JP2018092959A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2018092959A
JP2018092959A JP2018060421A JP2018060421A JP2018092959A JP 2018092959 A JP2018092959 A JP 2018092959A JP 2018060421 A JP2018060421 A JP 2018060421A JP 2018060421 A JP2018060421 A JP 2018060421A JP 2018092959 A JP2018092959 A JP 2018092959A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
active material
negative electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018060421A
Other languages
Japanese (ja)
Other versions
JP6497460B2 (en
Inventor
真輔 小林
Shinsuke Kobayashi
真輔 小林
和也 丸山
Kazuya Maruyama
和也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2018060421A priority Critical patent/JP6497460B2/en
Publication of JP2018092959A publication Critical patent/JP2018092959A/en
Application granted granted Critical
Publication of JP6497460B2 publication Critical patent/JP6497460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To achieve long life by restraining short circuit at the upper part of an electrode plate group due to dropped active material.SOLUTION: In a lead acid battery 1 including an electrode plate group 11 where a positive electrode plate 12 and a negative electrode plate 13 are laminated alternately via a separator, and the current collector 22 of the positive electrode plate 12 and the current collector 32 of the negative electrode plate 13 are welded collectively to the positive electrode strap 15 and the negative electrode strap 16 for each polarity, the positive electrode plate 12 and negative electrode plate 13 have filling parts 24, 34 filled with an active material, respectively, alloy composition of the positive electrode strap 15 and the negative electrode strap 16 is lead-antimony-based, and S/V is 3.95-4.00 cm, where S is the total surface area of the filling part 24 of the positive electrode plate 12, and V is the apparent volume of the filling part 24 of the positive electrode plate 12 and the filling part 34 of the negative electrode plate 13.SELECTED DRAWING: Figure 2

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead-acid battery.

鉛蓄電池は、信頼性、価格の安さから産業用、民生用に広く用いられており、特に自動車用鉛蓄電池(いわゆるバッテリー)の需要が多い。   Lead storage batteries are widely used for industrial use and consumer use because of their reliability and low price. In particular, there is a great demand for lead storage batteries for automobiles (so-called batteries).

従来、自動車用鉛蓄電池では、鉛合金の格子体に所定量の活物質ペーストを充填したペースト式極板が用いられている。鉛蓄電池(以下、単に電池ともいう。)の極板には、正極板と負極板がある。正極板及び負極板は、それぞれ集電部(耳部)を有している。そして、正極板と負極板とがセパレータを介して交互に積層され、正極板及び負極板の集電部が極性毎にストラップに集合溶接され、ストラップにセル間接続部又は極柱が接続されて、極板群が構成されている。   Conventionally, in lead-acid batteries for automobiles, a paste-type electrode plate in which a predetermined amount of active material paste is filled in a lead alloy lattice is used. There are a positive electrode plate and a negative electrode plate in the electrode plate of a lead storage battery (hereinafter also simply referred to as a battery). Each of the positive electrode plate and the negative electrode plate has a current collector (ear part). Then, the positive electrode plate and the negative electrode plate are alternately laminated via the separator, and the current collecting portions of the positive electrode plate and the negative electrode plate are collectively welded to the strap for each polarity, and the inter-cell connection portion or the pole column is connected to the strap. The electrode plate group is configured.

セパレータとしては、合成樹脂製の微多孔性シートを二つ折りし、その両側部をシールして袋状にした、いわゆる袋セパレータが用いられている。袋セパレータに極板を挿入することで、正極板と負極板とを確実に隔離することができる。なお、袋セパレータに挿入する極板は、正極板及び負極板の何れであってもよく、正極板を袋セパレータに挿入するタイプと負極板を袋セパレータに挿入するタイプの両タイプの電池がある。正極板を袋セパレータに挿入するタイプの電池は、高温下で使用されると、正極板が腐食及び変形することにより袋セパレータを突き破る場合がある。このため、通常は、セパレータの突き破りを防止する観点から、負極板をセパレータに挿入するタイプの電池が採用されている。   As the separator, a so-called bag separator is used in which a microporous sheet made of a synthetic resin is folded in two and both sides thereof are sealed to form a bag. By inserting the electrode plate into the bag separator, the positive electrode plate and the negative electrode plate can be reliably separated. The electrode plate to be inserted into the bag separator may be either a positive electrode plate or a negative electrode plate. There are both types of batteries in which the positive electrode plate is inserted into the bag separator and the negative electrode plate is inserted into the bag separator. . A battery of the type in which a positive electrode plate is inserted into a bag separator may break through the bag separator due to corrosion and deformation of the positive electrode plate when used at a high temperature. For this reason, a battery of a type in which a negative electrode plate is inserted into the separator is usually employed from the viewpoint of preventing breakage of the separator.

ところで、近年の自動車は、電装品が増加していることから、電池への負荷が大きくなっている。その結果、電池の放電量が多くなっている。電池の放電量の指標として、放電深度DOD(Depthof Discharge)がある。放電深度DODは、値が大きくなるほど、放電量が多くなることを示している。   By the way, in recent automobiles, since the number of electrical components has increased, the load on the battery has increased. As a result, the discharge amount of the battery is increased. As an index of the discharge amount of the battery, there is a discharge depth DOD (Depthof Discharge). The discharge depth DOD indicates that the discharge amount increases as the value increases.

DODが大きい状況下で電池を充放電すると、正極板において活物質同士の結びつきが弱くなる軟化現象が進行し、徐々に格子体から活物質が脱落していく。脱落した活物質は、電解液(希硫酸)中に浮遊し、やがて電池底部に沈殿する。電池底部に沈殿した活物質は、電池の充電により発生するガスによって、電解液中を極板群の上部にまで舞い上げられて、正極板及び負極板の上部に付着及び堆積する。その結果、電池の充放電を繰り返すと、活物質により極板群上部で短絡が引き起こされ、電池が短寿命となる問題があった。   When the battery is charged / discharged under a condition where the DOD is large, a softening phenomenon in which the connection between the active materials weakens in the positive electrode plate, and the active material gradually drops from the lattice. The dropped active material floats in the electrolytic solution (dilute sulfuric acid) and eventually settles at the bottom of the battery. The active material precipitated at the bottom of the battery is lifted up to the upper part of the electrode plate group by the gas generated by charging the battery, and adheres and deposits on the upper part of the positive electrode plate and the negative electrode plate. As a result, when charging / discharging of the battery was repeated, there was a problem that the active material caused a short circuit in the upper part of the electrode plate group, resulting in a short battery life.

そこで、このような問題を解決するべく、特許文献1には、正極板と袋セパレータに収納された負極板とを交互に積層してなる極板群を備えた鉛蓄電池において、極板群の外側に負極板と電気的に接続された脱落活物質捕捉用の電極部材を設けることが開示されている。これにより、正極板から脱落した活物質を、脱落活物質捕捉用の電極部材により捕捉することが可能となる。   Therefore, in order to solve such a problem, Patent Document 1 discloses a lead storage battery including an electrode plate group in which a positive electrode plate and a negative electrode plate accommodated in a bag separator are alternately stacked. It is disclosed that an electrode member for capturing a fallen active material electrically connected to a negative electrode plate is provided on the outside. As a result, the active material that has fallen off the positive electrode plate can be captured by the electrode member for capturing the dropped active material.

