JP2018094523A - Photocatalyst sheet, air cleaning machine and manufacturing method of photocatalyst sheet - Google Patents

Photocatalyst sheet, air cleaning machine and manufacturing method of photocatalyst sheet Download PDF

Info

Publication number
JP2018094523A
JP2018094523A JP2016243480A JP2016243480A JP2018094523A JP 2018094523 A JP2018094523 A JP 2018094523A JP 2016243480 A JP2016243480 A JP 2016243480A JP 2016243480 A JP2016243480 A JP 2016243480A JP 2018094523 A JP2018094523 A JP 2018094523A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
photocatalyst
coated
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243480A
Other languages
Japanese (ja)
Other versions
JP6887593B2 (en
Inventor
祐幸 森戸
Yuko Morito
祐幸 森戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Vix Corp
Original Assignee
U Vix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Vix Corp filed Critical U Vix Corp
Priority to JP2016243480A priority Critical patent/JP6887593B2/en
Priority to CN201710461570.4A priority patent/CN108212156A/en
Publication of JP2018094523A publication Critical patent/JP2018094523A/en
Application granted granted Critical
Publication of JP6887593B2 publication Critical patent/JP6887593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst sheet preventing peeling by strongly carrying an anatase type titanium oxide which becomes a photocatalyst and further increasing opportunity of contact with the photocatalyst to extremely enhance cleaning process efficiency by the photocatalyst, as well as suppressing manufacturing cost.SOLUTION: A non-periodical pattern having different front surface and back surface is formed, a metal substrate consisting of a metal other than titanium and having non-periodic sponge structure having fine flow passage 2 penetrating front and back formed (for example stainless substrate 1) is coated with titanium 11, a titanium oxide coating 3 is formed on a surface of the titanium 11, and anatase type titanium oxide particles 4 are carried by the titanium oxide coating 3.SELECTED DRAWING: Figure 1

Description

本発明は、光触媒シート、空気清浄機及び光触媒シートの製造方法に関する。   The present invention relates to a photocatalyst sheet, an air cleaner, and a method for producing a photocatalyst sheet.

アナターゼ型の酸化チタンは光触媒として知られており、紫外線照射によりヒドロキシラジカル(・OH)などの活性種や正孔が生成し、これによって有機物が分解されるため、脱臭効果や殺菌効果が得られ、空気清浄機などに応用されている。   Anatase-type titanium oxide is known as a photocatalyst, and active species such as hydroxy radicals (.OH) and holes are generated by ultraviolet irradiation, which decomposes organic matter, resulting in deodorizing and bactericidal effects. It is applied to air cleaners.

図7は光触媒を利用した従来の流体浄化装置である(特許文献1参照)。
流体浄化装置31は、ケース32内部に備えた励起光源33の周囲を囲うように光触媒構造体34が配されている。その光触媒構造体34は、直径の異なる円筒触媒35がスペーサ(図示せず)を介して所定の間隔で同心的に配され、各円筒触媒35は、金属メッシュの全表面に光触媒を担持させて形成されている。
FIG. 7 shows a conventional fluid purification device using a photocatalyst (see Patent Document 1).
In the fluid purification device 31, a photocatalyst structure 34 is arranged so as to surround the excitation light source 33 provided inside the case 32. In the photocatalyst structure 34, cylindrical catalysts 35 having different diameters are concentrically arranged at predetermined intervals via spacers (not shown). Each cylindrical catalyst 35 has a photocatalyst supported on the entire surface of the metal mesh. Is formed.

これによれば、円筒触媒35を同心状に配した三重構造の光触媒構造体34を用いることによって、光触媒構造体34の有効表面積が増加し、かつ、通過する流体に乱流が生じる。このため、流体中の臭気物質との接触割合が大きくなって、臭気物質を短時間で効率よく酸化分解できることが記載されている。   According to this, by using the triple-layer photocatalyst structure 34 in which the cylindrical catalysts 35 are concentrically arranged, the effective surface area of the photocatalyst structure 34 is increased, and turbulent flow is generated in the fluid passing therethrough. For this reason, it is described that a contact ratio with the odorous substance in the fluid increases, and the odorous substance can be efficiently oxidatively decomposed in a short time.

しかしながら、光触媒となるアナターゼ型の酸化チタンを一般の金属メッシュや金属網目体にコーティングさせようとしても、酸化チタンは結合強度が弱く、担体となる金属表面に形成した酸化チタン膜が剥がれやすい。このため、製品寿命が短く、有害臭気成分を効率的に分解することができないという問題がある。   However, even when anatase-type titanium oxide serving as a photocatalyst is to be coated on a general metal mesh or metal network, titanium oxide has low bonding strength, and the titanium oxide film formed on the metal surface serving as a carrier tends to peel off. For this reason, there is a problem that the product life is short and the harmful odor components cannot be efficiently decomposed.

特に、円筒触媒35は、表面積を増やすために細いワイヤを細かく編んだ金属メッシュが用いられるが、そのような金属メッシュで形成された円筒触媒35は手で軽く握るだけで簡単に凹んでしまう程度に機械的強度が低い。このため、組み立てが困難なだけでなく、光触媒構造体34に組み立てた後も取り扱い難い。そして、その外周面を握ることにより表面が撓んでしまうと、広範囲にわたって酸化チタン膜が簡単に剥がれ落ちてしまう。   In particular, the cylindrical catalyst 35 uses a metal mesh formed by finely knitting a thin wire in order to increase the surface area. However, the cylindrical catalyst 35 formed of such a metal mesh can be easily recessed by simply grasping it with a hand. Mechanical strength is low. For this reason, it is difficult not only to assemble, but also difficult to handle after being assembled to the photocatalyst structure 34. And if a surface bends by grasping the outer peripheral surface, a titanium oxide film will peel off easily over a wide range.

