JP2015038488A - Reactor water level measurement system - Google Patents

Reactor water level measurement system Download PDF

Info

Publication number
JP2015038488A
JP2015038488A JP2014194490A JP2014194490A JP2015038488A JP 2015038488 A JP2015038488 A JP 2015038488A JP 2014194490 A JP2014194490 A JP 2014194490A JP 2014194490 A JP2014194490 A JP 2014194490A JP 2015038488 A JP2015038488 A JP 2015038488A
Authority
JP
Japan
Prior art keywords
water level
reactor
water
pressure vessel
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014194490A
Other languages
Japanese (ja)
Other versions
JP5815100B2 (en
Inventor
由佳 松尾
Yuka Matsuo
由佳 松尾
藤雄 白石
Fujio Shiraishi
藤雄 白石
泰志 後藤
Yasushi Goto
泰志 後藤
伊藤 敏明
Toshiaki Ito
敏明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014194490A priority Critical patent/JP5815100B2/en
Publication of JP2015038488A publication Critical patent/JP2015038488A/en
Application granted granted Critical
Publication of JP5815100B2 publication Critical patent/JP5815100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor water level measurement system capable of measuring a waver level through the whole reactor pressure vessel.SOLUTION: The reactor water level measurement system includes: a condensation tank 11 connected to a steam area of a pressure vessel 2; a reference pipeline 21 whose one end is connected to the condensation tank 11; variation pipelines 22-24 whose one-ends are respectively connected to the pressure vessel 2; differential pressure type water level meters 31-34 respectively connected to the other ends of the reference pipeline 21 and the variation pipelines 22-24 to respectively detect water head differences of the reference pipeline 21 and the variation pipelines 22-24; non-differential pressure type water level meters 35, 36 for detecting a water level of the pressure vessel 2; and an arithmetic unit 20 for selecting the differential pressure type water level meters 31-34 or the non-differential pressure type water level meters 35, 36 based on a state of a containment vessel 4 or the pressure vessel 2 and instructing and recording a water level of the pressure vessel 2 based on a detection result of the selected water level meter.

Description

本発明は、炉内の水位を計測する原子炉水位計測システムに関する。   The present invention relates to a reactor water level measurement system that measures a water level in a reactor.

原子炉は、用途に応じて校正された、異なる計測範囲を有する複数の水位計を有する。
従来、特許文献1に開示されたガンマサーモメータを用いた水位計測装置や、差圧を利用
して水位を計測する技術が知られている。
The nuclear reactor has a plurality of water level gauges with different measurement ranges, calibrated according to the application.
Conventionally, a water level measuring device using a gamma thermometer disclosed in Patent Document 1 and a technique for measuring a water level using a differential pressure are known.

特開平10−39083号公報Japanese Patent Laid-Open No. 10-39083

これら水位計の計測範囲は、オーバーラップするように設けられる。しかし、校正条件
の違いから、プラントの状態によって複数の水位計が異なる水位指示値を示す場合がある
。これに伴い、過渡時や事故時などのプラントの状態が大きく変化する場合においては、
運転員が各水位計の用途を認識した上で水位を読み取る必要がある。
The measurement ranges of these water level meters are provided so as to overlap. However, due to the difference in calibration conditions, a plurality of water level gauges may show different water level indication values depending on the state of the plant. Along with this, when the state of the plant greatly changes during a transition or accident,
It is necessary for the operator to read the water level after recognizing the application of each water level gauge.

また、水位計は、事故時を考慮して燃料有効下端レベルまで計測できるように設計され
ているものの、苛酷事故時においては、従来の水位計では想定されていない計測不可能な
地点まで水位が低下する恐れがある。
In addition, the water level gauge is designed so that it can be measured to the effective bottom level of the fuel in consideration of the accident, but in severe accidents, the water level can reach a point that cannot be measured by the conventional water level gauge. May fall.

さらに、炉心冠水確認用として燃料域水位計が用いられるが、水位計の設計条件を上回
る原子炉格納容器内の温度上昇の影響を受けた場合には、燃料域水位計では計測不能とな
る事象が発生する恐れがある。
In addition, a fuel area water level gauge is used to check the core flood, but if it is affected by a temperature rise in the reactor containment that exceeds the design conditions of the water level gauge, the fuel area water level gauge cannot measure. May occur.

本発明はこのような事情を考慮してなされたもので、原子炉圧力容器全体を通して水位
計測が可能である原子炉水位計測システムを提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a reactor water level measurement system capable of measuring the water level throughout the reactor pressure vessel.

本発明に係る原子炉水位計測システムは、上述した課題を解決するために、原子炉格納
容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、前記凝縮槽に一端が
接続された基準水柱計装配管と、前記原子炉圧力容器に一端が接続された第1の変動水柱
計装配管と、前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され
、前記基準水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測
式の第1の水位計と、前記第1の水位計とは異なる構成を有し、前記原子炉圧力容器の水
位を検出する第2の水位計と、前記原子炉格納容器または前記原子炉圧力容器の状態に基
づいて、前記第1の水位計または前記第2の水位計を選択し、選択された水位計の検出結
果に基づいて前記原子炉圧力容器の水位を指示・記録する演算装置とを備えたことを特徴
とする。
In order to solve the above-described problems, a reactor water level measurement system according to the present invention has a condensing tank connected to a steam region of a reactor pressure vessel stored in a reactor containment vessel, and one end connected to the condensing vessel. A reference water column instrumentation pipe, a first variable water column instrumentation pipe having one end connected to the reactor pressure vessel, the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe, A first water level meter of a differential pressure measurement type that detects a head difference between the reference water column instrumentation pipe and the first fluctuating water column instrumentation pipe is connected, and the first water level gauge has a different configuration. A second water level meter for detecting the water level of the reactor pressure vessel, and the first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel. And the reactor pressure capacity based on the detection result of the selected water level gauge. Characterized by comprising an arithmetic unit for instructing and recording the water level.

本発明に係る原子炉水位計測システムにおいては、原子炉圧力容器全体を通して水位を
計測することができる。
In the reactor water level measurement system according to the present invention, the water level can be measured through the entire reactor pressure vessel.

本発明に係る原子炉水位計測システムの第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the reactor water level measurement system which concerns on this invention. 原子炉圧力低下時における選択処理を説明するフローチャート。The flowchart explaining the selection process at the time of a nuclear reactor pressure fall. 原子炉水位低下時における選択処理を説明するフローチャート。The flowchart explaining the selection process at the time of a reactor water level fall. TAFより水位低下時における選択処理を説明するフローチャート。The flowchart explaining the selection process at the time of a water level fall from TAF. 本発明に係る原子炉水位計測システムの第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the reactor water level measurement system which concerns on this invention. 第2実施形態の水位計測システムの第1の変形例としての水位計測システム の構成図。The block diagram of the water level measurement system as a 1st modification of the water level measurement system of 2nd Embodiment. 第2実施形態の水位計測システムの第2の変形例としての水位計測システム の構成図。The block diagram of the water level measurement system as a 2nd modification of the water level measurement system of 2nd Embodiment. 第1実施形態の水位計測システムの第1の変形例としての水位計測システム の構成図。The block diagram of the water level measurement system as a 1st modification of the water level measurement system of 1st Embodiment. 第1実施形態の水位計測システムの第2の変形例としての水位計測システム の構成図。The block diagram of the water level measurement system as a 2nd modification of the water level measurement system of 1st Embodiment.

本発明に係る原子炉水位計測システムの実施形態を添付図面に基づいて説明する。各実
施形態においては、本発明に係る原子炉水位計測システムを沸騰水型原子炉に適用して説
明する。
An embodiment of a reactor water level measurement system according to the present invention will be described with reference to the accompanying drawings. In each embodiment, the reactor water level measurement system according to the present invention will be described by applying it to a boiling water reactor.

[第1実施形態]
図1は、本発明に係る原子炉水位計測システムの第1実施形態を示す構成図である。
[First Embodiment]
FIG. 1 is a configuration diagram showing a first embodiment of a reactor water level measurement system according to the present invention.

原子炉水位計測システム(水位計測システム)1の計測対象となる原子炉圧力容器(圧
力容器)2は、炉心3を収容する。また、圧力容器2は、原子炉格納容器(格納容器)4
に格納される。圧力容器2は、側面において凝縮槽11および検出タップ12〜14を有
する。
A reactor pressure vessel (pressure vessel) 2 to be measured by the reactor water level measurement system (water level measurement system) 1 accommodates the core 3. The pressure vessel 2 is a reactor containment vessel (containment vessel) 4.
Stored in The pressure vessel 2 has a condensing tank 11 and detection taps 12 to 14 on the side surface.