特開平8−130030号公報JP-A-8-130030

しかしながら、脱落した活物質が発生したガスにより舞い上げられる力は、負極板が脱落した正極活物質を捕捉する力より大きい。このため、特許文献1に記載された脱落活物質捕捉用の電極部材を設けても、脱落した活物質の捕捉漏れが発生する。これにより、袋セパレータに収納された負極板にも脱落した活物質が付着及び堆積して、極板群上部で短絡する可能性がある。   However, the force that is lifted by the gas generated by the dropped active material is greater than the force by which the negative electrode plate captures the dropped positive electrode active material. For this reason, even if the electrode member for capturing the fallen active material described in Patent Document 1 is provided, the fallen active material may be captured and leaked. Thereby, the fallen active material may adhere and accumulate also on the negative electrode plate accommodated in the bag separator, and a short circuit may occur in the upper part of the electrode plate group.

そこで、本発明は、脱落した活物質による極板群上部での短絡を抑制して、長寿命化を図ることができる鉛蓄電池を提供することを目的とする。   Then, an object of this invention is to provide the lead acid battery which can aim at the lifetime improvement by suppressing the short circuit in the electrode group upper part by the dropped active material.

本発明の一側面に係る鉛蓄電池は、セパレータを介して正極板と負極板とが交互に積層され、正極板及び負極板の集電部が極性毎にストラップに集合溶接された極板群を備える鉛蓄電池であって、正極板及び負極板は、それぞれ活物質が充填された充填部を有し、正極板の充填部の総表面積をS、正極板の充填部及び負極板の充填部の見かけ体積をVとした場合に、S/Vが3.95cm−1以上である。ここで、正極板の充填部及び負極板の充填部の見かけ体積とは、正極板の充填部と負極板の充填部とに囲まれる領域の体積であって、隣り合う充填部の間の空隙も含んだ見かけ上の体積である。正極板の充填部の総表面積とは、正極板の発電に寄与する部分の表面積の合計である。つまり、充填部の表裏面の表面積の合計に、極板群を構成する正極板の枚数を乗じた面積である。 A lead-acid battery according to one aspect of the present invention includes an electrode plate group in which positive and negative electrode plates are alternately stacked via separators, and current collectors of the positive and negative electrode plates are collectively welded to straps for each polarity. The positive electrode plate and the negative electrode plate each have a filling portion filled with an active material, the total surface area of the filling portion of the positive electrode plate is S, the filling portion of the positive electrode plate and the filling portion of the negative electrode plate When the apparent volume is V, S / V is 3.95 cm −1 or more. Here, the apparent volume of the filling portion of the positive electrode plate and the filling portion of the negative electrode plate is a volume of a region surrounded by the filling portion of the positive electrode plate and the filling portion of the negative electrode plate, and a gap between adjacent filling portions. It is an apparent volume including The total surface area of the filling portion of the positive electrode plate is the total surface area of the portions contributing to power generation of the positive electrode plate. That is, it is an area obtained by multiplying the total surface area of the front and back surfaces of the filling portion by the number of positive electrode plates constituting the electrode plate group.

S/Vを3.95cm−1以上とすることで、S/Vが3.95cm−1未満の場合と比べて、鉛蓄電池の充放電サイクルにおいて正極板の活物質の軟化の進行が抑制されると考えられる。このため、本発明の一側面に係る鉛蓄電池では、S/Vが3.95cm−1未満の場合と比べて、脱落した活物質による極板群上部での短絡が抑制されるため、充放電可能な回数が増え、鉛蓄電池の長寿命化を図ることができる。 By setting S / V to 3.95 cm −1 or more, the progress of softening of the active material of the positive electrode plate is suppressed in the charge / discharge cycle of the lead storage battery as compared with the case where S / V is less than 3.95 cm −1. It is thought. For this reason, in the lead acid battery which concerns on 1 side of this invention, since the short circuit in the electrode group upper part by the dropped active material is suppressed compared with the case where S / V is less than 3.95 cm < -1 >, charging / discharging The number of possible times increases, and the life of the lead-acid battery can be extended.

上記鉛蓄電池において、S/Vが4.20cm−1以上であってもよい。S/Vを4.20cm−1以上とすることで、更に鉛蓄電池の充放電サイクルにおいて正極板の活物質の軟化の進行が抑制されると考えられることから、更に鉛蓄電池の長寿命化を図ることができる。 In the above lead storage battery, S / V may be 4.20 cm −1 or more. Since it is considered that the progress of softening of the active material of the positive electrode plate is further suppressed in the charge / discharge cycle of the lead storage battery by setting S / V to 4.20 cm −1 or more, the life of the lead storage battery is further extended. Can be planned.

また、上記鉛蓄電池において、ストラップの合金組成が、鉛−アンチモン系であってもよい。ストラップの合金組成を鉛−アンチモン系とすることで、ストラップの合金組成が鉛−スズ系である場合に比べて、鉛蓄電池の充電特性が向上する。   In the lead storage battery, the alloy composition of the strap may be a lead-antimony system. By making the alloy composition of the strap lead-antimony, the charge characteristics of the lead-acid battery are improved as compared with the case where the alloy composition of the strap is lead-tin.

本発明によれば、脱落した活物質による極板群上部での短絡を抑制して、長寿命化を図ることができる。   According to the present invention, a short circuit at the upper part of the electrode plate group due to the dropped active material can be suppressed, and the life can be extended.

実施形態に係る鉛蓄電池の斜視図である。It is a perspective view of a lead acid battery concerning an embodiment. 図1に示す鉛蓄電池の内部構造を示す図である。It is a figure which shows the internal structure of the lead acid battery shown in FIG. 極板群を示す斜視図である。It is a perspective view which shows an electrode group. 正極板(負極板)を示す正面図である。It is a front view which shows a positive electrode plate (negative electrode plate). 図4のV−V線における断面図である。It is sectional drawing in the VV line of FIG. 鉛合金の格子体を示す正面図である。It is a front view which shows the lattice body of lead alloy. 微多孔性のポリエチレン製シートを示す正面図である。It is a front view which shows a microporous polyethylene sheet. 袋セパレータに負極板を入れる状態を示す図である。It is a figure which shows the state which puts a negative electrode plate in a bag separator. 電槽を示す斜視図である。It is a perspective view which shows a battery case. 実施例の実験結果を示す表である。It is a table | surface which shows the experimental result of an Example.

以下、図面を参照して、本発明の一側面に係る鉛蓄電池の好適な実施形態について詳細に説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。   Hereinafter, with reference to drawings, a suitable embodiment of a lead acid battery concerning one side of the present invention is described in detail. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

図1は、実施形態に係る鉛蓄電池の斜視図である。図2は、図1に示す鉛蓄電池の内部構造を示す図である。図1及び図2に示すように、本実施形態に係る鉛蓄電池1は、上面が開口して複数の極板群11が収納される電槽2と、電槽2の開口を閉じる蓋3と、を備えている。蓋3は、例えば、ポリプロピレン製となっており、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6と、を備えている。   FIG. 1 is a perspective view of a lead-acid battery according to an embodiment. FIG. 2 is a diagram showing an internal structure of the lead storage battery shown in FIG. As shown in FIGS. 1 and 2, the lead storage battery 1 according to this embodiment includes a battery case 2 in which an upper surface is opened and a plurality of electrode plate groups 11 are accommodated, and a lid 3 that closes the opening of the battery case 2. It is equipped with. The lid 3 is made of, for example, polypropylene, and includes a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.

図3は、極板群を示す斜視図である。図2及び図3に示すように、極板群11は、正極板12と、負極板13と、袋セパレータ14と、正極側ストラップ15と、負極側ストラップ16と、セル間接続部17又は極柱18と、を備えている。   FIG. 3 is a perspective view showing the electrode plate group. As shown in FIGS. 2 and 3, the electrode plate group 11 includes a positive electrode plate 12, a negative electrode plate 13, a bag separator 14, a positive electrode side strap 15, a negative electrode side strap 16, an inter-cell connection portion 17 or an electrode. And a pillar 18.

