JP2018091806A - Vent flow rate measurement system of reactor containment vessel - Google Patents

Vent flow rate measurement system of reactor containment vessel Download PDF

Info

Publication number
JP2018091806A
JP2018091806A JP2016237440A JP2016237440A JP2018091806A JP 2018091806 A JP2018091806 A JP 2018091806A JP 2016237440 A JP2016237440 A JP 2016237440A JP 2016237440 A JP2016237440 A JP 2016237440A JP 2018091806 A JP2018091806 A JP 2018091806A
Authority
JP
Japan
Prior art keywords
pressure
flow rate
vent
containment vessel
reactor containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016237440A
Other languages
Japanese (ja)
Other versions
JP6670229B2 (en
Inventor
有紀子 串間
Yukiko Kushima
有紀子 串間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016237440A priority Critical patent/JP6670229B2/en
Publication of JP2018091806A publication Critical patent/JP2018091806A/en
Application granted granted Critical
Publication of JP6670229B2 publication Critical patent/JP6670229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a flow rate without increasing a pressure loss in a piping system and to estimate an emitted radiation while venting a reactor containment vessel.SOLUTION: In order to solve the problem, a vent flow rate measurement system of a reactor containment vessel according to the present invention includes: a vent tube pressure gauge connected to the midpoint of a vent tube connected to the reactor containment vessel and measuring a pressure inside the vent tube; a pressure suppression room pressure gauge for measuring the pressure of a pressure suppression room of the reactor containment vessel; a pressure-mass flow rate converter for converting the pressure into a mass flow rate corresponding to the pressure inside the pressure suppression room measured by a pressure suppression room pressure gauge based on an already integrated pressure-mass flow rate graph; and a computing unit for outputting the mass flow rate obtained based on vapor density and the mass flow rate from the pressure-mass flow rate converter.SELECTED DRAWING: Figure 2

Description

本発明は原子炉格納容器のベント流量計測システムに係り、特に、格納容器ベント時の放出放射能を推定するためにベント流量を測定するものに好適な原子炉格納容器のベント流量計測システムに関する。   The present invention relates to a vent flow measurement system for a containment vessel, and more particularly to a vent flow measurement system for a containment vessel suitable for measuring a vent flow rate in order to estimate a released radioactivity during venting of the containment vessel.

原子炉プラントに設置されている原子炉格納容器のベント流量計測システムの主な目的は、原子炉格納容器内の圧力が、例えば全交流電源喪失等の重大事故時に設計圧力以上に高まった場合、原子炉格納容器の破損を防止するために内部の圧力を開放し、原子炉格納容器を減圧すること、及び上記重大事故時に原子炉格納容器内に放出、蓄積された原子炉冷却材を蒸気として原子炉格納容器外に排出し、原子炉停止後の炉心崩壊熱を除去することである。   The main purpose of the reactor containment vent flow measurement system installed in the reactor plant is when the pressure in the reactor containment rises above the design pressure in the event of a major accident such as the loss of all AC power, In order to prevent damage to the reactor containment vessel, the internal pressure is released, the reactor containment vessel is depressurized, and the reactor coolant discharged and accumulated in the reactor containment vessel at the time of the serious accident is used as steam. It is to discharge outside the reactor containment vessel and remove the core decay heat after the reactor shutdown.

以上のような重大事故時のベントシステム自体の機能を監視するため、原子炉格納容器のベント流量計測システムには、原子炉格納容器に接続されているベント配管上に、ベント配管内の圧力を計測する圧力計が設置されており、この圧力計でベント配管内の圧力を監視することで原子炉格納容器の減圧が確実に行われているか確認できる構成となっている。   In order to monitor the functions of the vent system itself in the event of a serious accident as described above, the vent flow measurement system of the containment vessel has a pressure in the vent pipe on the vent pipe connected to the containment vessel. A pressure gauge for measurement is installed, and the pressure inside the vent pipe is monitored by this pressure gauge, so that it can be confirmed whether or not the reactor containment vessel has been depressurized reliably.