凝縮槽11は、格納容器4内に設けられ、圧力容器2の蒸気領域に接続される。凝縮槽
11は、底部において基準水柱計装配管(基準配管)21と接続され、水位検出時に基準
水頭を与える。検出タップ12〜14は、差圧式水位計31〜34の計測範囲に応じて圧
力容器2の所定位置にそれぞれ設けられる。第1の変動水柱計装配管としての変動水柱計
装配管(変動配管)22〜24は、これら検出タップ12〜14を介して圧力容器2に一
端が接続される。基準配管21および変動配管22〜24は、格納容器4外まで伸びてお
り、それぞれ格納容器4外で差圧式水位計31〜34と他端が接続される。
The condensing tank 11 is provided in the containment vessel 4 and connected to the vapor region of the pressure vessel 2. The condensing tank 11 is connected to a reference water column instrumentation pipe (reference pipe) 21 at the bottom, and provides a reference head when detecting the water level. The detection taps 12 to 14 are provided at predetermined positions of the pressure vessel 2 according to the measurement ranges of the differential pressure type water level meters 31 to 34, respectively. One end of each of the variable water column instrumentation pipes (variable pipes) 22 to 24 as the first variable water column instrumentation pipes is connected to the pressure vessel 2 via the detection taps 12 to 14. The reference pipe 21 and the variable pipes 22 to 24 extend to the outside of the containment vessel 4, and the differential pressure type water level meters 31 to 34 are connected to the other ends outside the containment vessel 4.

差圧式水位計31〜34は、狭帯域原子炉水位計31、広帯域原子炉水位計32、燃料
域原子炉水位計33および定検時水張り用原子炉水位計34である。差圧式水位計31〜
34は、基準配管21および変動配管22〜24の水頭差を検出する。
The differential pressure type water level meters 31 to 34 are a narrow-band reactor water level meter 31, a broadband reactor water level meter 32, a fuel region reactor water level meter 33, and a water level reactor water level meter 34 during regular inspection. Differential pressure type water level gauge 31 ~
34 detects the water head difference between the reference pipe 21 and the variable pipes 22 to 24.

狭帯域原子炉水位計(狭帯域水位計)31は、通常運転状態および過渡状態を含む状態
で予測される、水位変動が狭い範囲の水位を計測する。広帯域原子炉水位計(広帯域水位
計)32は、異常な過渡変化時や事故時を含む状態で予測される、狭帯域水位計31の計
測範囲より広い範囲の水位を計測する。燃料域原子炉水位計(燃料域水位計)33は、事
故後を含む状態で、広帯域水位計32の計測範囲より低い水位を計測し、例えば炉心冠水
確認用として用いられる。定検時水張り用原子炉水位計(定検時水張り用水位計)34は
、原子力発電プラントの定期検査時に想定される水位である燃料上部から原子炉ウェルま
での水位を計測する。
The narrow-band reactor water level meter (narrow-band water level meter) 31 measures the water level in a narrow range where the water level fluctuation is predicted in a state including a normal operation state and a transient state. The broadband reactor water level meter (broadband water level meter) 32 measures the water level in a wider range than the measurement range of the narrow band water level meter 31 predicted in a state including abnormal transient changes and accidents. The fuel region reactor water level meter (fuel region water level meter) 33 measures the water level lower than the measurement range of the broadband water level meter 32 in a state including after the accident, and is used, for example, for core flood confirmation. The water level gauge for water filling during regular inspection (water level meter for water filling during regular inspection) 34 measures the water level from the upper part of the fuel to the reactor well, which is the water level assumed during the periodic inspection of the nuclear power plant.

原子炉の運転状態に応じて原子炉圧力および温度は異なるため、水頭水などの比容積は
変動する。従って正確な水位を計測するためには、この比容積などを補正する必要が生じ
る。このため、差圧式水位計31〜34は、原子炉の状態に基づき校正が行われる。例え
ば、狭帯域水位計31および広帯域水位計32は、定格運転時における圧力および温度を
校正条件として用いる。燃料域水位計33および定検時水張り用原子炉水位計34は大気
圧で校正される。
Since the reactor pressure and temperature differ depending on the operating state of the reactor, the specific volume of head water etc. varies. Therefore, it is necessary to correct this specific volume in order to accurately measure the water level. For this reason, the differential pressure type water level gauges 31 to 34 are calibrated based on the state of the nuclear reactor. For example, the narrow band water level gauge 31 and the broadband water level gauge 32 use the pressure and temperature during rated operation as calibration conditions. The fuel area water level gauge 33 and the water leveling reactor water level gauge 34 during regular inspection are calibrated at atmospheric pressure.

圧力容器2内には、原子炉内非差圧式水位計35が設けられる。原子炉内非差圧式水位
計35は、差圧式水位計31〜34とは異なる構成および方式を有する第2の水位計であ
り、例えばガンマ線などによる温度差を用いて水位を検出するガンマサーモメータである
。ガンマサーモメータは、ガンマ線を用いて水位を検出するだけでなく、ガンマサーモメ
ータに設けられたヒータを熱源として、水の有無による温度差から水位を検出することが
できる。このため事故時等でガンマ線によるガンマヒーティングの効果が期待できなくな
った場合であってもヒータを熱源として水位検出ができる。原子炉内非差圧式水位計35
は、炉心3を囲む炉心シュラウド内や炉心シュラウド外に設けられる。
An in-reactor non-differential pressure type water level gauge 35 is provided in the pressure vessel 2. The in-reactor non-differential pressure type water level gauge 35 is a second water level gauge having a configuration and a method different from those of the differential pressure type water level gauges 31 to 34. For example, a gamma thermometer that detects a water level using a temperature difference caused by gamma rays or the like. It is. The gamma thermometer not only detects the water level using gamma rays, but also can detect the water level from the temperature difference depending on the presence or absence of water using a heater provided in the gamma thermometer as a heat source. For this reason, even when an effect of gamma heating by gamma rays cannot be expected due to an accident or the like, the water level can be detected using the heater as a heat source. Non-differential pressure level gauge 35 in the reactor
Is provided inside the core shroud surrounding the core 3 or outside the core shroud.

圧力容器2外であって格納容器4内には、原子炉外非差圧式水位計36が設けられる。
原子炉外非差圧式水位計36は、差圧式水位計31〜34とは異なる構成を有する第2の
水位計であり、例えばガンマ線、中性子線、超音波を用いて水位を検出する水位計である
Outside the pressure vessel 2 and inside the containment vessel 4, an outside-reactor non-differential pressure type water level gauge 36 is provided.
The non-reactor non-differential water level gauge 36 is a second water level gauge having a configuration different from that of the differential pressure type water level gauges 31 to 34. For example, the water level gauge detects the water level using gamma rays, neutron rays, and ultrasonic waves. is there.

原子炉内非差圧式水位計35および原子炉外非差圧式水位計36(非差圧式水位計35
、36)は、差圧式水位計31〜34の水位計測範囲と重複して水位の計測が可能であり
、かつ燃料域水位計33が計測可能な範囲より低い水位である、燃料有効長下端より低い
圧力容器2底部の水位まで検出できる。非差圧式水位計35、36は、圧力容器2内外に
複数本、多区分に設けられ、また、上下方向に亘って複数の検出点で水位を計測すること
が好ましい。炉心3が損傷した際に水位計も損傷する恐れがあるが、複数の検出点を設け
ることにより出力に異常のない水位計により炉水が内包されていることを確認できる。
In-reactor non-differential pressure level gauge 35 and non-reactor non-differential pressure level gauge 36 (non-differential pressure level gauge 35
36) from the lower end of the effective fuel length, the water level can be measured overlapping the water level measurement range of the differential pressure type water level gauges 31 to 34, and the water level is lower than the range where the fuel area water level meter 33 can be measured. The water level at the bottom of the low pressure vessel 2 can be detected. It is preferable that a plurality of non-differential pressure level gauges 35 and 36 are provided in multiple sections in and out of the pressure vessel 2 and the water level is measured at a plurality of detection points in the vertical direction. When the core 3 is damaged, the water level gauge may also be damaged. However, by providing a plurality of detection points, it can be confirmed that the reactor water is contained by the water level gauge having no abnormality in output.

格納容器4内には、圧力容器2のプロセス状態を検出するための種々の計測機器が設け
られる。例えば、原子炉圧力計(圧力計)41は、格納容器4外であって基準配管21に
接続され、圧力容器2の圧力を計測する。第1の温度計42は、格納容器4内のドライウ
ェル5に設けられ、ドライウェル5の雰囲気温度を検出する。第2の温度計43は、格納
容器4内であって凝縮槽11付近の基準配管21の表面に設けられ、凝縮槽11付近の基
準配管21の表面温度を計測する。第3の温度計44は、格納容器4内であって燃料域水
位計33と接続される変動配管24の表面に設けられ、変動配管24の表面温度を計測す
る。
Various measuring devices for detecting the process state of the pressure vessel 2 are provided in the containment vessel 4. For example, the reactor pressure gauge (pressure gauge) 41 is connected to the reference pipe 21 outside the containment vessel 4 and measures the pressure in the pressure vessel 2. The first thermometer 42 is provided in the dry well 5 in the storage container 4 and detects the atmospheric temperature of the dry well 5. The second thermometer 43 is provided on the surface of the reference pipe 21 near the condensing tank 11 in the storage container 4 and measures the surface temperature of the reference pipe 21 near the condensing tank 11. The third thermometer 44 is provided on the surface of the fluctuation pipe 24 connected to the fuel region water level gauge 33 in the containment vessel 4 and measures the surface temperature of the fluctuation pipe 24.