(正極板)
図4は、正極板(負極板)を示す正面図である。図5は、図4のV−V線における断面図である。図6は、鉛合金の格子体を示す正面図である。なお、図4〜図6において、カッコ書きした符号は、負極板の符号を示している。図4〜図6に示すように、正極板12は、鉛合金の格子体21と、格子体21の上部に接続されて耳部と呼ばれる集電部22と、格子体21に充填された活物質23と、を備えている。なお、正極板12の活物質23は、正極活物質ともいう。
(Positive electrode plate)
FIG. 4 is a front view showing a positive electrode plate (negative electrode plate). 5 is a cross-sectional view taken along line VV in FIG. FIG. 6 is a front view showing a lead alloy lattice. 4 to 6, the reference numerals in parentheses indicate the reference numerals of the negative electrode plates. As shown in FIGS. 4 to 6, the positive electrode plate 12 includes a lead alloy lattice body 21, a current collector 22 connected to an upper portion of the lattice body 21 and called an ear portion, and an active material filled in the lattice body 21. And a substance 23. The active material 23 of the positive electrode plate 12 is also referred to as a positive electrode active material.

格子体21は、充填される活物質23を保持するため、格子状に形成されている。格子体21としては、例えば、鉛合金シートに切れ目を入れ、この切れ目を拡開するように引き伸ばしたエキスパンド格子体、又は鋳造法により作製される格子体を用いることができる。なお、図面では、エキスパンド格子体の格子体21を示している。エキスパンド格子体の格子体21は、格子状の骨部21aと、骨部21aの上部に位置して直線状に延びる上枠骨21bと、を備えている。この場合、活物質23は、骨部21aに充填される。エキスパンド格子体の格子体21に用いられる鉛合金としては、例えば、鉛−カルシウム−スズ系の合金が挙げられる。鋳造法により作製される格子体21に用いられる鉛合金としては、例えば、鉛−カルシウム−スズ系、又は鉛−アンチモン−ヒ素系が挙げられる。格子体21の幅W1は、例えば、145mmとすることができる。格子体21の高さH1は、例えば、115mmとすることができる。格子体21の厚さは、例えば1.5mmとすることができる。   The lattice body 21 is formed in a lattice shape in order to hold the active material 23 to be filled. As the lattice body 21, for example, an expanded lattice body in which a slit is formed in a lead alloy sheet and the slit is expanded so as to be expanded, or a lattice body manufactured by a casting method can be used. In the drawing, an expanded lattice body 21 is shown. The lattice body 21 of the expanded lattice body includes a lattice-shaped bone portion 21a and an upper frame bone 21b that is positioned above the bone portion 21a and extends linearly. In this case, the active material 23 is filled in the bone part 21a. Examples of the lead alloy used for the lattice body 21 of the expanded lattice body include a lead-calcium-tin alloy. Examples of the lead alloy used for the lattice body 21 manufactured by the casting method include a lead-calcium-tin system or a lead-antimony-arsenic system. The width W1 of the lattice body 21 can be set to, for example, 145 mm. The height H1 of the lattice body 21 can be set to 115 mm, for example. The thickness of the lattice body 21 can be 1.5 mm, for example.

活物質23は、二酸化鉛で構成されている。活物質23の作製方法は、特に限定されるものではないが、例えば、次の方法により作製することができる。まず、ボールミル法によって作製した酸化度70%の鉛粉に、予め鉛丹を希硫酸と混合して反応させたスラリと、水及び希硫酸と、を加えて混練し、活物質ペーストを作製する。続いて、作製した活物質ペーストを、格子体21に充填し、常法により熟成及び乾燥させる。これにより、格子体21に充填された未化成の活物質23が得られる。   The active material 23 is composed of lead dioxide. Although the production method of the active material 23 is not particularly limited, for example, it can be produced by the following method. First, an active material paste is prepared by adding a slurry prepared by reacting lead oxide with dilute sulfuric acid, water and dilute sulfuric acid in advance to 70% oxidation degree lead powder produced by a ball mill method, and kneading them. . Subsequently, the produced active material paste is filled in the lattice body 21, and is aged and dried by a conventional method. Thereby, the unformed active material 23 with which the lattice body 21 was filled is obtained.

そして、正極板12のうち、活物質23が充填された部分が、充填部24(図4の点描部分(砂地状にハッチングした部分))となる。なお、充填部24は、正極板12の表裏面に形成される。通常、格子体21の全面に活物質が充填されるが、格子体21は必ずしも格子体21の全面に活物質が充填される必要は無く、格子体21の一部に活物質23が充填されない部分があってもよい。この場合、格子体21のうち活物質23が充填された部分のみが充填部24となり、格子体21のうち活物質23が充填されていない部分は充填部24から除外される。   And the part with which the active material 23 was filled among the positive electrode plates 12 becomes the filling part 24 (dotted part (part hatched in sandy shape) of FIG. 4). The filling portion 24 is formed on the front and back surfaces of the positive electrode plate 12. Usually, the entire surface of the lattice body 21 is filled with an active material. However, the lattice body 21 does not necessarily need to be filled with an active material, and the active material 23 is not partially filled with the active material 23. There may be parts. In this case, only the portion of the lattice body 21 that is filled with the active material 23 becomes the filling portion 24, and the portion of the lattice body 21 that is not filled with the active material 23 is excluded from the filling portion 24.

(負極板)
負極板13は、正極板12と同様に、鉛合金の格子体31と、格子体31の上部に接続されて耳部と呼ばれる集電部32と、格子体31に充填された活物質33と、を備えている。なお、負極板13の活物質33は、負極活物質ともいう。
(Negative electrode plate)
Similarly to the positive electrode plate 12, the negative electrode plate 13 includes a lead alloy lattice 31, a current collector 32 connected to the upper portion of the lattice 31 and called an ear portion, and an active material 33 filled in the lattice 31. It is equipped with. The active material 33 of the negative electrode plate 13 is also referred to as a negative electrode active material.

格子体31は、充填される活物質33を保持するため、格子状に形成されている。格子体31は、正極板12の格子体21と同じものであってもよく、異なるものであってもよい。格子体31が正極板12の格子体21と同様にエキスパンド格子体である場合、格子体31は、格子状の骨部31aと、骨部31aの上部に位置して直線状に延びる上枠骨31bと、を備えている。この場合、活物質33は、骨部31aに充填される。格子体31の幅W1は、例えば、145mmとすることができる。格子体31の高さH1は、例えば、115mmとすることができる。格子体31の厚さは、例えば1.3mmとすることができる。   The lattice body 31 is formed in a lattice shape to hold the active material 33 to be filled. The lattice body 31 may be the same as or different from the lattice body 21 of the positive electrode plate 12. When the lattice body 31 is an expanded lattice body similar to the lattice body 21 of the positive electrode plate 12, the lattice body 31 includes a lattice-shaped bone portion 31a and an upper frame bone that is positioned above the bone portion 31a and extends linearly. 31b. In this case, the active material 33 is filled in the bone portion 31a. The width W1 of the lattice body 31 can be set to, for example, 145 mm. The height H1 of the lattice body 31 can be set to 115 mm, for example. The thickness of the lattice body 31 can be set to 1.3 mm, for example.

