JP2018096620A - Radiation panel module, radiation air-conditioning system, and air-conditioning method - Google Patents

Radiation panel module, radiation air-conditioning system, and air-conditioning method Download PDF

Info

Publication number
JP2018096620A
JP2018096620A JP2016241903A JP2016241903A JP2018096620A JP 2018096620 A JP2018096620 A JP 2018096620A JP 2016241903 A JP2016241903 A JP 2016241903A JP 2016241903 A JP2016241903 A JP 2016241903A JP 2018096620 A JP2018096620 A JP 2018096620A
Authority
JP
Japan
Prior art keywords
flow path
radiation
heat exchange
panel module
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241903A
Other languages
Japanese (ja)
Other versions
JP6442776B2 (en
Inventor
平尾 豊隆
Toyotaka Hirao
豊隆 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016241903A priority Critical patent/JP6442776B2/en
Priority to EP17879860.9A priority patent/EP3460348A4/en
Priority to PCT/JP2017/041712 priority patent/WO2018110214A1/en
Priority to AU2017377443A priority patent/AU2017377443A1/en
Priority to CN201780038434.2A priority patent/CN109312933A/en
Publication of JP2018096620A publication Critical patent/JP2018096620A/en
Application granted granted Critical
Publication of JP6442776B2 publication Critical patent/JP6442776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • F24F5/0092Systems using radiation from walls or panels ceilings, e.g. cool ceilings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • F28D1/0383Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation panel which saves energy in air-conditioning, and a radiation air-conditioning system which prevents generation of dew condensation.SOLUTION: A radiation panel module includes a radiation panel, and a heat exchange passage which is provided in a back surface side of the radiation panel and through which a heat medium passes. Additionally, in a radiation air-conditioning system provided with the radiation panel module, a bypass flow passage is provided, which does not pass through the heat exchange passage, and a flow passage of the heat medium is switched according to an operation environment, to prevent generation of dew condensation.SELECTED DRAWING: Figure 2

Description

本発明は、放射パネルモジュール、放射空調システム及び空調方法に関する。   The present invention relates to a radiation panel module, a radiation air conditioning system, and an air conditioning method.

放射空調とよばれる室内の空調方式が存在する。放射空調では、空調対象となる室内の天井等に放射パネルを設置し、放射パネルからの熱のふく射を通じて室内の温度を調整する。放射空調では、冷房時、放射パネルに発生する結露への対策が課題となることが多い。
例えば、特許文献1には、ふく射用のダクトと室内への吹き出し口とで熱媒体である空気の流路を切り替えるダンパーを備えたふく射式空調(放射空調)システムについて記載がある。特許文献1には、放射パネルへの結露が生じると、ダンパーを切り替えることによって、空気を室内へと吐き出させ、その空気の流れを結露が生じている放射パネル面へと導いて、放射パネル面に吹き付けることにより、水滴を蒸発させて結露を取り除くことが記載されている。
There is an indoor air conditioning system called radiant air conditioning. In radiant air conditioning, a radiant panel is installed on the ceiling or the like of a room to be air-conditioned, and the temperature in the room is adjusted through heat radiation from the radiant panel. In radiant air conditioning, countermeasures against condensation that occurs on the radiant panel during cooling are often a problem.
For example, Patent Literature 1 describes a radiation type air conditioning (radiation air conditioning) system including a damper that switches a flow path of air as a heat medium between a radiation duct and a blowout opening to a room. In Patent Document 1, when condensation occurs on the radiant panel, air is discharged into the room by switching the damper, and the flow of the air is guided to the radiant panel surface where condensation is generated. It is described that water droplets are evaporated to remove dew condensation.

特開平9−96434号公報Japanese Patent Laid-Open No. 9-96434

ところで、従来の放射空調システムでは、次のような課題が存在する。つまり、(1)冷房時に結露が生じる。(2)結露の問題に対処するために除湿システムが必要で、建物を工事するためコストが高くなる。(3)個別空調が難しい。   By the way, the following subjects exist in the conventional radiation air-conditioning system. That is, (1) condensation occurs during cooling. (2) A dehumidification system is necessary to deal with the problem of condensation, and the cost is high due to the construction of the building. (3) Individual air conditioning is difficult.

そこでこの発明は、上述の課題を解決することのできる放射パネルモジュール、放射空調システム及び空調方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a radiation panel module, a radiation air conditioning system, and an air conditioning method that can solve the above-described problems.

本発明の第1の態様によれば、放射パネルモジュールは、放射パネルと、前記放射パネルが背面側に設けられた熱媒体の通過する熱交換流路と、を備える。
システムである。
According to the first aspect of the present invention, the radiant panel module includes a radiant panel and a heat exchange flow path through which the heat medium provided on the back side of the radiant panel passes.
System.

本発明の第2の態様によれば、前記放射パネルモジュールは、前記熱媒体の前記熱交換流路への入口部と、前記熱交換流路からの出口部と、をさらに備える。   According to the second aspect of the present invention, the radiant panel module further includes an inlet part of the heat medium to the heat exchange channel and an outlet part from the heat exchange channel.

本発明の第3の態様によれば、前記熱交換流路が、熱交換器の構造に形成されている。   According to the 3rd aspect of this invention, the said heat exchange flow path is formed in the structure of a heat exchanger.

本発明の第4の態様によれば、前記熱交換流路における一部の流路の幅が、前記熱交換流路における他の流路の幅よりも狭い。   According to the 4th aspect of this invention, the width | variety of the one part flow path in the said heat exchange flow path is narrower than the width | variety of the other flow path in the said heat exchange flow path.

本発明の第5の態様によれば、前記熱交換流路が、樹脂や発泡材等で成型され、前記放射パネルと組合されることで熱媒体の流路が形成される。   According to the 5th aspect of this invention, the said heat exchange flow path is shape | molded by resin, a foaming material, etc., and the flow path of a heat medium is formed by combining with the said radiation panel.

本発明の第6の態様によれば、前記放射パネルモジュールは、前記熱交換流路をバイパスするバイパス流路と、前記熱交換流路と前記バイパス流路との分岐点に設けられ、前記熱交換流路に流入する前記熱媒体の流量と前記バイパス流路に流入する前記熱媒体の流量とを調整するダンパーと、前記ダンパーを制御する制御部と、をさらに備える。   According to a sixth aspect of the present invention, the radiant panel module is provided at a bypass flow path that bypasses the heat exchange flow path, and a branch point between the heat exchange flow path and the bypass flow path. It further includes a damper that adjusts the flow rate of the heat medium flowing into the exchange flow channel and the flow rate of the heat medium flowing into the bypass flow channel, and a control unit that controls the damper.

本発明の第7の態様によれば、前記熱交換流路の高さより前記バイパス流路の高さが高く形成される。   According to the 7th aspect of this invention, the height of the said bypass flow path is formed higher than the height of the said heat exchange flow path.

本発明の第8の態様によれば、前記熱交換流路における少なくとも一部の流路の幅が、前記バイパス流路の幅よりも狭く形成される。   According to the 8th aspect of this invention, the width | variety of the at least one flow path in the said heat exchange flow path is formed narrower than the width | variety of the said bypass flow path.

本発明の第9の態様は、放射空調システムは、空調機と、空調対象となる空間の天井および壁および床のうち少なくとも1つについて、前記放射パネルが前記空間に接するように配置された一つまたは複数の第6の態様から第8の態様の何れか1つに記載の放射パネルモジュールと、を備える。   According to a ninth aspect of the present invention, in the radiant air conditioning system, an air conditioner and at least one of a ceiling, a wall, and a floor of a space to be air conditioned are arranged so that the radiating panel is in contact with the space. One or a plurality of sixth to eighth aspects of the radiating panel module.

本発明の第10の態様は、放射空調システムは、空調機と、空調対象となる空間の天井および壁および床のうち少なくとも1つについて、前記放射パネルが前記空間に接するように配置された一つまたは複数の第1の態様から第5の態様の何れか1つに記載の放射パネルモジュールと、前記空調機が送り出す前記熱媒体を、前記空間への吹き出し口に導くバイパス流路と、前記空調機が送り出す前記熱媒体の送り出し先を前記放射パネルモジュールと前記バイパス流路とで切り替えるダンパーと、を備える。   According to a tenth aspect of the present invention, in the radiant air conditioning system, an air conditioner and at least one of a ceiling, a wall, and a floor of a space to be air conditioned are arranged so that the radiating panel is in contact with the space. The radiation panel module according to any one of the first aspect or the fifth aspect, a bypass flow path for guiding the heat medium sent out by the air conditioner to an outlet to the space, and A damper that switches a delivery destination of the heat medium delivered by an air conditioner between the radiation panel module and the bypass flow path.

本発明の第11の態様は、上記の放射空調システムにおいて、結露が発生する可能性が高い環境では、前記バイパス流路へと前記熱媒体を送り出し、結露が発生する可能性が低い環境では、前記熱交換流路へと前記熱媒体を送り出す、空調方法である。   In an eleventh aspect of the present invention, in the above-described radiation air conditioning system, in an environment where condensation is likely to occur, the heat medium is sent to the bypass flow path, and in an environment where condensation is unlikely to occur, It is an air conditioning method which sends out the heat medium to the heat exchange channel.

本発明によれば、低コストで省エネルギーな個別放射空調を実現する事が出来る。   According to the present invention, low-cost and energy-saving individual radiant air conditioning can be realized.