ここで重要なのは、原子炉格納容器のベント流量計測システムは、炉心損傷を伴う重大事故時に使用される可能性があることである。即ち、炉心損傷時には、原子炉格納容器のベント流量計測システムを通して放射性物質を含む蒸気を原子炉格納容器外に放出することになるため、格納容器ベント時の放出放射能を推定するために、モニタによる計測放射能とベント流量を測定する必要があり、原子炉格納容器のベント流量計測システムが用いられる。   Importantly, the reactor containment vent flow measurement system may be used in the event of a serious accident involving core damage. That is, when the reactor core is damaged, steam containing radioactive material is released outside the reactor containment vessel through the vent flow measurement system of the reactor containment vessel. Therefore, in order to estimate the released radioactivity at the containment vessel vent, It is necessary to measure the measured radioactivity and vent flow rate, and the vent flow measurement system of the containment vessel is used.

通常、原子炉格納容器のベントシステムには、動的に流量を調節する設備は設置されていないため、原子炉格納容器のベントシステムを流れる蒸気は、原子炉停止後の炉心崩壊熱相当の流量となる。従って、原子炉格納容器の減圧と共に蒸気の物性が変化することと、時間と共に炉心崩壊熱が減衰するに伴い蒸気流量が変化するのが特徴である。   Normally, the reactor containment vent system is not equipped with equipment that dynamically adjusts the flow rate, so the steam flowing through the containment vent system has a flow rate equivalent to the core collapse heat after the reactor shutdown. It becomes. Therefore, the physical properties of the steam change with the depressurization of the reactor containment vessel, and the steam flow rate changes as the core decay heat attenuates with time.

このように物性値が変化する流体の流量測定には、通常、差圧式の流量計が用いられる。差圧式流量計は、流量計エレメントとしてオリフィスプレートやフローノズルを用いるため、配管システム内に組み込んだ際に圧力損失を生じる。   A differential pressure type flow meter is usually used for measuring the flow rate of a fluid whose physical property value changes in this way. Since the differential pressure type flow meter uses an orifice plate or a flow nozzle as a flow meter element, a pressure loss occurs when it is incorporated in a piping system.

ここで、図1を用いて配管システムにおける差圧式流量計測システムの基本構造及び作動原理を説明する。   Here, the basic structure and operation principle of the differential pressure type flow rate measurement system in the piping system will be described with reference to FIG.

図1において、配管2には、流量計オリフィス3と導圧管5a及び5bが設置されている。導圧管5a及び5bは、配管2内の流体流れ1に対して流量計オリフィス3の上流側及び下流側に元弁4と三岐弁6を介して設置されており、流量計オリフィス3の上流側と下流側の圧力を差圧伝送器7に伝えている。差圧伝送器7からの出力は、開平演算器8に入力され、開平演算器8で差圧データによる流体密度及び流量計オリフィス3の開口面積を用いて開平演算されることにより流量信号9に変換される。   In FIG. 1, a pipe 2 is provided with a flow meter orifice 3 and pressure guiding pipes 5 a and 5 b. The pressure guiding pipes 5 a and 5 b are installed on the upstream side and downstream side of the flow meter orifice 3 with respect to the fluid flow 1 in the pipe 2 via the main valve 4 and the three-way valve 6, and upstream of the flow meter orifice 3. The pressure on the side and the downstream side is transmitted to the differential pressure transmitter 7. The output from the differential pressure transmitter 7 is input to the square root calculator 8, and the square root calculator 8 uses the fluid density based on the differential pressure data and the opening area of the flow meter orifice 3 to calculate the flow rate signal 9. Converted.

ここで重要なのは、上記した配管システムにおける差圧式流量計測システムでは、流量計オリフィス3は、配管システムにおいて流体抵抗となるため、流量計オリフィス3を設置することで、配管システムの圧力損失が増加することである。   What is important here is that in the differential pressure type flow rate measurement system in the above-described piping system, the flowmeter orifice 3 becomes a fluid resistance in the piping system, so that the pressure loss of the piping system increases by installing the flowmeter orifice 3. That is.

また、配管システムにおける差圧式流量計に関しては、例えば、特許文献1に記載されたものがある。   Moreover, regarding the differential pressure type flow meter in the piping system, for example, there is one described in Patent Document 1.

