JP2018096850A - Quantitative and correction method by polynomial calibration curve - Google Patents

Quantitative and correction method by polynomial calibration curve Download PDF

Info

Publication number
JP2018096850A
JP2018096850A JP2016241712A JP2016241712A JP2018096850A JP 2018096850 A JP2018096850 A JP 2018096850A JP 2016241712 A JP2016241712 A JP 2016241712A JP 2016241712 A JP2016241712 A JP 2016241712A JP 2018096850 A JP2018096850 A JP 2018096850A
Authority
JP
Japan
Prior art keywords
calibration curve
output value
value
quantitative
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241712A
Other languages
Japanese (ja)
Other versions
JP6862813B2 (en
Inventor
原一 植松
Genichi Uematsu
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016241712A priority Critical patent/JP6862813B2/en
Publication of JP2018096850A publication Critical patent/JP2018096850A/en
Application granted granted Critical
Publication of JP6862813B2 publication Critical patent/JP6862813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a quantitative operation by a polynomial calibration curve in chromatography, and enlarge the quantitative range while keeping the quantitative accuracy and reliability.SOLUTION: A creation method of a polynomial calibration curve in chromatography includes: a process of approximating calibration points plotted using a concentration x and an output value y in a quadratic equation or cubic equation, and plotting the calibration points until the approximation equation becomes a simple increasing function; and a process of determining the upper limit of an output value by multiplying a maximum value of the simple increasing function by a constant number less than one or by multiplying a maximum output value of the calibration points by a constant number of one or more.SELECTED DRAWING: None

Description

本発明は、クロマトグラフィの多項式検量線の補正方法であり、日常の定量操作の簡素化、正確さを向上させる方法に関するものである。   The present invention relates to a method of correcting a chromatographic polynomial calibration curve, and relates to a method for simplifying daily quantitative operations and improving accuracy.

クロマトグラフィとは複数の目的成分の定性分析および定量分析する技術である。定性分析は、予め標準試料を測定し、その溶出時間と合致するか否かにより行うのが一般的である。定量分析では、濃度の異なる標準試料を調整し、クロマトグラフィを行い、濃度に対する検出器の出力(ピーク高さ、面積等)を基に検量線を作成し、それを基に未知試料の濃度を決定するものである。検量線は、濃度に対する出力(ピーク高さ、面積等)を、最小二乗法等を用いて近似式を作成し、数式化される。   Chromatography is a technique for qualitative analysis and quantitative analysis of a plurality of target components. The qualitative analysis is generally performed by measuring a standard sample in advance and checking whether or not the elution time matches the standard sample. In quantitative analysis, standard samples with different concentrations are prepared, chromatographed, a calibration curve is created based on the detector output (peak height, area, etc.) against the concentration, and the concentration of the unknown sample is determined based on it. To do. The calibration curve is formulated by creating an approximate expression for the output (peak height, area, etc.) with respect to the concentration using the least square method or the like.

定量目的成分の濃度範囲が広い場合など、高濃度側で検量線の傾きが若干小さくなる現象がしばしば観測される。また、低濃度側では目的成分の回収率が下がり、同様に検量線の傾きが若干小さくなる現象もしばしば観測される。このような場合、1次式での近似では誤差が大きくなることから、2次式、3次式等の多項式により近似した検量線を使用することになる。多項式を用いる場合は、検量線が曲線となることから、当然のことながら1濃度の標準試料では作成できない。濃度の異なる標準試料を複数用いて検量線を作成することが必須となり、作業工数が多くかかる難点がある。   When the concentration range of the quantitative target component is wide, a phenomenon in which the slope of the calibration curve slightly decreases on the high concentration side is often observed. In addition, on the low concentration side, the recovery rate of the target component is lowered, and similarly, a phenomenon that the slope of the calibration curve is slightly reduced is often observed. In such a case, since the error becomes large in the approximation by the linear expression, a calibration curve approximated by a polynomial such as a quadratic expression or a cubic expression is used. When a polynomial is used, the calibration curve becomes a curve, and naturally it cannot be created with a standard sample of one concentration. It is indispensable to create a calibration curve using a plurality of standard samples having different concentrations, and there is a problem that a lot of work is required.

また、1次式の場合、濃度と出力(ピーク高さ、面積等)は完全に比例関係にあることから、未知試料の出力(ピーク高さ、面積等)に対する検量値は常に1つとなるが、多項式を使用した場合は、必ずしも、未知試料の出力(ピーク高さ、面積等)に対する検量値は1つとは限らない。未知試料の出力(ピーク高さ、面積等)に対する検量値が2つ以上あると、どれが真の定量値か判断することが難しい。また、極値付近では濃度に対する出力(ピーク高さ、面積等)の変化量が極端に小さくなり(1次微分値が0に近づく)、定量精度、信頼性の担保が難しくなる。   In the case of the primary expression, since the concentration and the output (peak height, area, etc.) are in a completely proportional relationship, the calibration value for the output (peak height, area, etc.) of the unknown sample is always one. When a polynomial is used, the calibration value for the output (peak height, area, etc.) of the unknown sample is not necessarily one. If there are two or more calibration values for the output (peak height, area, etc.) of an unknown sample, it is difficult to determine which is a true quantitative value. Further, in the vicinity of the extreme value, the amount of change in the output (peak height, area, etc.) with respect to the concentration becomes extremely small (the primary differential value approaches 0), making it difficult to ensure quantitative accuracy and reliability.