本発明の第一実施形態における放射空調システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the radiation | air-conditioning system in 1st embodiment of this invention. 本発明の第一実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。It is a top view which shows an example of schematic structure of the radiation | emission panel module in 1st embodiment of this invention. 本発明の第一実施形態における放射パネルモジュールの概略構成の一例を示す断面図である。It is sectional drawing which shows an example of schematic structure of the radiation | emission panel module in 1st embodiment of this invention. 本発明の第一実施形態における放射空調システムの実施例を示す図である。It is a figure showing an example of a radiation air-conditioning system in a first embodiment of the present invention. 本発明の第一実施形態における放射空調システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of a process of the radiation | emission air conditioning system in 1st embodiment of this invention. 本発明の第二実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。It is a top view which shows an example of schematic structure of the radiation | emission panel module in 2nd embodiment of this invention. 本発明の第二実施形態における放射空調システムの実施例を示す図である。It is a figure which shows the Example of the radiation air conditioning system in 2nd embodiment of this invention. 本発明の第三実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。It is a top view which shows an example of schematic structure of the radiation panel module in 3rd embodiment of this invention.

<第一実施形態>
以下、本発明の第一実施形態による放射空調システムを図1〜図5を参照して説明する。
図1は、本発明の第一実施形態における放射空調システムの概略構成の一例を示す図である。
放射空調システム1は、空調機2と、放射パネルモジュール10A,10B,・・・,10Nと、配管8A,8B,・・・,8Nと、を備える。
放射空調システム1は、空調対象となる室内の空間100の天井9の裏側、床下、壁面内など等に設置され、例えば、放射パネルモジュール10Aが備える放射パネル19Aの放射面は、空間100に接するように設置される。空調機2は、吸込口3より空間100の空気を吸入し、空調後の熱媒体を送り出す。本実施形態の熱媒体は空気で、空調機2は、冷気または暖気を送り出す。送り出された熱媒体は、配管8Aを介して放射パネルモジュール10Aへ供給される。放射パネルモジュール10Aでは、空調後の熱媒体により放射パネルが冷却または加熱される。さらに放射パネルモジュール10Aを通過した熱媒体は、配管8Bを介して放射パネルモジュール10Bに供給され、同様に放射パネル19Bの温度を冷却または加熱する。以降も同様にして、熱媒体は、通過する各放射パネルモジュール10n(n=A〜N)の放射パネル19nの温度を調整しながら、空調機2から最も遠くに配置された放射パネルモジュール10Nへと供給される。放射パネルモジュール10Nの放射パネル19Nを冷却または加熱した熱媒体は、吹き出し口4から空間100へと吹き出される。このように、本実施形態の放射空調システム1では、空調機2が生成した空調後の熱媒体が、天井等に配置された放射パネルモジュール10A等を通過することにより、各放射パネルモジュール10の放射パネル19を冷却または加熱し、放射パネル19からのふく射によって空間100の温度を調整する。なお、配置される放射パネルモジュール10A等の数は、複数であっても1個であってもよい。また、放射パネルモジュール10A、10B等を総称して放射パネルモジュール10、配管8A,8B等を総称して配管8、放射パネル19A、19B等を総称して放射パネル19と記載する。
<First embodiment>
Hereinafter, a radiation air-conditioning system according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating an example of a schematic configuration of a radiant air conditioning system according to the first embodiment of the present invention.
The radiation air conditioning system 1 includes an air conditioner 2, radiation panel modules 10A, 10B,..., 10N, and pipes 8A, 8B,.
The radiant air conditioning system 1 is installed on the back side of the ceiling 9 of the indoor space 100 to be air conditioned, under the floor, in the wall surface, or the like. For example, the radiating surface of the radiating panel 19A included in the radiating panel module 10A is in contact with the space 100. Installed. The air conditioner 2 sucks the air in the space 100 from the suction port 3 and sends out the heat medium after the air conditioning. The heat medium of the present embodiment is air, and the air conditioner 2 sends out cold air or warm air. The sent heat medium is supplied to the radiation panel module 10A through the pipe 8A. In the radiant panel module 10A, the radiant panel is cooled or heated by the heat medium after air conditioning. Further, the heat medium that has passed through the radiant panel module 10A is supplied to the radiant panel module 10B via the pipe 8B, and similarly cools or heats the temperature of the radiant panel 19B. Similarly, after that, the heat medium is adjusted to the radiation panel module 10N that is disposed farthest from the air conditioner 2 while adjusting the temperature of the radiation panel 19n of each radiation panel module 10n (n = A to N) that passes therethrough. Supplied with. The heat medium that has cooled or heated the radiating panel 19N of the radiating panel module 10N is blown out to the space 100 from the outlet 4. As described above, in the radiant air conditioning system 1 of the present embodiment, the air-conditioned heat medium generated by the air conditioner 2 passes through the radiant panel module 10 </ b> A and the like disposed on the ceiling or the like. The radiation panel 19 is cooled or heated, and the temperature of the space 100 is adjusted by radiation from the radiation panel 19. Note that the number of the radiating panel modules 10A and the like arranged may be plural or one. The radiating panel modules 10A, 10B, etc. are collectively referred to as the radiating panel module 10, the pipes 8A, 8B, etc., and the piping 8, the radiating panels 19A, 19B, etc. are collectively referred to as the radiating panel 19.

図2は、本発明の第一実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。
図2が示すとおり、放射パネルモジュール10は、ダンパー11と、流路形成部材12A,12B,12C,12D,12Eと、開閉制御部13と、入口部15と、出口部16と、底面に配置された放射パネル19とを備えている。ダンパー11は、矢印11Aで示す範囲で開閉する。開閉制御部13は、ダンパー11の開閉動作を制御する。ダンパー11が実線で示す位置にあるとき(開状態とする)、入口部15から流入した熱媒体は、破線矢印が示す方向にバイパス流路18を通過し、出口部16から送り出される。一方、開閉制御部13の制御によりダンパー11が破線で示す位置にあるとき(閉状態とする)、入口部15から流入した熱媒体は、実線矢印が示す方向に熱交換流路17A,17B,17C,17D,17E,17F,17Gを通過し、出口部16から送り出される。
FIG. 2 is a plan view showing an example of a schematic configuration of the radiation panel module according to the first embodiment of the present invention.
As shown in FIG. 2, the radiant panel module 10 is disposed on the damper 11, the flow path forming members 12 </ b> A, 12 </ b> B, 12 </ b> C, 12 </ b> D, 12 </ b> E, the open / close controller 13, the inlet 15, the outlet 16, and the bottom surface. The radiating panel 19 is provided. The damper 11 opens and closes within the range indicated by the arrow 11A. The opening / closing control unit 13 controls the opening / closing operation of the damper 11. When the damper 11 is in the position indicated by the solid line (set to the open state), the heat medium flowing in from the inlet portion 15 passes through the bypass flow path 18 in the direction indicated by the dashed arrow and is sent out from the outlet portion 16. On the other hand, when the damper 11 is in a position indicated by a broken line (controlled) by the control of the opening / closing control unit 13 (to be in a closed state), the heat medium flowing in from the inlet portion 15 causes the heat exchange channels 17A, 17B, It passes through 17C, 17D, 17E, 17F, and 17G and is sent out from the outlet portion 16.

ここで、流路形成部材12A,12B,12C,12D,12Eによって形成される熱交換流路17B,17C,17D,17E,17Fの幅は、バイパス流路18の幅よりも狭くなるように形成されている。また、熱交換流路17A,17Gについては、熱交換流路17B等よりも幅が広く形成されていてもよい。図示するように熱交換流路17B〜17Fは、熱交換流路17Gと垂直な方向に放射パネル19を横断するように設けられている。この構成により、熱交換流路17B〜17Fを通過する熱媒体の流速V17は、バイパス流路18を通過する熱媒体の流速V18よりも速くなる。なお、以下において、流路形成部材12A等を総称して流路形成部材12、熱交換流路17A等を総称して熱交換流路17と記載することがある。 Here, the heat exchange flow paths 17B, 17C, 17D, 17E, and 17F formed by the flow path forming members 12A, 12B, 12C, 12D, and 12E are formed to be narrower than the bypass flow path 18. Has been. Further, the heat exchange channels 17A and 17G may be formed wider than the heat exchange channels 17B and the like. As illustrated, the heat exchange channels 17B to 17F are provided so as to cross the radiation panel 19 in a direction perpendicular to the heat exchange channel 17G. With this configuration, the flow rate V 17 of the heat medium that passes through the heat exchange channels 17B to 17F is faster than the flow rate V 18 of the heat medium that passes through the bypass channel 18. Hereinafter, the flow path forming member 12A and the like may be collectively referred to as the flow path forming member 12, the heat exchange flow path 17A and the like, and may be collectively referred to as the heat exchange flow path 17.

また、放射パネルモジュール10は、例えば、システム天井に用いられる天井ボードなどのサイズ(例えば600mm×600mmや、600mm×1200mmなど)に合わせた大きさに形成されている。規格化された大きさに合わせてモジュール化することで、天井ボードとの入れ替えが容易になり、効率的に放射空調システム1を導入することができる。   In addition, the radiating panel module 10 is formed in a size that matches a size (for example, 600 mm × 600 mm, 600 mm × 1200 mm, etc.) of a ceiling board used for the system ceiling, for example. By modularizing in accordance with the standardized size, replacement with the ceiling board is facilitated, and the radiation air conditioning system 1 can be efficiently introduced.