活物質33は、多孔質の海綿状鉛(Spongy Lead)で構成されている。活物質33の作製方法は、特に限定されるものではないが、例えば、次の方法により作製することができる。まず、ボールミル法によって作製した酸化度70%の鉛粉に、添加剤として、炭素粉末、リグニン粉末及びバリウム化合物粉末を加え混合する。続いて、水及び希硫酸を加えて混練し、活物質ペーストを作製する。続いて、作製した活物質ペーストを、格子体31に充填し、常法により熟成及び乾燥させる。これにより、格子体31に充填された未化成の活物質33が得られる。   The active material 33 is composed of porous spongy lead. Although the production method of the active material 33 is not particularly limited, for example, it can be produced by the following method. First, carbon powder, lignin powder and barium compound powder are added and mixed as additives to lead powder having a degree of oxidation of 70% produced by the ball mill method. Subsequently, water and dilute sulfuric acid are added and kneaded to prepare an active material paste. Subsequently, the produced active material paste is filled in the lattice 31, and is aged and dried by a conventional method. As a result, an unformed active material 33 filled in the lattice 31 is obtained.

そして、負極板13のうち、活物質33が充填された部分が、充填部34(図4の点描部分(砂地状にハッチングした部分))となる。なお、充填部34の定義については、正極板12の充填部24と同様である。   And the part filled with the active material 33 among the negative electrode plates 13 becomes a filling part 34 (stipled part (part hatched in sand) in FIG. 4). The definition of the filling portion 34 is the same as that of the filling portion 24 of the positive electrode plate 12.

(袋セパレータ)
図2及び図3に示すように、袋セパレータ14は、正極板12と負極板13とを分離する機能を有する。また、袋セパレータ14は、電解液(希硫酸)が通過できるように微多孔性を有する。袋セパレータ14は、微多孔性の樹脂製シートにより作製される。袋セパレータ14に用いられる樹脂としては、例えば、ポリエチレンが挙げられる。
(Bag separator)
As shown in FIGS. 2 and 3, the bag separator 14 has a function of separating the positive electrode plate 12 and the negative electrode plate 13. Moreover, the bag separator 14 has microporosity so that electrolyte solution (dilute sulfuric acid) can pass through. The bag separator 14 is made of a microporous resin sheet. Examples of the resin used for the bag separator 14 include polyethylene.

図7は、袋セパレータの作製に用いるセパレータを示す正面図である。図8は、袋セパレータに負極板を入れる状態を示す図である。図7に示すように、袋セパレータ14の作製に用いるセパレータ41は、長尺のシート状に形成されている。袋セパレータ14は、セパレータ41を適切な長さに切断し、セパレータ41の長手方向に二つ折りにして重ね合せ、両側部をメカニカルシール、圧着又は熱溶着する。これにより、図8に示す袋セパレータ14が得られる。   FIG. 7 is a front view showing a separator used for producing a bag separator. FIG. 8 is a view showing a state in which the negative electrode plate is put into the bag separator. As shown in FIG. 7, the separator 41 used for producing the bag separator 14 is formed in a long sheet shape. The bag separator 14 is obtained by cutting the separator 41 into an appropriate length, folding the separator 41 in the longitudinal direction of the separator 41 and superimposing them, and mechanically sealing, press-bonding, or heat-welding both sides. Thereby, the bag separator 14 shown in FIG. 8 is obtained.

また、セパレータ41の幅方向中央部には、セパレータ41の長手方向に延びる8本のリブ42が形成されている。セパレータ41の幅方向におけるリブ42の両側には、セパレータ41の長手方向に延びる多数本のミニリブ43が形成されている。袋セパレータ14に加工した後には、セパレータ41の幅方向におけるミニリブ43の両側であるセパレータ41の幅方向両端部に、セパレータ41の長手方向に延びるメカニカルシール部45が形成される(図8参照)。なお、セパレータ41のリブ42、ミニリブ43及びメカニカルシール部45が形成されていない部分を、ベース部44という。リブ42は、隣接する正極板12との間に隙間を開ける機能を有する。ミニリブ43は、鉛蓄電池1が横方向に振動した際に、正極板12の角でセパレータ41を突き破って短絡するのを防止するために、セパレータ41の強度を向上させる機能を有する。メカニカルシール部45の代わりに又はメカニカルシール部45に加えて、二つ折りしたセパレータ41の両側部を圧着する圧着部、又は二つ折りしたセパレータ41の両側部を熱溶着する熱溶着部を設けてもよい。なお、ミニリブ43の高さ、幅、間隔は、何れもリブ42よりも小さい値となっている。ベース部44の厚さは、例えば、0.2mmとすることができる。リブ42の厚さは、例えば、0.6mmとすることができる。リブ42が形成された部分の袋セパレータ14の厚さは、例えば、0.8mmとすることができる。   In addition, eight ribs 42 extending in the longitudinal direction of the separator 41 are formed at the center of the separator 41 in the width direction. A large number of mini-ribs 43 extending in the longitudinal direction of the separator 41 are formed on both sides of the rib 42 in the width direction of the separator 41. After processing into the bag separator 14, mechanical seal portions 45 extending in the longitudinal direction of the separator 41 are formed at both ends in the width direction of the separator 41, which are both sides of the mini-rib 43 in the width direction of the separator 41 (see FIG. 8). . A portion of the separator 41 where the rib 42, the mini-rib 43, and the mechanical seal portion 45 are not formed is referred to as a base portion 44. The rib 42 has a function of opening a gap between the adjacent positive electrode plates 12. The mini-rib 43 has a function of improving the strength of the separator 41 in order to prevent the lead 41 from breaking through the separator 41 at the corner of the positive electrode plate 12 and short-circuiting when the lead storage battery 1 vibrates in the lateral direction. In place of or in addition to the mechanical seal portion 45, a crimping portion for crimping both sides of the folded separator 41 or a thermal welding portion for thermally welding both sides of the folded separator 41 may be provided. Good. Note that the height, width, and interval of the mini-ribs 43 are all smaller than that of the ribs 42. The thickness of the base part 44 can be 0.2 mm, for example. The thickness of the rib 42 can be 0.6 mm, for example. The thickness of the bag separator 14 where the ribs 42 are formed can be set to 0.8 mm, for example.

(極板群)
図3及び図8に示すように、負極板13は、袋セパレータ14に挿入されている。また、図2及び図3に示すように、極板群11は、負極板13が袋セパレータ14に挿入された状態で、セパレータ41を介して7枚の正極板12と8枚の負極板13とが交互に積層されている。なお、極板群11を構成する正極板12及び負極板13の枚数は、適宜変更してもよい。7枚の正極板12の集電部22は、正極側ストラップ15に集合溶接されており、8枚の負極板13の集電部32は、負極側ストラップ16に集合溶接されている。つまり、正極板12の集電部22及び負極板13の集電部32が、それぞれ極性毎に正極側ストラップ15及び負極側ストラップ16に集合溶接されている。正極側ストラップ15及び負極側ストラップ16には、それぞれセル間接続部17又は極柱18が接続されている。なお、極板群11が電槽2に収納された際に、最も正極側に配置される極板群11の正極側ストラップ15及び最も負極側に配置される極板群11の負極側ストラップ16に、極柱18が接続され、それ以外の正極側ストラップ15及び負極側ストラップ16に、セル間接続部17が接続される。正極側ストラップ15及び負極側ストラップ16は、集電部22又は集電部32との溶接性、強度及び耐酸性が要求される。正極側ストラップ15及び負極側ストラップ16の素材としては、例えば、鉛−アンチモン系合金、又は鉛−スズ系合金が用いられる。
(Plate group)
As shown in FIGS. 3 and 8, the negative electrode plate 13 is inserted into the bag separator 14. As shown in FIGS. 2 and 3, the electrode plate group 11 includes seven positive electrode plates 12 and eight negative electrode plates 13 through the separator 41 in a state where the negative electrode plate 13 is inserted into the bag separator 14. Are stacked alternately. The number of positive plates 12 and negative plates 13 constituting the electrode plate group 11 may be changed as appropriate. The current collectors 22 of the seven positive plates 12 are collectively welded to the positive side strap 15, and the current collectors 32 of the eight negative plates 13 are collectively welded to the negative side strap 16. That is, the current collector 22 of the positive electrode plate 12 and the current collector 32 of the negative electrode plate 13 are collectively welded to the positive side strap 15 and the negative side strap 16 for each polarity. An inter-cell connecting portion 17 or a pole column 18 is connected to the positive side strap 15 and the negative side strap 16, respectively. When the electrode plate group 11 is stored in the battery case 2, the positive electrode side strap 15 of the electrode plate group 11 arranged closest to the positive electrode side and the negative electrode side strap 16 of the electrode plate group 11 arranged closest to the negative electrode side. Further, the pole column 18 is connected, and the inter-cell connecting portion 17 is connected to the other positive side strap 15 and negative side strap 16. The positive side strap 15 and the negative side strap 16 are required to have weldability, strength and acid resistance with the current collector 22 or current collector 32. As a material of the positive side strap 15 and the negative side strap 16, for example, a lead-antimony alloy or a lead-tin alloy is used.