この特許文献1には、流量を測定する配管の流れ方向の2個所に設置した圧力検出装置における圧力を検出し、両者の差圧から流量を求める差圧式流量計、つまり、オリフィス、ノズル、ベンチュリー管などの絞り部を挿入し、この絞り部の前後で生じる圧力差(差圧)を測定し、この測定した差圧から流量を高精度で測定できる差圧式流量計を得るために、2つの圧力検出装置のそれぞれに歪ゲージやピエゾ素子のような圧力検出手段を接続し、各圧力検出手段に加わる流体の圧力を均等化する導通路を設けると共に、この均等化された圧力に基づいて各圧力検出手段からの検出値を調整する計測制御装置を設けた構成が記載されている。   This Patent Document 1 discloses a differential pressure type flow meter that detects pressures in pressure detection devices installed at two locations in the flow direction of a pipe for measuring a flow rate and obtains a flow rate from the differential pressure between them, that is, an orifice, a nozzle, a venturi. In order to obtain a differential pressure type flow meter that can measure the pressure difference (differential pressure) generated before and after the throttle part by inserting a throttle part such as a pipe and can measure the flow rate with high accuracy from the measured differential pressure, Pressure detecting means such as strain gauges and piezo elements are connected to each of the pressure detecting devices, and a conduction path for equalizing the pressure of the fluid applied to each pressure detecting means is provided, and each of the pressure detecting devices is based on the equalized pressure. A configuration is described in which a measurement control device for adjusting a detection value from the pressure detection means is provided.

特開2000−283810号公報JP 2000-283810 A

ところで、原子炉格納容器のベント流量計測システムは、原子炉格納容器の減圧及び炉心崩壊熱の除熱に必要な流量以上を排出可能なシステムとする必要があるため、ある流量に対する配管システムの圧力損失の上限値は決まっている。   By the way, the vent flow measurement system of the containment vessel needs to be a system that can discharge more than the flow rate necessary for depressurization of the containment vessel and heat removal from the core decay heat. The upper limit of loss is fixed.

従って、原子炉格納容器のベント流量計測システムに上述したような流量計オリフィス或いは特許文献1のようなオリフィス、ノズル、ベンチュリー管などの絞り部を組み込んだ場合は、流量計オリフィスや絞り部が流体抵抗となるため、配管システムの流量が低下してしまい、結局、流体抵抗となりうる流量計オリフィスや絞り部の設置は、原子炉格納容器のベントシステムの性能を低下させることになる。   Therefore, when a flow meter orifice as described above or a throttle part such as an orifice, nozzle, or venturi tube as described in Patent Document 1 is incorporated in the vent flow measurement system of the reactor containment vessel, the flow meter orifice or the throttle part is a fluid. As a result, the flow rate of the piping system decreases, and eventually the installation of a flow meter orifice or a throttle that can become a fluid resistance reduces the performance of the reactor containment vent system.

本発明は上述の点に鑑みなされたもので、その目的とするところは、配管システム内の圧力損失を増加させることなく流量測定ができ、格納容器ベント時の放出放射能の推定が可能な原子炉格納容器のベント流量計測システムを提供することある。   The present invention has been made in view of the above-described points, and an object of the present invention is to be able to measure the flow rate without increasing the pressure loss in the piping system and to estimate the released radioactivity at the time of venting the containment vessel. To provide a vent flow measurement system for a containment vessel.

本発明の原子炉格納容器のベント流量計測システムは、上記目的を達成するために、炉心を内蔵する原子炉圧力容器を収納すると共に、圧力抑制室を備えた原子炉格納容器のベント流量を計測するシステムであって、前記原子炉格納容器に接続されているベント配管の途中に接続され、前記ベント配管内の圧力を測定するベント配管圧力計と、前記原子炉格納容器の前記圧力抑制室内の圧力を測定する圧力抑制室圧力計と、予め組み込まれた圧力−質量流量グラフに基づいて前記圧力抑制室圧力計で測定された前記圧力抑制室内の圧力に対応する質量流量に変換する圧力−質量流量変換器と、予め組み込まれた飽和蒸気表に基づいて前記ベント配管圧力計で測定された前記ベント配管内の圧力に対応する蒸気密度に変換すると共に、前記蒸気密度と前記圧力−質量流量変換器からの質量流量に基づいて得られた体積流量を出力する演算器とを備えていることを特徴とする。   In order to achieve the above object, the reactor containment vessel vent flow rate measurement system of the present invention houses a reactor pressure vessel containing a core and measures the vent flow rate of a reactor containment vessel equipped with a pressure suppression chamber. A vent pipe pressure gauge that is connected in the middle of the vent pipe connected to the reactor containment vessel and measures the pressure in the vent pipe, and the pressure containment chamber in the reactor containment vessel Pressure-mass to be converted into a mass flow corresponding to the pressure in the pressure suppression chamber measured by the pressure suppression chamber pressure gauge based on a pressure-mass flow rate graph built in advance and a pressure-mass flow graph incorporated in advance The steam is converted into a steam density corresponding to the pressure in the vent pipe measured by the vent pipe pressure gauge based on a flow rate converter and a saturated steam table incorporated in advance, and the steam Characterized in that it comprises a mass flow transducer outputs the volumetric flow rate obtained based on the mass flow rate from the calculator - degrees and the pressure.

