JP2018087965A - Image capturing optical system and image capturing device having the same - Google Patents

Image capturing optical system and image capturing device having the same Download PDF

Info

Publication number
JP2018087965A
JP2018087965A JP2017196646A JP2017196646A JP2018087965A JP 2018087965 A JP2018087965 A JP 2018087965A JP 2017196646 A JP2017196646 A JP 2017196646A JP 2017196646 A JP2017196646 A JP 2017196646A JP 2018087965 A JP2018087965 A JP 2018087965A
Authority
JP
Japan
Prior art keywords
lens
optical system
lens element
imaging optical
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017196646A
Other languages
Japanese (ja)
Other versions
JP6971760B2 (en
Inventor
健太朗 森
Kentaro Mori
健太朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/817,929 priority Critical patent/US10527825B2/en
Publication of JP2018087965A publication Critical patent/JP2018087965A/en
Application granted granted Critical
Publication of JP6971760B2 publication Critical patent/JP6971760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image capturing optical system which can easily obtain high optical performance while achieving a reduction in size of the entire system and in weight of lenses.SOLUTION: An image capturing optical system consists of a first lens group having positive refractive power, a second lens group having negative refractive power, an aperture diaphragm, and a third lens group arranged in the order from an object side to an image side where the second lens group is configured to move while focusing. The first lens group consists of a 1a lens element having positive refractive power, a 1b lens element having negative refractive power, and a 1c lens element having positive refractive power arranged in the order from the object side to the image side. A focal length f1b of the 1b lens element and a focal length f of the entire system are individually set appropriately.SELECTED DRAWING: Figure 1

Description

本発明は、撮像光学系に関し、例えばデジタルスチルカメラ、デジタルビデオカメラ、監視用カメラ、TVカメラ、銀塩フィルム用カメラ等の撮像装置に好適なものである。   The present invention relates to an imaging optical system, and is suitable for an imaging apparatus such as a digital still camera, a digital video camera, a surveillance camera, a TV camera, and a silver salt film camera.

従来、長焦点距離の撮像光学系として、物体側から像側へ順に、正の屈折力の前方レンズ群と、負の屈折力の後方レンズ群より成る、所謂、望遠タイプの撮像光学系(望遠レンズ)が知られている。   Conventionally, as a long focal length image pickup optical system, a so-called telephoto type image pickup optical system (telephoto type) including a front lens group having a positive refractive power and a rear lens group having a negative refractive power in order from the object side to the image side. Lens) is known.

一般的に焦点距離の長い望遠タイプの撮像光学系では、焦点距離が延びる(長くなる)にしたがって光学系全体が大型化し、高重量になってくる。特に開口絞りより物体側に配置された前方レンズ群の重量の増加が著しい。また諸収差のうち、特に球面収差や色収差のうち軸上色収差が多く発生してくる。この色収差を、蛍石等の異常部分分散性を持った低分散材料を用いて色消しを行った撮像光学系が種々提案されている。   In general, in a telephoto imaging optical system with a long focal length, the entire optical system becomes larger and heavier as the focal length increases (becomes longer). In particular, the increase in the weight of the front lens unit disposed on the object side of the aperture stop is remarkable. Further, among various aberrations, particularly axial chromatic aberration is generated among spherical aberration and chromatic aberration. Various imaging optical systems have been proposed in which the chromatic aberration is achromatic using a low dispersion material having anomalous partial dispersion such as fluorite.

撮像光学系の色収差を含めた諸収差を良好に補正しつつ、レンズ重量を軽減する方法として、撮像光学系の一部に、回折作用を有する回折光学部を用いる方法が知られている。回折作用を利用し、従来収差補正に必要であった前方レンズ群のレンズ枚数を削減しつつ、前方レンズ群を蛍石等の異常部分分散性を持った低分散材料よりも屈折率の高い硝材で構成し全系の小型、軽量化を図った撮像光学系が知られている(特許文献1,2)。   As a method of reducing the lens weight while satisfactorily correcting various aberrations including chromatic aberration of the imaging optical system, a method using a diffractive optical part having a diffractive action as a part of the imaging optical system is known. Glass material with a higher refractive index than low-dispersion materials such as fluorite, which uses the diffraction action and reduces the number of lenses in the front lens group, which was conventionally required for aberration correction. An imaging optical system is known in which the entire system is reduced in size and weight (Patent Documents 1 and 2).