(電槽)
図9は、電槽を示す斜視図である。図9に示すように、電槽2の内部は、5枚の隔壁51によって6区画に分割されて、6つのセル室52が形成されている。セル室52は、極板群11が挿入される空間である。極板群11は、単電池とも呼ばれており、起電力は2Vである。自動車用の電装品は、直流電圧12Vを昇圧又は降圧して駆動するため、6個の極板群11を直列に接続して、2V×6=12Vとしている。そのため、鉛蓄電池1を自動車用の電装品として用いる場合、セル室52は6個必要となる。なお、鉛蓄電池1を他の用途で用いる場合は、セル室52は6個に限定されるものではない。
(Battery case)
FIG. 9 is a perspective view showing the battery case. As shown in FIG. 9, the inside of the battery case 2 is divided into six sections by five partition walls 51 to form six cell chambers 52. The cell chamber 52 is a space into which the electrode plate group 11 is inserted. The electrode plate group 11 is also called a single cell, and the electromotive force is 2V. Since the electrical equipment for automobiles is driven by stepping up or down the DC voltage 12V, the six electrode plate groups 11 are connected in series to make 2V × 6 = 12V. Therefore, when the lead storage battery 1 is used as an electrical component for automobiles, six cell chambers 52 are required. In addition, when using the lead storage battery 1 for another use, the cell chamber 52 is not limited to six pieces.

隔壁51の両側面と電槽2の隔壁51と対向する一対の内壁面とには、電槽2の高さ方向に延びるリブ53が設けられている。リブ53は、セル室52に挿入された極板群11を、正極板12及び負極板13の積層方向において適切に加圧(圧縮)する機能を有する。   Ribs 53 extending in the height direction of the battery case 2 are provided on both side surfaces of the partition wall 51 and a pair of inner wall surfaces facing the partition wall 51 of the battery case 2. The rib 53 has a function of appropriately pressing (compressing) the electrode plate group 11 inserted into the cell chamber 52 in the stacking direction of the positive electrode plate 12 and the negative electrode plate 13.

(電池の作製)
電槽2の各セル室52に、それぞれ極板群11を挿入する。このとき、極板群11は、隔壁51及び電槽2に設けられたリブ53により、正極板12及び負極板13の積層方向において適切に加圧(圧縮)された状態となる。そして、隣り合う極板群11の正極側ストラップ15のセル間接続部17と負極側ストラップ16のセル間接続部17とを、隔壁51に設けられた貫通孔(不図示)を通して隔壁貫通溶接方式により溶接する。なお、このようにセル間接続部17を隔壁貫通溶接方式により溶接することを、セル間接続するという。
(Production of battery)
The electrode plate group 11 is inserted into each cell chamber 52 of the battery case 2. At this time, the electrode plate group 11 is appropriately pressed (compressed) in the stacking direction of the positive electrode plate 12 and the negative electrode plate 13 by the ribs 53 provided in the partition wall 51 and the battery case 2. Then, the inter-cell connection part 17 of the positive electrode side strap 15 of the adjacent electrode plate group 11 and the inter-cell connection part 17 of the negative electrode side strap 16 are connected to each other through a through hole (not shown) provided in the partition wall 51. Weld by. In addition, welding the connection part 17 between cells by a partition wall penetration welding method in this way is called connection between cells.

続いて、電槽2に蓋3を熱溶着する。これにより、最も正極側に配置された極板群11の正極側ストラップ15に接続された極柱18を正極端子4に接続し、最も負極側に配置された極板群11の負極側ストラップ16に接続された極柱18を負極端子5に接続する。   Subsequently, the lid 3 is thermally welded to the battery case 2. Thereby, the pole 18 connected to the positive side strap 15 of the electrode plate group 11 arranged on the most positive electrode side is connected to the positive electrode terminal 4, and the negative electrode side strap 16 of the electrode plate group 11 arranged on the most negative electrode side. The pole 18 connected to is connected to the negative terminal 5.

続いて、各液口栓6を開栓して蓋3に設けられた各注液口から各セル室52に電解液である希硫酸を注液し、電槽化成する。電槽化成は、例えば、周囲温度40℃、電流25Aで20時間通電することにより行う。電槽化成後、電解液の液位を調整することで、鉛蓄電池1を得る。   Subsequently, each liquid port plug 6 is opened, and dilute sulfuric acid, which is an electrolytic solution, is injected into each cell chamber 52 from each liquid injection port provided in the lid 3 to form a battery case. The battery case formation is performed, for example, by energizing for 20 hours at an ambient temperature of 40 ° C. and a current of 25 A. After battery case formation, the lead acid battery 1 is obtained by adjusting the liquid level of electrolyte solution.

(正極板の充填部の総表面積・充填部の見かけ体積)
正極板12の充填部24の総表面積をSとし、正極板12の充填部24及び負極板13の充填部34の見かけ体積をVとした場合、S/Vが3.95cm−1以上となっている。この場合、S/Vが4.20cm−1以上であることが好ましい。
(Total surface area of the filling part of the positive electrode plate / apparent volume of the filling part)
When the total surface area of the filling portion 24 of the positive electrode plate 12 is S and the apparent volume of the filling portion 24 of the positive electrode plate 12 and the filling portion 34 of the negative electrode plate 13 is V, S / V is 3.95 cm −1 or more. ing. In this case, it is preferable that S / V is 4.20 cm −1 or more.

正極板12の充填部24の総表面積Sは、鉛蓄電池1の最小単位である単電池、すなわち1つのセル室52に挿入される極板群11において、正極板12の発電に寄与する部分の表面積の合計である。つまり、充填部24の表裏面の表面積の合計に、極板群11を構成する正極板12の枚数を乗じた値が、総表面積Sとなる。具体的に説明すると、図4に示すように、充填部24の幅を充填部幅Wとし、充填部24の高さを充填部高さHとし、極板群11における正極板12の枚数を正極板枚数Nとした場合、総表面積Sは、次の式(1)で表わされる。   The total surface area S of the filling portion 24 of the positive electrode plate 12 is a unit cell that is the minimum unit of the lead storage battery 1, that is, a portion that contributes to power generation of the positive electrode plate 12 in the electrode plate group 11 inserted into one cell chamber 52. Total surface area. That is, the total surface area S is a value obtained by multiplying the total surface area of the front and back surfaces of the filling portion 24 by the number of positive electrode plates 12 constituting the electrode plate group 11. More specifically, as shown in FIG. 4, the width of the filling portion 24 is the filling portion width W, the height of the filling portion 24 is the filling portion height H, and the number of the positive electrode plates 12 in the electrode plate group 11 is When the number of positive electrode plates is N, the total surface area S is expressed by the following equation (1).