図3は、本発明の第一実施形態における放射パネルモジュールの概略構成の一例を示す断面図である。
図3は、図2の放射パネルモジュール10においてA−A線での断面図を示す。図3に示すように放射パネルモジュール10の断面はL字型をしている。図示するように熱交換流路17、バイパス流路18は、放射パネル19の背面側(放射面の反対側)に形成されている。バイパス流路18の高さH1は熱交換流路17Gの高さH2より高く形成されている。また、幅L1も幅L2と同程度またはそれ以上の広さに形成されている。そのため、バイパス流路18の断面積は相対的に大きく、熱交換流路17Gの断面積は相対的に小さい。この構成により、バイパス流路18を流れる熱媒体の流速V18は遅く、熱交換流路17Gを通過する熱媒体の流速V17は速くなる。また、流路幅が狭く形成された熱交換流路17B、17C、17D、17E、17Fについても、熱媒体は高速に流れる。熱媒体が高速に流れることにより、熱媒体から放射パネル19への熱伝達が大きくなり、放射パネル19の温度は、熱媒体の温度の影響を強く受けることになる。従って、空調機2によって所定の温度に調整した熱媒体を、熱交換流路17を通過させることにより、放射パネル19の温度を空間100の目標温度に適した温度へと調整することができる。なお、熱媒体から放射パネル19への熱伝達を大きくするため、流路形成部材12A等は熱伝導率の高い材質を用いることが好ましい。あるいは、流路形成部材12A等を樹脂や発泡材等で成型し、放射パネル19と組合せることによって、発泡材等を側面とし、放射パネル19の背面側を底面とする流路を構成してもよい。このような構成とすることで2つのパーツ(発泡材等で成型した流路形成部材12と放射パネル19)だけで熱交換流路17を作成することができる。このように流路を構成することで、比較的高速に流れる熱媒体から、直接的に、あるいは、流路形成部材12A等を経由して放射パネル19へと熱媒体の温度を伝達することができる。また、後述するように、バイパス流路18の底部に断熱材14を配置する構成としてもよい。
このように流路形成部材12A等を用いて、熱媒体の流路をパラレルフロー型の熱交換器の構造に形成することで、熱媒体から放射パネル19への熱の伝達を効率的に行うことができる。
FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the radiation panel module according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along line AA in the radiant panel module 10 of FIG. As shown in FIG. 3, the cross section of the radiation panel module 10 is L-shaped. As shown in the figure, the heat exchange flow path 17 and the bypass flow path 18 are formed on the back side of the radiation panel 19 (opposite the radiation surface). The height H1 of the bypass channel 18 is formed higher than the height H2 of the heat exchange channel 17G. Further, the width L1 is formed to have the same or larger width as the width L2. Therefore, the cross-sectional area of the bypass channel 18 is relatively large, and the cross-sectional area of the heat exchange channel 17G is relatively small. With this configuration, the flow rate V 18 of the heat medium flowing through the bypass flow path 18 is slow, and the flow speed V 17 of the heat medium passing through the heat exchange flow path 17G is increased. The heat medium also flows at high speed in the heat exchange channels 17B, 17C, 17D, 17E, and 17F formed with narrow channel widths. When the heat medium flows at a high speed, heat transfer from the heat medium to the radiant panel 19 increases, and the temperature of the radiant panel 19 is strongly influenced by the temperature of the heat medium. Therefore, the temperature of the radiation panel 19 can be adjusted to a temperature suitable for the target temperature of the space 100 by passing the heat medium adjusted to a predetermined temperature by the air conditioner 2 through the heat exchange flow path 17. In order to increase heat transfer from the heat medium to the radiating panel 19, it is preferable to use a material having high thermal conductivity for the flow path forming member 12A and the like. Alternatively, the flow path forming member 12A or the like is molded from a resin or a foam material and combined with the radiation panel 19, thereby forming a flow path having the foam material as a side surface and the back side of the radiation panel 19 as a bottom surface. Also good. By setting it as such a structure, the heat exchange flow path 17 can be created only with two parts (The flow path formation member 12 shape | molded with the foaming material etc. and the radiation panel 19). By configuring the flow path in this manner, the temperature of the heat medium can be transmitted from the heat medium flowing at a relatively high speed to the radiation panel 19 directly or via the flow path forming member 12A or the like. it can. Further, as will be described later, the heat insulating material 14 may be arranged at the bottom of the bypass channel 18.
As described above, by using the flow path forming member 12A and the like, the flow path of the heat medium is formed in the structure of the parallel flow type heat exchanger, so that the heat transfer from the heat medium to the radiation panel 19 is efficiently performed. be able to.

図2、図3で示した構成を前提として、ダンパー11の切り替え制御について説明する。例えば、放射空調システム1が、冷房運転をする場合、運転を開始してしばらくの間は、空間100に存在する空気に含まれる水蒸気の量が多く、その状態で放射パネル19が冷却されると、放射パネル19の表面に結露が生じる可能性がある。そのため、本実施形態では、結露が生じる可能性が高い環境では、放射パネルモジュール10による「放射空調」を行わず、代わりに「対流空調」を行う。具体的には、開閉制御部13は、ダンパー11を開状態(実線の位置)に制御し、空調機2が生成した冷気を、入口部15から取り込み、バイパス流路18を通過させて、出口部16から送り出す。図1に例示したように、各放射パネルモジュール10においてバイパス流路18を通過した冷気は、最終的に吹き出し口6から空間100へと送り出され、空間100を対流して、吸込口3より空調機2に戻される。そして、再度、空調機2が備える熱交換器で冷却された熱媒体が放射パネルモジュール10へと供給される。図2、図3を用いて説明したようにバイパス流路18の断面積は比較的大きく取られているため、冷却された熱媒体は、バイパス流路18を、比較的ゆっくりとした速度で通過する。そのため、バイパス流路18を通過する間の熱媒体から放射パネル19への熱伝達は低減され、放射パネル19は、熱媒体によりさほど冷却されることなく、放射パネル19の温度は比較的高く保たれる。そのため、放射パネル19の表面に結露が生じる可能性が低くなる。   Based on the configuration shown in FIGS. 2 and 3, switching control of the damper 11 will be described. For example, when the radiant air conditioning system 1 performs a cooling operation, for a while after the operation is started, the amount of water vapor contained in the air present in the space 100 is large, and the radiant panel 19 is cooled in that state. Condensation may occur on the surface of the radiation panel 19. Therefore, in this embodiment, in an environment where condensation is likely to occur, “radiant air conditioning” by the radiating panel module 10 is not performed, but “convective air conditioning” is performed instead. Specifically, the opening / closing control unit 13 controls the damper 11 to be in an open state (solid line position), takes in the cold air generated by the air conditioner 2 from the inlet unit 15, passes through the bypass channel 18, and exits Send out from section 16. As illustrated in FIG. 1, the cold air that has passed through the bypass flow path 18 in each radiant panel module 10 is finally sent out from the outlet 6 to the space 100, convects the space 100, and is air-conditioned from the inlet 3. Returned to machine 2. Then, again, the heat medium cooled by the heat exchanger provided in the air conditioner 2 is supplied to the radiation panel module 10. As described with reference to FIGS. 2 and 3, since the cross-sectional area of the bypass flow path 18 is relatively large, the cooled heat medium passes through the bypass flow path 18 at a relatively slow speed. To do. Therefore, heat transfer from the heat medium to the radiant panel 19 while passing through the bypass channel 18 is reduced, and the radiant panel 19 is not cooled by the heat medium so that the temperature of the radiant panel 19 is kept relatively high. Be drunk. Therefore, the possibility that condensation occurs on the surface of the radiation panel 19 is reduced.

また、図3に例示したようにバイパス流路18の底部(放射パネル19の上側)に、断熱材14を敷くことにより、より確実に放射パネル19の冷却を防ぐことができる。これにより、より効果的に結露の発生を防ぐことができる。   In addition, as illustrated in FIG. 3, the radiating panel 19 can be more reliably prevented from being cooled by laying the heat insulating material 14 on the bottom of the bypass channel 18 (upper side of the radiating panel 19). Thereby, generation | occurrence | production of dew condensation can be prevented more effectively.

このように、バイパス流路18を通過させつつ、空調機2によって冷却した熱冷媒を空間100内に循環させる「対流空調」を継続すると、空調機2の有する除湿機能によって、空間100内の空気に含まれる水蒸気の量が減少する。水蒸気の量が少ない状態であれば、放射パネル19を冷却し、「放射空調」を行っても放射パネル19の表面に結露する可能性は低い。例えば、空調機2が備える湿度センサによる計測結果などから、結露の可能性が低い運転環境であることが判定できる状態となると、開閉制御部13は、ダンパー11を閉状態(破線)に制御する。すると、熱冷媒から放射パネル19への熱伝達は促進され、放射パネル19は、熱媒体により冷却されて低温となる。すると、低温となった放射パネル19からのふく射によって、空間100の温度が空調される。この「放射空調」においては、既に熱媒体を、バイパス流路18を通過させることにより行った「対流空調」によって空気中の水蒸気が取り除かれているため結露の発生を防ぐことができる。   As described above, when “convection air conditioning” in which the thermal refrigerant cooled by the air conditioner 2 is circulated in the space 100 while passing through the bypass channel 18, the air in the space 100 is removed by the dehumidifying function of the air conditioner 2. The amount of water vapor contained in is reduced. If the amount of water vapor is small, the possibility of condensation on the surface of the radiation panel 19 is low even if the radiation panel 19 is cooled and “radiation air conditioning” is performed. For example, when it becomes possible to determine that the operating environment has a low possibility of condensation from the measurement result of the humidity sensor provided in the air conditioner 2, the open / close control unit 13 controls the damper 11 to the closed state (broken line). . Then, heat transfer from the thermal refrigerant to the radiant panel 19 is promoted, and the radiant panel 19 is cooled by the heat medium and becomes a low temperature. Then, the temperature of the space 100 is air-conditioned by the radiation from the radiation panel 19 that has become low temperature. In this “radiant air conditioning”, water vapor in the air has been removed by “convection air conditioning” which has already been performed by passing the heat medium through the bypass flow path 18, so that the occurrence of condensation can be prevented.