本発明によれば、配管システム内の圧力損失を増加させることなく流量測定ができ、格納容器ベント時の放出放射能の推定が可能となる。   According to the present invention, the flow rate can be measured without increasing the pressure loss in the piping system, and the released radioactivity at the time of venting the containment vessel can be estimated.

従来の差圧式流量測定システムの基本構成及び作動原理を説明するための図である。It is a figure for demonstrating the basic composition and operating principle of the conventional differential pressure type flow measurement system. 本発明の原子炉格納容器のベント流量計測システムの実施例1を示す概略構成図である。It is a schematic block diagram which shows Example 1 of the vent flow volume measuring system of the reactor containment vessel of this invention. 本発明の原子炉格納容器のベント流量計測システムの実施例2を示す概略構成図である。It is a schematic block diagram which shows Example 2 of the vent flow volume measuring system of the reactor containment vessel of this invention.

以下、図示した実施例に基づいて本発明の原子炉格納容器のベント流量計測システムを説明する。なお、各実施例において、同一構成部品には同符号を使用する。   Hereinafter, the vent flow rate measuring system for a reactor containment vessel according to the present invention will be described based on the illustrated embodiment. In addition, in each Example, the same code | symbol is used for the same component.

図2に、本発明の原子炉格納容器のベント流量計測システムの実施例1を示す。   FIG. 2 shows a first embodiment of a vent flow measurement system for a reactor containment vessel according to the present invention.

該図に示すように、本実施例の原子炉格納容器のベント流量計測システムは、炉心(図示せず)を内蔵する原子炉圧力容器11を収納すると共に、圧力抑制室13を備えた原子炉格納容器12にベント配管14が接続され、このベント配管14の途中で、かつ、ベント弁15の下流側に接続された第2の配管系統10bに設置されベント配管14内の圧力を測定するベント配管圧力計17と、原子炉格納容器12の圧力抑制室13内の圧力を測定する圧力抑制室圧力計16と、第1の配管系統10aに設置され、予め組み込まれた圧力−質量流量グラフ19に基づいて圧力抑制室圧力計16で測定された圧力抑制室13内の圧力に対応する質量流量に変換する圧力−質量流量変換器18と、予め組み込まれた飽和蒸気表に基づいてベント配管圧力計17で測定されたベント配管14内の圧力に対応する蒸気密度に変換すると共に、蒸気密度と圧力−質量流量変換器18からの質量流量に基づいて得られた体積流量の信号21を出力する演算器20とを備えて概略構成されている。   As shown in the figure, the reactor containment vessel vent flow rate measurement system of the present embodiment accommodates a reactor pressure vessel 11 containing a core (not shown) and a reactor equipped with a pressure suppression chamber 13. A vent pipe 14 is connected to the containment vessel 12, and a vent is installed in the second pipe system 10 b connected to the middle of the vent pipe 14 and downstream of the vent valve 15 to measure the pressure in the vent pipe 14. A piping pressure gauge 17, a pressure suppression chamber pressure gauge 16 for measuring the pressure in the pressure suppression chamber 13 of the reactor containment vessel 12, and a pressure-mass flow graph 19 installed in advance in the first piping system 10 a. Pressure-mass flow rate converter 18 for converting to a mass flow rate corresponding to the pressure in the pressure suppression chamber 13 measured by the pressure suppression chamber pressure gauge 16, and vent piping based on a saturated steam table incorporated in advance. While converting into the vapor density corresponding to the pressure in the vent pipe 14 measured with the force meter 17, the signal 21 of the volume flow rate obtained based on the vapor density and the mass flow rate from the pressure-mass flow rate converter 18 is output. And a computing unit 20 that is schematically configured.

即ち、ベント配管14上に設置されたベント配管圧力計17からのベント配管14の圧力データは演算器20に入力され、当該ベント配管14の圧力データは、演算器20に組み込まれた飽和蒸気表により、その圧力に対応する蒸気密度に変換される。   That is, the pressure data of the vent pipe 14 from the vent pipe pressure gauge 17 installed on the vent pipe 14 is input to the calculator 20, and the pressure data of the vent pipe 14 is a saturated steam table incorporated in the calculator 20. Is converted into a vapor density corresponding to the pressure.