特許文献1では、正の屈折力の前方レンズ群に回折光学部(回折面)を設けた焦点距離600mm前後の望遠レンズを開示している。特許文献2では、正の屈折力の前方レンズ群に回折光学部を設け、前方レンズ群を構成するレンズの材料の比重を適切に設定することで全系の軽量化を図った焦点距離400mm前後の望遠レンズを開示している。   Patent Document 1 discloses a telephoto lens having a focal length of about 600 mm in which a diffractive optical part (diffraction surface) is provided in a front lens group having a positive refractive power. In Patent Document 2, a diffractive optical unit is provided in a front lens group having a positive refractive power, and the focal length of about 400 mm is achieved by reducing the weight of the entire system by appropriately setting the specific gravity of the lens material constituting the front lens group. The telephoto lens is disclosed.

特開2012−88427号公報JP 2012-88427 A 特開2014−56195号公報JP 2014-56195 A

望遠タイプの撮像光学系は一般に、焦点距離が長くなるにつれて全系が大型化し重量が増加する。このため、望遠タイプの撮像光学系はレンズ系全体の小型化及び重量の低減を図ることが重要になってくる。さらに、望遠タイプの撮像光学系は一般に、焦点距離が長くなるにつれて色収差等の諸収差が多く発生してくる。   In general, a telephoto type imaging optical system is increased in size and weight as the entire system becomes larger as the focal length becomes longer. For this reason, in the telephoto imaging optical system, it is important to reduce the size and weight of the entire lens system. Further, in the telephoto imaging optical system, various aberrations such as chromatic aberration generally occur as the focal length increases.

一般に望遠タイプの撮像光学系は、正の屈折力の前方レンズ群が大型化しやすいため、全系の小型化及び軽量化を図りつつ、色収差を良好に補正し、高い光学性能を得るためには前方レンズ群のレンズ構成を適切に設定することが重要になってくる。前方レンズ群のレンズ構成が不適切であると、全系が大型化し、かつ諸収差が増大し、高い光学性能を得るのが困難になる。   In general, in the telephoto imaging optical system, the front lens group having a positive refractive power is likely to be enlarged, so that the entire system can be reduced in size and weight while correcting chromatic aberration and obtaining high optical performance. It is important to set the lens configuration of the front lens group appropriately. If the lens configuration of the front lens group is inappropriate, the entire system becomes large and various aberrations increase, making it difficult to obtain high optical performance.

本発明は、全系の小型化及びレンズ重量の軽減化を図りつつ、高い光学性能が容易に得られる撮像光学系の提供を目的とする。   An object of the present invention is to provide an imaging optical system that can easily obtain high optical performance while reducing the size of the entire system and reducing the weight of the lens.

本発明の撮像光学系は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成され、フォーカシングに際して前記第2レンズ群が移動する撮像光学系において、
前記第1レンズ群は、物体側から像側へ順に配置された、正の屈折力の第1aレンズ要素、負の屈折力の第1bレンズ要素、正の屈折力の第1cレンズ要素より構成され、前記第1bレンズ要素の焦点距離をf1b、全系の焦点距離をfとするとき、
−0.65<f1b/f<−0.05
なる条件式を満足することを特徴としている。
The imaging optical system of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens group, which are arranged in order from the object side to the image side. In the imaging optical system in which the second lens group moves during focusing,
The first lens group includes a first-a lens element having a positive refractive power, a first-b lens element having a negative refractive power, and a first-c lens element having a positive refractive power, which are arranged in order from the object side to the image side. When the focal length of the 1b lens element is f1b and the focal length of the entire system is f,
−0.65 <f1b / f <−0.05
It satisfies the following conditional expression.

本発明によれば、全系の小型化及びレンズ重量の軽減化を図りつつ、高い光学性能が容易に得られる撮像光学系が得られる。   According to the present invention, it is possible to obtain an imaging optical system that can easily obtain high optical performance while reducing the size of the entire system and reducing the lens weight.