次に本実施形態の放射パネルモジュール10を複数用いた放射空調システム1の実施例について説明する。
図4は、本発明の第一実施形態における放射空調システムの実施例を示す図である。
図示するように放射空調システム1は、複数の放射パネルモジュール10A、10B、・・・、10N、10A、10B、・・・、10N、10A、10B、・・・、10Nを備えている。空調機2と放射パネルモジュール10A、10A、10Aとは、配管8P,8P等を介して接続されている。また、放射パネルモジュール10同士も配管8によって接続されている。例えば、放射パネルモジュール10A、10Bは配管8Bを介して接続されている。また、空調機2に近い位置を上流、遠い位置を下流とすると、最下流の放射パネルモジュール10N1,10N2,10Nはそれぞれ吹き出し口4A、4B、4Cに接続されている。また、制御装置30は、空調機2および各開閉制御部13A等と通信可能に接続されており、制御装置30は、各開閉制御部13A等を制御する。なお、放射パネルモジュール10Aが備えるダンパー11をダンパー11Aと記載する。他の構成についても同様である。
Next, an example of the radiation air conditioning system 1 using a plurality of radiation panel modules 10 of the present embodiment will be described.
FIG. 4 is a diagram showing an example of the radiation air conditioning system in the first embodiment of the present invention.
As shown in the figure, the radiant air conditioning system 1 includes a plurality of radiant panel modules 10A 1 , 10B 1 ,..., 10N 1 , 10A 2 , 10B 2 , ... 10N 2 , 10A 3 , 10B 3 ,. , it is equipped with a 10N 3. The air conditioner 2 and the radiation panel modules 10A 1 , 10A 2 , 10A 3 are connected via pipes 8P 1 , 8P 2 and the like. The radiating panel modules 10 are also connected to each other by a pipe 8. For example, the radiation panel modules 10A 1 and 10B 1 are connected via the pipe 8B 1 . Further, when a position close to the air conditioner 2 upstream and downstream of the furthest position, radiating panel module 10 N 1 most downstream, 10 N 2, 10 N 3 are respectively connected to outlet 4A, 4B, the 4C. The control device 30 is communicably connected to the air conditioner 2 and each open / close control unit 13A 1 and the like, and the control device 30 controls each open / close control unit 13A 1 and the like. Incidentally, it describes a damper 11 provided in the radiating panel module 10A 1 and the damper 11A 1. The same applies to other configurations.

図4に例示するように、オフィス等の天井に吸入口3と複数の吹き出し口4A、4B、4Cとを離れた位置に設け、その間に複数の放射パネルモジュール10を並べて配置することができる。このような構成の場合、吸入口3と吹き出し口4A等とが、例えば、空調対象の部屋の両端に近い位置に設けられていれば、対流空調において部屋全体を偏りなく空調することができる。また、モジュール化された放射パネルモジュール10は、結合部材である配管8を介して接続することで直列に、あるいは並列に配置することができる。この性質により、放射パネルモジュール10を並べて、天井全体に配置することができる。これにより、放射空調においても部屋全体を空調することができる。   As illustrated in FIG. 4, the suction port 3 and the plurality of outlets 4A, 4B, and 4C may be provided on a ceiling of an office or the like at a distance from each other, and the plurality of radiation panel modules 10 may be arranged side by side therebetween. In the case of such a configuration, for example, if the suction port 3 and the blowout port 4A are provided at positions close to both ends of a room to be air-conditioned, the entire room can be air-conditioned without any bias in convection air conditioning. Moreover, the modularized radiating panel module 10 can be arranged in series or in parallel by being connected via a pipe 8 which is a coupling member. Due to this property, the radiating panel modules 10 can be arranged side by side and arranged on the entire ceiling. Thereby, the whole room can be air-conditioned even in radiant air conditioning.

また、例えば、空調機2が放射空調による冷房運転中に、放射パネルモジュール10Bの下の席のユーザが寒さを感じたとする。その場合、そのユーザは、開閉制御部13Bに指示情報を入力することによりダンパー11Bを開状態に制御することができる。すると、放射パネルモジュール10Bにおいては、熱媒体は、バイパス流路18Bを通過し、放射パネル19Bには熱媒体の冷気が伝達されにくくなる。すると、放射パネル19Bの温度が上昇し、ユーザは寒気を感じなくなる。 Further, for example, it is assumed that the user at the seat under the radiant panel module 10B2 feels cold during the cooling operation by the radiant air conditioner 2 . In that case, the user can control the dampers 11B 2 in the open state by inputting the instruction information to the switching control section 13B 2. Then, in the radiation panel module 10B 2, the heat medium passes through the bypass passage 18B 2, cold air of the heat medium is less likely to be transmitted to the radiation panel 19B 2. Then, the temperature of the radiation panel 19B 2 is raised, the user will not feel the chill.

また、一般に同じ冷房温度に設定した場合、「対流空調」よりも「放射空調」の方が、ユーザは、体感的に涼しさを感じやすい。この性質を利用すると、例えば、放射パネルモジュール10Bの下の席のユーザだけが特別に暑さを感じている場合、空調機2の設定温度をそれほど下げずに冷房運転を行う。そして、放射パネルモジュール10B以外の放射パネルモジュール10A等についてはダンパー11A等を、それぞれ開状態に制御し、放射パネルモジュール10Bのダンパー11Bだけを閉状態に制御する。すると、放射パネルモジュール10Bの下だけは「放射空調」により、涼しさを感じやすくなり、他の場所については、さほど低くない設定温度による「対流空調」が行われることになるため、他のユーザにとっても快適な温度に空調することができる。
このように熱媒体の流路を備えたモジュールとして構成され、熱媒体の流路をバイパス流路18と熱交換流路17とで切り替えられる本実施形態の放射パネルモジュール10によれば、放射パネル19の下だけを局所的に空調する個別空調が可能になる。
In general, when the same cooling temperature is set, the user is more likely to feel cool in “radiant air conditioning” than in “convection air conditioning”. By utilizing this property, for example, if only the user of the seat beneath the radiant panel module 10B 2 are specially felt heat, the cooling operation without lowering the set temperature of the air conditioner 2 so performed. Then, the damper 11A 1 and the like for radiating panel module 10A 1 other than the radiation panel module 10B 2, respectively controlled in the open state, controls only the damper 11B 2 radiating panel module 10B 2 in the closed state. Then, only the lower radiating panel module 10B 2 by "radiation air-conditioning", easier feel coolness, for other locations, by setting the temperature not so low to become the "convective air conditioning" is performed, the other Air conditioning can be performed at a temperature comfortable for the user.
Thus, according to the radiant panel module 10 of the present embodiment, which is configured as a module having a heat medium flow path and can switch the heat medium flow path between the bypass flow path 18 and the heat exchange flow path 17, Individual air conditioning that locally air-conditions only under 19 becomes possible.

なお、ダンパー11の切り替えは、完全な開状態と閉状態との間で切り替える制御に限定されない。例えば、ステッピングモータを用いて、開状態と閉状態との間を多段階に切り替えられるように制御してもよい。これにより、熱交換流路17に流入する熱媒体の流量とバイパス流路18に流入する熱媒体の流量とを調整し、より細やかな温度制御を行うことができる。例えば、上記の例で、放射パネルモジュール10Bの下にいるユーザの感じる寒さがそれほどでもない場合、ダンパー11B2の位置を開状態と閉状態の中間の位置に制御する。すると、閉制御した場合よりは少ない量の熱媒体が熱交換流路17側へ流入するため、放射パネル19Bの温度がやや上昇し、ユーザが感じる寒さが和らげることができる。 The switching of the damper 11 is not limited to the control for switching between the complete open state and the closed state. For example, a stepping motor may be used so as to switch between an open state and a closed state in multiple stages. Thereby, the flow rate of the heat medium flowing into the heat exchange flow path 17 and the flow rate of the heat medium flowing into the bypass flow path 18 can be adjusted, and finer temperature control can be performed. For example, in the above example, when cold felt by the user at the bottom of the radiant panel module 10B 2 is neither too, to control the position of the damper 11B2 to an intermediate position of the open and closed states. Then, since the small amount of heat medium than when closing control flows into the heat exchange passage 17 side, the temperature of the radiating panel 19B 2 slightly increases, it is possible to soften is cold felt by the user.

次にダンパー11の切替制御の流れの一例について図4の構成を例に、図5を用いて説明する。
図5は、本発明の第一実施形態における放射空調システムの処理の一例を示すフローチャートである。
前提として、ユーザが冷房運転を開始したとする。まず、制御装置30は、空間100の空気の状態量を計測する(ステップS11)。例えば、制御装置30は、空調機2が備える温度センサや湿度センサによる計測値を取得してもよい。そして、制御装置30は、空間100の空気が結露する条件か否かを判定する(ステップS12)。例えば、制御装置30は、空調機2から、設定温度(ユーザが指定する温度、例えば20℃〜25℃)と吸入口3から吸入した空気の湿度情報とを取得し、設定温度別に予め設定された結露が生じない湿度の閾値と比較する。そして、現在の湿度が閾値以下であれば、制御装置30は、結露すると判定する。また、現在の湿度が閾値を超えていれば、制御装置30は、結露しないと判定する。結露すると判定した場合(ステップS12;Yes)、制御装置30は、空間100の水蒸気を減少させるために対流空調を行うことを決定する。すると、制御装置30は、熱媒体の流路をバイパス流路18へと切り替える(ステップS13)。例えば、制御装置30は、開閉制御部13Aにダンパー11Aを開状態に制御するよう指示信号を送信する。制御装置30は、他の開閉制御部13A等にも同様の指示信号を送信する。開閉制御部13Aは、ダンパー11Aを開状態に制御する。他の開閉制御部13A等も同様の制御を行う。流路をバイパス流路18へと切り替えると、再びステップS11からの処理を繰り返す。
Next, an example of the flow of switching control of the damper 11 will be described with reference to FIG. 5, taking the configuration of FIG. 4 as an example.
FIG. 5 is a flowchart showing an example of processing of the radiation air conditioning system in the first embodiment of the present invention.
As a premise, it is assumed that the user starts the cooling operation. First, the control device 30 measures an air state quantity in the space 100 (step S11). For example, the control apparatus 30 may acquire the measured value by the temperature sensor and humidity sensor with which the air conditioner 2 is provided. And the control apparatus 30 determines whether it is the conditions which the air of the space 100 condenses (step S12). For example, the control device 30 acquires a set temperature (a temperature specified by the user, for example, 20 ° C. to 25 ° C.) and humidity information of air sucked from the suction port 3 from the air conditioner 2, and is preset for each set temperature. Compare with the humidity threshold at which no condensation occurs. And if the present humidity is below a threshold value, the control apparatus 30 will determine with dew condensation. Further, if the current humidity exceeds the threshold value, the control device 30 determines that no condensation occurs. When it determines with dew condensation (step S12; Yes), the control apparatus 30 determines performing convection air conditioning in order to reduce the water vapor | steam of the space 100. FIG. Then, the control device 30 switches the heat medium flow path to the bypass flow path 18 (step S13). For example, the controller 30 transmits an instruction signal to control the damper 11A 1 in the open state to the switching control section 13A 1. Controller 30 transmits the same command signal to the other switching control section 13A 2 and the like. Switching control section 13A 1 controls the damper 11A 1 in the open state. The other open / close control unit 13A 2 and the like perform similar control. When the flow path is switched to the bypass flow path 18, the processing from step S11 is repeated again.