本発明は、クロマトグラフィにおける多項式検量線による定量操作を簡素化するとともに、定量精度、信頼性を担保しつつ、定量範囲を広げることを目的とする。   An object of the present invention is to simplify a quantitative operation using a polynomial calibration curve in chromatography, and to extend a quantitative range while ensuring quantitative accuracy and reliability.

本発明は、クロマトグラフィにおける多項式検量線の作成方法であって、
濃度をx、出力値をyとしてプロットした検量点を2次式又は3次式にて近似を行い、その近似式が単純増加関数となるまで前記検量点のプロットを行う工程と、
前記単純増加関数の極大値に1未満の定数を乗じて又は前記検量点の最大出力値に1以上の定数を乗じて、出力値の上限を決定する工程と、
を含んでなることを特徴とする。
The present invention is a method for creating a polynomial calibration curve in chromatography,
A step of approximating a calibration point plotted with concentration x and output value y as a quadratic or cubic equation, and plotting the calibration point until the approximate equation becomes a simple increase function;
Multiplying the maximum value of the simple increase function by a constant less than 1 or multiplying the maximum output value of the calibration point by a constant of 1 or more to determine the upper limit of the output value;
It is characterized by comprising.

また、本発明は、特定の濃度xの標準試料をクロマトグラフィで測定し、得られた出力値yと、前記近似式で計算される濃度xに対する出力値との比率を算出し、前記検量点の出力値に前記比率を各々乗じて得られる補正出力値を2次式又は3次式にて近似を行う工程を更に含んでいてもよい。 In the present invention, a standard sample having a specific concentration x 0 is measured by chromatography, and a ratio between the obtained output value y 0 and the output value with respect to the concentration x 0 calculated by the approximate expression is calculated, The method may further include a step of approximating a correction output value obtained by multiplying the output value of the calibration point by the ratio by a quadratic expression or a cubic expression.

そして、補正出力値を近似した近似式に対して、単純増加関数の極大値に1未満の定数を乗じて又は前記補正出力値の最大出力値に1以上の定数を乗じて、出力値の上限を再決定する工程を更に含んでいてもよい。   Then, the approximate expression that approximates the corrected output value is multiplied by a constant less than 1 to the maximum value of the simple increase function, or the maximum output value of the corrected output value is multiplied by a constant of 1 or more, and the upper limit of the output value. May be further included.

本発明の詳細について、手順ごとに説明する。なお、検量線を用いた定量の手順を表したフローチャートを図7、8に示す。   Details of the present invention will be described for each procedure. In addition, the flowchart showing the procedure of fixed_quantity | assay using a calibration curve is shown in FIG.

(ステップ1)
まず、複数濃度の標準試料を測定し、濃度に対する出力値(ピーク高さ、面積等)を得る。最小二乗法により多項式近似を行い、基準検量線(以下、単に検量線と言う場合がある)を作成する。
(Step 1)
First, a standard sample having a plurality of concentrations is measured, and output values (peak height, area, etc.) with respect to the concentration are obtained. Polynomial approximation is performed by the least square method, and a standard calibration curve (hereinafter sometimes simply referred to as a calibration curve) is created.

(ステップ2)
次に、多項式の係数a、および極値(p、q)の座標、判別式Dの値から近似式の形状を特定し、それぞれにあった定量上限を決定する。多項式が2次式の場合、係数a<0であれば極大値が存在する形状をとる(図1参照)。極大値の座標が(p、q)ともに正でない場合、作成された検量線は単純増加関数ではないため、異常と判断し、再測定等を促す指示を出し、検量点のプロットを増やす又は異常値と思われる検量点のプロットを修正する等を行う(以下、異常と判断した場合の対応は同様である)。極大値の座標が(p、q)とも正の場合、作成された検量線は正常と判断し、定量上限値を決定する。定量上限値は、極大値のq座標に係数f1を乗じて算出する。係数f1は1未満であればよく、特に指定するものではないが、1に近いほど定量精度が悪くなり、値を小さくすると定量範囲が狭くなるため、0.6〜0.95程度の値が望ましい(図3a参照)。
(Step 2)
Next, the shape of the approximate expression is specified from the coefficient a of the polynomial, the coordinates of the extreme values (p, q), and the value of the discriminant D, and the upper limit of quantification is determined. When the polynomial is a quadratic expression, if the coefficient a <0, the shape having the maximum value is taken (see FIG. 1). If the coordinates of the local maxima are not positive (p, q), the created calibration curve is not a simple increase function, so it is judged abnormal and an instruction is given to prompt remeasurement, etc., and the calibration point plot is increased or abnormal. Correct the plot of the calibration point that seems to be a value (hereinafter, the response when it is determined to be abnormal is the same). When the coordinates of the maximum value are both positive (p, q), it is determined that the created calibration curve is normal, and the upper limit of quantification is determined. The upper limit of quantification is calculated by multiplying the q coordinate of the maximum value by the coefficient f1. The coefficient f1 may be less than 1, and is not particularly specified. However, as the coefficient f1 is closer to 1, the quantification accuracy becomes worse, and when the value is decreased, the quantification range is narrowed. Therefore, a value of about 0.6 to 0.95 is obtained. Desirable (see FIG. 3a).