これら差圧式水位計31〜34、非差圧式水位計35、36、圧力計41、および温度
計42〜44は、演算装置20に接続されており、得られた検出結果を演算装置20に出
力する。演算装置20は、各計測機器より送信される検出結果から水位、圧力、温度など
を指示・記録する。演算装置20には、表示装置および入力装置が接続される。演算装置
20は、取得した指示値を表示装置に表示したり、入力装置を介して演算装置20への入
力を行ったりする。
The differential pressure type water level gauges 31 to 34, the non-differential pressure type water level gauges 35 and 36, the pressure gauge 41, and the thermometers 42 to 44 are connected to the calculation device 20, and the obtained detection results are output to the calculation device 20. To do. The arithmetic unit 20 instructs and records the water level, pressure, temperature, and the like from the detection result transmitted from each measuring device. A display device and an input device are connected to the arithmetic device 20. The arithmetic device 20 displays the acquired instruction value on a display device, or inputs to the arithmetic device 20 via the input device.

演算装置20は、格納容器4または圧力容器2の状態を検出し、検出された状態に基づ
いて差圧式水位計31〜34および非差圧式水位計35、36の中から水位の指示・記録
に用いる水位計を選択する。以下、演算装置20が水位計を選択する際の処理として、原
子炉圧力低下時、原子炉水位低下時、および燃料有効長上端(TAF)より水位低下時に
おける選択処理を説明する。
The arithmetic unit 20 detects the state of the containment vessel 4 or the pressure vessel 2, and indicates and records the water level from the differential pressure type water level meters 31 to 34 and the non-differential pressure type water level meters 35 and 36 based on the detected state. Select the water level meter to be used. Hereinafter, as a process when the arithmetic unit 20 selects the water level meter, a selection process when the reactor pressure is lowered, when the reactor water level is lowered, and when the water level is lowered from the upper end of the fuel effective length (TAF) will be described.

図2は、原子炉圧力低下時における選択処理を説明するフローチャートである。この原
子炉圧力低下時における選択処理は、過渡時および事故時の原子炉の減圧過程において想
定される処理である。
FIG. 2 is a flowchart for explaining the selection process when the reactor pressure is reduced. The selection process at the time of the reactor pressure drop is a process assumed in the process of depressurizing the reactor at the time of transient and accident.

ステップS1において、演算装置20は、第1の温度計42よりドライウェル5の雰囲
気温度、および圧力計41で計測される原子炉圧力より原子炉圧力飽和温度を取得し、比
較する。ステップS2において、演算装置20は、ドライウェル5の雰囲気温度が原子炉
圧力飽和温度より大きいか否かを判定する。
In step S <b> 1, the arithmetic unit 20 acquires and compares the reactor pressure saturation temperature from the first thermometer 42 based on the atmospheric temperature of the dry well 5 and the reactor pressure measured by the pressure gauge 41. In step S <b> 2, the arithmetic unit 20 determines whether the atmospheric temperature of the dry well 5 is higher than the reactor pressure saturation temperature.

ドライウェル5の雰囲気温度の方が大きい場合、差圧式水位計31〜34と接続された
基準配管21の内包水が蒸発する恐れがある。このため、演算装置20は、ドライウェル
5の雰囲気温度の方が大きいと判定した場合、ステップS3において、差圧式水位計31
〜34による水位計測が不能であるか否かの判定を行う。例えば、演算装置20は、複数
チャンネルの差圧式水位計31〜34から得られる指示値の履歴を記録し、ばらつきの増
大などから異常の有無を検出する。
When the atmospheric temperature of the dry well 5 is higher, the contained water in the reference pipe 21 connected to the differential pressure type water level gauges 31 to 34 may evaporate. For this reason, when the arithmetic unit 20 determines that the atmospheric temperature of the dry well 5 is higher, the differential pressure type water level gauge 31 is determined in step S3.
It is determined whether or not the water level measurement by .about.34 is impossible. For example, the arithmetic unit 20 records a history of instruction values obtained from the differential pressure type water level meters 31 to 34 of a plurality of channels, and detects the presence or absence of an abnormality from an increase in variation.

演算装置20は、差圧式水位計31〜34では水位の計測が不能であると判断した場合
、ステップS4において、原子炉内非差圧式水位計35および原子炉外非差圧式水位計3
6の少なくとも一方を選択する。演算装置20は、以降においては水位の指示値に非差圧
式水位計35、36を用いて水位を計測し運転員へ出力する。
When it is determined that the differential pressure type water level meters 31 to 34 cannot measure the water level, the arithmetic unit 20 determines that the in-reactor non-differential pressure type water level meter 35 and the non-reactor non-differential pressure type water level meter 3 in step S4.
At least one of 6 is selected. Thereafter, the arithmetic unit 20 measures the water level using the non-differential pressure type water level gauges 35 and 36 as the indicated value of the water level and outputs it to the operator.

なお、温度比較ステップS2または計測可否判定ステップS3において、原子炉圧力飽
和温度はドライウェル雰囲気温度以上であると判定された場合(ステップS2のNO)、
または差圧式水位計が計測可能であると判定された場合(ステップS3のNO)について
は、引き続き差圧式水位計31〜34により水位が計測される。
In the temperature comparison step S2 or the measurement availability determination step S3, when it is determined that the reactor pressure saturation temperature is equal to or higher than the dry well atmosphere temperature (NO in step S2),
Alternatively, when it is determined that the differential pressure type water level meter can be measured (NO in step S3), the water level is continuously measured by the differential pressure type water level meters 31 to 34.

このような水位計測システム1は、差圧式水位計31〜34が計測不能な場合であって
も、圧力容器2および格納容器4の状態に基づいて非差圧式水位計35、36に自動で切
替え、過渡時および事故時においても原子炉水位を計測可能とする。これにより、水位計
測システム1は、差圧式とは異なる方式であって信頼性が確保できる水位計で水位を計測
でき、計測に多様性を確保することができる。
Such a water level measurement system 1 automatically switches to the non-differential pressure level gauges 35 and 36 based on the state of the pressure vessel 2 and the containment vessel 4 even when the differential pressure type water level meters 31 to 34 cannot measure. The reactor water level can be measured even during transients and accidents. Thereby, the water level measurement system 1 can measure the water level with a water level meter that is different from the differential pressure type and can ensure reliability, and can ensure diversity in measurement.

次に、原子炉水位低下時における選択処理について説明する。   Next, the selection process at the time of a reactor water level fall is demonstrated.

図3は、原子炉水位低下時における選択処理を説明するフローチャートである。この原
子炉水位低下時における選択処理は、過渡時および事故時の原子炉の水位低下過程におい
て想定される処理である。
FIG. 3 is a flowchart for explaining the selection process when the reactor water level is lowered. The selection process when the reactor water level is lowered is a process assumed in the process of lowering the reactor water level during a transient or accident.

ステップS11において、演算装置20は、原子炉水位が予め設定された設定水位(例
えばL−2やL−1.5)より小さいか否かを判定する。このとき、演算装置20は、広
帯域水位計32の指示値を用いて判定する。演算装置20は、原子炉水位が設定水位以上
であると判定した場合には、引き続き現在選択中の水位計を用いて水位を指示・記録する
In step S11, the arithmetic unit 20 determines whether or not the reactor water level is lower than a preset water level (for example, L-2 or L-1.5). At this time, the arithmetic unit 20 makes a determination using the indication value of the broadband water level gauge 32. When it is determined that the reactor water level is equal to or higher than the set water level, the arithmetic unit 20 continues to instruct and record the water level using the currently selected water level gauge.

演算装置20は、原子炉水位が設定水位より小さいと判定した場合、ステップS12に
おいて、圧力計41より得られた原子炉圧力と予め設定された設定圧力(例えば50kP
a)とを比較し、原子炉圧力の方が小さいか否かの判定を行う。演算装置20は、原子炉
圧力が設定圧力以上であると判定した場合、引き続き現在選択中の水位計を用いて水位を
指示・記録する。
When the arithmetic unit 20 determines that the reactor water level is lower than the set water level, the reactor pressure obtained from the pressure gauge 41 and a preset set pressure (for example, 50 kP) are determined in step S12.
Comparison with a) is performed to determine whether or not the reactor pressure is smaller. When it is determined that the reactor pressure is equal to or higher than the set pressure, the arithmetic unit 20 continues to instruct and record the water level using the currently selected water level gauge.