また、原子炉格納容器12内の圧力抑制室13に設置された圧力抑制室圧力計16からの圧力データは、圧力−質量流量変換器18に入力され、予め組み込まれた圧力−質量流量グラフ19により、圧力抑制室13の圧力に対応する質量流量に変換される。変換された質量流量データは演算器20に入力され、この質量流量データとベント配管14内の圧力データから変換された蒸気密度により体積流量に変換され、体積流量の信号21として出力される。   The pressure data from the pressure suppression chamber pressure gauge 16 installed in the pressure suppression chamber 13 in the reactor containment vessel 12 is input to the pressure-mass flow rate converter 18, and the pressure-mass flow rate graph 19 incorporated in advance. Thus, the mass flow rate corresponding to the pressure in the pressure suppression chamber 13 is converted. The converted mass flow data is input to the computing unit 20, converted into a volume flow by the vapor density converted from the mass flow data and the pressure data in the vent pipe 14, and output as a volume flow signal 21.

このような本実施例の構成とすることにより、配管システム内に流量計オリフィス等のような流体抵抗となる設備を設置しないことから、配管システムの圧力損失を増加させることなく原子炉格納容器のベント流量計測システムの流量測定が可能となる。   By adopting such a configuration of the present embodiment, no facility for fluid resistance such as a flow meter orifice is installed in the piping system, so that the reactor containment vessel is not increased without increasing the pressure loss of the piping system. The flow measurement of the vent flow measurement system is possible.

従って、本実施例の原子炉格納容器のベント流量計測システムにより測定された流量データから格納容器ベント時の放出放射能の推定が可能となり、また、流量計設置に伴う配管システム内の他の要素の圧力損失の低減も必要がないため、設備物量も増加することがない。   Therefore, it is possible to estimate the released radioactivity at the time of venting of the containment vessel from the flow rate data measured by the vent flow measurement system of the containment vessel of this embodiment, and other elements in the piping system accompanying the flow meter installation. Therefore, the amount of equipment is not increased.

よって、本実施例によれば、配管システム内の圧力損失を増加させることなく流量測定ができ、格納容器ベント時の放出放射能の推定が可能となる。   Therefore, according to the present embodiment, the flow rate can be measured without increasing the pressure loss in the piping system, and the released radioactivity at the time of venting the containment vessel can be estimated.

図3に、本発明の原子炉格納容器のベント流量計測システムの実施例2を示す。   FIG. 3 shows a second embodiment of a vent flow measurement system for a reactor containment vessel according to the present invention.

該図に示す本実施例は、図2に示した実施例1と略同一構成だが、ベント配管圧力計17が設置されている第2の配管系統10bが接続されている接続部より上流側、即ち、第2の配管系統10bが接続されている接続部(ベント配管圧力計17)とベント弁15の間のベント配管14に、原子炉格納容器12からの放射性物質を除去するベントフィルタ22が設置されている点が、実施例1とは異なる。   The present embodiment shown in the figure has substantially the same configuration as that of the first embodiment shown in FIG. 2, but the upstream side from the connection portion to which the second piping system 10b where the vent piping pressure gauge 17 is installed is connected. That is, a vent filter 22 that removes radioactive substances from the reactor containment vessel 12 is connected to the vent pipe 14 between the connection portion (the vent pipe pressure gauge 17) to which the second pipe system 10b is connected and the vent valve 15. It is different from the first embodiment in that it is installed.

このような本実施例の構成であっても、実施例1と同様な効果が得られることは勿論、ベント配管圧力計17は、ベントフィルタ22より下流側に設置されているため、体積流量の信号21を利用して、ベントフィルタ22の効果(ベントフィルタ22で放射性物質をどの程度除去したか)を定量的に評価することが可能となる。   Even in this configuration of the present embodiment, the same effect as in the first embodiment can be obtained, and the vent pipe pressure gauge 17 is installed on the downstream side of the vent filter 22, so Using the signal 21, it is possible to quantitatively evaluate the effect of the vent filter 22 (how much radioactive material has been removed by the vent filter 22).