これに対し、特許文献2では、片面又は両面から非周期的パターンによるエッチング処理を施して表裏を貫通する多数の微細流路が形成された非周期性海綿構造を有するチタン箔の表面に、陽極酸化皮膜による酸化チタンベースが形成され、当該酸化チタンベースにアナターゼ型酸化チタン粒子が焼き付けられた光触媒シートが開示されている。   On the other hand, in Patent Document 2, an anode is formed on the surface of a titanium foil having an aperiodic sponge structure in which a large number of fine flow paths penetrating the front and back surfaces are formed by performing etching processing with an aperiodic pattern from one side or both sides. A photocatalytic sheet is disclosed in which a titanium oxide base is formed by an oxide film, and anatase-type titanium oxide particles are baked on the titanium oxide base.

これによれば、光触媒となるアナターゼ型酸化チタンを強固に担持させると共に剥がれを防止し、さらに、光触媒に接する機会を増大させて、光触媒による浄化処理効率を格段に向上させることができるとしている。   According to this, it is said that the anatase-type titanium oxide serving as a photocatalyst can be firmly supported and prevented from peeling, and further, the chance of contact with the photocatalyst can be increased, and the purification treatment efficiency by the photocatalyst can be significantly improved.

しかしながら、特許文献2ではチタン箔に対してエッチング処理を施していることから、製造コストが高くなることが懸念され、コストを抑える等のさらなる向上が求められている。   However, in Patent Document 2, since the titanium foil is subjected to an etching process, there is a concern that the manufacturing cost is increased, and further improvements such as cost reduction are required.

特開平11−276558号公報Japanese Patent Laid-Open No. 11-276558 特許第5474612号公報Japanese Patent No. 5474612

そこで、本発明は、光触媒となるアナターゼ型酸化チタンを強固に担持させ剥がれを防止し、さらに、光触媒に接する機会を増大させて、光触媒による浄化処理効率を格段に向上させると共に、製造コストを抑えた光触媒シートを提供することを目的とする。   Therefore, the present invention firmly supports the anatase-type titanium oxide serving as a photocatalyst to prevent peeling, and further increases the chance of contact with the photocatalyst, thereby significantly improving the purification efficiency of the photocatalyst and reducing the manufacturing cost. Another object is to provide a photocatalytic sheet.

上記課題を解決するために、本発明の光触媒シートは、おもて面とうら面で異なる非周期的パターンが形成され、表裏を貫通する微細流路が形成された非周期性海綿構造を有するチタン以外の金属からなる金属基板にチタンが被覆され、該チタンの表面に酸化チタン皮膜が形成され、該酸化チタン皮膜にアナターゼ型酸化チタン粒子が担持されていることを特徴とする。   In order to solve the above-mentioned problems, the photocatalyst sheet of the present invention has an aperiodic sponge structure in which different aperiodic patterns are formed on the front surface and the back surface, and a fine flow path penetrating the front and back surfaces is formed. A metal substrate made of a metal other than titanium is coated with titanium, a titanium oxide film is formed on the surface of the titanium, and anatase-type titanium oxide particles are supported on the titanium oxide film.

本発明によれば、光触媒となるアナターゼ型酸化チタンを強固に担持させ剥がれを防止し、さらに、光触媒に接する機会を増大させて、光触媒による浄化処理効率を格段に向上させると共に、製造コストを抑えた光触媒シートを提供することができる。   According to the present invention, the anatase-type titanium oxide serving as a photocatalyst is firmly supported to prevent peeling, and further, the chance of contact with the photocatalyst is increased, and the purification treatment efficiency by the photocatalyst is remarkably improved and the manufacturing cost is suppressed. A photocatalytic sheet can be provided.

本発明に係る光触媒シートの一例を示す説明図である。It is explanatory drawing which shows an example of the photocatalyst sheet | seat which concerns on this invention. 本発明に係る光触媒シートの一例における製造方法の概略を示す説明図である。It is explanatory drawing which shows the outline of the manufacturing method in an example of the photocatalyst sheet | seat which concerns on this invention. 実験結果を示すグラフである。It is a graph which shows an experimental result. 本発明に係る光触媒シートを用いた空気清浄機の一例を示す説明図である。It is explanatory drawing which shows an example of the air cleaner using the photocatalyst sheet | seat which concerns on this invention. 本発明に係る他の実施例を示す説明図である。It is explanatory drawing which shows the other Example which concerns on this invention. 本発明に係る光触媒シートを用いた空気清浄機の他の例を示す説明図である。It is explanatory drawing which shows the other example of the air cleaner using the photocatalyst sheet | seat which concerns on this invention. 従来の流体浄化装置を示す説明図である。It is explanatory drawing which shows the conventional fluid purification apparatus.

以下、本発明に係る光触媒シート、空気清浄機及び光触媒シートの製造方法について図面を参照しながら説明する。なお、本発明は以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Hereinafter, the photocatalyst sheet, the air cleaner, and the method for producing the photocatalyst sheet according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and other embodiments, additions, modifications, deletions, and the like can be changed within a range that can be conceived by those skilled in the art, and any aspect is possible. As long as the functions and effects of the present invention are exhibited, the scope of the present invention is included.

本発明の光触媒シートは、おもて面とうら面で異なる非周期的パターンが形成され、表裏を貫通する微細流路が形成された非周期性海綿構造を有するチタン以外の金属からなる金属基板にチタンが被覆され、該チタンの表面に酸化チタン皮膜が形成され、該酸化チタン皮膜にアナターゼ型酸化チタン粒子が担持されていることを特徴とする。   The photocatalyst sheet of the present invention is a metal substrate made of a metal other than titanium having a non-periodic sponge structure in which different aperiodic patterns are formed on the front surface and the back surface, and a fine flow path penetrating the front and back surfaces is formed. And a titanium oxide film is formed on the surface of the titanium, and anatase-type titanium oxide particles are supported on the titanium oxide film.