演算装置20は原子炉圧力の方が小さいと判定した場合、ステップS13において、燃
料域水位計33を選択する。ステップS14において、演算装置20は、燃料域水位計3
3による水位計測が可能であるか否かの判定を行う。例えば、演算装置20は、燃料域水
位計33の指示値の変動を観察する。演算装置20は、変動が検出されない場合には基準
配管21の内包水に蒸発または漏えいなどの異常が発生している恐れがあるため、計測不
能であると判定する。また、水位が燃料域水位計33の計測範囲の下限を下回った場合、
演算装置20は計測不能であると判定する。
When the arithmetic unit 20 determines that the reactor pressure is smaller, the fuel area water level meter 33 is selected in step S13. In step S <b> 14, the arithmetic unit 20 performs the fuel area water level gauge 3
It is determined whether water level measurement by 3 is possible. For example, the arithmetic unit 20 observes fluctuations in the indicated value of the fuel area water level meter 33. When the fluctuation is not detected, the arithmetic unit 20 determines that measurement is impossible because there is a possibility that an abnormality such as evaporation or leakage occurs in the water contained in the reference pipe 21. Also, if the water level falls below the lower limit of the measurement range of the fuel area water level gauge 33,
The arithmetic unit 20 determines that measurement is impossible.

演算装置20は、燃料域水位計33による水位計測が可能であると判定した場合には、
引き続き燃料域水位計33により水位を指示・記録する。演算装置20は、燃料域水位計
33では水位の計測が不能であると判断した場合、ステップS15において、原子炉内非
差圧式水位計35および原子炉外非差圧式水位計36の少なくとも一方を選択する。演算
装置20は、以降においては非差圧式水位計35、36を用いて水位を指示・記録する。
When the arithmetic unit 20 determines that the water level can be measured by the fuel area water level gauge 33,
Subsequently, the water level is instructed and recorded by the fuel area water level gauge 33. When it is determined that the fuel level water level meter 33 cannot measure the water level, the arithmetic unit 20 determines in step S15 at least one of the in-reactor non-differential pressure type water level meter 35 and the non-reactor non-differential pressure type water level meter 36. select. Thereafter, the arithmetic unit 20 instructs and records the water level using the non-differential pressure level gauges 35 and 36.

ここで、原子炉内非差圧式水位計35が炉心シュラウド内に設けられる場合、燃料域水
位計33は炉心シュラウド外の水位を計測するのに対し、原子炉内非差圧式水位計35は
炉心シュラウド内の水位を計測することになる。このため、演算装置20は、原子炉内非
差圧式水位計35で得られた水位を指示値として用いる場合には、炉心シュラウド内の水
位である旨を併せて出力するのが好ましい。運転員は、水位指示値が炉心シュラウド内か
炉心シュラウド外かを確認できることで、監視領域が変更となったことを容易に判断でき
る。
Here, when the in-reactor non-differential pressure level gauge 35 is provided in the core shroud, the fuel region level gauge 33 measures the water level outside the core shroud, whereas the in-reactor non-differential pressure level gauge 35 is the core. The water level in the shroud will be measured. For this reason, when using the water level obtained by the in-reactor non-differential pressure type water level gauge 35 as the indicated value, the arithmetic unit 20 preferably outputs the fact that the water level is in the core shroud. The operator can easily determine that the monitoring area has been changed by checking whether the water level indication value is inside the core shroud or outside the core shroud.

また、原子炉内非差圧式水位計35が炉心シュラウド内に複数箇所設置された場合にお
いて、いずれかの原子炉内非差圧式水位計35に異常が検出された場合、演算装置20は
異常が検出された水位計以外の水位計の検出結果に基づいて圧力容器2の水位を指示・記
録する。これにより、水位計測システム1は、正常な原子炉内非差圧式水位計35の設置
場所には、炉水があることを確認できる。
Further, in the case where a plurality of in-reactor non-differential pressure level gauges 35 are installed in the core shroud, when an abnormality is detected in any of the in-reactor non-differential pressure level gauges 35, the arithmetic unit 20 has an abnormality. The water level of the pressure vessel 2 is instructed and recorded based on the detection result of the water level meter other than the detected water level meter. Thereby, the water level measurement system 1 can confirm that there is reactor water at the place where the normal in-reactor non-differential pressure type water level gauge 35 is installed.

このような水位計測システム1は、原子炉水位および原子炉圧力が設定水位および設定
圧力よりも小さくなった場合には、異常過渡時や事故時条件である大気圧で校正された燃
料域水位計33を選択する。これにより、水位計測システム1は、原子炉圧力による指示
差影響を充分に排除でき、燃料有効長上端(TAF)の水位を精度よく監視できる。
Such a water level measurement system 1 is a fuel region water level meter that is calibrated at atmospheric pressure, which is an abnormal transient or accident condition, when the reactor water level and the reactor pressure become lower than the set water level and the set pressure. 33 is selected. Thereby, the water level measurement system 1 can sufficiently eliminate the influence of the instruction difference due to the reactor pressure, and can accurately monitor the water level at the upper end of the fuel effective length (TAF).

また、水位計測システム1は、燃料域水位計33による水位の計測が不可能である場合
には、非差圧式水位計35、36を選択することで原子炉水位の指示の信頼性を確保でき
る。すなわち、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36は、燃料
域水位計33の計測範囲の下限以下の水位を検出できるように構成されたため、過渡時お
よび事故時に原子炉水位が低下し、燃料域水位計33の水位指示が計測範囲の下限を下回
った場合であっても計測範囲の拡大が図れ、水位の確認が容易となる。
Further, when the water level measurement system 1 cannot measure the water level by the fuel area water level meter 33, the water level measurement system 1 can ensure the reliability of the reactor water level instruction by selecting the non-differential pressure level gauges 35 and 36. . That is, the non-differential pressure level water level gauge 35 inside the reactor and the non-differential pressure level water level gauge 36 outside the reactor are configured so as to be able to detect the water level below the lower limit of the measurement range of the fuel area water level gauge 33. Even when the reactor water level falls and the water level indication of the fuel area water level gauge 33 falls below the lower limit of the measurement range, the measurement range can be expanded and the water level can be easily confirmed.

次に、TAFより水位が低下した場合における選択処理について説明する。   Next, the selection process when the water level is lower than TAF will be described.

図4は、TAFより水位低下時における選択処理を説明するフローチャートである。こ
のTAFより水位低下時における選択処理は、例えば図3の水位低下時における選択処理
の後、炉心3の再冠水を確認する際に想定される処理である。
FIG. 4 is a flowchart for explaining the selection process when the water level is lower than TAF. The selection process at the time of lowering the water level than TAF is a process assumed when, for example, the reflooding of the core 3 is confirmed after the selection process at the time of lowering the water level in FIG.

過渡時および事故時に原子炉水位が低下し、演算装置20はTAFを下回ったことを検
出した場合、ステップS21において、演算装置20は、燃料域水位計33による水位の
計測が可能か否かの判定を行う。具体的には、燃料域水位計33と接続された基準配管2
1および変動配管24に水張りが行われた結果、燃料域水位計33で水位計測が可能とな
ったか否かの判定を行う。
When it is detected that the reactor water level has dropped and the arithmetic device 20 has fallen below TAF at the time of a transient or accident, in step S21, the arithmetic device 20 determines whether the fuel level water level meter 33 can measure the water level. Make a decision. Specifically, the reference pipe 2 connected to the fuel area water level gauge 33
It is determined whether or not the water level can be measured by the fuel area water level meter 33 as a result of the water filling of 1 and the variable piping 24.

演算装置20は、燃料域水位計33で水位計測が可能であると判定した場合、ステップ
S22において、燃料域水位計33を選択し水位の指示・記録に用いる。演算装置20は
、燃料域水位計33から得られる水位である炉心シュラウド外の水位で、炉心3の再冠水
を確認することができる。
When it is determined that the water level can be measured by the fuel area water level meter 33, the arithmetic unit 20 selects the fuel area water level meter 33 and uses it for indicating / recording the water level in step S22. The arithmetic unit 20 can confirm the reflooding of the core 3 at the water level outside the core shroud, which is the water level obtained from the fuel area water level gauge 33.