総表面積S=(充填部幅W×充填部高さH)×2×正極板枚数N …(1)
正極板12の充填部24及び負極板13の充填部34の見かけ体積Vは、鉛蓄電池1の最小単位である単電池、すなわち1つのセル室52に挿入される極板群11のうち、発電に寄与する部分の見かけ体積である。つまり、見かけ体積とは、正極板12の充填部24と負極板13の充填部34とに囲まれる領域の体積であって、隣り合う充填部24の間の空隙も含んだ見かけ上の体積である。隣り合う正極板12と負極板13との間には、充填部24のない空間となっているが、この充填部のない空間も含めた領域の体積が、見かけ体積Vとなる。具体的に説明すると、図3及び図4に示すように、正極板12及び負極板13の積層方向における極板群11の厚さを極板群厚さDとした場合、見かけ体積Vは、次の式(2)で表わされる。
Total surface area S = (filling part width W × filling part height H) × 2 × number of positive electrode plates N (1)
The apparent volume V of the filling portion 24 of the positive electrode plate 12 and the filling portion 34 of the negative electrode plate 13 is a unit cell that is the smallest unit of the lead storage battery 1, that is, the electrode plate group 11 inserted into one cell chamber 52. It is the apparent volume of the part that contributes to. That is, the apparent volume is a volume of an area surrounded by the filling portion 24 of the positive electrode plate 12 and the filling portion 34 of the negative electrode plate 13, and is an apparent volume including a gap between adjacent filling portions 24. is there. Between the adjacent positive electrode plate 12 and negative electrode plate 13, there is a space without the filling portion 24, and the volume of the region including the space without the filling portion is an apparent volume V. Specifically, as shown in FIGS. 3 and 4, when the thickness of the electrode plate group 11 in the stacking direction of the positive electrode plate 12 and the negative electrode plate 13 is the electrode plate group thickness D, the apparent volume V is It is represented by the following formula (2).

見かけ体積V=充填部幅W×充填部高さH×極板群厚さD …(2)
S/Vの上限値は特に限定されないが、鉛蓄電池の実用上、S/Vの上限値は5.2cm−1が好ましく、4.9cm−1がより好ましく、4.5cm−1が更に好ましい。
Apparent volume V = filled portion width W × filled portion height H × electrode group thickness D (2)
The upper limit value of S / V is not particularly limited, but for practical use of lead-acid batteries, the upper limit value of S / V is preferably 5.2 cm −1 , more preferably 4.9 cm −1 , and even more preferably 4.5 cm −1. .

なお、正極板12の活物質23及び負極板13の活物質33の充填量を調整することで、正極板12及び負極板13の厚みを変えることができる。つまり、活物質ペーストの充填量を増やすと、極板の厚みが増え、活物質ペーストの充填量を減らすと、極板の厚みが減る。このため、正極板12の活物質23の充填量及び負極板13の活物質33の充填量を変えることで、S/Vを変えることができる。また、格子体21及び格子体31の厚み、セパレータ41の厚み、リブ42の高さ等を変えることによっても、S/Vを変えることができる。   In addition, the thickness of the positive electrode plate 12 and the negative electrode plate 13 can be changed by adjusting the filling amount of the active material 23 of the positive electrode plate 12 and the active material 33 of the negative electrode plate 13. That is, when the filling amount of the active material paste is increased, the thickness of the electrode plate is increased, and when the filling amount of the active material paste is decreased, the thickness of the electrode plate is reduced. For this reason, S / V can be changed by changing the filling amount of the active material 23 of the positive electrode plate 12 and the filling amount of the active material 33 of the negative electrode plate 13. The S / V can also be changed by changing the thickness of the grid body 21 and the grid body 31, the thickness of the separator 41, the height of the rib 42, and the like.

ここで、S/Vを3.95cm−1以上とすることで、S/Vが3.95cm−1未満の場合と比べて、鉛蓄電池1の充放電サイクルにおいて正極板12の活物質23の軟化の進行が抑制されると考えられる。このため、本実施形態に係る鉛蓄電池1によれば、S/Vが3.95cm−1未満の場合と比べて、脱落した活物質23による極板群11上部での短絡が抑制されるため、充放電可能な回数が増え、鉛蓄電池1の長寿命化を図ることができる。 Here, by setting S / V to 3.95 cm −1 or more, the S / V of the active material 23 of the positive electrode plate 12 in the charge / discharge cycle of the lead storage battery 1 is compared with the case where S / V is less than 3.95 cm −1 . It is considered that the progress of softening is suppressed. For this reason, according to the lead storage battery 1 which concerns on this embodiment, since the short circuit in the upper part of the electrode group 11 by the dropped active material 23 is suppressed compared with the case where S / V is less than 3.95 cm < -1 >. Thus, the number of times that charge / discharge can be increased, and the life of the lead storage battery 1 can be extended.

また、S/Vを4.20cm−1以上とすることで、鉛蓄電池1の充放電サイクルにおいて正極板12の活物質23の軟化の進行が更に抑制されると考えられることから、更に鉛蓄電池1の長寿命化を図ることができる。 Moreover, since it is thought that progress of softening of the active material 23 of the positive electrode plate 12 is further suppressed in the charge / discharge cycle of the lead storage battery 1 by setting S / V to 4.20 cm −1 or more, the lead storage battery is further increased. 1 can be extended in service life.

以上、本発明の一側面の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiments of one aspect of the present invention have been described above, but the present invention is not limited to the above embodiments.

次に、本発明の実施例について説明する。但し、本発明は次の実施例に限定されるものではない。   Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.

(実施例1)
正極板12の格子体21として、鉛−カルシウム−スズ系の合金シートに切れ目を入れ、この切れ目を拡開するように引き伸ばしたエキスパンド格子体を用いた。正極板12の格子体21は、幅W1を145mmとし、高さH1を115mmとし、厚さを1.5mmとした。そして、ボールミル法によって作製した酸化度70%の鉛粉に、予め鉛丹を希硫酸と混合して反応させたスラリと、水及び希硫酸と、を加えて混練し、活物質ペーストを作製した。続いて、作製した活物質ペーストを、格子体21に充填し、常法により熟成及び乾燥させた。これにより、格子体21に未化成の活物質23が充填された正極板12を得た。
Example 1
As the grid body 21 of the positive electrode plate 12, an expanded grid body was used in which a slit was formed in a lead-calcium-tin alloy sheet and the slit was widened. The grid body 21 of the positive electrode plate 12 had a width W1 of 145 mm, a height H1 of 115 mm, and a thickness of 1.5 mm. Then, an active material paste was prepared by adding slurry and water and diluted sulfuric acid, which was previously mixed with dilute sulfuric acid to lead powder of 70% oxidation degree produced by the ball mill method, and kneaded. . Subsequently, the produced active material paste was filled in the lattice body 21, and aged and dried by a conventional method. Thereby, the positive electrode plate 12 in which the lattice body 21 was filled with the unformed active material 23 was obtained.