実施例1のレンズ断面図Lens sectional view of Example 1 実施例1の物体距離無限遠時における収差図Aberration diagram of Example 1 at infinite object distance 実施例2のレンズ断面図Lens sectional view of Example 2 実施例2の物体距離無限遠時における収差図Aberration diagram of Example 2 at infinite object distance 実施例3のレンズ断面図Lens sectional view of Example 3 実施例3の物体距離無限遠時における収差図Aberration diagram of Example 3 at infinite object distance 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を添付の図面に基づいて説明する。本発明の撮像光学系は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成される。フォーカシングに際して第2レンズ群が移動する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. The imaging optical system of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens group, which are arranged in order from the object side to the image side. . The second lens group moves during focusing.

図1は本発明の実施例1の撮像光学系のレンズ断面図である。図2は本発明の実施例1の撮像光学系の縦収差図である。実施例1はFナンバー5.80、撮像画角3.18度の撮像光学系である。図3は本発明の実施例2の撮像光学系のレンズ断面図である。図4は本発明の実施例2の撮像光学系の縦収差図である。実施例2はFナンバー5.80、撮像画角3.18度の撮像光学系である。   FIG. 1 is a lens cross-sectional view of the image pickup optical system according to the first embodiment of the present invention. FIG. 2 is a longitudinal aberration diagram of the image pickup optical system according to the first embodiment of the present invention. Example 1 is an imaging optical system having an F number of 5.80 and an imaging field angle of 3.18 degrees. FIG. 3 is a lens cross-sectional view of the image pickup optical system according to the second embodiment of the present invention. FIG. 4 is a longitudinal aberration diagram of the image pickup optical system according to the second embodiment of the present invention. Example 2 is an imaging optical system having an F number of 5.80 and an imaging field angle of 3.18 degrees.

図5は本発明の実施例3の撮像光学系のレンズ断面図である。図6は本発明の実施例3の撮像光学系の縦収差図である。実施例3はFナンバー5.80、撮像画角3.18度の撮像光学系である。図7は本発明の撮像装置の要部概略図である。   FIG. 5 is a lens cross-sectional view of the image pickup optical system according to the third embodiment of the present invention. FIG. 6 is a longitudinal aberration diagram of the image pickup optical system according to the third embodiment of the present invention. Example 3 is an imaging optical system having an F number of 5.80 and an imaging field angle of 3.18 degrees. FIG. 7 is a schematic view of the main part of the imaging apparatus of the present invention.

レンズ断面図において、左側が物体側、右側が像側である。L0は撮像光学系、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は第3レンズ群である。L1aは正の屈折力の第1aレンズ要素、L1bは負の屈折力の第1bレンズ要素、L1cは正の屈折力の第1cレンズ要素である。ここでレンズ要素とは単一レンズ、又は複数のレンズを接合した接合レンズより構成されるレンズ系をいう。   In the lens cross-sectional view, the left side is the object side, and the right side is the image side. L0 is an imaging optical system, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, and L3 is a third lens group. L1a is a 1a lens element having a positive refractive power, L1b is a 1b lens element having a negative refractive power, and L1c is a 1c lens element having a positive refractive power. Here, the lens element refers to a lens system including a single lens or a cemented lens obtained by cementing a plurality of lenses.

DOEは回折光学部(回折面)、SPは開口絞りである。IPはCCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面に相当する像面である。また、Gはローパスフィルター等の平行平板を表し、必要に応じて撮像面の前方に配置している。   DOE is a diffractive optical part (diffraction surface), and SP is an aperture stop. IP is an image plane corresponding to an image pickup surface of a solid-state image pickup device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. G represents a parallel plate such as a low-pass filter, and is disposed in front of the imaging surface as necessary.

球面収差図において、FnoはFナンバーである。また実線のdはd線(波長587.6nm)、一点鎖線のgはg線(波長435.8nm)である。非点収差図で点線のΔMはd線におけるメリディオナル像面、実線のΔSはd線におけるサジタル像面である。歪曲収差図はd線について示している。倍率色収差図はg線について示している。ωは半画角(度)である。   In the spherical aberration diagram, Fno is an F number. The solid line d is d-line (wavelength 587.6 nm), and the alternate long and short dash line g is g-line (wavelength 435.8 nm). In the astigmatism diagram, the dotted line ΔM is the meridional image plane at the d line, and the solid line ΔS is the sagittal image plane at the d line. The distortion diagram shows the d-line. The lateral chromatic aberration diagram shows the g-line. ω is a half angle of view (degree).