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…配管内の流体流れ、2…配管、3…流量計オリフィス、4…元弁、5a、5b…導圧管、6…三岐弁、7…差圧伝送器、8…開平演算器、9…流量信号、10a…第1の配管系統、10b…第2の配管系統、11…原子炉圧力容器、12…原子炉格納容器、13…圧力抑制室、14…ベント配管、15…ベント弁、16…圧力抑制室圧力計、17…ベント配管圧力計、18…圧力−質量流量変換器、19…圧力−質量流量グラフ、20…演算器、21…体積流量の信号、22…ベントフィルタ。   DESCRIPTION OF SYMBOLS 1 ... Fluid flow in piping, 2 ... Piping, 3 ... Flowmeter orifice, 4 ... Main valve, 5a, 5b ... Pressure guiding pipe, 6 ... Sanki valve, 7 ... Differential pressure transmitter, 8 ... Square root computing unit, 9 ... Flow signal, 10a ... First piping system, 10b ... Second piping system, 11 ... Reactor pressure vessel, 12 ... Reactor containment vessel, 13 ... Pressure suppression chamber, 14 ... Vent piping, 15 ... Vent valve, DESCRIPTION OF SYMBOLS 16 ... Pressure suppression chamber pressure gauge, 17 ... Vent piping pressure gauge, 18 ... Pressure-mass flow rate converter, 19 ... Pressure-mass flow rate graph, 20 ... Calculator, 21 ... Volume flow signal, 22 ... Vent filter.

Claims (3)

炉心を内蔵する原子炉圧力容器を収納すると共に、圧力抑制室を備えた原子炉格納容器のベント流量を計測するシステムであって、
前記原子炉格納容器に接続されているベント配管の途中に接続され、前記ベント配管内の圧力を測定するベント配管圧力計と、前記原子炉格納容器の前記圧力抑制室内の圧力を測定する圧力抑制室圧力計と、予め組み込まれた圧力−質量流量グラフに基づいて前記圧力抑制室圧力計で測定された前記圧力抑制室内の圧力に対応する質量流量に変換する圧力−質量流量変換器と、予め組み込まれた飽和蒸気表に基づいて前記ベント配管圧力計で測定された前記ベント配管内の圧力に対応する蒸気密度に変換すると共に、前記蒸気密度と前記圧力−質量流量変換器からの質量流量に基づいて得られた体積流量を出力する演算器とを備えていることを特徴とする原子炉格納容器のベント流量計測システム。
A system for storing a reactor pressure vessel containing a reactor core and measuring a vent flow rate of a reactor containment vessel having a pressure suppression chamber,
A vent pipe pressure gauge that is connected in the middle of the vent pipe connected to the reactor containment vessel and measures the pressure in the vent pipe, and a pressure suppression that measures the pressure in the pressure suppression chamber of the reactor containment vessel A chamber pressure gauge, a pressure-mass flow converter for converting into a mass flow rate corresponding to the pressure in the pressure suppression chamber measured by the pressure suppression chamber pressure gauge based on a pressure-mass flow graph incorporated in advance, The vapor density is converted into a vapor density corresponding to the pressure in the vent pipe measured by the vent pipe pressure gauge based on the incorporated saturated vapor table, and the vapor density and the mass flow rate from the pressure-mass flow rate converter are converted into the vapor density. A reactor containment vessel vent flow rate measuring system, comprising: an arithmetic unit that outputs a volume flow rate obtained based on the reactor.
請求項1に記載の原子炉格納容器のベント流量計測システムにおいて、
前記ベント配管の途中にベント弁が設置され、該ベント弁の下流側の前記ベント配管に前記ベント配管圧力計が接続されていることを特徴とする原子炉格納容器のベント流量計測システム。
In the reactor containment vessel vent flow measurement system according to claim 1,
A vent flow measurement system for a reactor containment vessel, wherein a vent valve is installed in the middle of the vent pipe, and the vent pipe pressure gauge is connected to the vent pipe downstream of the vent valve.
請求項2に記載の原子炉格納容器のベント流量計測システムにおいて、
前記ベント配管圧力計が接続されている接続部より上流側の前記ベント配管に、前記原子炉格納容器からの放射性物質を除去するフィルタが設置されていることを特徴とする原子炉格納容器のベント流量計測システム。
In the vent flow measurement system of the containment vessel according to claim 2,
A vent for a reactor containment vessel, wherein a filter for removing radioactive material from the reactor containment vessel is installed in the vent pipe upstream of a connection portion to which the vent pipe pressure gauge is connected. Flow measurement system.
JP2016237440A 2016-12-07 2016-12-07 Vent flow rate measurement system for PCV Active JP6670229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237440A JP6670229B2 (en) 2016-12-07 2016-12-07 Vent flow rate measurement system for PCV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237440A JP6670229B2 (en) 2016-12-07 2016-12-07 Vent flow rate measurement system for PCV