係数a>0であれば極小値が存在する形状をとる(図2参照)。極小値の座標pが負でない場合、作成された検量線は異常と判断する。極小値の座標pが負の場合、作成された検量線は正常と判断し、定量上限値を決定する。定量上限値は、最大濃度の検量点のy値に係数f2を乗じて算出する。係数f2は1以上であればよく、特に指定するものではないが、値が大きくなるほど定量の信頼性が低くなり、値が小さくなるほど定量範囲が狭くなるため、1.00〜1.50程度の値が望ましい(図3b参照)。   If the coefficient a> 0, a shape having a minimum value is taken (see FIG. 2). When the minimum value coordinate p is not negative, the created calibration curve is determined to be abnormal. When the coordinate p of the minimum value is negative, it is determined that the created calibration curve is normal, and the quantitative upper limit value is determined. The upper limit of quantification is calculated by multiplying the y value of the calibration point of the maximum concentration by the coefficient f2. The coefficient f2 may be 1 or more, and is not particularly specified. However, the larger the value, the lower the reliability of quantification, and the smaller the value, the narrower the quantification range. A value is desirable (see FIG. 3b).

表1は2次式の形状および前記手段で得られる定量上限の一覧を示した表である。   Table 1 is a table showing a list of the shape of the secondary equation and the upper limit of quantification obtained by the above means.

Figure 2018096850
多項式が3次式の場合、係数a>0であれば極値はあるものの単純増加関数の形状をとる(図4参照)。係数a<0であれば減少関数の形態をとることから、作成された検量線は異常と判断する。判別式D>0の場合、定量上限値は、極大値のq座標に係数f3を乗じて算出する。係数f3は1未満であればよく、特に指定するものではないが、1に近いほど定量精度が悪くなり、値を小さくすると定量範囲が狭くなるため、0.6〜0.95程度の値が望ましい。判別式D≦0の場合、極大、極小値は存在しないことから、定量上限値は、最大濃度の検量点のy値に係数f4を乗じて算出する。係数f4は1未満であればよく、特に指定するものではないが、1に近いほど定量精度が悪くなり、値を小さくすると定量範囲が狭くなるため、0.6〜0.95程度の値が望ましい(図5参照)。
Figure 2018096850
In the case where the polynomial is a cubic expression, if the coefficient a> 0, there is an extreme value but the shape of a simple increasing function is taken (see FIG. 4). If the coefficient a <0, it takes the form of a decreasing function, so that the created calibration curve is determined to be abnormal. When discriminant D> 0, the quantitative upper limit value is calculated by multiplying the q coordinate of the maximum value by the coefficient f3. The coefficient f3 need only be less than 1, and is not particularly specified. However, the closer to 1, the lower the accuracy of quantification, and the smaller the value, the narrower the quantitation range. desirable. In the case of discriminant D ≦ 0, there is no maximum or minimum value, so the upper limit of quantification is calculated by multiplying the y value of the calibration point of the maximum concentration by the coefficient f4. The coefficient f4 need only be less than 1, and is not particularly specified. However, the closer to 1, the lower the quantitative accuracy, and the smaller the value, the narrower the quantitative range. Desirable (see FIG. 5).

表2は3次式の形状および前記手段で得られる定量上限の一覧を示した表である。   Table 2 is a table showing a list of the shape of the cubic formula and the upper limit of quantification obtained by the above means.

Figure 2018096850
(ステップ3)
未知試料を測定し、出力値(ピーク高さ、面積等)を得る。
Figure 2018096850
(Step 3)
An unknown sample is measured, and an output value (peak height, area, etc.) is obtained.

(ステップ4)
未知試料の出力値(ピーク高さ、面積等)が、ステップ2で得られた定量上限に収まっているかを判断し、定量上限以下であれば近似式に従い定量計算を実施する。ただし、出力値(ピーク高さ、面積等)が定量上限値と極値の間の場合は、近似式に従い定量計算を実施してもよいが、定量精度に誤差が生じている可能性があることを示す警告フラグを付加しておくことが好ましい。
(Step 4)
It is determined whether the output value (peak height, area, etc.) of the unknown sample is within the upper limit of quantification obtained in step 2, and if it is less than the upper limit of quantification, the quantitative calculation is performed according to the approximate expression. However, if the output value (peak height, area, etc.) is between the upper limit of quantification and the extreme value, quantitative calculation may be performed according to the approximate expression, but there may be an error in quantification accuracy. It is preferable to add a warning flag indicating this.

(ステップ5)
未知試料の分だけ、ステップ3から繰り返し行い、その未知試料群の測定を終了する。
(Step 5)
The measurement is repeated from step 3 for the unknown samples, and the measurement of the unknown sample group is completed.

(ステップ6)
異なる未知試料群の測定を更に行う場合は、検量線の補正を行う。図6に補正の流れを示す。
(Step 6)
When further measurement of different unknown sample groups is performed, the calibration curve is corrected. FIG. 6 shows the flow of correction.

基準検量線を作成する際に使用した複数の標準試料のうち1試料を、基準検量線を補正するために使用する。前記補正用の標準試料を測定し、出力値(ピーク高さ、面積等)を取得する(図6b)。得られた補正用標準試料の出力値(AF)と、それに対応する基準試料作成時に得られた出力値(AR)の比率F(AF/AR)を算出する。   One sample among a plurality of standard samples used in creating the reference calibration curve is used to correct the reference calibration curve. The correction standard sample is measured, and output values (peak height, area, etc.) are obtained (FIG. 6b). A ratio F (AF / AR) between the output value (AF) of the obtained correction standard sample and the output value (AR) obtained at the time of creating the corresponding reference sample is calculated.

検量線作成時に得られたすべての出力値(AR1〜ARn)に比率Fを乗じて、補正出力点を算出する(図6c)。   All the output values (AR1 to ARn) obtained at the time of creating the calibration curve are multiplied by the ratio F to calculate a corrected output point (FIG. 6c).