以下に、本発明の軽量かつ高画質が容易に得られる撮像光学系L0のレンズ構成について説明する。   Hereinafter, the lens configuration of the imaging optical system L0 according to the present invention that can easily obtain the light weight and high image quality will be described.

本発明の撮像光学系L0は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、開口絞りSP、正または負の屈折力の第3レンズ群L3よりなる、所謂、望遠型のレンズ配置としている。これにより、全系のレンズ全長を短縮しつつ、良好な光学性能を得ている。また第1レンズ群L1は、1枚の正レンズからなる第1aレンズ要素L1a、正レンズと負レンズを接合した接合レンズからなる第1bレンズ要素L1b、正レンズからなる第1cレンズ要素L1cから構成されている。   The imaging optical system L0 of the present invention includes a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, an aperture stop SP, and a positive or negative lens disposed in order from the object side to the image side. A so-called telephoto lens arrangement including the third lens unit L3 having refractive power is employed. Thereby, good optical performance is obtained while shortening the total lens length of the entire system. The first lens unit L1 includes a 1a lens element L1a composed of one positive lens, a 1b lens element L1b composed of a cemented lens obtained by cementing a positive lens and a negative lens, and a first c lens element L1c composed of a positive lens. Has been.

全系を軽量化するには、物体側のレンズ群のレンズ枚数を少なくしつつ、有効径を小径化することが重要である。最も物体側に配置された第1aレンズ要素L1aは1枚の正レンズよりなる。   In order to reduce the weight of the entire system, it is important to reduce the effective diameter while reducing the number of lenses in the object side lens group. The 1a lens element L1a arranged on the most object side is composed of one positive lens.

一般に望遠型の撮像光学系の前玉有効径はFナンバーにより決定され、撮像光学系の中で最も有効径の大きいレンズとなる。全系の軽量化のためには有効径の大きいレンズの枚数を少なくすることが重要であり、この構成は撮像光学系の軽量化に有効である。   In general, the effective diameter of the front lens of a telephoto imaging optical system is determined by the F number, and becomes the lens with the largest effective diameter in the imaging optical system. In order to reduce the weight of the entire system, it is important to reduce the number of lenses having a large effective diameter, and this configuration is effective for reducing the weight of the imaging optical system.

第1aレンズ要素L1aを1枚の正レンズより構成すると、色収差が発生しやすくなる。そこで第1bレンズ要素L1bは負の屈折力で構成している。この構成により、第1aレンズ要素L1aより発生する色収差を効果的に補正している。   If the 1a lens element L1a is composed of one positive lens, chromatic aberration is likely to occur. Therefore, the 1b lens element L1b is configured with a negative refractive power. With this configuration, the chromatic aberration generated from the 1a lens element L1a is effectively corrected.

また、第1cレンズ要素L1cは正の屈折力としている。第1bレンズ要素L1bは負の屈折力(パワー)であり、第2レンズ群L2を小径化し軽量化を図るには軸上光束を収斂させる必要がある。この構成は撮像光学系の軽量化に有効である。また、前記第1bレンズ要素L1bの焦点距離をf1b、全系の焦点距離をfとする。このとき、
−0.65<f1b/f<−0.05 ・・・(1)
なる条件式を満足する。
The first c lens element L1c has a positive refractive power. The 1b lens element L1b has negative refractive power (power), and it is necessary to converge the axial luminous flux in order to reduce the diameter and weight of the second lens unit L2. This configuration is effective for reducing the weight of the imaging optical system. The focal length of the first lens element L1b is f1b, and the focal length of the entire system is f. At this time,
−0.65 <f1b / f <−0.05 (1)
The following conditional expression is satisfied.

条件式(1)は全系の軽量化を図りつつ、高画質を得るためのものである。条件式(1)の上限値を超えて第1bレンズ要素L1bの負の焦点距離が短くなりすぎると(負の焦点距離の絶対値が小さくなりすぎると)、球面収差や色収差等の諸収差が増加し高画質を得ることが困難になる。条件式(1)の下限値を超えて第1bレンズ要素L1bの負の焦点距離が長くなりすぎると(負の焦点距離の絶対値が大きくなりすぎると)、第1bレンズ要素L1bの有効径が大きくなり全系の軽量化が困難となる。   Conditional expression (1) is for obtaining high image quality while reducing the weight of the entire system. If the negative focal length of the 1b lens element L1b becomes too short beyond the upper limit of conditional expression (1) (the absolute value of the negative focal length becomes too small), various aberrations such as spherical aberration and chromatic aberration occur. It increases and it becomes difficult to obtain high image quality. If the negative focal length of the 1b lens element L1b becomes too long beyond the lower limit value of the conditional expression (1) (the absolute value of the negative focal length becomes too large), the effective diameter of the 1b lens element L1b becomes large. It becomes large and it becomes difficult to reduce the weight of the entire system.