また、本発明の光触媒シートの製造方法は、チタン以外の金属からなる金属基板の片面又は両面からエッチング処理を施しておもて面とうら面で異なる非周期的パターンを形成し、表裏を貫通する微細流路が形成された非周期性海綿構造とし、該非周期性海綿構造を有する金属基板にチタンを被覆し、チタン被覆金属基板とし、該チタン被覆金属基板に陽極酸化処理及び加熱処理を施して表面に酸化チタン皮膜を形成し、該酸化チタン皮膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする。   Further, the photocatalyst sheet manufacturing method of the present invention forms a non-periodic pattern on the front surface and the back surface by etching from one or both surfaces of a metal substrate made of a metal other than titanium, and penetrates the front and back surfaces. A non-periodic sponge structure in which fine channels are formed, and a metal substrate having the non-periodic sponge structure is coated with titanium to form a titanium-coated metal substrate, and the titanium-coated metal substrate is subjected to anodizing treatment and heat treatment. A titanium oxide film is formed on the surface, and anatase-type titanium oxide particles are supported on the titanium oxide film.

前記金属基板は、チタン以外の金属であればよく、適宜変更することが可能である。例えば、ステンレス、鉄、ニッケル、アルミニウム等が挙げられる。
金属基板の厚みとしては、特に制限されるものではなく、適宜変更することが可能であるが、0.15〜0.35mmが好ましい。
以下の実施例では金属基板としてステンレス基板を用いた。以下、ステンレス基板を例に挙げて説明するが、これに限られるものではない。また、「チタン被覆ステンレス基板」とあるのは、チタン被覆金属基板の一例を示すものである。
The metal substrate may be any metal other than titanium, and can be changed as appropriate. For example, stainless steel, iron, nickel, aluminum, etc. are mentioned.
The thickness of the metal substrate is not particularly limited and can be appropriately changed, but is preferably 0.15 to 0.35 mm.
In the following examples, a stainless steel substrate was used as the metal substrate. Hereinafter, a stainless steel substrate will be described as an example, but the present invention is not limited to this. The “titanium-coated stainless steel substrate” is an example of a titanium-coated metal substrate.

図1に示す光触媒シートS1は、おもて面とうら面で異なる非周期的パターンが形成され、表裏を貫通する微細流路2が形成された非周期性海綿構造を有するステンレス基板1にチタン11が被覆され、その表面に酸化チタン皮膜3が形成され、酸化チタン皮膜3にアナターゼ型酸化チタン粒子4が担持されている。なお、おもて面とうら面は区別されない。   The photocatalyst sheet S1 shown in FIG. 1 is formed on a stainless steel substrate 1 having a non-periodic sponge structure in which different non-periodic patterns are formed on the front surface and the back surface, and fine channels 2 penetrating the front and back are formed. 11 is coated, a titanium oxide film 3 is formed on the surface, and anatase-type titanium oxide particles 4 are supported on the titanium oxide film 3. Note that the front and back surfaces are not distinguished.

図2はその光触媒シートS1の製造方法を示す説明図である。
まず、ステンレス基板1に微細流路2を形成するエッチング処理を行う。なお、エッチング処理の前にステンレス基板1を洗浄しておくことが好ましい。
本実施例ではステンレス基板1の厚みを0.2mmとした。
FIG. 2 is an explanatory view showing a method for producing the photocatalytic sheet S1.
First, the etching process which forms the fine flow path 2 in the stainless steel substrate 1 is performed. In addition, it is preferable to wash | clean the stainless steel substrate 1 before an etching process.
In this embodiment, the thickness of the stainless steel substrate 1 is 0.2 mm.

エッチング処理としては以下の工程を行う。
ステンレス基板1の表裏両面にフォトレジスト剤6を塗布する塗布工程を行う(図2(a))。フォトレジスト剤6の上から非周期的パターンが形成されたマスキングフィルム7を重ねて露光する露光工程を行う(図2(b))露光後、フォトレジスト剤6の感光していない部分を洗浄して、感光した部分をステンレス基板1に残す洗浄工程を行う(図2(c))。
次に、フォトレジスト剤6で非周期編み目パターンがマスキングされたステンレス基板1をエッチング液に浸漬し、表裏両面からステンレス基板1の厚さの半分まで浸食させることにより、表裏を貫通する微細流路2を形成する浸漬工程を行う(図2(d))。
As an etching process, the following steps are performed.
An application step of applying the photoresist agent 6 to both the front and back surfaces of the stainless steel substrate 1 is performed (FIG. 2A). An exposure process is performed in which a masking film 7 on which a non-periodic pattern is formed is overlaid on the photoresist agent 6 (FIG. 2B). After exposure, the unexposed portion of the photoresist agent 6 is washed. Then, a cleaning process is performed to leave the exposed portion on the stainless steel substrate 1 (FIG. 2C).
Next, the stainless steel substrate 1 whose non-periodic stitch pattern is masked with the photoresist agent 6 is immersed in an etching solution and eroded from the front and back surfaces to half of the thickness of the stainless steel substrate 1, thereby passing through the fine flow path. 2 is performed (FIG. 2D).