Figure 2018096850
濃度に対する補正出力値(ピーク高さ、面積等)から最小二乗法により多項式近似を再度行い、補正検量線を作成する(図6d)。なお、比率Fが一定値以上または以下の場合、検量線の形態が大きく変化していることを意味することから、検量線の補正ではなく、新しい検量線を再作成する指示を出す、または、測定を中止するなどのアクションを行うことが好ましい。一般的に比率Fは0.9から1.1の範囲が好ましいが、定量結果への影響を個々に判断し指定することが望ましく、この値に限定するものではない。ここでは、基準検量線を補正するために1濃度の試料を用いることを前提に説明したが、複数濃度の標準試料を用いて補正を実施しても良い。この場合、面積比率Fが複数得られるが、平均値で補正を実施すれば、より補正の精度が高まることになる。また、基準検量線作成時に使用していない濃度の標準試料で補正を行っても問題ない。基準検量線の対応する濃度の出力値(ピーク高さ、面積等)を近似関数(基準検量線の近似式)により求め、比率Fを算出し、前述の通り補正計算に用いれば良い。
Figure 2018096850
Polynomial approximation is performed again by the least square method from the corrected output values (peak height, area, etc.) for the concentration, and a corrected calibration curve is created (FIG. 6d). If the ratio F is greater than or less than a certain value, it means that the form of the calibration curve has changed significantly, so that an instruction to recreate a new calibration curve is issued instead of correction of the calibration curve, or It is preferable to perform an action such as stopping the measurement. In general, the ratio F is preferably in the range of 0.9 to 1.1. However, it is desirable to individually determine and specify the influence on the quantitative result, and is not limited to this value. Here, the description has been made on the assumption that a sample of one concentration is used to correct the reference calibration curve, but the correction may be performed using a standard sample of a plurality of concentrations. In this case, a plurality of area ratios F can be obtained. However, if correction is performed with an average value, the accuracy of correction is further increased. In addition, there is no problem even if correction is performed with a standard sample having a concentration not used when creating a standard calibration curve. The output value (peak height, area, etc.) of the corresponding concentration of the reference calibration curve is obtained by an approximate function (approximate expression of the reference calibration curve), the ratio F is calculated, and used for the correction calculation as described above.

(ステップ7)
ステップ2と同様に新たに得られた多項式の係数等により近似式の形状を特定し、それぞれにあった定量上限を再度決定する。
(Step 7)
Similar to step 2, the shape of the approximate expression is specified by the coefficient of the newly obtained polynomial, etc., and the quantitative upper limit corresponding to each is determined again.

以降、ステップ3に戻り、未知試料を測定し、定量計算を行う。   Thereafter, the process returns to step 3 to measure an unknown sample and perform quantitative calculation.

以上説明したように、本発明の方法では、2次式、3次式といった多項式を検量線に用いた場合であっても、日常の分析操作においては1濃度の標準試料を用い、基準検量線を補正したうえで、未知試料の定量を行うことができ、工数を大幅に短縮することができる。また、定量上限を近似式の係数等から算出し、判断基準として用いることで、定量値の信頼性も向上させることが可能となった。   As described above, in the method of the present invention, even when a polynomial such as a quadratic equation or a cubic equation is used for the calibration curve, a standard sample of one concentration is used in the daily analytical operation, and a standard calibration curve is used. In addition, the unknown sample can be quantified and the man-hours can be greatly reduced. In addition, the reliability of the quantitative value can be improved by calculating the upper limit of quantification from the coefficient of the approximate expression and using it as a criterion.

2次式の形態を分類した図である(係数a<0の場合)。It is the figure which classified the form of the quadratic equation (when coefficient a <0). 2次式の形態を分類した図である(係数a>0の場合)。It is the figure which classified the form of the quadratic equation (when coefficient a> 0). 本発明における、2次式を検量線に使用した場合の定量上限値を示した図である。It is the figure which showed the fixed quantity upper limit at the time of using the secondary type | formula for a calibration curve in this invention. 3次式の形態を分類した図である。It is the figure which classified the form of the cubic equation. 本発明における、3次式を検量線に使用した場合の定量上限値を示した図である。It is the figure which showed the upper limit of fixed_quantity | quantitative_assay at the time of using the cubic equation for a calibration curve in this invention. 本発明における、検量線の補正の手順の一例を示した図である。It is the figure which showed an example of the procedure of correction | amendment of a calibration curve in this invention. 本発明における、検量線を用いた定量の手順を示したフローチャートで示した図である(2次式の場合)。It is the figure shown in the flowchart which showed the procedure of fixed_quantity | assay using a calibration curve in this invention (in the case of a quadratic formula). 本発明における、検量線を用いた定量の手順を示したフローチャートで示した図である(3次式の場合)。It is the figure shown in the flowchart which showed the procedure of fixed_quantity | assay using a calibration curve in this invention (in the case of a cubic formula). 実施例で使用したシステム構成を示した図である。It is the figure which showed the system configuration used in the Example. 実施例1で得られた基準検量線を示した図である。2 is a diagram showing a standard calibration curve obtained in Example 1. FIG. 図10の基準検量線のピーク3を拡大した図である。It is the figure which expanded the peak 3 of the reference | standard calibration curve of FIG. 実施例2で得られた基準検量線を示した図である。6 is a diagram showing a standard calibration curve obtained in Example 2. FIG. 実施例2での定量上限値を模式的に示した図である。図aは極大値を有する形状、図bは極小値を有する形状の場合である。It is the figure which showed typically the quantitative upper limit in Example 2. FIG. A shows a shape having a maximum value, and FIG. B shows a shape having a minimum value. 実施例2での、流速を変化させた場合の標準試料1のクロマトグラムである。6 is a chromatogram of the standard sample 1 when the flow rate is changed in Example 2. 実施例2での、ピーク5の定量結果の一部を示した図である。横軸に基準検量線作成時に定量を行った結果である。6 is a diagram showing a part of the quantitative result of peak 5 in Example 2. FIG. The horizontal axis is the result of quantification when creating a standard calibration curve.