負極板13の格子体31として、鉛−カルシウム−スズ系の合金シートに切れ目を入れ、この切れ目を拡開するように引き伸ばしたエキスパンド格子体を用いた。負極板13の格子体31は、幅W1を145mmとし、高さH1を115mmとし、厚さを1.3mmとした。そして、ボールミル法によって作製した酸化度70%の鉛粉に、添加剤として、炭素粉末、リグニン粉末及びバリウム化合物粉末を加え混合した。続いて、水及び希硫酸を加えて混練し、活物質ペーストを作製した。続いて、作製した活物質ペーストを、格子体31に充填し、常法により熟成及び乾燥させた。これにより、格子体31に未化成の活物質33が充填された負極板13を得た。   As the grid 31 of the negative electrode plate 13, an expanded grid was used in which a cut was made in a lead-calcium-tin alloy sheet and the cut was expanded. The grid 31 of the negative electrode plate 13 had a width W1 of 145 mm, a height H1 of 115 mm, and a thickness of 1.3 mm. Then, carbon powder, lignin powder and barium compound powder were added and mixed as additives to lead powder having a degree of oxidation of 70% produced by the ball mill method. Subsequently, water and dilute sulfuric acid were added and kneaded to prepare an active material paste. Subsequently, the prepared active material paste was filled in the lattice 31, and aged and dried by a conventional method. As a result, the negative electrode plate 13 in which the lattice body 31 was filled with the unformed active material 33 was obtained.

袋セパレータ14を構成するセパレータ41は、ベース部44の厚さを0.2mmとし、リブ42の厚さを0.6mmとし、リブ42が形成された部分の袋セパレータ14の厚さを0.8mmとした。   In the separator 41 constituting the bag separator 14, the thickness of the base portion 44 is set to 0.2 mm, the thickness of the rib 42 is set to 0.6 mm, and the thickness of the bag separator 14 in the portion where the rib 42 is formed is set to 0. It was 8 mm.

正極側ストラップ15及び負極側ストラップ16としては、合金組成がPb−3質量%Sbとなる鉛−アンチモン系合金を用いた。   As the positive electrode side strap 15 and the negative electrode side strap 16, a lead-antimony alloy having an alloy composition of Pb-3 mass% Sb was used.

そして、袋セパレータ14に負極板13を挿入し、7枚の正極板12と8枚の負極板13とをセパレータ41を介して交互に積層し、正極板12の集電部22及び負極板13の集電部32を極性毎に正極側ストラップ15及び負極側ストラップ16に集合溶接して、極板群11を得た。   Then, the negative electrode plate 13 is inserted into the bag separator 14, and the seven positive electrode plates 12 and the eight negative electrode plates 13 are alternately stacked via the separator 41, and the current collector 22 and the negative electrode plate 13 of the positive electrode plate 12. The current collector 32 was collectively welded to the positive side strap 15 and the negative side strap 16 for each polarity to obtain the electrode plate group 11.

電槽2の6つのセル室52に、それぞれ極板群11を挿入し、セル間接続して、電槽2に蓋3を熱溶着した。その後、各液口栓6を開栓して蓋3に設けられた各注液口から各セルに希硫酸を注液し、周囲温度40℃、電流25Aで20時間通電することにより電槽化成を行い、JISD5301規定の85D23形電池を作製した。   The electrode plate group 11 was inserted into each of the six cell chambers 52 of the battery case 2 and connected between the cells, and the lid 3 was thermally welded to the battery case 2. Thereafter, each liquid stopper 6 is opened, diluted sulfuric acid is injected into each cell from each liquid inlet provided in the lid 3, and energized for 20 hours at an ambient temperature of 40 ° C. and a current of 25 A. The 85D23 type battery of JISD5301 regulation was produced.

そして、実施例1では、正極板12の活物質23及び負極板13の活物質33の充填量を調整することで、充填部幅Wを14.5cm、充填部高さHを11cm、極板群厚さDを3.35cmとし、総表面積S及び見かけ体積Vを以下の通りとした。   In Example 1, by adjusting the filling amount of the active material 23 of the positive electrode plate 12 and the active material 33 of the negative electrode plate 13, the filling part width W is 14.5 cm, the filling part height H is 11 cm, and the electrode plate The group thickness D was 3.35 cm, and the total surface area S and the apparent volume V were as follows.

総表面積S=(14.5×11)×2×7=2233[cm
見かけ体積V=14.5×11×3.55≒566[cm
従って、実施例1では、S/Vが3.95cm−1となった。
Total surface area S = (14.5 × 11) × 2 × 7 = 2233 [cm 2 ]
Apparent volume V = 14.5 × 11 × 3.55≈566 [cm 3 ]
Therefore, in Example 1, S / V was 3.95 cm −1 .

(実施例2)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを4.00cm−1とした以外は、実施例1と同様にして電池を作製した。
(Example 2)
A battery was prepared in the same manner as in Example 1 except that the S / V was 4.00 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(実施例3)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを4.10cm−1とした以外は、実施例1と同様にして電池を作製した。
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that the S / V was changed to 4.10 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(実施例4)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを4.20cm−1とした以外は、実施例1と同様にして電池を作製した。
Example 4
A battery was prepared in the same manner as in Example 1 except that the S / V was changed to 4.20 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(実施例5)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを4.30cm−1とした以外は、実施例1と同様にして電池を作製した。
(Example 5)
The battery was fabricated in the same manner as in Example 1 except that the S / V was changed to 4.30 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(実施例6)
正極側ストラップ15及び負極側ストラップ16として、合金組成がPb−3質量%Snとなる鉛−スズ系合金を用い、正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを4.10cm−1とした他は、実施例1と同様にして電池を作製した。
(Example 6)
As the positive side strap 15 and the negative side strap 16, a lead-tin alloy having an alloy composition of Pb-3 mass% Sn is used, and the filling amount of the active material 23 of the positive plate 12 and the filling of the active material 33 of the negative plate 13 are used. A battery was fabricated in the same manner as in Example 1 except that the S / V was adjusted to 4.10 cm −1 by adjusting the amount.

(比較例1)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを3.85cm−1とした以外は、実施例1と同様にして電池を作製した。
(Comparative Example 1)
The battery was fabricated in the same manner as in Example 1 except that the S / V was set to 3.85 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(比較例2)
正極板12の活物質23の充填量及び負極板13の活物質33の充填量を調整することで、S/Vを3.90cm−1とした以外は、実施例1と同様にして電池を作製した。
(Comparative Example 2)
The battery was fabricated in the same manner as in Example 1 except that the S / V was 3.90 cm −1 by adjusting the filling amount of the active material 23 in the positive electrode plate 12 and the filling amount of the active material 33 in the negative electrode plate 13. Produced.

(寿命性能の評価試験)
実施例1〜6及び比較例1〜2の電池に、JISD5301規定の軽負荷寿命試験を実施した。軽負荷寿命試験では、周囲温度75℃で、(1)電流25Aで4分放電、(2)定電圧14.8V、制限電流25Aで、10分間定電圧充電し、(1)と(2)とを1サイクルとして充放電を繰り返す試験である。なお、JIS規定は周囲温度40℃であるが、近年の自動車のエンジンルーム過密化による電池の高温環境を加味し、温度条件を厳しくした。
(Evaluation test for life performance)
The batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were subjected to a light load life test specified in JIS D5301. In the light load life test, at an ambient temperature of 75 ° C., (1) discharge at a current of 25 A for 4 minutes, (2) charge at a constant voltage of 14.8 V and a limit current of 25 A for 10 minutes, and (1) and (2) Is a test in which charging and discharging are repeated in one cycle. Although the JIS standard is an ambient temperature of 40 ° C., the temperature conditions have been made stricter in consideration of the high temperature environment of the battery due to the overcrowding of engine rooms of automobiles in recent years.