一方、演算装置20は、燃料域水位計33による水位計測が不可能であると判定した場
合、すなわち基準配管21および変動配管24に水張りが行われず燃料域水位計33の信
頼性が低い場合、ステップS23において、原子炉圧力は設定圧力(例えば50kPa)
より大きいか否かの判定を行う。
On the other hand, when the arithmetic unit 20 determines that the water level measurement by the fuel area water level meter 33 is impossible, that is, when the reference pipe 21 and the variable pipe 24 are not filled with water, the reliability of the fuel area water level meter 33 is low. In step S23, the reactor pressure is a set pressure (for example, 50 kPa).
It is determined whether or not it is larger.

演算装置20は、原子炉圧力は設定圧力より大きいと判定した場合、ステップS24に
おいて、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36の少なくとも一
方を選択する。演算装置20は、以降においては水位の指示値に非差圧式水位計35、3
6を用いて水位を計測し運転員へ出力する。演算装置20は、非差圧式水位計35、36
の出力を用いることで、炉心3の再冠水を確認する。
When determining that the reactor pressure is higher than the set pressure, the arithmetic unit 20 selects at least one of the in-reactor non-differential pressure type water level gauge 35 and the non-reactor non-differential pressure type water level gauge 36 in step S24. Thereafter, the arithmetic unit 20 adds the non-differential pressure level gauges 35, 3
6 is used to measure the water level and output it to the operator. The arithmetic unit 20 includes non-differential pressure level gauges 35, 36.
The reflood of the core 3 is confirmed by using the output of

一方、演算装置20は、圧力判定ステップS23において原子炉圧力は設定圧力以下で
あると判定した場合、ステップS25において、広帯域水位計32および定検時水張り用
水位計34の履歴を記録し、出力に変動があるか否かの判定を行う。
On the other hand, when it is determined in the pressure determination step S23 that the reactor pressure is equal to or lower than the set pressure, the arithmetic unit 20 records the history of the broadband water level gauge 32 and the water level gauge 34 for water filling during regular inspection in step S25, and outputs the history. It is determined whether or not there is a fluctuation.

演算装置20は広帯域水位計32および定検時水張り用水位計34の出力に変動がある
と判定した場合、ステップS26において、定検時水張り用水位計34を選択し、水位を
指示・記録することで、炉心3の再冠水を確認する。これは、大気圧で校正された定検時
水張り用水位計34に対する原子炉圧力による影響を充分排除でき、定検時水張り用水位
計34の変動配管23に炉水によって水張りされたと考えられるためである。
If the arithmetic unit 20 determines that the outputs of the broadband water level gauge 32 and the water level meter 34 for regular filling are varied, in Step S26, the water level meter 34 for regular filling is selected, and the water level is indicated and recorded. Thus, reflooding of the core 3 is confirmed. This is because the influence of the reactor pressure on the water level gauge 34 for water filling during regular inspection calibrated at atmospheric pressure can be sufficiently eliminated, and it is considered that the fluctuation pipe 23 of the water level gauge 34 for regular water filling was filled with reactor water. It is.

このような水位計測システム1は、演算装置20により、炉心3の再冠水時における水
位計測の際には燃料域水位計33、非差圧式水位計35、36または定検時水張り用水位
計34のいずれかを状況に応じて好適に選択することができるため、水位の確認が容易と
なる。
In such a water level measurement system 1, the fuel level gauge 33, the non-differential pressure level gauges 35 and 36, or the water level gauge 34 for water filling during regular inspection are used when the water level is measured by the arithmetic unit 20 when the core 3 is reflooded. Any of the above can be suitably selected according to the situation, so that the water level can be easily confirmed.

第1実施形態における水位計測システム1は、複数の構成からなる水位計を有し、かつ
上述した図2〜図4の各選択処理を行うことで、原子炉圧力や原子炉水位などの各種状態
に応じて、水位計測に最適な水位計を多様性を持って選択することができる。この結果、
水位計測システム1は、信頼度の高い水位指示値を提示することができるため、運転員は
水位を容易に確認することができる。
The water level measurement system 1 according to the first embodiment has a water level meter having a plurality of configurations, and performs various selection processes shown in FIGS. 2 to 4 described above, thereby various states such as reactor pressure and reactor water level. The water level meter that is most suitable for water level measurement can be selected according to the variety. As a result,
Since the water level measurement system 1 can present a highly reliable water level indicating value, the operator can easily check the water level.

なお、水位計測システム1は、差圧式水位計31〜34および非差圧式水位計35、3
6を有する利点を利用して、以下のように用いることもできる。
The water level measurement system 1 includes a differential pressure type water level gauge 31-34 and a non-differential pressure type water level gauge 35, 3
Using the advantage of having 6, it can also be used as follows.

圧力容器2内に水とは異なる比重の液体(例えば海水、ホウ酸水)が注入された場合、
水と水以外の液体とは密度が異なる。このため、水の比重で校正された差圧式水位計31
〜34の指示値は影響を受ける。
When a liquid having a specific gravity different from that of water (for example, seawater or boric acid water) is injected into the pressure vessel 2,
Water and liquids other than water have different densities. For this reason, the differential pressure type water level gauge 31 calibrated with the specific gravity of water 31
The indicated value of ~ 34 is affected.

これに対し、水位計測システム1は、液体の比重により影響を受けない、ガンマ線など
を利用する方式で水位を計測する非差圧式水位計35、36を用いて差圧式水位計31〜
34を校正することができる。
On the other hand, the water level measurement system 1 is not affected by the specific gravity of the liquid, and uses differential pressure type water level gauges 31 to 31 using non-differential pressure level gauges 35 and 36 that measure the water level by using a gamma ray or the like.
34 can be calibrated.

演算装置20は、差圧式水位計31〜34の出力と非差圧式水位計35、36の出力(
炉心シュラウド外の水位)とを比較し、両者間の係数を求める。演算装置20は、この係
数を用いて差圧式水位計31〜34の出力を校正する。これにより、演算装置20は、差
圧式水位計31〜34より校正後の水位指示値を確認でき、炉心シュラウド外の水位をよ
り精度よく計測できる。
The arithmetic unit 20 outputs the output of the differential pressure type water level meters 31 to 34 and the output of the non-differential pressure type water level meters 35 and 36 (
And the coefficient between the two is obtained. The arithmetic unit 20 calibrates the outputs of the differential pressure type water level meters 31 to 34 using this coefficient. Thereby, the arithmetic unit 20 can confirm the water level instruction value after calibration from the differential pressure type water level meters 31 to 34, and can measure the water level outside the core shroud more accurately.

また、第2の水位計としての非差圧式水位計35、36を異なる方式(例えば、ガンマ
線、中性子線、超音波)を用いた複数の水位計としたり、非差圧式水位計35、36を多
区分に設けたりすることで、計測の多様性を確保することができる。
In addition, the non-differential pressure level gauges 35 and 36 as the second level gauges may be a plurality of water level gauges using different methods (for example, gamma rays, neutron rays, ultrasonic waves), or the non-differential pressure level gauges 35 and 36 may be Diversity of measurement can be ensured by providing multiple sections.

例えば、演算装置20は、各非差圧式水位計35、36より得られる水位指示値のうち
、オーバースケールやダウンスケールした数値がある場合、オーバースケールやダウンス
ケールした数値を検出した非差圧式水位計35、36以外の非差圧式水位計35、36を
選択する。
For example, when there is an overscaled or downscaled numerical value among the water level indication values obtained from the non-differential pressure level gauges 35 and 36, the arithmetic unit 20 detects the overscaled or downscaled non-differential pressure level water level. The non-differential pressure type water level gauges 35 and 36 other than the totals 35 and 36 are selected.

また、演算装置20は、それぞれの履歴を記録し区分間の指示値のばらつきを計算する
。演算装置20は、ばらつきが増大した場合、すなわち異常が検出された場合、異常値を
示す非差圧式水位計35、36以外の非差圧式水位計35、36(正常な非差圧式水位計
35、36)を選択する。
Further, the arithmetic unit 20 records each history and calculates the variation of the instruction value between the sections. When the variation increases, that is, when an abnormality is detected, the arithmetic unit 20 uses the non-differential pressure level gauges 35 and 36 (normal non-differential pressure level gauges 35) other than the non-differential pressure level gauges 35 and 36 indicating an abnormal value. , 36).

これにより、水位計測システム1は、より精度よく水位を指示・記録することができる
Thereby, the water level measurement system 1 can instruct and record the water level with higher accuracy.

[第2実施形態]
第2実施形態における水位計測システム51が第1実施形態と異なる点は、非差圧式水
位計35、36に代えて、または非差圧式水位計35、36と共に、シビアアクシデント
計測用水位計55を有する点である。シビアアクシデント計測(SA)用水位計55は、
燃料域水位計33の計測可能範囲下限以下である燃料有効長下端より低い圧力容器2底部
までの水位の検出できる水位計である。
[Second Embodiment]
The water level measurement system 51 in the second embodiment is different from the first embodiment in that a severe accident measurement water level meter 55 is provided in place of or together with the non-differential pressure type water level meters 35 and 36. It is a point to have. Severe accident measurement (SA) water level gauge 55,
This is a water level meter that can detect the water level up to the bottom of the pressure vessel 2 that is lower than the lower end of the effective fuel length that is below the lower limit of the measurable range of the fuel area water level meter 33.