(実施例1)
本発明の効果を、実際のクロマトグラフィを実施し検証を行った。図9は検証に使用したシステムである。溶媒脱気装置(SD−8020)2、送液ポンプ(DP−8020)3、試料注入装置(AS−8020)4、カラムオーブン(CO−8020)6、紫外可視検出器(UV−8020)7、およびデータ処理装置(LC−8020II)9で構成した(いずれも、東ソー(株)製)。分析カラム5としては、東ソー(株)製 TSKgel ODS−100Z(5μm、4.6 mmI.D.×15 cm)を使用し、p−ヒドロキシ安息香酸類の分離を行った。その他の条件は下記の通りである。
注入量:80uL、カラム温度:40℃、流速:1.0mL/min
溶離液:CHCN/HO(60/40)、検出:280nm
標準試料:Methyl p−Hydroxybenzoate(0.1mg/1mL)、Propyl p−Hydroxybenzoate(0.2mg/1mL)、Butyl p−Hydroxybenzoate(0.3mg/1mL)、Hexyl p−Hydroxybenzoate(0.4mg/1mL)、Heptyl p−Hydroxybenzoate(0.5mg/1mL)
上記混合物を標準試料1とし、1/2希釈した試料を標準試料2、1/4希釈した試料を標準試料3、1/8希釈した試料を標準試料4、1/16希釈した試料を標準試料5、1/32希釈した試料を標準試料6、1/64希釈した試料を標準試料7とした。
未知試料:
混合物A;Methyl p−Hydroxybenzoate(0.056mg/1mL)、Propyl p−Hydroxybenzoate(0.067mg/1mL)、Butyl p−Hydroxybenzoate(0.200mg/1mL)、Hexyl p−Hydroxybenzoate(0.133mg/1mL)、Heptyl p−Hydroxybenzoate(0.100mg/1mL) 混合物
混合物B;Methyl p−Hydroxybenzoate(0.031mg/1mL)、Propyl p−Hydroxybenzoate(0.067mg/1mL)、Butyl p−Hydroxybenzoate(0.250mg/1mL)、Hexyl p−Hydroxybenzoate(0.133mg/1mL)、Heptyl p−Hydroxybenzoate(0.278mg/1mL) 混合物
上記2種の未知試料を標準試料と同様に、1/2、1/4、1/8、1/16、1/32、1/64希釈し、未知試料A1〜7、未知試料B1〜7とし、合計14種類調整し、検証に使用した。
Example 1
The effect of the present invention was verified by performing actual chromatography. FIG. 9 shows the system used for verification. Solvent deaerator (SD-8020) 2, liquid feed pump (DP-8020) 3, sample injector (AS-8020) 4, column oven (CO-8020) 6, UV-visible detector (UV-8020) 7 And a data processing device (LC-8020II) 9 (both manufactured by Tosoh Corporation). As the analytical column 5, TSKgel ODS-100Z (5 μm, 4.6 mm ID × 15 cm) manufactured by Tosoh Corporation was used, and p-hydroxybenzoic acids were separated. Other conditions are as follows.
Injection volume: 80 uL, column temperature: 40 ° C., flow rate: 1.0 mL / min
Eluent: CH 3 CN / H 2 O (60/40), detection: 280 nm
Standard samples: Methyl p-Hydroxybenzoate (0.1 mg / 1 mL), Propyl p-Hydroxybenzoate (0.2 mg / 1 mL), Butyl p-Hydroxybenzoate (0.3 mg / 1 mL), Hexyl p-Hydrooxybene 0.4 mg / mL , Heptyl p-Hydroxybenzoate (0.5 mg / 1 mL)
The above mixture is the standard sample 1, the sample diluted 1/2 is the standard sample 2, the sample diluted 1/4 is the standard sample 3, the sample diluted 1/8 is the standard sample 4, the sample diluted 1/16 is the standard sample The sample diluted 5 or 1/32 was designated as standard sample 6, and the sample diluted 1/64 was designated as standard sample 7.
Unknown sample:
Mixture A; , Heptyl p-Hydroxybenzoate (0.100 mg / 1 mL) Mixture mixture B; ), Hexyl p-Hydroxybenzoate (0. 133 mg / 1 mL), Heptyl p-Hydroxybenzoate (0.278 mg / 1 mL) Mixture The above-mentioned two unknown samples were converted into 1/2, 1/4, 1/8, 1/16, 1/32, The sample was diluted 1/64 to obtain unknown samples A1 to 7 and unknown samples B1 to B7. A total of 14 types were adjusted and used for verification.