Publications (2)

Publication Number Publication Date
JP2018091806A true JP2018091806A (en) 2018-06-14
JP6670229B2 JP6670229B2 (en) 2020-03-18

Family

ID=62566047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237440A Active JP6670229B2 (en) 2016-12-07 2016-12-07 Vent flow rate measurement system for PCV

Country Status (1)

Country Link
JP (1) JP6670229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921152A (en) * 2021-09-27 2022-01-11 中国船舶重工集团公司第七一九研究所 Containment pressure relief and exhaust activity monitoring system
JP2022082008A (en) * 2020-11-20 2022-06-01 日立Geニュークリア・エナジー株式会社 Reactor containment vessel vent method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275398A (en) * 1989-04-17 1990-11-09 Toshiba Corp Venting device of reactor container
JPH0450798A (en) * 1990-06-20 1992-02-19 Toshiba Corp Emitted radiation reduction device
JP2015514975A (en) * 2012-03-16 2015-05-21 ウェスティングハウス・エレクトリック・ジャーマニー・ゲーエムベーハー Pressure relief filtration system for nuclear reactors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275398A (en) * 1989-04-17 1990-11-09 Toshiba Corp Venting device of reactor container
JPH0450798A (en) * 1990-06-20 1992-02-19 Toshiba Corp Emitted radiation reduction device
JP2015514975A (en) * 2012-03-16 2015-05-21 ウェスティングハウス・エレクトリック・ジャーマニー・ゲーエムベーハー Pressure relief filtration system for nuclear reactors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082008A (en) * 2020-11-20 2022-06-01 日立Geニュークリア・エナジー株式会社 Reactor containment vessel vent method
JP7417508B2 (en) 2020-11-20 2024-01-18 日立Geニュークリア・エナジー株式会社 Reactor containment vessel venting method
CN113921152A (en) * 2021-09-27 2022-01-11 中国船舶重工集团公司第七一九研究所 Containment pressure relief and exhaust activity monitoring system
CN113921152B (en) * 2021-09-27 2023-12-22 中国船舶重工集团公司第七一九研究所 Safety shell pressure relief exhaust activity monitoring system

Also Published As

Publication number Publication date
JP6670229B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
KR101544648B1 (en) Flow calculation apparatus and flow control apparatus
JP2008089320A (en) Flow rate measuring apparatus
KR101494166B1 (en) System for Leakage Rate of Containment Building
JP5677274B2 (en) Reactor water level measurement system
CN109668723B (en) Regulating valve cavitation diagnosis system and diagnosis method thereof
WO2022012083A1 (en) Venturi tube fault correction method and apparatus, computer device and storage medium
JP6670229B2 (en) Vent flow rate measurement system for PCV
JP2013108810A5 (en)
KR20100128346A (en) Real-time non-stationary flowmeter
CN105070332A (en) Monitoring system for preventing leakage of main steam pipeline in nuclear power plant
JP2012145406A (en) Non-condensable gas exhausting apparatus for water level measurement system
JP2015197324A (en) Abnormality determination device and abnormality determination method
CN103306967B (en) 300MW reactor coolant pump measuring system
TWI409825B (en) System and method for predicting acoustic loads expected on boiling water reactor(bwr) steam dryers
de Aquino et al. The importance of experimental tests on air valves for proper choice in a water supply project
Lin et al. Pressure sensing line diagnostics in nuclear power plants
JP2008267931A (en) Liquid level measuring device for liquid tank
JP2014048212A (en) Capillary tube bubble detection device and bubble detection method thereof
JP2013024573A (en) Impulse line blockage diagnosis availability determination system
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JP2015038488A (en) Reactor water level measurement system
JP6359345B2 (en) Gas radioactivity concentration measurement apparatus, gas radioactivity concentration measurement system, and gas radioactivity concentration measurement method
Yu et al. Experimental observation on factors affecting intrusion volumes during low or negative pressure events
JPS61153099A (en) Method and device of detecting leak of gas pipe line
JP2010048752A (en) Radiation monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150