一方、結露しないと判定した場合(ステップS12;No)、制御装置30は、熱媒体の流路を熱交換流路17へと切り替える(ステップS14)。例えば、制御装置30は、開閉制御部13Aにダンパー11Aを閉状態に制御するよう指示信号を送信する。制御装置30は、他の開閉制御部13A等にも同様の指示信号を送信する。開閉制御部13Aは、ダンパー11Aを閉状態に制御する。他の開閉制御部13A等も同様の制御を行う。冷房時のダンパーの切り替えは、空気の状態量を計測せずに、運転開始から一定時間後に実施する方式も考えられる。 On the other hand, when it determines with no dew condensation (step S12; No), the control apparatus 30 switches the flow path of a heat medium to the heat exchange flow path 17 (step S14). For example, the control unit 30, a damper 11A 1 sends an instruction signal to control the closed state to the switching control section 13A 1. Controller 30 transmits the same command signal to the other switching control section 13A 2 and the like. Switching control section 13A 1 controls the damper 11A 1 in the closed state. The other open / close control unit 13A 2 and the like perform similar control. A method of switching the damper during cooling may be performed after a certain time from the start of operation without measuring the air state quantity.

次に制御装置30は、冷房運転を停止するかどうかを判定する(ステップS15)。例えばユーザからの停止指示の入力があった場合、制御装置30は冷房運転を停止すると判定する。冷房運転を停止すると判定した場合(ステップS15;Yes)、制御装置30は空調機2の運転を静止する。冷房運転を継続すると判定した場合(ステップS15;No)、ステップS11からの処理を繰り返す。   Next, the control device 30 determines whether or not to stop the cooling operation (step S15). For example, when a stop instruction is input from the user, the control device 30 determines to stop the cooling operation. If it is determined that the cooling operation is to be stopped (step S15; Yes), the control device 30 stops the operation of the air conditioner 2. When it determines with continuing cooling operation (step S15; No), the process from step S11 is repeated.

従来は、ダクト内に水(冷水、温水)等の熱媒体を供給し、その熱により間接的に冷却または加熱された放射パネルによって放射空調を行うことが多い。このような方法では、冷房時の結露対策用の除湿システムが必要になるので、高コストとなりがちである。これに対し、本実施形態の放射パネルモジュール10であれば、除湿運転と放射空調をダンパーで切り替える手段を持つため、1台の空調機で対応できるので、低コスト化が実現できる。また、本実施形態によれば、暖房、冷房を問わず、放射面がある事により、室内温度に近い空気を送り出すことで、省エネルギーで効率のよい放射空調を行うことができる。具体的には、冷房であれば、より高い設定温度のままで空調機2を運転すればよく、また、暖房の場合、より低い設定温度のまま空調機2を運転しても、空間100を所望の温度に空調することができる。これにより、空調の低コスト化、省エネルギー化を実現できる。   Conventionally, a heat medium such as water (cold water or hot water) is supplied into a duct, and radiation air conditioning is often performed by a radiation panel that is indirectly cooled or heated by the heat. Such a method requires a dehumidification system for preventing condensation during cooling, and tends to be expensive. On the other hand, since the radiation panel module 10 of the present embodiment has means for switching between the dehumidifying operation and the radiation air conditioning by a damper, it can be handled by a single air conditioner, so that cost reduction can be realized. Moreover, according to this embodiment, regardless of heating and cooling, by having a radiation surface, it is possible to perform energy-saving and efficient radiation air-conditioning by sending out air close to the room temperature. Specifically, in the case of cooling, the air conditioner 2 may be operated at a higher set temperature. In the case of heating, the space 100 may be reduced even if the air conditioner 2 is operated at a lower set temperature. It can be air-conditioned to a desired temperature. Thereby, the cost reduction and energy saving of an air conditioning are realizable.

また、室内の温度や湿度に応じて、ダンパー11を切り替えることによって、放射パネル19への結露を防ぎつつ、快適な放射空調を実現することができる。   In addition, by switching the damper 11 according to the indoor temperature and humidity, it is possible to realize comfortable radiant air conditioning while preventing condensation on the radiant panel 19.

また、放射パネルモジュール10はモジュール化されており、熱媒体の出入口が設けられているので、配管8等の結合用部材を用いて連結することで、部屋の広さや形状に合わせて自由に放射パネル19を配置し、所望の範囲を空調対象空間とすることができる。
例えば、部屋全体に配置するのではなく、特定の位置にのみ放射パネルモジュール10を配置し、一部の空間だけを空調対象とすることも可能である。
Moreover, since the radiation panel module 10 is modularized and provided with a heat medium inlet / outlet port, the radiation panel module 10 can be freely radiated in accordance with the size and shape of the room by connecting using a coupling member such as the pipe 8. The panel 19 can be arrange | positioned and a desired range can be made into an air-conditioning object space.
For example, it is possible to arrange the radiating panel module 10 only at a specific position and not to arrange the entire room, but to set only a part of the space as an air-conditioning target.

また、既設の空調機、吸入口、吹き出し口をそのまま利用して、空調対象範囲の天井ボードを放射パネルモジュール10に置き換えるだけで、本実施形態の放射空調システム1を導入することができので、導入コストを低減し、かつ建屋への影響を少なくすることができる。   In addition, the radiant air-conditioning system 1 of the present embodiment can be introduced simply by replacing the ceiling board in the air-conditioning target range with the radiant panel module 10 using the existing air conditioner, the inlet, and the outlet as it is. The introduction cost can be reduced and the influence on the building can be reduced.

なお、上記の実施例では冷房を例に説明したが、暖房運転の場合にも同様の効果を得ることができる。また、暖房の場合、床面に放射パネル19を配置するとより効果的である。また、上記のように熱媒体を空気とすることで、水漏れなどの対策を行うことなく、より低コストで放射パネルモジュール10を製造することができ、また水漏れの心配なく使用することができるが、熱媒体に制限は無く、水を用いても構わない。   In the above embodiment, cooling has been described as an example, but the same effect can be obtained in the case of heating operation. In the case of heating, it is more effective to arrange the radiating panel 19 on the floor surface. Moreover, by using air as the heat medium as described above, the radiation panel module 10 can be manufactured at a lower cost without taking measures such as water leakage, and can be used without worrying about water leakage. Although there is no limitation on the heat medium, water may be used.

<第二実施形態>
以下、本発明の第二実施形態による放射空調システムについて図6〜図7を参照して説明する。
第一実施形態の放射パネルモジュール10は、ダンパー11を備えている。第二実施形態の放射パネルモジュール10´は、モジュールの内部にダンパー11とバイパス流路18を備えない構成となっている点で第一実施形態とは異なる。
図6は、本発明の第二実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。
図6に示すとおり、放射パネルモジュール10´は、流路形成部材12A´,12B´,12C´,12D´,12E´と、入口部15´と、出口部16´と、底面に配置された放射パネル19´とを備えている。入口部15´から流入した熱媒体は、実線矢印が示す方向に熱交換流路17A´を通過して17G´へと導かれ、17B´,17C´,17D´,17E´,17F´へと流れ込む。熱交換流路17B´〜17F´を通過した熱媒体は、熱交換流路17H´を通過し、出口部16´から送り出される。
<Second embodiment>
Hereinafter, the radiation air-conditioning system by 2nd embodiment of this invention is demonstrated with reference to FIGS.
The radiating panel module 10 of the first embodiment includes a damper 11. The radiant panel module 10 ′ of the second embodiment is different from the first embodiment in that the damper 11 and the bypass channel 18 are not provided inside the module.
FIG. 6 is a plan view showing an example of a schematic configuration of the radiation panel module according to the second embodiment of the present invention.
As shown in FIG. 6, the radiation panel module 10 ′ is disposed on the bottom surface of the flow path forming members 12 </ b> A ′, 12 </ b> B ′, 12 </ b> C ′, 12 </ b> D ′, 12 </ b> E ′, the inlet portion 15 ′, the outlet portion 16 ′. And a radiating panel 19 '. The heat medium flowing in from the inlet 15 ′ passes through the heat exchange flow path 17A ′ in the direction indicated by the solid line arrow and is guided to 17G ′, and then to 17B ′, 17C ′, 17D ′, 17E ′, and 17F ′. Flows in. The heat medium that has passed through the heat exchange channels 17B ′ to 17F ′ passes through the heat exchange channel 17H ′ and is sent out from the outlet portion 16 ′.

ここで、流路形成部材12A´,12B´,12C´,12D´,12E´によって形成される熱交換流路17B´,17C´,17D´,17E´,17F´の幅は、熱交換流路17A´,17G´よりも狭く形成されていてもよい。   Here, the width of the heat exchange channels 17B ′, 17C ′, 17D ′, 17E ′, and 17F ′ formed by the channel forming members 12A ′, 12B ′, 12C ′, 12D ′, and 12E ′ is the heat exchange flow. It may be formed narrower than the paths 17A ′ and 17G ′.