図10は前記手順で調整した濃度の異なる標準試料7種を用いて作成した標準検量線である。横軸に濃度(希釈率)、縦軸に各成分の面積をとり、最小二乗法により原点を通る2次式で近似したものである(y=ax^2+bx+c、c=0)。各成分の近似式の係数および極大濃度、極大面積および定量上限面積を表4に示す。   FIG. 10 is a standard calibration curve prepared using seven standard samples with different concentrations adjusted in the above procedure. Taking the concentration (dilution ratio) on the horizontal axis and the area of each component on the vertical axis, it is approximated by a quadratic equation passing through the origin by the least square method (y = ax ^ 2 + bx + c, c = 0). Table 4 shows the coefficients of the approximate formulas of each component, the maximum concentration, the maximum area, and the upper limit of quantification.

Figure 2018096850
いずれのピークに対しても、係数aは負の値を示すことから、標準検量線は極大値を持つ形状であることが分かる。定量上限面積は、係数f1=0.85として計算を行った。つまり、極大面積の85%までを正確に定量できる範囲としたものである。
Figure 2018096850
Since coefficient a shows a negative value for any peak, it can be seen that the standard calibration curve has a maximum value. The upper limit area for quantification was calculated with a coefficient f1 = 0.85. In other words, up to 85% of the maximum area can be accurately quantified.

この基準となる検量線を作成した直後に、未知試料A1〜A7、B1〜B7、計14種を測定し、前記基準検量線により定量した結果を表5、表6に示す。   Immediately after creating the standard calibration curve, the unknown samples A1 to A7, B1 to B7, a total of 14 types, were measured, and the results quantified by the standard calibration curve are shown in Tables 5 and 6.

Figure 2018096850
Figure 2018096850

Figure 2018096850
得られた面積値は、ぼぼ全ての試料、全ての成分で、定量最大面積を下回っているが、未知試料A1のピーク3のみ、定量最大面積をわずかに上回っている。図11はピーク3に対する検量線を拡大して、極大と定量上限面積の範囲を示した図である。これからも分かるように、未知試料A1のピーク3は検量線の極大と定量上限面積の範囲に入っていることが分かる。すなわち、この成分は検量線の極大値にかなり近寄っており、定量の信頼性が低いと判定される。
Figure 2018096850
The obtained area value is below the maximum fixed area for almost all samples and all components, but only the peak 3 of the unknown sample A1 is slightly higher than the maximum fixed area. FIG. 11 is an enlarged view of the calibration curve with respect to peak 3, showing the range of the maximum and the upper limit area of quantification. As can be seen, it can be seen that peak 3 of unknown sample A1 falls within the range of the maximum of the calibration curve and the upper limit area of quantification. That is, this component is very close to the maximum value of the calibration curve, and it is determined that the reliability of quantification is low.

(実施例2)
検証に使用したシステム及び測定条件は、下記を除いて実施例1と同じである。
検出波長:254nm
標準試料:実施例1の標準試料7を1/2、1/4、1/8、1/16、1/32、1/64希釈し、標準試料8〜14とした。
未知試料:実施例1の未知試料A7、未知試料B7をそれぞれ1/4、1/16、1/64希釈し、未知試料A8〜10、未知試料B8〜10とした。
(Example 2)
The system and measurement conditions used for verification are the same as in Example 1 except for the following.
Detection wavelength: 254 nm
Standard sample: Standard sample 7 of Example 1 was diluted 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 to obtain standard samples 8-14.
Unknown sample: Unknown sample A7 and unknown sample B7 of Example 1 were diluted 1/4, 1/16, and 1/64, respectively, to obtain unknown samples A8 to 10 and unknown samples B8 to 10.

図12は前記手順で調整した濃度の異なる標準試料7〜14を用いて作成した検量線である。横軸に濃度(希釈率)、縦軸に各成分の面積をとり、最小二乗法により原点を通る2次式で近似したものである(y=ax^2+bx+c、c=0)。図12aは濃度(x軸)、面積(y軸)とも正で、検量域付近、図12bは極値の存在が明確になるように広域で示した図である。   FIG. 12 is a calibration curve created using standard samples 7 to 14 having different concentrations adjusted by the above procedure. Taking the concentration (dilution ratio) on the horizontal axis and the area of each component on the vertical axis, it is approximated by a quadratic equation passing through the origin by the least square method (y = ax ^ 2 + bx + c, c = 0). FIG. 12a is positive in both concentration (x-axis) and area (y-axis), near the calibration area, and FIG. 12b is a wide area so that the existence of extreme values is clear.

各成分の近似式の係数、関数の形状、極大濃度、極大面積および定量上限面積を表7に示す。   Table 7 shows the coefficient of the approximate expression of each component, the shape of the function, the maximum concentration, the maximum area, and the upper limit area for quantification.

Figure 2018096850
ピーク5に対しては、係数aは負の値を示すことから、標準検量線は極大値を持つ形状であることが分かる。また、ピーク1から4に対しては、係数aは正の値を示すことから、標準検量線は極小値を持つ形状であることが分かる。
Figure 2018096850
For the peak 5, since the coefficient a shows a negative value, it can be seen that the standard calibration curve has a maximum value. In addition, for the peaks 1 to 4, since the coefficient a shows a positive value, it can be seen that the standard calibration curve has a minimum value.

ピーク5に対しての定量上限面積に係数f1=0.85、ピーク1〜4に対して最も大きな測定点(検量点)のy座標ARnに係数f2=1.20として計算を行った(図13参照)。   The calculation was performed with the coefficient f1 = 0.85 for the upper limit area of quantification for peak 5 and the coefficient f2 = 1.20 for the y coordinate ARn of the largest measurement point (calibration point) for peaks 1 to 4 (FIG. 13).

