and three-dimensional measurement method

Publications (1)

Publication Number Publication Date
JP2018096893A true JP2018096893A (en) 2018-06-21

Family

ID=62632722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243021A Pending JP2018096893A (en) 2016-12-15 2016-12-15 Three-dimensional measurement device and three-dimensional measurement method

Country Status (1)

Country Link
JP (1) JP2018096893A (en)

Similar Documents

Publication Publication Date Title
JP4885154B2 (en) Method for measuring surface shape by multiple wavelengths and apparatus using the same
TWI567364B (en) Structured light generating apparatus, measuring system and method thereof
JP5140761B2 (en) Method for calibrating a measurement system, computer program, electronic control unit, and measurement system
JP5485889B2 (en) Apparatus and method for performing phase analysis measurement
JP5369357B2 (en) Measuring method of thickness or surface shape
JP4710078B2 (en) Surface shape measuring method and apparatus using the same
TWI573984B (en) System and method of adjusting matching image
JP5375201B2 (en) 3D shape measuring method and 3D shape measuring apparatus
WO2018163530A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
JP6532325B2 (en) Measuring device for measuring the shape of the object to be measured
KR102248197B1 (en) Large reflector 3D surface shape measuring method by using Fringe Pattern Reflection Technique
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP2015099050A (en) Calibration method and shape measuring device
JP2015021862A (en) Three-dimensional measurement instrument and three-dimensional measurement method
WO2011114939A1 (en) Height measurement method, program for measuring height, and height measurement device
JP2009180689A (en) Three-dimensional shape measuring apparatus
TWI568989B (en) Full-range image detecting system and method thereof
JP2011075336A (en) Three-dimensional shape measuring instrument and method
JP4962852B2 (en) Shape measuring method and shape measuring apparatus
JP6013819B2 (en) Surface shape inspection apparatus and surface shape inspection method
Berssenbrügge et al. Characterization of the 3D resolution of topometric sensors based on fringe and speckle pattern projection by a 3D transfer function
JP2018096893A (en) Three-dimensional measurement device and three-dimensional measurement method
JP2006084286A (en) Three-dimensional measuring method and its measuring device
JP2012027009A (en) Surface shape measurement method by interference fringe model adaptation and device therefor
JP4429135B2 (en) Three-dimensional shape measurement system and measurement method

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180910