その他の校正については、第1実施形態とほぼ同様であるため、第1実施形態と対応す
る構成および部分については同一の符号を付し、または図示を省略し、重複する説明を省
略する。
Since other calibrations are substantially the same as those in the first embodiment, the same reference numerals are given to the configurations and portions corresponding to those in the first embodiment, or illustrations are omitted, and duplicate descriptions are omitted.

図5は、本発明に係る原子炉水位計測システムの第2実施形態を示す構成図である。   FIG. 5 is a block diagram showing a second embodiment of the reactor water level measurement system according to the present invention.

圧力容器2には、原子炉冷却材再循環流量系(再循環流量系)52が接続される。この
再循環流量系52は、原子炉冷却材再循環流量系ポンプ(再循環流量系ポンプ)53、お
よび再循環流量系ポンプ53の上流側に接続された原子炉冷却材再循環流量系配管(再循
環流量系配管)54を有する。
A reactor coolant recirculation flow system (recirculation flow system) 52 is connected to the pressure vessel 2. The recirculation flow system 52 includes a reactor coolant recirculation flow system pump (recirculation flow system pump) 53, and a reactor coolant recirculation flow system pipe connected upstream of the recirculation flow system pump 53 ( Recirculation flow system piping) 54.

水位計測システム51は、SA計測用変動水柱計装配管(SA用変動配管)56、SA
計測用基準水柱計装配管(SA用基準配管)57、およびSA計測用水位計(SA用水位
計)55を有する。
The water level measurement system 51 includes SA measurement variable water column instrumentation pipe (SA variable pipe) 56, SA
A measurement reference water column instrumentation pipe (SA reference pipe) 57 and an SA measurement water level gauge (SA water level gauge) 55 are provided.

SA用変動配管56(第2の変動水柱計装配管)は、一端が再循環流量系配管54に接
続される。SA用基準配管57は、一端が基準配管21に接続される。SA用水位計55
は、SA用変動配管56およびSA用基準配管57(基準水柱計装配管)の他端にそれぞ
れ接続され、SA用変動配管56およびSA用基準配管57の水頭差を検出する。SA用
水位計55は、第1の水位計としての差圧式水位計31〜34とは異なる構成を有する第
2の水位計の一例である。SA用水位計55は、図示はしないが演算装置20と接続され
ており、検出結果を演算装置20へ出力する。
One end of the SA variable pipe 56 (second variable water column instrumentation pipe) is connected to the recirculation flow system pipe 54. One end of the SA reference pipe 57 is connected to the reference pipe 21. SA level gauge 55
Are connected to the other ends of the SA variable pipe 56 and the SA reference pipe 57 (reference water column instrumentation pipe), respectively, and detect the water head difference between the SA variable pipe 56 and the SA reference pipe 57. The SA water level meter 55 is an example of a second water level meter having a configuration different from that of the differential pressure type water level meters 31 to 34 as the first water level meter. The SA water level meter 55 is connected to the arithmetic device 20 (not shown), and outputs the detection result to the arithmetic device 20.

SA用水位計55は、上述した通り、燃料域水位計33の計測可能範囲下限以下の水位
が検出できる水位計である。このため、第1実施形態における非差圧式水位計35、36
に代えて、または非差圧式水位計35、36と共に、圧力容器2の水位を計測することが
できる。具体的には、例えば図2〜4における各選択処理において、非差圧式水位計35
、36が選択される代わりに、または非差圧式水位計35、36と共に、SA用水位計5
5を選択することができる。
As described above, the SA water level meter 55 is a water level meter that can detect a water level below the lower limit of the measurable range of the fuel region water level meter 33. For this reason, the non-differential pressure type water level gauges 35 and 36 in the first embodiment are used.
Instead of or together with the non-differential pressure type water level gauges 35 and 36, the water level of the pressure vessel 2 can be measured. Specifically, for example, in each selection process in FIGS.
, 36 is selected or together with the non-differential pressure level gauges 35, 36, the SA level gauge 5
5 can be selected.

なお、SA用水位計55は、図6および図7のように構成してもよい。   The SA water level meter 55 may be configured as shown in FIGS.

図6は、第2実施形態の水位計測システム51の第1の変形例としての水位計測システ
ム61の構成図である。
FIG. 6 is a configuration diagram of a water level measurement system 61 as a first modification of the water level measurement system 51 of the second embodiment.

圧力容器2には、原子炉冷却材浄化設備系(CUW)62が接続される。このCUW6
2は、原子炉冷却材浄化設備系ボトムライン配管(CUWボトムライン配管)63を有す
る。
A reactor coolant purification equipment system (CUW) 62 is connected to the pressure vessel 2. This CUW6
2 has a reactor coolant purification equipment system bottom line piping (CUW bottom line piping) 63.

水位計測システム61は、SA用変動配管56、SA用基準配管57、およびSA用水
位計55を有する。
The water level measurement system 61 includes an SA variable pipe 56, an SA reference pipe 57, and an SA water level meter 55.

SA用変動配管56(第3の変動水柱計装配管)は、一端がCUWボトムライン配管6
3に接続される。SA用基準配管57は、一端が基準配管21に接続される。SA用水位
計55は、SA用変動配管56およびSA用基準配管57の他端にそれぞれ接続され、S
A用変動配管56およびSA用基準配管57の水頭差を検出する。
One end of the SA variable pipe 56 (third variable water column instrumentation pipe) is the CUW bottom line pipe 6.
3 is connected. One end of the SA reference pipe 57 is connected to the reference pipe 21. The SA water level gauge 55 is connected to the other ends of the SA variable pipe 56 and the SA reference pipe 57, respectively.
A water head difference between the A variable pipe 56 and the SA reference pipe 57 is detected.

図7は、第2実施形態の水位計測システム51の第2の変形例としての水位計測システ
ム71の構成図である。
FIG. 7 is a configuration diagram of a water level measurement system 71 as a second modification of the water level measurement system 51 of the second embodiment.

圧力容器2には、検出タップ72が設けられる。この検出タップ72は、SA用水位計
55が燃料有効下端より低く圧力容器2底部までの水位を検出できる位置に設けられる。
The pressure vessel 2 is provided with a detection tap 72. The detection tap 72 is provided at a position where the SA water level meter 55 can detect the water level below the effective lower end of the fuel and to the bottom of the pressure vessel 2.

水位計測システム71は、SA用変動配管56、SA用基準配管57、およびSA用水
位計55を有する。
The water level measurement system 71 includes an SA variable pipe 56, an SA reference pipe 57, and an SA water level meter 55.

SA用変動配管56(第4の変動水柱計装配管)は、一端が検出タップ72に接続され
る。SA用基準配管57は、一端が基準配管21に接続される。SA用水位計55は、S
A用変動配管56およびSA用基準配管57の他端にそれぞれ接続され、SA用変動配管
56およびSA用基準配管57の水頭差を検出する。
One end of the SA variable pipe 56 (fourth variable water column instrumentation pipe) is connected to the detection tap 72. One end of the SA reference pipe 57 is connected to the reference pipe 21. The water level gauge 55 for SA
Connected to the other ends of the A variable pipe 56 and the SA reference pipe 57, respectively, the head difference of the SA variable pipe 56 and the SA reference pipe 57 is detected.

以上、図5〜図7に示す水位計測システム51、61、71は、水位計測システム51
は、第1実施形態と同様の効果を奏する上、第1実施形態の水位計測システム1では計測
できない領域についても計測でき、一様に差圧計測方式にて計測範囲の拡張ができる。
As described above, the water level measurement systems 51, 61, 71 shown in FIGS.
Produces the same effect as the first embodiment, can also measure areas that cannot be measured by the water level measurement system 1 of the first embodiment, and can uniformly extend the measurement range by the differential pressure measurement method.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したも
のであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その
他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の
省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や
要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、図2〜図4に示す各選択処理は、演算装置20が自動で行う例を説明したが、
選択を運転員が手動で行ってもよい。この場合、演算装置20は、表示装置に水位計を選
択するための圧力容器2や格納容器4の状態などの各種情報を表示し、運転員に水位計を
選択させる。また、演算装置20は、運転員の選択結果を入力装置を介して指示させる。
For example, although each selection process shown in FIGS. 2-4 demonstrated the example which the arithmetic unit 20 performs automatically,
The selection may be made manually by the operator. In this case, the arithmetic unit 20 displays various information such as the state of the pressure vessel 2 and the containment vessel 4 for selecting the water level meter on the display device, and allows the operator to select the water level meter. Moreover, the arithmetic unit 20 instructs an operator's selection result via an input device.