このように、ステンレス基板1にエッチング処理を施せば、そのマスキングパターンに周期性がないことから、ステンレス基板1の表側と裏側とで異なるパターンの孔が形成される。その結果、図1に示すように、ステンレス基板1の厚さ方向に複雑なラビリンス状の微細流路2が形成され、単純なワイヤメッシュやパンチングメタルなどよりも比表面積が著しく大きくなり、自然に存在する海綿構造体と同様、比表面積を著しく大きくすることができる。かくして、非周期性海綿構造を有するステンレス基板が形成される。   As described above, if the stainless steel substrate 1 is etched, the masking pattern has no periodicity, so that holes having different patterns are formed on the front side and the back side of the stainless steel substrate 1. As a result, as shown in FIG. 1, a complex labyrinth-shaped fine flow path 2 is formed in the thickness direction of the stainless steel substrate 1, and the specific surface area is significantly larger than that of a simple wire mesh or punching metal. As with the existing sponge structure, the specific surface area can be significantly increased. Thus, a stainless steel substrate having an aperiodic sponge structure is formed.

なお、本実施例において、光触媒シートS1の空隙率(エッチング処理後の重量/エッチング処理前の重量)は20%程度である。
また、その表面を拡大観察すると、この時点では、図2(e)に示すように、概ねフラットな状態となっている。
In this example, the porosity of the photocatalyst sheet S1 (weight after etching process / weight before etching process) is about 20%.
Further, when the surface is enlarged and observed, at this point, as shown in FIG.

次に、上記ステンレス基板1にチタンを被覆し、チタン被覆ステンレス基板とする(図2(f))。
チタンを被覆する方法としては、適宜変更することが可能であるが、真空蒸着又はスパッタリングにより行うことが好ましい。本実施例では真空蒸着により行った。
これにより、ステンレス基板1の表面にチタン11が被覆される。なお、チタンは微細流路2の内壁面にも被覆される。
Next, the stainless steel substrate 1 is coated with titanium to form a titanium-coated stainless steel substrate (FIG. 2 (f)).
The method for coating titanium can be appropriately changed, but is preferably performed by vacuum deposition or sputtering. In this embodiment, the vapor deposition was performed.
Thereby, the surface of the stainless steel substrate 1 is coated with the titanium 11. Titanium is also coated on the inner wall surface of the fine channel 2.

このとき、被覆するチタンの厚みは、適宜変更することが可能であるが、0.5〜2.0μmが好ましく、0.8〜1.5μmがより好ましい。この範囲であると、ステンレス基板のクロムの影響を抑制し、脱臭性能を向上させることができる。また、チタンの使用量を抑えることで、コスト面でも有利である。被覆するチタンの厚みが1.5μmであれば、ほぼチタン箔を材料として用いた場合と同等の性能が得られる。
本実施例では被覆するチタンの厚みを0.8μmとして行った。
At this time, the thickness of the titanium to be coated can be appropriately changed, but is preferably 0.5 to 2.0 μm, and more preferably 0.8 to 1.5 μm. Within this range, the influence of chromium on the stainless steel substrate can be suppressed and the deodorizing performance can be improved. Further, suppressing the amount of titanium used is advantageous in terms of cost. When the thickness of the titanium to be coated is 1.5 μm, performance equivalent to that obtained when a titanium foil is used as a material can be obtained.
In this embodiment, the thickness of titanium to be coated is 0.8 μm.

次いで、その表面に酸化チタン皮膜3を形成する陽極酸化処理を行う。
陽極酸化処理は、リン酸浴(例えばリン酸3%水溶液)中で、陽極となるチタン11と陰極との間に所定電圧を印加して行われ、その結果、図2(g)に示すように、チタン11の表面が酸化されて陽極酸化皮膜が形成される。
Next, an anodic oxidation treatment for forming a titanium oxide film 3 on the surface is performed.
The anodizing treatment is performed in a phosphoric acid bath (for example, 3% phosphoric acid aqueous solution) by applying a predetermined voltage between the titanium 11 serving as the anode and the cathode, and as a result, as shown in FIG. In addition, the surface of the titanium 11 is oxidized to form an anodized film.

このとき、酸化皮膜は、チタン被覆ステンレス基板の表裏両面だけでなく、微細流路2の内壁面などリン酸浴に曝されている全表面に形成される。
その後、チタン被覆ステンレス基板を加熱処理する。加熱は例えば大気中で450〜550℃、2〜3時間加熱する。加熱処理を施すことで、陽極酸化皮膜が加熱された酸化チタン皮膜3が形成される。
At this time, the oxide film is formed not only on the front and back surfaces of the titanium-coated stainless steel substrate but also on the entire surface exposed to the phosphoric acid bath, such as the inner wall surface of the fine channel 2.
Thereafter, the titanium-coated stainless steel substrate is heat-treated. For example, the heating is performed in the air at 450 to 550 ° C. for 2 to 3 hours. By performing the heat treatment, the titanium oxide film 3 in which the anodized film is heated is formed.

その表面を拡大観察すると、エッチング処理した時点でフラットだった表面に、陽極酸化処理及び加熱処理によるひび割れ8が出現する。   When the surface is magnified, cracks 8 due to anodizing treatment and heat treatment appear on the flat surface at the time of etching treatment.

なお、チタン11を陽極酸化処理した場合、その酸化皮膜の厚さに応じて光の干渉により異なる色が発色し、厚さ70nm程度で紫色、150nm程度で緑色、200nm程度でピンク色を呈することが知られている。本実施例では、厚さ70〜150nmの皮膜を形成した。   In addition, when titanium 11 is anodized, different colors are generated due to light interference depending on the thickness of the oxide film, and purple at about 70 nm, green at about 150 nm, and pink at about 200 nm. It has been known. In this example, a film having a thickness of 70 to 150 nm was formed.