試験中、480サイクルごとに56時間放置し、その後、定格コールドクランキング電流で30秒間放電し、30秒目の電圧を記録した。電池の寿命サイクル数は、この30秒目の電圧が7.2V以下となり、その480サイクル後の定格コールドクランキング電流放電で再び電圧が7.2Vを越えないことを確認したときのサイクル数とした。   During the test, the sample was left for 56 hours every 480 cycles, and then discharged for 30 seconds at the rated cold cranking current, and the voltage at 30 seconds was recorded. The battery life cycle number is the number of cycles when the voltage at 30 seconds is 7.2 V or less, and it is confirmed that the voltage does not exceed 7.2 V again by rated cold cranking current discharge after 480 cycles. did.

(充電性能の評価試験)
実施例1〜6及び比較例1〜2の電池について、周囲温度25℃において5時間率電流(10.4A)で30分放電した。その後、定電圧14V、制限電流100Aで充電した際の充電開始後5秒目の電流値を計測し、この計測値で充電性能を評価した。
(Charge performance evaluation test)
The batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were discharged at a 5-hour rate current (10.4 A) for 30 minutes at an ambient temperature of 25 ° C. Thereafter, a current value at 5 seconds after the start of charging when charging was performed with a constant voltage of 14 V and a limiting current of 100 A was measured, and the charging performance was evaluated based on the measured values.

実施例1〜6及び比較例1〜2の試験結果を表1に示し、実施例1〜5及び比較例1〜2の試験結果を図10に示す。表1及び図10に示す寿命サイクル数及び充電性能評価は、実施例1を100とした場合の相対評価とした。なお、図10において、横軸は、S/V(cm−1)を表しており、縦軸は、寿命サイクル数を表している。 The test results of Examples 1-6 and Comparative Examples 1-2 are shown in Table 1, and the test results of Examples 1-5 and Comparative Examples 1-2 are shown in FIG. The life cycle number and charging performance evaluation shown in Table 1 and FIG. 10 were relative evaluations when Example 1 was set to 100. In FIG. 10, the horizontal axis represents S / V (cm −1 ), and the vertical axis represents the number of life cycles.

表1及び図10に示すように、S/Vが3.95cm−1以上となる実施例1〜5は、S/Vが3.95cm−1未満となる比較例1〜2に比べて、寿命性能が大幅に向上した。更に、実施例の中でも、S/Vが4.20cm−1以上となる実施例4〜5は、S/Vが4.20cm−1未満となる実施例1〜3に比べて、寿命性能が向上した。 As shown in Table 1 and Figure 10, Examples 1 to 5 S / V is 3.95Cm -1 or more, compared to Comparative Examples 1-2 to S / V is less than 3.95Cm -1, The life performance has been greatly improved. Further, among the examples, Examples 4 to 5 in which S / V is 4.20 cm −1 or more have a life performance that is higher than those in Examples 1 to 3 in which S / V is less than 4.20 cm −1. Improved.

また、実施例1〜5は、ストラップを構成する合金を鉛−アンチモン系合金(Pb−3質量%Sb)とすることにより、実施例6に比べて充電性能も向上した。   Further, in Examples 1 to 5, the charging performance was improved as compared with Example 6 by using a lead-antimony alloy (Pb-3 mass% Sb) as an alloy constituting the strap.

1…鉛蓄電池、11…極板群、12…正極板、13…負極板、14…袋セパレータ、41…セパレータ、15…正極側ストラップ(ストラップ)、16…負極側ストラップ(ストラップ)、22…集電部、23…活物質、24…充填部、32…集電部、33…活物質、34…充填部、45…メカニカルシール部。
DESCRIPTION OF SYMBOLS 1 ... Lead acid battery, 11 ... Electrode plate group, 12 ... Positive electrode plate, 13 ... Negative electrode plate, 14 ... Bag separator, 41 ... Separator, 15 ... Positive electrode side strap (strap), 16 ... Negative electrode side strap (strap), 22 ... Current collecting part, 23 ... active material, 24 ... filling part, 32 ... current collecting part, 33 ... active material, 34 ... filling part, 45 ... mechanical seal part.

Claims (1)

セパレータを介して正極板と負極板とが交互に積層され、前記正極板及び前記負極板の集電部が極性毎にストラップに集合溶接された極板群を備える鉛蓄電池であって、
前記正極板及び前記負極板は、それぞれ活物質が充填された充填部を有し、
前記ストラップの合金組成が、鉛−アンチモン系であり、
前記正極板の前記充填部の総表面積をS、前記正極板の前記充填部及び前記負極板の前記充填部の見かけ体積をVとした場合に、S/Vが3.95cm−1以上4.00cm−1以下である、
鉛蓄電池。
A lead-acid battery comprising an electrode plate group in which positive and negative electrode plates are alternately stacked via a separator, and the current collectors of the positive electrode plate and the negative electrode plate are collectively welded to a strap for each polarity,
The positive electrode plate and the negative electrode plate each have a filling part filled with an active material,
The alloy composition of the strap is a lead-antimony system,
S / V is 3.95 cm −1 or more, where S is the total surface area of the filling portion of the positive electrode plate and V is the apparent volume of the filling portion of the positive electrode plate and the filling portion of the negative electrode plate. 00 cm −1 or less,
Lead acid battery.
JP2018060421A 2018-03-27 2018-03-27 Lead acid battery Active JP6497460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018060421A JP6497460B2 (en) 2018-03-27 2018-03-27 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060421A JP6497460B2 (en) 2018-03-27 2018-03-27 Lead acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014108059A Division JP6318852B2 (en) 2014-05-26 2014-05-26 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2018092959A true JP2018092959A (en) 2018-06-14
JP6497460B2 JP6497460B2 (en) 2019-04-10

Family

ID=62566356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060421A Active JP6497460B2 (en) 2018-03-27 2018-03-27 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6497460B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326963A (en) * 1986-06-27 1988-02-04 ホーカー・エナージー・プロダクツ・インコーポレーテッド Air-tight high efficiency lead battery with extra-thin electrode plate
JP2000315519A (en) * 1999-04-30 2000-11-14 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2007026753A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Lead-acid battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2011233390A (en) * 2010-04-28 2011-11-17 Panasonic Corp Control valve type lead-acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326963A (en) * 1986-06-27 1988-02-04 ホーカー・エナージー・プロダクツ・インコーポレーテッド Air-tight high efficiency lead battery with extra-thin electrode plate
JP2000315519A (en) * 1999-04-30 2000-11-14 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2007026753A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Lead-acid battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2011233390A (en) * 2010-04-28 2011-11-17 Panasonic Corp Control valve type lead-acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery

Also Published As

Publication number Publication date
JP6497460B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6844610B2 (en) Lead-acid battery
WO2016038786A1 (en) Lead acid storage battery
JP2008171701A (en) Lead acid storage battery
JP6318852B2 (en) Lead acid battery
JP2009104914A (en) Lead-acid battery
JP6388094B1 (en) Lead acid battery
JP6497460B2 (en) Lead acid battery
JP6398111B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP6582386B2 (en) Lead acid battery
JP2003346767A (en) Separator for storage battery and lead acid storage battery using the same
JP6572711B2 (en) Lead acid battery
JP2000251923A (en) Rectangular storage battery
JP2000348758A (en) Sealed lead-acid battery
JP6778388B2 (en) Lead-acid battery
JP7185977B2 (en) lead acid battery
JP6791326B2 (en) Lead-acid battery
CN210866405U (en) Lead-acid battery
JP6665426B2 (en) Lead storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JPWO2015159478A1 (en) Lead acid battery
JP2022123148A (en) lead acid battery
JPH10149807A (en) Assembled battery
JP2018170303A (en) Lead-acid battery
JP2019102364A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250