図7は、本発明の第二実施形態における放射空調システムの実施例を示す図である。
図7に放射パネルモジュール10´を複数用いた放射空調システム1´の実施例を示す。図示するように放射空調システム1´は、複数の放射パネルモジュール10A´、10B´、・・・、10N´、10A´、10B´、・・・、10N´、10A´、10B´、・・・、10N´を備えている。空調機2と放射パネルモジュール10A´、10A´、10A´とは、配管8P´等を介して接続されている。また、例えば、放射パネルモジュール10A´、10B´は配管8B´を介して接続されている。また、最下流の放射パネルモジュール10N´10N´10N´はそれぞれ吹き出し口4A、4B、4Cに接続されている。
FIG. 7 is a diagram showing an example of the radiation air conditioning system in the second embodiment of the present invention.
FIG. 7 shows an embodiment of a radiation air conditioning system 1 ′ using a plurality of radiation panel modules 10 ′. As shown in the figure, the radiation air conditioning system 1 'includes a plurality of radiation panel modules 10A 1 ', 10B 1 ', ..., 10N 1 ', 10A 2 ', 10B 2 ', ..., 10N 2 ', 10A 3. ′, 10B 3 ′,..., 10N 3 ′. The air conditioner 2 and the radiation panel modules 10A 1 ′, 10A 2 ′, 10A 3 ′ are connected via a pipe 8P 1 ′ and the like. Further, for example, the radiating panel modules 10A 1 ′, 10B 1 ′ are connected via a pipe 8B 1 ′. Further, the most downstream radiation panel modules 10N 1, 10N 2, and 10N 3 ′ are connected to the outlets 4A, 4B, and 4C, respectively.

これらの構成に加え、本実施形態では、第一実施形態のバイパス流路18に相当するバイパス流路18´が設けられ、その一方の端は空調機2に、他方の端は吹き出し口4A、4B、4Cに接続されている。バイパス流路18´は、例えばダクトである。バイパス流路18´には、その断面積が放射パネルモジュール10´を通過する熱媒体の流路の断面積よりも大きいものを用いる。また、放射パネルモジュール10´側へ連結される配管8P´とバイパス流路18´との分岐点には、ダンパー11´が設けられている。ダンパー11´の開閉動作は制御装置30によって制御される。制御装置30は、空調機2およびダンパー11´を制御する。 In addition to these configurations, in this embodiment, a bypass channel 18 ′ corresponding to the bypass channel 18 of the first embodiment is provided, one end of which is the air conditioner 2, and the other end is the outlet 4A. It is connected to 4B and 4C. The bypass channel 18 ′ is, for example, a duct. As the bypass flow path 18 ′, one having a cross-sectional area larger than the cross-sectional area of the flow path of the heat medium passing through the radiation panel module 10 ′ is used. Further, a damper 11 ′ is provided at a branch point between the pipe 8P 1 ′ connected to the radiation panel module 10 ′ side and the bypass flow path 18 ′. The opening / closing operation of the damper 11 ′ is controlled by the control device 30. The control device 30 controls the air conditioner 2 and the damper 11 ′.

本実施形態の放射空調システム1´の動作について図5のフローチャートを参照しながら説明する。まず、ユーザが冷房運転を開始したとする。まず、制御装置30は、空間100の空気の状態量を計測する(ステップS11)。そして、制御装置30は、空間100の空気が結露する可能性が高い条件かどうかを判定する(ステップS12)。結露する可能性が高い場合、制御装置30は、空間100の水蒸気を減少させるために熱媒体の流路をバイパス流路18´へと切り替える(ステップS13)。具体的には、制御装置30は、ダンパー11´を開状態(実線の位置)に制御し、熱媒体(冷気)をバイパス流路18´へと導く。すると、本実施形態の場合、放射パネル19´へは熱媒体が供給されない。この場合、放射空調ではなく、対流空調による冷房が行われる。その後もステップS11以降の処理を繰り返す。一方、空間100の空気が結露する可能性が低い条件の場合、制御装置30は、熱媒体の流路を閉状態(破線の位置)へと切り替える(ステップS14)。すると、熱媒体が放射パネルモジュール10´側へ流れ、各放射パネルモジュール10´へと供給される。すると、放射パネル19´が冷却されて、放射空調による冷房運転が実行される。次に制御装置30は、冷房運転を停止するかどうかを判定する(ステップS15)。冷房運転を停止しない場合(ステップS15;No)、ステップS11以降の処理を繰り返す。   The operation of the radiant air-conditioning system 1 ′ of this embodiment will be described with reference to the flowchart of FIG. First, it is assumed that the user starts the cooling operation. First, the control device 30 measures an air state quantity in the space 100 (step S11). And the control apparatus 30 determines whether it is conditions with high possibility that the air of the space 100 will dew condensation (step S12). When the possibility of dew condensation is high, the control device 30 switches the flow path of the heat medium to the bypass flow path 18 ′ in order to reduce the water vapor in the space 100 (step S13). Specifically, the control device 30 controls the damper 11 ′ to an open state (solid line position), and guides the heat medium (cold air) to the bypass flow path 18 ′. Then, in the case of this embodiment, a heat medium is not supplied to the radiation panel 19 '. In this case, cooling is performed not by radiant air conditioning but by convective air conditioning. Thereafter, the processing after step S11 is repeated. On the other hand, in the case where the air 100 in the space 100 has a low possibility of dew condensation, the control device 30 switches the flow path of the heat medium to the closed state (the position indicated by the broken line) (step S14). Then, the heat medium flows toward the radiating panel module 10 'and is supplied to each radiating panel module 10'. Then, the radiation panel 19 'is cooled, and the cooling operation by the radiation air conditioning is executed. Next, the control device 30 determines whether or not to stop the cooling operation (step S15). When the cooling operation is not stopped (step S15; No), the processes after step S11 are repeated.

本実施形態の放射空調システム1´によれば、第一実施形態と同様の効果に加え、第一実施形態の放射パネルモジュール10からダンパー11と開閉制御部13とを取り除く構成とすることで、より低コストにシステムを導入することができる。   According to the radiation air-conditioning system 1 ′ of the present embodiment, in addition to the same effects as the first embodiment, by removing the damper 11 and the opening / closing control unit 13 from the radiation panel module 10 of the first embodiment, The system can be introduced at a lower cost.

<第三実施形態>
以下、本発明の第三実施形態による放射空調システムについて図8を参照して説明する。
図8は、本発明の第三実施形態における放射パネルモジュールの概略構成の一例を示す平面図である。
第一実施形態の放射パネルモジュール10では、流路形成部材12を用いてパラレルフロー型の熱交換器の構造を形成した熱交換流路17を例示した。他の例として第三実施形態では、サーペンタイン型の熱交換器の構造を備えた放射パネルモジュール10´´を例示する。
図8が示すとおり、放射パネルモジュール10´´は、ダンパー11´´と、流路形成部材12A´´,12B´´,12C´´,12D´´,12E´´と、開閉制御部13´´と、入口部15´´と、出口部16´´と、底面に配置された放射パネル19´´とを備えている。開閉制御部13´´はダンパー11´´の開閉動作を制御する。ダンパー11´´が開状態(実線で示す位置)にあるとき、入口部15´´から流入した熱媒体は、バイパス流路18´´を通過し、出口部16´´から送り出される。一方、ダンパー11´´が閉状態(破線で示す位置)にあるとき、入口部15´´から流入した熱媒体は、実線矢印が示す方向に熱交換流路17´´を通過し、出口部16´´から送り出される。熱交換流路17´´の幅は、バイパス流路18´´よりも狭く、また図3で例示したものと同様にバイパス流路18´´の高さは、熱交換流路17´´が形成されている領域の高さよりも高く形成されていてもよい。熱交換流路17´´を通過する熱媒体の流速は、バイパス流路18´´を通過する熱媒体の流速よりも速く、放射パネル19´´に多くの熱を伝達することができる。なお、流路形成部材12A´´には熱伝導率の高い材質を用い、バイパス流路18´´の壁面などには熱伝導率の低い材質を用いることが好ましい。
<Third embodiment>
Hereinafter, the radiation air-conditioning system by 3rd embodiment of this invention is demonstrated with reference to FIG.
FIG. 8 is a plan view showing an example of a schematic configuration of the radiation panel module according to the third embodiment of the present invention.
In the radiation panel module 10 of the first embodiment, the heat exchange flow path 17 in which the structure of the parallel flow type heat exchanger is formed using the flow path forming member 12 is exemplified. As another example, in the third embodiment, a radiant panel module 10 ″ having a serpentine type heat exchanger structure is illustrated.
As shown in FIG. 8, the radiating panel module 10 ″ includes a damper 11 ″, a flow path forming member 12A ″, 12B ″, 12C ″, 12D ″, 12E ″, and an open / close control unit 13 ′. ', An inlet portion 15 ″, an outlet portion 16 ″, and a radiating panel 19 ″ arranged on the bottom surface. The opening / closing control unit 13 ″ controls the opening / closing operation of the damper 11 ″. When the damper 11 ″ is in an open state (position indicated by a solid line), the heat medium flowing in from the inlet portion 15 ″ passes through the bypass flow path 18 ″ and is sent out from the outlet portion 16 ″. On the other hand, when the damper 11 ″ is in the closed state (position indicated by the broken line), the heat medium flowing in from the inlet portion 15 ″ passes through the heat exchange channel 17 ″ in the direction indicated by the solid line arrow, and the outlet portion. 16 ″ is sent out. The width of the heat exchange channel 17 '' is narrower than that of the bypass channel 18 '', and the height of the bypass channel 18 '' is the same as that illustrated in FIG. You may form higher than the height of the area | region currently formed. The flow rate of the heat medium passing through the heat exchange flow path 17 ″ is faster than the flow rate of the heat medium passing through the bypass flow path 18 ″, and a large amount of heat can be transferred to the radiating panel 19 ″. In addition, it is preferable to use a material with high thermal conductivity for the flow path forming member 12A ″, and use a material with low thermal conductivity for the wall surface of the bypass flow path 18 ″ and the like.