そして、アナターゼ型酸化チタン粒子4を担持させる焼き付け処理を行う。
表面に酸化チタン皮膜3が形成されたステンレス基板1を、アナターゼ型酸化チタン粒子4を分散したスラリー中にディッピングした後、これを400〜450℃で焼き付けると、図2(h)に示すように、ステンレス基板1の表裏両面及び微細流路2の内壁面に光触媒層5が形成される。
And the baking process which carries | supports the anatase type titanium oxide particle 4 is performed.
When the stainless steel substrate 1 having the titanium oxide film 3 formed on the surface is dipped in a slurry in which the anatase-type titanium oxide particles 4 are dispersed and then baked at 400 to 450 ° C., as shown in FIG. The photocatalyst layer 5 is formed on both the front and back surfaces of the stainless steel substrate 1 and the inner wall surface of the fine channel 2.

酸化チタン皮膜3と光触媒層5は、酸化チタン同士が結合することになるので、その結合性が極めて強くなり、その結果、光触媒層5が剥がれ難くなる。   Since the titanium oxide film 3 and the photocatalyst layer 5 are bonded to each other, the bondability thereof becomes extremely strong, and as a result, the photocatalyst layer 5 is hardly peeled off.

このとき、アナターゼ型酸化チタン粒子4を担持させた後、必要に応じてジェット風を送る工程を行うことが好ましい。これにより、表面に付着した剥がれやすい酸化チタン粒子を取り除くことができる。   At this time, after supporting the anatase type titanium oxide particles 4, it is preferable to perform a step of sending a jet wind as necessary. Thereby, it is possible to remove the titanium oxide particles that are easily peeled off and adhered to the surface.

本実施例では、エッチング処理により微細流路2を形成したことにより表面が複雑な凹凸形状をなし、かつ陽極酸化皮膜からなる酸化チタン皮膜3はミクロンオーダーの微細なひび割れ8を生じている。そのため、その上に光触媒層5が強固に結合するだけでなく、表面積が増え、処理効率が格段に向上する。また、UV光を照射したときに光触媒層5の表面及び酸化チタン皮膜3との界面で乱反射/光散乱が起き、UV光を効率よく利用できる。   In this embodiment, the fine flow path 2 is formed by the etching process, so that the surface has a complex uneven shape, and the titanium oxide film 3 made of the anodized film has micro cracks 8 on the order of microns. Therefore, not only the photocatalyst layer 5 is firmly bonded thereon, but also the surface area is increased and the processing efficiency is remarkably improved. Further, when UV light is irradiated, irregular reflection / light scattering occurs at the surface of the photocatalyst layer 5 and the interface with the titanium oxide film 3, and the UV light can be used efficiently.

さらにまた、ステンレス基板にチタンを被覆する方式を採用したことで、光触媒シート自体を安価に形成することができ、このことから設計の自由度が大きくなり、また耐熱性、耐薬品性にも優れるため、過酷な使用条件の下でも使用に耐え得る。   Furthermore, by adopting a method of coating titanium on a stainless steel substrate, the photocatalyst sheet itself can be formed at a low cost, which increases the degree of design freedom and also provides excellent heat resistance and chemical resistance. Therefore, it can withstand use even under severe use conditions.

さらに、光触媒シート1は、シート状に形成されているので、光源の配置によっては両面照射することもでき、多層化することも可能であり、その場合、光触媒効果もより向上することが期待できる。   Furthermore, since the photocatalyst sheet 1 is formed in a sheet shape, it can be irradiated on both sides depending on the arrangement of the light source, and can be multi-layered. In that case, the photocatalytic effect can be expected to be further improved. .

次に、本実施例で得られた光触媒シートについて以下の評価を行った。評価としては、容積1mの密閉空間内に、後述する図4に示されるような空気清浄機を置き、この空気清浄機に対し風速5.5m/sの風を吹き付けながら、その密閉空間内の所定濃度のアセトアルデヒドの濃度変化を経時的に測定した。また、空気清浄機としては、A5サイズの光触媒シートS1を二重に巻きつけた光触媒ユニットU1を置き、中心に波長254nmの紫外線光源9を配して、処理チャンバ10内を流れる空気流に曝すように配した。
結果を図3に示す。
Next, the following evaluation was performed on the photocatalyst sheet obtained in this example. As an evaluation, an air cleaner as shown in FIG. 4 to be described later is placed in a sealed space having a volume of 1 m 3 , and a wind speed of 5.5 m / s is blown against the air cleaner, The change in the concentration of acetaldehyde at a predetermined concentration was measured over time. Further, as an air cleaner, a photocatalytic unit U1 in which an A5 size photocatalytic sheet S1 is doubly wound is placed, and an ultraviolet light source 9 having a wavelength of 254 nm is arranged at the center to be exposed to an air flow flowing in the processing chamber 10. Arranged.
The results are shown in FIG.

図3において、本実施例で得られた光触媒シート(チタンの厚み:0.8μm)で得られた結果を図中(A)で示している。図中(B)のグラフは、ステンレス基板1ではなく、チタン基板を用いて光触媒シートを作製した場合の評価結果である。すなわち、チタン基板をエッチングして非周期性海綿構造とし、陽極酸化処理を施し、アナターゼ型酸化チタン粒子を担持させたものである(特許文献2参照)。また、図中(C)のグラフは、ステンレス基板をエッチングして非周期性海綿構造とし、チタンの被覆を行わずに、アナターゼ型酸化チタン粒子を担持させたものである。   In FIG. 3, the result obtained with the photocatalyst sheet (thickness of titanium: 0.8 μm) obtained in this example is shown in FIG. The graph of (B) in the figure is an evaluation result when a photocatalytic sheet is produced using a titanium substrate instead of the stainless steel substrate 1. That is, the titanium substrate is etched to form an aperiodic sponge structure, anodized, and supported with anatase-type titanium oxide particles (see Patent Document 2). Moreover, the graph of (C) in a figure is what carried | supported the anatase type titanium oxide particle | grains, without carrying out titanium coating | coated by etching a stainless steel board | substrate and making it a non-periodic sponge structure.