この基準となる検量線を作成した直後に、未知試料A7〜A10、B7〜B10、計8種を測定し、前記基準検量線により定量した結果を表8に示す。得られた面積値は、全ての試料、全ての成分で、定量最大面積を下回っており、数学的には定量性が信頼できる範囲に入っていることが分かる。   Immediately after creating the standard calibration curve, eight types of unknown samples A7 to A10 and B7 to B10 were measured, and the results quantified by the standard calibration curve are shown in Table 8. The obtained area values are below the maximum fixed area for all samples and all components, and it can be seen that the quantitative value is within a reliable range mathematically.

Figure 2018096850
Figure 2018096850

Figure 2018096850
次に、流速を0.95、0.99、1.01、1.05mL/minと僅かに変化させ、上記検量線を1濃度の標準試料にて補正し、その補正検量線を基に未知試料A7〜A10、B7〜B10、計8種を測定し、同様に定量を実施した。検量線を補正するための基準点として、最も高い濃度である標準試料1で定量計算を試みた。
Figure 2018096850
Next, the flow rate is slightly changed to 0.95, 0.99, 1.01, 1.05 mL / min, the calibration curve is corrected with a standard sample of one concentration, and the unknown is based on the corrected calibration curve. Samples A7 to A10 and B7 to B10, a total of 8 types, were measured and quantified in the same manner. As a reference point for correcting the calibration curve, quantitative calculation was attempted with the standard sample 1 having the highest concentration.

図14は、元の検量線(基準検量線)を測定した流速1.00mL/minでの標準試料1および標準試料4のクロマトグラムと、補正計算を実施した流速0.95、0.99、1.01、1.05mL/minでの標準試料1のクロマトグラムである。ここから分かるように、各ピークの溶出時間は大きく変化しており、通常の分析では、検量線を再測定しないと正確な定量ができない状態であることが容易に推測できる。このような状態でも本発明が有効に機能するか検証を行った。   FIG. 14 shows the chromatograms of standard sample 1 and standard sample 4 at a flow rate of 1.00 mL / min at which the original calibration curve (reference calibration curve) was measured, and flow rates of 0.95, 0.99 for which correction calculation was performed. It is the chromatogram of the standard sample 1 in 1.01 and 1.05 mL / min. As can be seen from this, the elution time of each peak changes greatly, and it can be easily estimated that in an ordinary analysis, accurate quantification cannot be performed unless the calibration curve is remeasured. It was verified whether the present invention functions effectively even in such a state.

図15はピーク1から5の定量結果の一部を示した図である。横軸に基準検量線作成時に定量を行った結果、縦軸に流速を変えて検量線を補正・未知試料を定量した結果をプロットした図である。定量値が正確であれば、両者は同じ値を示すことになる。つまり、y=ax(a=1)の直線上にデータ点がくるようになる。   FIG. 15 is a diagram showing a part of the quantification results of peaks 1 to 5. FIG. 5 is a graph plotting the results of quantification at the time of creating a standard calibration curve on the horizontal axis and the results of quantifying unknown samples by correcting the calibration curve by changing the flow velocity on the vertical axis. If the quantitative value is accurate, both will show the same value. That is, the data point comes to be on a straight line of y = ax (a = 1).

いずれの条件、ピークでも全ての未知試料の面積は定量上限以下に収まっていることから定量結果は担保されている。また、基準検量線作成時に行った定量結果との差異も全領域で微小であり、y=xの直線上に載っており、定量値の絶対値も担保されていることが分かる。   Under any condition and peak, the area of all unknown samples is below the upper limit of quantification, so the quantification results are guaranteed. In addition, it can be seen that the difference from the quantification result performed at the time of creating the standard calibration curve is also very small in all regions and is on a straight line y = x, and the absolute value of the quantification value is secured.

1.溶離液
2.脱気装置
3.送液ポンプ(サンプル側)
4.試料注入バルブ
5.分析カラム
6.カラム恒温槽
7.紫外可視検出器
8.廃液
9.システム制御およびデータ処理装置
1. 1. Eluent 2. Deaeration device Liquid feed pump (sample side)
4). 4. Sample injection valve Analysis column 6. 6. Column constant temperature bath UV-visible detector 8. Waste liquid9. System control and data processing equipment

Claims (4)