本実施形態の放射パネルモジュール10´´によれば、第一実施形態と同様の効果を得ることができる。なお、第二実施形態の放射パネルモジュール10´に本実施形態の熱交換流路17´´の構造を適用してもよい。   According to the radiating panel module 10 ″ of this embodiment, the same effect as that of the first embodiment can be obtained. In addition, you may apply the structure of the heat exchange flow path 17 '' of this embodiment to the radiation panel module 10 'of 2nd embodiment.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1、1´・・・放射空調システム
2・・・空調機
3・・・吸込口
4・・・吹き出し口
8・・・配管
9・・・天井
10、10´、10´´・・・放射パネルモジュール
11、11´、11´´・・・ダンパー
12、12´、12´´・・・流路形成部材
13、13´、13´´・・・開閉制御部
14・・・断熱材
15、15´、15´´・・・入口部
16、16´、16´´・・・出口部
17、17´、17´´・・・熱交換流路
18、18´、18´´・・・バイパス流路
19、19´、19´´・・・放射パネル
100・・・空間
DESCRIPTION OF SYMBOLS 1, 1 '... Radiation air conditioning system 2 ... Air conditioner 3 ... Suction port 4 ... Outlet 8 ... Piping 9 ... Ceiling 10, 10', 10 "... Radiation Panel module 11, 11 ', 11 "... Damper 12, 12', 12" ... Flow path forming member 13, 13 ', 13 "... Opening / closing control unit 14 ... Insulating material 15 , 15 ', 15 "... inlet part 16, 16', 16" ... outlet part 17, 17 ', 17 "... heat exchange flow path 18, 18', 18" ...・ Bypass channel 19, 19 ', 19 "... Radiant panel 100 ... Space

本発明の第1の態様によれば、放射パネルモジュールは、放射パネルと、前記放射パネルが背面側に設けられた熱媒体の通過する熱交換流路と、前記熱交換流路をバイパスするバイパス流路と、前記熱交換流路と前記バイパス流路との分岐点に設けられ、前記熱交換流路に流入する前記熱媒体の流量と前記バイパス流路に流入する前記熱媒体の流量とを調整するダンパーと、前記ダンパーを制御する制御部と、を備える。 According to the first aspect of the present invention, the radiant panel module includes a radiant panel, a heat exchange channel through which the heat medium provided on the back side of the radiant panel passes, and a bypass that bypasses the heat exchange channel. A flow path, a flow rate of the heat medium flowing into the heat exchange flow path, and a flow rate of the heat medium flowing into the bypass flow path are provided at a branch point between the heat exchange flow path and the bypass flow path. A damper to be adjusted; and a control unit for controlling the damper .

本発明の第の態様によれば、前記熱交換流路の高さより前記バイパス流路の高さが高く形成される。 According to the sixth aspect of the present invention, the height of the bypass flow path is formed higher than the height of the heat exchange flow path.

本発明の第の態様によれば、前記熱交換流路における少なくとも一部の流路の幅が、前記バイパス流路の幅よりも狭く形成される。
本発明の第8の態様によれば、放射パネルモジュールは、放射パネルと、前記放射パネルの背面側に設けられた熱媒体が通過する熱交換流路と、を備え、前記熱交換流路が蛇行状に形成されている。
本発明の第9の態様によれば、放射パネルモジュールは、矩形型の放射パネルと、前記放射パネルの背面側に設けられた熱媒体が通過する熱交換流路と、前記矩形型の放射パネルが有する対向する2つの辺における互いに向かい合う位置であって、前記対向する2つの辺とは異なる第1の辺および第2の辺のうち、前記第1の辺により近い位置に設けられた前記熱媒体の前記熱交換流路への入口部および前記熱交換流路からの出口部と、を備え、前記熱交換流路を形成する複数の長方形の流路形成部材が、前記対向する2つの辺と並行して配置され、前記複数の流路形成部材のうちの一つの前記流路形成部材の端部のみが前記第1の辺と接しており、前記第2の辺と前記複数の流路形成部材の端部が接していない。
According to the seventh aspect of the present invention, the width of at least a part of the heat exchange channel is formed narrower than the width of the bypass channel.
According to an eighth aspect of the present invention, a radiant panel module includes a radiant panel and a heat exchange channel through which a heat medium provided on the back side of the radiant panel passes, wherein the heat exchange channel is It is formed in a meandering shape.
According to the ninth aspect of the present invention, the radiant panel module includes a rectangular radiant panel, a heat exchange passage through which a heat medium provided on the back side of the radiant panel passes, and the rectangular radiant panel. The heat provided at a position facing the first side and the second side, which are different from the two sides facing each other, at positions facing each other on the two sides facing each other. An inlet portion of the medium to the heat exchange flow path and an outlet portion from the heat exchange flow path, and a plurality of rectangular flow path forming members forming the heat exchange flow path have the two opposing sides Only the end of one of the plurality of flow path forming members is in contact with the first side, and the second side and the plurality of flow paths The end of the forming member is not in contact.

本発明の第10の態様は、放射空調システムは、空調機と、空調対象となる空間の天井および壁および床のうち少なくとも1つについて、前記放射パネルが前記空間に接するように配置された一つまたは複数の第6の態様から第8の態様の何れか1つに記載の放射パネルモジュールと、を備える。 According to a tenth aspect of the present invention, in the radiant air conditioning system, an air conditioner and at least one of a ceiling, a wall, and a floor of a space to be air conditioned are arranged so that the radiating panel is in contact with the space. One or a plurality of sixth to eighth aspects of the radiating panel module.

本発明の第11の態様は、放射空調システムは、空調機と、空調対象となる空間の天井および壁および床のうち少なくとも1つについて、放射パネルと、前記放射パネルの背面側に設けられた熱媒体が通過する熱交換流路と、を備える放射パネルモジュールであって、前記放射パネルが前記空間に接するように配置された一つまたは複数の前記放射パネルモジュールと、前記空調機が送り出す前記熱媒体を、前記空間への吹き出し口に導くバイパス流路と、前記空調機が送り出す前記熱媒体の送り出し先を前記放射パネルモジュールと前記バイパス流路とで切り替えるダンパーと、を備える。 According to an eleventh aspect of the present invention, the radiant air conditioning system is provided on the rear side of the radiant panel and the radiant panel with respect to at least one of the air conditioner and the ceiling, wall, and floor of the air conditioning target . a radiation panel module comprising: a heat exchange passage for the heat medium passes, and a one or more of the radiation panel module the radiation panel is arranged so as to be in contact with the space, the said air conditioner is sent out A bypass flow path that guides the heat medium to the outlet to the space; and a damper that switches a delivery destination of the heat medium sent out by the air conditioner between the radiation panel module and the bypass flow path.

本発明の第12の態様は、上記の放射空調システムにおいて、結露が発生する可能性が高い環境では、前記バイパス流路へと前記熱媒体を送り出し、結露が発生する可能性が低い環境では、前記熱交換流路へと前記熱媒体を送り出す、空調方法である。 In a twelfth aspect of the present invention, in the above-described radiation air conditioning system, in an environment where condensation is likely to occur, the heat medium is sent to the bypass flow path, and in an environment where condensation is unlikely to occur, It is an air conditioning method which sends out the heat medium to the heat exchange channel.

Claims (11)