図3(A)のグラフに示されるように、本実施例で得られた光触媒シートによれば、時間経過と共にアセトアルデヒドガスの濃度(ppm)が低下し、良好な脱臭性能が得られていることがわかる。一方、図中(C)のグラフに示されるように、チタンで被覆していない場合、アセトアルデヒドガスの濃度(ppm)の低下は少なく、脱臭性能が劣っていることがわかる。これは、チタン被覆していないステンレス基板を用いた場合、クロムの影響により脱臭性能が低くなるのに対し、チタン被覆したステンレス基板を用いた場合、クロムの影響が少ないため、脱臭性能が良好であると考えられる。   As shown in the graph of FIG. 3 (A), according to the photocatalyst sheet obtained in this example, the concentration (ppm) of acetaldehyde gas decreases with time, and good deodorization performance is obtained. I understand. On the other hand, as shown in the graph of (C) in the figure, when not coated with titanium, it is found that the concentration (ppm) of acetaldehyde gas is small and the deodorizing performance is inferior. This is because the deodorizing performance is low due to the influence of chromium when using a stainless steel substrate that is not coated with titanium, whereas the deodorizing performance is good when using a stainless steel substrate with titanium coating because the influence of chromium is small. It is believed that there is.

また、図中(A)と(B)を比べると、本実施例で得られた光触媒シートはチタン基板を用いた光触媒シートに対して約80%の脱臭性能を示しており、チタン基板を用いた光触媒シートに近い脱臭性能を示していることがわかる。   Further, comparing (A) and (B) in the figure, the photocatalyst sheet obtained in this example shows a deodorizing performance of about 80% with respect to the photocatalyst sheet using the titanium substrate. It can be seen that the deodorizing performance close to that of the photocatalyst sheet was exhibited.

次に、本発明の光触媒シートを備えた空気清浄機の一例について説明する。図4に示されるように、実施例1で製造された光触媒シートS1を円筒状に巻いて、その中心に紫外線光源9を配した光触媒ユニットU1とし、これを、空気清浄機の処理チャンバ10内を流れる空気流に曝すように配して使用することができる。
このように本発明の光触媒シートは、フレキシブルなシート状に形成することができ、空気清浄機の仕様に応じて任意の形状に折り曲げたり巻回したりすることができる。
Next, an example of the air cleaner provided with the photocatalyst sheet of the present invention will be described. As shown in FIG. 4, the photocatalyst sheet S1 manufactured in Example 1 is rolled into a cylindrical shape to form a photocatalyst unit U1 in which an ultraviolet light source 9 is arranged at the center thereof, and this is set in the processing chamber 10 of the air purifier. Can be used to be exposed to a flowing air stream.
Thus, the photocatalyst sheet of the present invention can be formed into a flexible sheet, and can be bent or wound into an arbitrary shape according to the specifications of the air cleaner.

次に、実施例1において、ステンレス基板1を被覆するチタンの厚みを1.5μmとした以外は実施例1と同様にして光触媒シートを作製した。得られた光触媒シートについて実施例1と同様に評価を行った。その結果、本実施例で得られた光触媒シートは、図3(B)のグラフに示される結果とほぼ同じであった。すなわち、チタン基板を用いた光触媒シートと同程度の脱臭性能が得られることがわかった。   Next, a photocatalyst sheet was produced in the same manner as in Example 1 except that the thickness of titanium covering the stainless steel substrate 1 was changed to 1.5 μm. The obtained photocatalyst sheet was evaluated in the same manner as in Example 1. As a result, the photocatalyst sheet obtained in this example was almost the same as the result shown in the graph of FIG. That is, it was found that the same deodorizing performance as that of the photocatalytic sheet using the titanium substrate was obtained.

本実施例の光触媒シートS2は、図5に示すように、一方向に沿って連続する起伏が折曲形成された波板状に形成されている。この光触媒シートS2も、実施例1の光触媒シートと同様、片面又は両面から非周期的パターンによるエッチング処理を施して表裏を貫通する多数の微細流路2が形成された非周期性海綿構造を有するステンレス基板1にチタンが被覆されている。そして、陽極酸化処理及び加熱処理を施して、表面に陽極酸化皮膜による酸化チタン皮膜3を形成し、当該酸化チタン皮膜3にアナターゼ型酸化チタン粒子4を担持させて光触媒層5が形成されている。   As shown in FIG. 5, the photocatalytic sheet S <b> 2 of this example is formed in a corrugated plate shape in which undulations that continue along one direction are bent. Similarly to the photocatalyst sheet of Example 1, this photocatalyst sheet S2 also has an aperiodic sponge structure in which a large number of microchannels 2 penetrating the front and back surfaces are formed by performing etching treatment with a non-periodic pattern from one side or both sides. The stainless steel substrate 1 is coated with titanium. Then, anodizing treatment and heat treatment are performed to form a titanium oxide film 3 with an anodized film on the surface, and anatase-type titanium oxide particles 4 are supported on the titanium oxide film 3 to form a photocatalytic layer 5. .

また、本実施例では、光触媒シートS2を波板状に形成するため、陽極酸化処理を施した後、加熱処理を施す前に、プレス加工により波板状に形成する成形処理を施してステンレス基板1の長手方向に沿って連続する起伏を折曲形成している。   Further, in this embodiment, in order to form the photocatalyst sheet S2 in a corrugated plate shape, a stainless steel substrate is subjected to a forming process for forming the corrugated plate shape by pressing after the anodizing treatment and before the heat treatment. The undulations that are continuous along the longitudinal direction of 1 are bent.