また、第1および第2実施形態における水位計測システムは、非差圧式水位計として原
子炉内非差圧式水位計35および原子炉外非差圧式水位計36を備える場合を例に説明し
たが、図8および図9に示すように、原子炉内非差圧式水位計35および原子炉外非差圧
式水位計36のいずれか一方を備えてもよい。
Moreover, although the water level measurement system in 1st and 2nd embodiment demonstrated as an example the case provided with the non-differential pressure type water level meter 35 and the non-differential pressure type water level meter 36 outside a reactor as a non-differential pressure type water level meter, As shown in FIG. 8 and FIG. 9, any one of the in-reactor non-differential pressure type water level gauge 35 and the non-reactor non-differential pressure type water level gauge 36 may be provided.

1、51、61、71 原子炉水位計測システム(水位計測システム)
2 原子炉圧力容器(圧力容器)
4 原子炉格納容器(格納容器)
11 凝縮槽
20 演算装置
21 基準水柱計装配管(基準配管)
22〜24 変動水柱計装配管(変動配管)
31 狭帯域原子炉水位計(狭帯域水位計)
32 広帯域原子炉水位計(広帯域水位計)
33 燃料域原子炉水位計(燃料域水位計)
34 定検時水張り用原子炉水位計(定検時水張り用水位計)
35 原子炉内非差圧式水位計
36 原子炉外非差圧式水位計
52 原子炉冷却材再循環流量系(再循環流量系)
53 原子炉冷却材再循環流量系ポンプ(再循環流量系ポンプ)
54 原子炉冷却材再循環流量系配管(再循環流量系配管)
55 シビアアクシデント計測用水位計(SA用水位計)
56 シビアアクシデント(SA)計測用変動水柱計装配管(SA用変動配管)
57 シビアアクシデント(SA)計測用基準水柱計装配管(SA用基準配管)
62 原子炉冷却材浄化設備系(CUW)
63 原子炉冷却材浄化設備系ボトムライン配管(CUWボトムライン配管
1, 51, 61, 71 Reactor water level measurement system (water level measurement system)
2 Reactor pressure vessel (pressure vessel)
4 Reactor containment vessel (containment vessel)
11 Condensation tank 20 Computing device 21 Reference water column instrumentation piping (reference piping)
22-24 Fluctuating water column instrumentation piping (variable piping)
31 Narrow-band reactor water level gauge (Narrow-band water level gauge)
32 Broadband reactor water level gauge (broadband water level gauge)
33 Fuel area reactor water level gauge (fuel area water level gauge)
34 Reactor water level meter for water filling during regular inspection (Water level meter for water filling during regular inspection)
35 Non-differential pressure type water level gauge in reactor 36 Non-differential pressure type water level gauge outside reactor 52 Reactor coolant recirculation flow system (recirculation flow system)
53 Reactor coolant recirculation flow system pump (recirculation flow system pump)
54 Reactor coolant recirculation flow system piping (recirculation flow system piping)
55 Severe Accident Measurement Water Level Meter (SA Water Level Meter)
56 Fluctuating water column instrumentation piping for severe accident (SA) measurement (variable piping for SA)
57 Severe Accident (SA) Standard Water Column Instrumentation Pipe (SA Standard Pipe)
62 Reactor coolant purification equipment system (CUW)
63 Reactor coolant purification equipment system bottom line piping (CUW bottom line piping

Claims (11)

原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第1の水位計は、
水位変動が狭い範囲の水位を計測する狭帯域水位計と、
前記狭帯域水位計の計測範囲より広い範囲の水位を計測する広帯域水位計と、
前記広帯域水位計の計測範囲より低い水位を計測する燃料域水位計と、
定期検査時に想定される水位を計測する定期検査時水張り用水位計とを有し、
前記第2の水位計は、
前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、前記差圧計測式とは異
なる方式で前記原子炉圧力容器の水位を検出するものであって、前記原子炉圧力容器の水
位が前記燃料域水位計の計測範囲よりも低い水位を計測範囲とすることを特徴とする原子
炉水位計測システム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The first water level gauge is
A narrow-band water level meter that measures the water level in a narrow range of water level fluctuations,
A broadband water level meter that measures a water level in a wider range than the measurement range of the narrow band water level meter,
A fuel region water level meter for measuring a water level lower than the measurement range of the broadband water level meter;
It has a water level meter for water filling during periodic inspection, which measures the water level assumed at the time of periodic inspection,
The second water level gauge is
It is arranged inside the reactor pressure vessel or outside the reactor pressure vessel, and detects the water level of the reactor pressure vessel by a method different from the differential pressure measurement type, and the water level of the reactor pressure vessel is A reactor water level measurement system, wherein a water level lower than a measurement range of the fuel area water level meter is set as a measurement range.
原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第2の水位計は、前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、
前記差圧計測式とは異なる方式で前記原子炉圧力容器の水位を検出するものであり、
前記演算装置は、前記原子炉格納容器のドライウェルの雰囲気温度と、原子炉圧力の飽
和温度を取得し、前記ドライウェルの雰囲気温度が前記原子炉圧力の飽和温度より大きい
場合、前記第2の水位計を選択することを特徴とする原子炉水位計測システム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The second water level gauge is disposed in the reactor pressure vessel or outside the reactor pressure vessel,
The water level of the reactor pressure vessel is detected by a method different from the differential pressure measurement method,
The computing device obtains the atmospheric temperature of the dry well of the reactor containment vessel and the saturation temperature of the reactor pressure, and when the atmospheric temperature of the dry well is larger than the saturation temperature of the reactor pressure, the second Reactor water level measurement system characterized by selecting a water level gauge.
前記演算装置は、前記広帯域水位計により検出された水位が設定水位よりも小さく、か
つ前記原子炉圧力が設定圧力より小さい場合、前記燃料域水位計を選択し、
さらに前記燃料域水位計が計測不能である場合、前記第2の水位計を選択するようにし
たことを特徴とする請求項1または請求項2の何れかに記載の原子炉水位計測システム。
When the water level detected by the broadband water level meter is lower than a set water level and the reactor pressure is lower than a set pressure, the arithmetic unit selects the fuel area water level meter,
3. The reactor water level measurement system according to claim 1, wherein the second water level meter is selected when the fuel area water level meter is not measurable. 4.
前記演算装置は、水位が前記燃料域水位計の計測範囲の下限を下回った場合、前記第2
の水位計を選択する請求項3記載の原子炉水位計測システム。
When the water level falls below the lower limit of the measurement range of the fuel area water level meter, the computing device
The reactor water level measurement system according to claim 3, wherein a water level gauge is selected.
前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われ前記燃料域水位計
が計測可能となった場合、前記演算装置は、前記燃料域水位計を選択する請求項3記載の
原子炉水位計測システム。
4. The atom according to claim 3, wherein when the reference water column instrumentation pipe and the fluctuating water column instrumentation pipe are filled with water and the fuel region water level meter becomes measurable, the arithmetic unit selects the fuel region water level meter. Reactor water level measurement system.
前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われず、かつ前記原子
炉圧力が前記設定圧力より大きい場合、前記演算装置は前記第2の水位計を選択する請求
項3記載の原子炉水位計測システム。
The said arithmetic unit selects the said 2nd water level meter, when water filling is not performed to the said reference | standard water column instrumentation piping and the said fluctuation | variation water column instrumentation piping, and the said reactor pressure is larger than the said setting pressure. Reactor water level measurement system.
前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われない場合、
前記演算装置は、前記原子炉圧力が前記設定圧力以下であり、かつ前記広帯域水位計お
よび定検時水張り用水位計の出力の変動を検出した場合、前記定検時水張り用水位計を選
択する請求項3記載の原子炉水位計測システム。
When water filling is not performed on the reference water column instrumentation pipe and the variable water column instrumentation pipe,
When the reactor pressure is equal to or lower than the set pressure, and the fluctuation of the output of the broadband water level meter and the water level meter for water filling during regular inspection is detected, the arithmetic unit selects the water level meter for water filling during regular inspection The reactor water level measurement system according to claim 3.
原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第1の水位計および前記第2の水位計は計測範囲が重複し、前記第2の水位計は、
前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、前記差圧計測式とは異な
る方式で前記原子炉圧力容器の水位を検出するものであり、
前記演算装置は、前記第1の水位計と前記第2の水位計の検出値により求まる前記原子
炉圧力容器の水位を比較し、両者の水位が異なる場合、前記第1の水位計と前記第2の水
位計との間の係数を求め、前記係数に基づいて前記第1の水位計の検出値を校正するよう
にしたことを特徴とする原子炉水位計測システム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The first water level meter and the second water level meter have overlapping measurement ranges, and the second water level meter
It is arranged inside the reactor pressure vessel or outside the reactor pressure vessel, and detects the water level of the reactor pressure vessel by a method different from the differential pressure measurement type,
The arithmetic unit compares the water levels of the reactor pressure vessel determined by the detected values of the first water level meter and the second water level meter, and when the water levels are different, the first water level meter and the first water level meter A reactor water level measurement system characterized in that a coefficient between two water level gauges is obtained, and a detection value of the first water level gauge is calibrated based on the coefficient.
原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第2の水位計は、前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、
前記差圧計測式とは異なる方式で前記原子炉圧力容器の水位を計測する複数の水位計であ
り、
前記演算装置は、複数の前記第2の水位計より得られる検出結果のうち、オーバースケ
ールまたはダウンスケールした数値がある場合、前記オーバースケールまたはダウンスケ
ールした数値を検出した水位計以外の水位計を選択するようにした原子炉水位計測システ
ム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The second water level gauge is disposed in the reactor pressure vessel or outside the reactor pressure vessel,
A plurality of water level meters that measure the water level of the reactor pressure vessel in a manner different from the differential pressure measurement formula,
When there is an overscaled or downscaled numerical value among the detection results obtained from a plurality of the second water level meters, the arithmetic unit may provide a water level meter other than the water level meter that has detected the overscaled or downscaled value. Reactor water level measurement system to be selected.
原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第2の水位計は、前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、
前記差圧計測式とは異なる方式で前記原子炉圧力容器の水位を検出し、多区分に設けられ
た複数の水位計であり、
前記演算装置は、区分間の指示値のばらつきを計算し、ばらつきが増大した場合、異常
値を示す前記第2の水位計以外の水位計を選択するようにしたこと原子炉水位計測システ
ム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The second water level gauge is disposed in the reactor pressure vessel or outside the reactor pressure vessel,
Detecting the water level of the reactor pressure vessel by a method different from the differential pressure measurement method, a plurality of water level meters provided in multiple sections,
The reactor water level measurement system, wherein the arithmetic unit calculates a variation in the indicated value between the sections, and when the variation increases, a water level meter other than the second water level meter indicating an abnormal value is selected.
原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
前記凝縮槽に一端が接続された基準水柱計装配管と、
前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準
水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の
水位計と、
前記第1の水位計とは異なる非差圧式水位計の構成を有し、前記原子炉圧力容器の水位
を検出する第2の水位計と、
前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計ま
たは前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力
容器の水位を指示・記録する演算装置とを備え、
前記第2の水位計は、炉心シュラウド内に複数箇所設置され、前記差圧計測式とは異な
る方式で前記原子炉圧力容器の水位を検出するものであり、
前記演算装置は、いずれかの前記第2の水位計に異常が検出された場合、異常が検出さ
れた前記第2の水位計以外の水位計の検出結果に基づいて前記原子炉圧力容器の水位を指
示・記録する原子炉水位計測システム。
A condensing tank connected to the steam region of the reactor pressure vessel stored in the reactor containment vessel;
Reference water column instrumentation piping having one end connected to the condensing tank,
A first variable water column instrumentation pipe having one end connected to the reactor pressure vessel;
A differential pressure measurement type that is connected to the other end of the reference water column instrumentation pipe and the first variable water column instrumentation pipe and detects a head difference between the reference water column instrumentation pipe and the first variable water column instrumentation pipe. A first water gauge,
A second water level gauge that has a configuration of a non-differential pressure type water level gauge different from the first water level gauge and detects the water level of the reactor pressure vessel;
The first water level meter or the second water level meter is selected based on the state of the reactor containment vessel or the reactor pressure vessel, and the reactor pressure vessel is selected based on the detection result of the selected water level meter. And an arithmetic device that indicates and records the water level of
The second water level gauge is installed in a plurality of locations in the core shroud, and detects the water level of the reactor pressure vessel by a method different from the differential pressure measurement type,
When an abnormality is detected in any of the second water level gauges, the arithmetic unit is configured to detect the water level of the reactor pressure vessel based on a detection result of a water level gauge other than the second water level gauge in which the abnormality is detected. Reactor water level measurement system that directs and records.
JP2014194490A 2014-09-24 2014-09-24 Reactor water level measurement system Active JP5815100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194490A JP5815100B2 (en) 2014-09-24 2014-09-24 Reactor water level measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194490A JP5815100B2 (en) 2014-09-24 2014-09-24 Reactor water level measurement system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011253143A Division JP5677274B2 (en) 2011-11-18 2011-11-18 Reactor water level measurement system