放射パネルと、
前記放射パネルの背面側に設けられた熱媒体が通過する熱交換流路と、
を備える放射パネルモジュール。
A radiant panel;
A heat exchange passage through which a heat medium provided on the back side of the radiating panel passes;
Radiant panel module comprising.
前記熱媒体の前記熱交換流路への入口部と、前記熱交換流路からの出口部と、
をさらに備える請求項1に記載の放射パネルモジュール。
An inlet part of the heat medium to the heat exchange channel, an outlet part from the heat exchange channel,
The radiation panel module according to claim 1, further comprising:
前記熱交換流路が、熱交換器の構造に形成されている、
請求項1または請求項2に記載の放射パネルモジュール。
The heat exchange flow path is formed in a heat exchanger structure;
The radiation panel module according to claim 1 or 2.
前記熱交換流路における一部の流路の幅が、前記熱交換流路における他の流路の幅よりも狭い、
請求項1から請求項3の何れか1項に記載の放射パネルモジュール。
The width of some flow paths in the heat exchange flow path is narrower than the width of other flow paths in the heat exchange flow path,
The radiation panel module according to any one of claims 1 to 3.
前記熱交換流路は、樹脂または発泡材で成型され、前記放射パネルと組合されることで前記熱媒体の流路を形成する、
請求項1から請求項4の何れか1項に記載の放射パネルモジュール。
The heat exchange flow path is molded of resin or foam material, and combined with the radiant panel forms the flow path of the heat medium.
The radiation panel module according to any one of claims 1 to 4.
前記熱交換流路をバイパスするバイパス流路と、
前記熱交換流路と前記バイパス流路との分岐点に設けられ、前記熱交換流路に流入する前記熱媒体の流量と前記バイパス流路に流入する前記熱媒体の流量とを調整するダンパーと、
前記ダンパーを制御する制御部と、
をさらに備える請求項1から請求項5の何れか1項に記載の放射パネルモジュール。
A bypass flow path that bypasses the heat exchange flow path;
A damper that is provided at a branch point between the heat exchange channel and the bypass channel, and that adjusts the flow rate of the heat medium flowing into the heat exchange channel and the flow rate of the heat medium flowing into the bypass channel; ,
A control unit for controlling the damper;
The radiation panel module according to any one of claims 1 to 5, further comprising:
前記熱交換流路の高さより前記バイパス流路の高さが高く形成された、
請求項6に記載の放射パネルモジュール。
The height of the bypass channel is formed higher than the height of the heat exchange channel,
The radiation panel module according to claim 6.
前記熱交換流路における少なくとも一部の流路の幅が、前記バイパス流路の幅よりも狭く形成された、
請求項6または請求項7に記載の放射パネルモジュール。
A width of at least a part of the heat exchange channel is formed narrower than a width of the bypass channel,
The radiation panel module according to claim 6 or 7.
空調機と、
空調対象となる空間の天井および壁および床のうち少なくとも1つについて、前記放射パネルが前記空間に接するように配置された一つまたは複数の請求項6から請求項8の何れか1項に記載の放射パネルモジュールと、
を備える放射空調システム。
An air conditioner,
The at least one of a ceiling, a wall, and a floor of a space to be air-conditioned is one or a plurality of claims 6 to 8 arranged so that the radiating panel is in contact with the space. Radiant panel module,
Radiation air conditioning system comprising.
空調機と、
空調対象となる空間の天井および壁および床のうち少なくとも1つについて、前記放射パネルが前記空間に接するように配置された一つまたは複数の請求項1から請求項5の何れか1項に記載の放射パネルモジュールと、
前記空調機が送り出す前記熱媒体を、前記空間への吹き出し口に導くバイパス流路と、
前記空調機が送り出す前記熱媒体の送り出し先を前記放射パネルモジュールと前記バイパス流路とで切り替えるダンパーと、
を備える放射空調システム。
An air conditioner,
The at least one of the ceiling, the wall, and the floor of the space to be air-conditioned is one or a plurality of claims 1 to 5, wherein the radiating panel is disposed so as to be in contact with the space. Radiant panel module,
A bypass flow path for guiding the heat medium sent out by the air conditioner to a blowout opening to the space;
A damper that switches the delivery destination of the heat medium delivered by the air conditioner between the radiation panel module and the bypass flow path;
Radiation air conditioning system comprising.
請求項9または請求項10の放射空調システムにおいて、
結露が発生する可能性が高い環境では、前記バイパス流路へと前記熱媒体を送り出し、結露が発生する可能性が低い環境では、前記熱交換流路へと前記熱媒体を送り出す、
空調方法。
In the radiation air-conditioning system of Claim 9 or Claim 10,
In an environment where condensation is likely to occur, the heat medium is sent out to the bypass flow path. In an environment where condensation is unlikely to occur, the heat medium is sent out to the heat exchange flow path.
Air conditioning method.
JP2016241903A 2016-12-14 2016-12-14 Radiant panel module, radiant air conditioning system, and air conditioning method Active JP6442776B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016241903A JP6442776B2 (en) 2016-12-14 2016-12-14 Radiant panel module, radiant air conditioning system, and air conditioning method
EP17879860.9A EP3460348A4 (en) 2016-12-14 2017-11-20 Radiation panel module, radiation air conditioning system, and air conditioning method
PCT/JP2017/041712 WO2018110214A1 (en) 2016-12-14 2017-11-20 Radiation panel module, radiation air conditioning system, and air conditioning method
AU2017377443A AU2017377443A1 (en) 2016-12-14 2017-11-20 Radiation panel module, radiation air conditioning system, and air conditioning method
CN201780038434.2A CN109312933A (en) 2016-12-14 2017-11-20 Radiant panel module, air-conditioning system and air-conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241903A JP6442776B2 (en) 2016-12-14 2016-12-14 Radiant panel module, radiant air conditioning system, and air conditioning method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018155802A Division JP6624576B2 (en) 2018-08-22 2018-08-22 Radiant panel module, radiant air conditioning system, air conditioning method and control method

Publications (2)

Publication Number Publication Date
JP2018096620A true JP2018096620A (en) 2018-06-21
JP6442776B2 JP6442776B2 (en) 2018-12-26

Family

ID=62558326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241903A Active JP6442776B2 (en) 2016-12-14 2016-12-14 Radiant panel module, radiant air conditioning system, and air conditioning method

Country Status (5)

Country Link
EP (1) EP3460348A4 (en)
JP (1) JP6442776B2 (en)
CN (1) CN109312933A (en)
AU (1) AU2017377443A1 (en)
WO (1) WO2018110214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215132A (en) * 2018-06-13 2019-12-19 三菱重工サーマルシステムズ株式会社 Pneumatic radiation air conditioning system
JP2020012578A (en) * 2018-07-17 2020-01-23 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193935B2 (en) * 2018-06-28 2022-12-21 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system and control method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226031A (en) * 1993-02-05 1994-08-16 Taikisha Ltd Cooling equipment
JPH0996434A (en) * 1995-09-29 1997-04-08 Toshiba Corp Radiation type air conditioning system
JPH09184642A (en) * 1995-12-28 1997-07-15 Daiwa House Ind Co Ltd Ceiling radiation panel and ceiling radiation air conditioning apparatus
JPH1151445A (en) * 1997-08-06 1999-02-26 Toshiba Corp Radiant air conditioning system
JP2007024479A (en) * 2005-07-21 2007-02-01 Kurita Kogyo:Kk Air conditioner
JP2012088010A (en) * 2010-10-21 2012-05-10 Shimizu Corp Temperature difference air conditioning using cool air in roof space of radiation air conditioning system
JP2012093043A (en) * 2010-10-28 2012-05-17 Tokyo Electric Power Co Inc:The Air type radiation panel device
JP2014059145A (en) * 2014-01-08 2014-04-03 Asahi Kasei Homes Co Radiant cooling and heating system
JP2014095544A (en) * 2013-03-19 2014-05-22 Ecofactory Co Ltd Air-conditioning system
JP2014153037A (en) * 2013-02-13 2014-08-25 Ecopower Co Ltd Radiation panel and cooling and heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1570316A (en) * 1925-02-26 1926-01-19 Palermiti Joseph Radiator
JPS63207923A (en) * 1987-02-23 1988-08-29 Razaa:Kk Method and device for radiation space cooling or heating and structure of floor
JPH10220825A (en) * 1997-02-05 1998-08-21 Sanyo Electric Co Ltd Radiant air conditioning device
DE202005011232U1 (en) * 2005-07-16 2005-09-29 Maniera, Alfred Heating radiator/cooling panel for buildings consists of pipe system with flat insulation, and flat heat/cold radiation material
JP2008298402A (en) * 2007-06-04 2008-12-11 Panasonic Corp Radiation air conditioning system
CN105757858B (en) * 2016-04-11 2018-10-26 余志锋 Moisture condensation resistant air-conditioning radiant panel and its working method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226031A (en) * 1993-02-05 1994-08-16 Taikisha Ltd Cooling equipment
JPH0996434A (en) * 1995-09-29 1997-04-08 Toshiba Corp Radiation type air conditioning system
JPH09184642A (en) * 1995-12-28 1997-07-15 Daiwa House Ind Co Ltd Ceiling radiation panel and ceiling radiation air conditioning apparatus
JPH1151445A (en) * 1997-08-06 1999-02-26 Toshiba Corp Radiant air conditioning system
JP2007024479A (en) * 2005-07-21 2007-02-01 Kurita Kogyo:Kk Air conditioner
JP2012088010A (en) * 2010-10-21 2012-05-10 Shimizu Corp Temperature difference air conditioning using cool air in roof space of radiation air conditioning system
JP2012093043A (en) * 2010-10-28 2012-05-17 Tokyo Electric Power Co Inc:The Air type radiation panel device
JP2014153037A (en) * 2013-02-13 2014-08-25 Ecopower Co Ltd Radiation panel and cooling and heating system
JP2014095544A (en) * 2013-03-19 2014-05-22 Ecofactory Co Ltd Air-conditioning system
JP2014059145A (en) * 2014-01-08 2014-04-03 Asahi Kasei Homes Co Radiant cooling and heating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215132A (en) * 2018-06-13 2019-12-19 三菱重工サーマルシステムズ株式会社 Pneumatic radiation air conditioning system
JP7089951B2 (en) 2018-06-13 2022-06-23 三菱重工サーマルシステムズ株式会社 Pneumatic radiant air conditioning system
JP2020012578A (en) * 2018-07-17 2020-01-23 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system and control method
JP7161329B2 (en) 2018-07-17 2022-10-26 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system and control method

Also Published As

Publication number Publication date
EP3460348A4 (en) 2019-07-03
WO2018110214A1 (en) 2018-06-21
JP6442776B2 (en) 2018-12-26
EP3460348A1 (en) 2019-03-27
CN109312933A (en) 2019-02-05
AU2017377443A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP7260256B2 (en) vehicle air conditioner
JP6201421B2 (en) Control device for vehicle air conditioning system
JP6442776B2 (en) Radiant panel module, radiant air conditioning system, and air conditioning method
JP5102579B2 (en) Air conditioning system
JP2016002949A (en) Air conditioner for vehicle
JP6825900B2 (en) Air conditioning system
JP2013203196A (en) Air conditioner for vehicle
JP6624576B2 (en) Radiant panel module, radiant air conditioning system, air conditioning method and control method
JP2013203326A (en) Air conditioner for vehicle
US20090229788A1 (en) Vehicle Air Conditioner
KR20100063266A (en) An air conditioner for vehicle and controlling method thereof
JP7193935B2 (en) Control device, air conditioning system and control method
RU2016135522A (en) VEHICLE WITH HVAC SYSTEM WITH AUXILIARY CIRCUIT OF SUPPLY OF COOLANT FOR HEATING AND COOLING OF VEHICLE (VERSIONS) AND RELATED METHOD
JP2012148689A (en) Vehicle air conditioning device
JP6825875B2 (en) Air conditioning system
JP2017180904A (en) Radiation air-conditioning system
JP4784230B2 (en) Sauna equipment
KR102559761B1 (en) Air conditioner for vehicle
JP6608343B2 (en) Gas regulator
JP7421618B1 (en) air conditioner
KR20080076216A (en) Air climate apparatus
JP2005326047A (en) Ventilation air conditioner
JP7018009B2 (en) Underfloor air conditioning system
JP6917139B2 (en) Outside air treatment air conditioner
JP7270493B2 (en) bathroom heater

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6442776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150