この成形加工は、エッチング処理後、酸化チタンにアナターゼ型酸化チタン粒子を担持させる処理の前であればよく、例えば、エッチング処理後、陽極酸化処理の前にプレス加工をしても良い。   This forming process may be performed after the etching process and before the process of supporting the anatase-type titanium oxide particles on the titanium oxide. For example, the pressing process may be performed after the etching process and before the anodizing process.

そして、図6に空気清浄機の他の例として示されるように、このように製造された光触媒シートS2を円筒状に巻いて、その中心に紫外線光源9を配した光触媒ユニットU2とし、これを、空気清浄機の処理チャンバ10内を流れる空気流に曝すように配して使用することができる。   Then, as shown in FIG. 6 as another example of the air purifier, the photocatalyst sheet S2 manufactured in this way is wound in a cylindrical shape to form a photocatalyst unit U2 in which an ultraviolet light source 9 is arranged at the center thereof. The air cleaner can be used so as to be exposed to an air flow flowing through the processing chamber 10 of the air cleaner.

本実施例で得られた光触媒シートについて、実施例1と同様に脱臭性能の評価を行ったところ、実施例1と同様に良好な結果が得られた。   About the photocatalyst sheet | seat obtained in the present Example, when the deodorizing performance was evaluated similarly to Example 1, the favorable result similar to Example 1 was obtained.

本発明は、医療施設、工場、住宅、オフィスの空気を浄化する空気清浄機や、水を浄化する浄水器、空気清浄機能搭載蚊取り器の用途に適用し得る。   INDUSTRIAL APPLICABILITY The present invention can be applied to uses of an air purifier that purifies air in medical facilities, factories, houses, offices, a water purifier that purifies water, and a mosquito trap equipped with an air purifying function.

S1、S2 光触媒シート
U1、U2 光触媒ユニット
1 ステンレス基板
2 微細流路
3 酸化チタン皮膜
4 アナターゼ型酸化チタン粒子
5 光触媒層
6 フォトレジスト剤
7 マスキングフィルム
8 ひび割れ
9 紫外線光源
10 処理チャンバ
11 チタン
31 流体浄化装置
32 ケース
33 励起光源
34 光触媒構造体
35 円筒触媒
S1, S2 Photocatalyst sheet U1, U2 Photocatalyst unit 1 Stainless steel substrate 2 Fine channel 3 Titanium oxide film 4 Anatase type titanium oxide particle 5 Photocatalyst layer 6 Photoresist 7 Masking film 8 Crack 9 UV light source 10 Processing chamber 11 Titanium 31 Fluid purification Device 32 Case 33 Excitation light source 34 Photocatalyst structure 35 Cylindrical catalyst

Claims (8)

おもて面とうら面で異なる非周期的パターンが形成され、表裏を貫通する微細流路が形成された非周期性海綿構造を有するチタン以外の金属からなる金属基板にチタンが被覆され、該チタンの表面に酸化チタン皮膜が形成され、該酸化チタン皮膜にアナターゼ型酸化チタン粒子が担持されていることを特徴とする光触媒シート。   Titanium is coated on a metal substrate made of a metal other than titanium having a non-periodic sponge structure in which a different aperiodic pattern is formed on the front surface and the back surface, and a fine channel penetrating the front and back surfaces is formed, A photocatalytic sheet, wherein a titanium oxide film is formed on a surface of titanium, and anatase-type titanium oxide particles are supported on the titanium oxide film. 前記金属基板は、ステンレス、鉄、ニッケル及びアルミニウムから選ばれる金属からなることを特徴とする請求項1に記載の光触媒シート。   The photocatalytic sheet according to claim 1, wherein the metal substrate is made of a metal selected from stainless steel, iron, nickel, and aluminum. 前記金属基板の一方向に沿って連続する起伏が折曲形成されていることを特徴とする請求項1又は2に記載の光触媒シート。   3. The photocatalytic sheet according to claim 1, wherein undulations that are continuous along one direction of the metal substrate are bent. 4. 請求項1〜3のいずれかに記載の光触媒シートを備えることを特徴とする空気清浄機。   The air cleaner provided with the photocatalyst sheet in any one of Claims 1-3. チタン以外の金属からなる金属基板の片面又は両面からエッチング処理を施しておもて面とうら面で異なる非周期的パターンを形成し、表裏を貫通する微細流路が形成された非周期性海綿構造とし、
該非周期性海綿構造を有する金属基板にチタンを被覆し、チタン被覆金属基板とし、
該チタン被覆金属基板に陽極酸化処理及び加熱処理を施して表面に酸化チタン皮膜を形成し、
該酸化チタン皮膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする光触媒シートの製造方法。
A non-periodic sponge in which a micro-channel is formed by penetrating the front and back surfaces by forming different non-periodic patterns on the front and back surfaces of the metal substrate made of a metal other than titanium. Structure and
Titanium is coated on the metal substrate having the non-periodic sponge structure to obtain a titanium-coated metal substrate,
The titanium-coated metal substrate is anodized and heated to form a titanium oxide film on the surface,
A method for producing a photocatalytic sheet, comprising supporting anatase-type titanium oxide particles on the titanium oxide film.
前記非周期性海綿構造を有する金属基板に対し、チタンを厚み0.5〜2.0μmで被覆させ前記チタン被覆金属基板とすることを特徴とする請求項5に記載の光触媒シートの製造方法。   The method for producing a photocatalytic sheet according to claim 5, wherein the metal substrate having the non-periodic sponge structure is coated with titanium with a thickness of 0.5 to 2.0 µm to form the titanium-coated metal substrate. 真空蒸着又はスパッタリングにより、前記金属基板にチタンを被覆することを特徴とする請求項5又は6に記載の光触媒シートの製造方法。   The method for producing a photocatalytic sheet according to claim 5 or 6, wherein the metal substrate is coated with titanium by vacuum deposition or sputtering. 前記アナターゼ型酸化チタン粒子を担持させた後、ジェット風を送ることを特徴とする請求項5〜7のいずれかに記載の光触媒シートの製造方法。
The method for producing a photocatalyst sheet according to any one of claims 5 to 7, wherein jet air is sent after supporting the anatase-type titanium oxide particles.
JP2016243480A 2016-12-15 2016-12-15 Manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet Active JP6887593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016243480A JP6887593B2 (en) 2016-12-15 2016-12-15 Manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet
CN201710461570.4A CN108212156A (en) 2016-12-15 2017-06-16 The manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243480A JP6887593B2 (en) 2016-12-15 2016-12-15 Manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet

Publications (2)

Publication Number Publication Date
JP2018094523A true JP2018094523A (en) 2018-06-21
JP6887593B2 JP6887593B2 (en) 2021-06-16

Family

ID=62634012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243480A Active JP6887593B2 (en) 2016-12-15 2016-12-15 Manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet

Country Status (2)

Country Link
JP (1) JP6887593B2 (en)
CN (1) CN108212156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181210A1 (en) * 2021-02-24 2022-09-01 Apsジャパン株式会社 Member having photocatalytic activity and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116003A1 (en) * 2020-12-01 2022-06-09 莱恩创科(北京)科技有限公司 Photocatalytic purification device
WO2022116004A1 (en) * 2020-12-01 2022-06-09 莱恩创科(北京)科技有限公司 Method for producing efficient photocatalytic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279805A (en) * 1999-03-29 2000-10-10 Nisshin Steel Co Ltd Photocatalyst coated metal plate and its manufacture
JP2004332090A (en) * 2003-03-07 2004-11-25 Kobe Steel Ltd Corrosion-proofing member and metallic structure fitted therewith
WO2006090630A1 (en) * 2005-02-24 2006-08-31 Central Research Institute Of Electric Power Industry Process for producing multifunctional material
CN101328574A (en) * 2008-07-23 2008-12-24 太原理工大学 Preparation of high film substrate bond strength photocatalysis TiO2 film
JP2011183240A (en) * 2010-03-04 2011-09-22 U-Vix Corp Photocatalytic sheet and method for producing the same
JP2012161711A (en) * 2011-02-03 2012-08-30 U-Vix Corp Photocatalyst and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697075B2 (en) * 2010-08-05 2015-04-08 公益財団法人神奈川科学技術アカデミー Air cleaner
CN104843825A (en) * 2015-05-12 2015-08-19 上海伊美特实业有限公司 Treatment device and treatment process for drinking water through ultraviolet photo-catalyzed strong oxidization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279805A (en) * 1999-03-29 2000-10-10 Nisshin Steel Co Ltd Photocatalyst coated metal plate and its manufacture
JP2004332090A (en) * 2003-03-07 2004-11-25 Kobe Steel Ltd Corrosion-proofing member and metallic structure fitted therewith
WO2006090630A1 (en) * 2005-02-24 2006-08-31 Central Research Institute Of Electric Power Industry Process for producing multifunctional material
CN101328574A (en) * 2008-07-23 2008-12-24 太原理工大学 Preparation of high film substrate bond strength photocatalysis TiO2 film
JP2011183240A (en) * 2010-03-04 2011-09-22 U-Vix Corp Photocatalytic sheet and method for producing the same
JP2012161711A (en) * 2011-02-03 2012-08-30 U-Vix Corp Photocatalyst and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181210A1 (en) * 2021-02-24 2022-09-01 Apsジャパン株式会社 Member having photocatalytic activity and method for producing same

Also Published As

Publication number Publication date
JP6887593B2 (en) 2021-06-16
CN108212156A (en) 2018-06-29

Similar Documents

Publication Publication Date Title
JP5474612B2 (en) Photocatalyst sheet and method for producing the same
US9061086B2 (en) Photocatalyst element structure, ultraviolet radiation air purification system, photocatalyst sheet, and method of manufacturing photocatalyst sheet
JP5697075B2 (en) Air cleaner
JP5467283B2 (en) Photocatalytic element and ultraviolet air cleaner using the same
JP4371607B2 (en) Photocatalytic reactor
WO2018147444A1 (en) Photocatalyst-carrying mesh sheet, air purifier, and method for producing photocatalyst-carrying mesh sheet
JP6887593B2 (en) Manufacturing method of photocatalyst sheet, air purifier and photocatalyst sheet
JP6138441B2 (en) Airborne virus removal unit
KR101705837B1 (en) An Air Purification Filter To Have The Sterilizing And Cleaning
JP2009018282A (en) Ultraviolet oxidation device and ultraviolet oxidation method
JP5705599B2 (en) Excimer lamp
JP2014094340A (en) Photocatalyst body and production method of the same
TWI695914B (en) Manufacturing method of photocatalyst filter and air purification device composed of photocatalyst filter
JP5614755B2 (en) Air cleaner
TWM586611U (en) Air purification device composed of photo-catalyst filter
JP2018140330A (en) Photocatalyst system of honeycomb core
JP7418477B2 (en) Photocatalytic device and method for manufacturing photocatalytic device
KR200375243Y1 (en) Lamp structure for deordorization and sterilization
JP2021084082A (en) Photocatalyst-carrying sheet as well as air cleaner and water treatment device using the same
JP2010069346A (en) Photocatalytic reactor
US10213779B2 (en) Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
JP3831888B2 (en) Photocatalyst unit and apparatus using the same
JP2001038220A (en) Photocatalyst and functional base material
JP6936581B2 (en) A method for manufacturing a photocatalyst carrier, an air purifier, and a photocatalyst carrier.
JP2004050101A (en) Manufacturing method for photocatalyst body

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6887593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250