クロマトグラフィにおける多項式検量線の作成方法であって、
濃度をx、出力値をyとしてプロットした検量点を2次式又は3次式にて近似を行い、その近似式が単純増加関数となるまで前記検量点のプロットを行う工程と、
前記単純増加関数の極大値に1未満の定数を乗じて又は前記検量点の最大出力値に1以上の定数を乗じて、出力値の上限を決定する工程と、
を含んでなる作成方法。
A method for preparing a polynomial calibration curve in chromatography,
A step of approximating a calibration point plotted with concentration x and output value y as a quadratic or cubic equation, and plotting the calibration point until the approximate equation becomes a simple increase function;
Multiplying the maximum value of the simple increase function by a constant less than 1 or multiplying the maximum output value of the calibration point by a constant of 1 or more to determine the upper limit of the output value;
A creation method comprising.
特定の濃度xの標準試料をクロマトグラフィで測定し、得られた出力値yと、前記近似式で計算される濃度xに対する出力値との比率を算出し、前記検量点の出力値に前記比率を各々乗じて得られる補正出力値を2次式又は3次式にて近似を行う工程を更に含む請求項1に記載の作成方法。 A standard sample having a specific concentration x 0 is measured by chromatography, and the ratio between the obtained output value y 0 and the output value with respect to the concentration x 0 calculated by the approximate expression is calculated, and the output value of the calibration point is calculated. The creation method according to claim 1, further comprising a step of approximating a correction output value obtained by multiplying each of the ratios by a quadratic expression or a cubic expression. 補正出力値を近似した近似式に対して、単純増加関数の極大値に1未満の定数を乗じて又は前記補正出力値の最大出力値に1以上の定数を乗じて、出力値の上限を再決定する工程を更に含む請求項2に記載の作成方法。   For the approximate expression approximating the corrected output value, multiply the local maximum value of the simple increase function by a constant less than 1 or multiply the maximum output value of the corrected output value by a constant of 1 or more to re-set the upper limit of the output value. The production method according to claim 2, further comprising a determining step. 請求項2又は3の方法によって作成された検量線について、前記比率が一定の値以上の場合は、前記検量線の信頼性がないと判断する方法。   4. A method for determining that a calibration curve created by the method according to claim 2 or 3 is not reliable when the ratio is a certain value or more.
JP2016241712A 2016-12-13 2016-12-13 Quantification and correction method using polynomial calibration curve Active JP6862813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241712A JP6862813B2 (en) 2016-12-13 2016-12-13 Quantification and correction method using polynomial calibration curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241712A JP6862813B2 (en) 2016-12-13 2016-12-13 Quantification and correction method using polynomial calibration curve

Publications (2)

Publication Number Publication Date
JP2018096850A true JP2018096850A (en) 2018-06-21
JP6862813B2 JP6862813B2 (en) 2021-04-21

Family

ID=62631397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241712A Active JP6862813B2 (en) 2016-12-13 2016-12-13 Quantification and correction method using polynomial calibration curve

Country Status (1)

Country Link
JP (1) JP6862813B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073436A (en) * 1983-09-30 1985-04-25 Shimadzu Corp Generator for calibration curve
JPH02245664A (en) * 1989-03-18 1990-10-01 Shimadzu Corp Measuring data processor
JPH07110333A (en) * 1993-10-13 1995-04-25 Toray Ind Inc Automatic analyzer
JPH1151923A (en) * 1997-07-31 1999-02-26 Tosoh Corp Correction method in molecular exclusion chromatography and device thereof
JP2006317198A (en) * 2005-05-11 2006-11-24 Shimadzu Corp Data processor for analyzer
JP2015224889A (en) * 2014-05-26 2015-12-14 株式会社島津製作所 Data processing device for quantification
US20160084807A1 (en) * 2014-09-18 2016-03-24 Dionex Corporation Automated method of calibrating a chromatography system and analysis of a sample

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073436A (en) * 1983-09-30 1985-04-25 Shimadzu Corp Generator for calibration curve
JPH02245664A (en) * 1989-03-18 1990-10-01 Shimadzu Corp Measuring data processor
JPH07110333A (en) * 1993-10-13 1995-04-25 Toray Ind Inc Automatic analyzer
JPH1151923A (en) * 1997-07-31 1999-02-26 Tosoh Corp Correction method in molecular exclusion chromatography and device thereof
JP2006317198A (en) * 2005-05-11 2006-11-24 Shimadzu Corp Data processor for analyzer
JP2015224889A (en) * 2014-05-26 2015-12-14 株式会社島津製作所 Data processing device for quantification
US20160084807A1 (en) * 2014-09-18 2016-03-24 Dionex Corporation Automated method of calibrating a chromatography system and analysis of a sample

Also Published As

Publication number Publication date
JP6862813B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US10739322B2 (en) In-waveform peak end point detecting method and detecting device
CN108603867B (en) Peak detection method and data processing apparatus
JP6132067B2 (en) Data processing apparatus and program for chromatograph mass spectrometer
JP7070014B2 (en) Peak signal processing method in chromatogram
CN105823713A (en) Method for improving measuring precision of air quality detection device through iteration optimal calibration
CN109765592A (en) A kind of Deformation Control Net method for analyzing stability based on variance-covariance matrix
JP2016197037A (en) Preparative chromatograph
CN103983938B (en) The bearing calibration of electric energy meter small-signal biasing
Queipo-Abad et al. Measurement of compound-specific Hg isotopic composition in narrow transient signals by gas chromatography coupled to multicollector ICP-MS
JP6862813B2 (en) Quantification and correction method using polynomial calibration curve
CN104122440A (en) Method for sensing crystal oscillator frequency shift
JP4602854B2 (en) Mass chromatogram display method
Andersen Understanding uncertainty to weighing by electronic-analytical balances
Gourgiotis et al. Transient signal isotope analysis using multicollection of ion beams with Faraday cups equipped with 10 12 Ω and 10 11 Ω feedback resistors
JP6862780B2 (en) Peak identification method based on peak area ratio
CN109682907B (en) Method for solving first-dimension chromatographic peak in full two-dimension chromatography by two modulation peaks
JP7067189B2 (en) Data processing method in glycohemoglobin analysis
JP7119602B2 (en) How to calculate chromatogram similarity
JP2018185158A (en) Automatic determination method of peak detection sensitivity of chromatogram
CN103543194A (en) Optimized spectral line data analysis method for determining metal ion concentration
JP6897267B2 (en) Peak identification method that is not affected by fluctuations in elution time
JP2014070949A (en) Peak height processing method in gas chromatograph
JP6938901B2 (en) Peak identification method based on the peak center of gravity
CN103630597A (en) Spectral line processing method for 15-point optimized polarogram
JP6953989B2 (en) Peak identification method using peak width inclusion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151