Publications (2)

Publication Number Publication Date
JP2015038488A true JP2015038488A (en) 2015-02-26
JP5815100B2 JP5815100B2 (en) 2015-11-17

Family

ID=52631618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194490A Active JP5815100B2 (en) 2014-09-24 2014-09-24 Reactor water level measurement system

Country Status (1)

Country Link
JP (1) JP5815100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151302A (en) * 2017-03-14 2018-09-27 日立Geニュークリア・エナジー株式会社 Thermocouple type liquid level measurement system
JP2021124360A (en) * 2020-02-04 2021-08-30 株式会社東芝 Nuclear reactor water-level measurement system and nuclear reactor water-level measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677717A (en) * 1979-11-29 1981-06-26 Toshiba Corp Water level measuring device
JPS57119295A (en) * 1981-01-19 1982-07-24 Hitachi Ltd Alarm device of reactor core water level
US4639349A (en) * 1982-03-22 1987-01-27 Research Corporation Non-invasive liquid level and density gauge for nuclear power reactor pressure vessels
JPH10274554A (en) * 1997-03-31 1998-10-13 Toshiba Corp Liquid level measuring device for pressure vessel
JP2000065979A (en) * 1998-08-26 2000-03-03 Toshiba Corp Core flow monitoring system
JP2001324590A (en) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd System for measuring water level of nuclear reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677717A (en) * 1979-11-29 1981-06-26 Toshiba Corp Water level measuring device
JPS57119295A (en) * 1981-01-19 1982-07-24 Hitachi Ltd Alarm device of reactor core water level
US4639349A (en) * 1982-03-22 1987-01-27 Research Corporation Non-invasive liquid level and density gauge for nuclear power reactor pressure vessels
JPH10274554A (en) * 1997-03-31 1998-10-13 Toshiba Corp Liquid level measuring device for pressure vessel
JP2000065979A (en) * 1998-08-26 2000-03-03 Toshiba Corp Core flow monitoring system
JP2001324590A (en) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd System for measuring water level of nuclear reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151302A (en) * 2017-03-14 2018-09-27 日立Geニュークリア・エナジー株式会社 Thermocouple type liquid level measurement system
JP2021124360A (en) * 2020-02-04 2021-08-30 株式会社東芝 Nuclear reactor water-level measurement system and nuclear reactor water-level measurement method
JP7237869B2 (en) 2020-02-04 2023-03-13 株式会社東芝 Reactor water level measurement system and reactor water level measurement method

Also Published As

Publication number Publication date
JP5815100B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5677274B2 (en) Reactor water level measurement system
JP2013108810A5 (en)
ES2380113T3 (en) Procedure and device for monitoring the level of filling of a liquid in a liquid container
US7926345B2 (en) Apparatus for measuring a filling level
EP2784781B1 (en) Reactor water level measuring system
US20140305201A1 (en) Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
US20090180514A1 (en) Transformer and a method of monitoring an operation property of the transformer
EP2801979B1 (en) Atomic reactor state monitoring device and monitoring method thereof
JP2015522816A (en) Device for detecting the level of liquid contained in a container
US20240304348A1 (en) Method of communicating temperature data including a heating element coupled to temperature sensor at interface
BR112015013970B1 (en) control method and system for identifying undesired conditions in the operation of a floating roof of a tank and monitoring system for monitoring a floating roof of a floating roof tank
JP2013156036A (en) Liquid level detecting device and method
JP5815100B2 (en) Reactor water level measurement system
JP6104594B2 (en) Internal pressure test device
US8831162B2 (en) Apparatus and method for measuring a temperature of coolant in a reactor core, and apparatus for monitoring a reactor core
WO2012096165A1 (en) Water level measuring system and non-condensable gas discharge device for same
US4414177A (en) Liquid level, void fraction, and superheated steam sensor for nuclear reactor cores
KR102590507B1 (en) How to prevent nuclear fuel failure
JP5802550B2 (en) Water level measuring device
JP2014041023A (en) Reactor water-level meter
JP2014206519A5 (en)
JP2008267931A (en) Liquid level measuring device for liquid tank
JP6489904B2 (en) Reactor water level measurement method and apparatus during emergency
KR20160015694A (en) Pipe life management system related with three dimension displacement measurement system
JP4786670B2 (en) Instrument drift detector

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R151 Written notification of patent or utility model registration

Ref document number: 5815100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151