各実施例では、以上の構成により、全系が軽量でかつ高画質を得ることが容易な撮像光学系を得ている。各実施例において好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。
−0.45<f1b/f<−0.13 ・・・(1a)
更に好ましくは条件式(1a)の数値範囲を次の如く設定するのが良い。
−0.34<f1b/f<−0.17 ・・・(1b)
In each embodiment, with the above configuration, an imaging optical system is obtained in which the entire system is lightweight and easy to obtain high image quality. In each embodiment, the numerical range of conditional expression (1) is preferably set as follows.
−0.45 <f1b / f <−0.13 (1a)
More preferably, the numerical range of the conditional expression (1a) is set as follows.
−0.34 <f1b / f <−0.17 (1b)

各実施例において更に好ましくは、次に述べる条件のうち1つ以上を満足するのが良い。第1aレンズ要素L1aと第1bレンズ要素L1bの間隔をd1aとする。第1aレンズ要素L1aの焦点距離をf1aとする。第1bレンズ要素L1bと第1cレンズ要素L1cの間隔をd1bとする。無限遠合焦時における第1cレンズ要素L1cと第2レンズ群L2の間隔をd1cとする。第1cレンズ要素L1cの焦点距離をf1cとする。第1bレンズ要素L1bの最も物体側のレンズ面の有効径をea1bとする。第2レンズ群L2の最も物体側のレンズ面の有効径をea2とする。   In each embodiment, it is more preferable that one or more of the following conditions be satisfied. The distance between the 1a lens element L1a and the 1b lens element L1b is d1a. Let the focal length of the 1a lens element L1a be f1a. The distance between the first b lens element L1b and the first c lens element L1c is d1b. The distance between the first c lens element L1c and the second lens unit L2 at the time of focusing on infinity is d1c. Let the focal length of the first c lens element L1c be f1c. The effective diameter of the lens surface closest to the object side of the 1b lens element L1b is assumed to be ea1b. The effective diameter of the lens surface closest to the object side of the second lens unit L2 is set to ea2.

このとき次の条件式のうち1つ以上を満足するのが良い。
0.43<d1a/f1a<0.80 ・・・(2)
0.07<d1b/|f1b|<0.35 ・・・(3)
0.12<d1c/f1c<0.45 ・・・(4)
10.4<f/ea1b<16.0 ・・・(5)
17.0<f/ea2<24.0 ・・・(6)
At this time, it is preferable to satisfy one or more of the following conditional expressions.
0.43 <d1a / f1a <0.80 (2)
0.07 <d1b / | f1b | <0.35 (3)
0.12 <d1c / f1c <0.45 (4)
10.4 <f / ea1b <16.0 (5)
17.0 <f / ea2 <24.0 (6)

次に前述の各条件式の技術的意味について説明する。条件式(2)は全系の軽量化を図りつつ、高画質を得るためのものである。条件式(2)の上限値を超えて間隔d1aが広くなりすぎると、第1bレンズ要素L1bに入射する軸上光束の光軸からの入射高さが低くなりすぎ球面収差等の諸収差を補正することが困難となる。条件式(2)の下限値を超えて間隔d1aが狭くなりすぎると、物体側に位置するレンズを小径化するのが困難となり、全系の軽量化が困難となる。   Next, the technical meaning of each conditional expression described above will be described. Conditional expression (2) is for obtaining high image quality while reducing the weight of the entire system. If the distance d1a is too wide beyond the upper limit value of conditional expression (2), the incident height from the optical axis of the axial light beam incident on the 1b lens element L1b becomes too low to correct various aberrations such as spherical aberration. Difficult to do. If the distance d1a is too narrow beyond the lower limit value of the conditional expression (2), it is difficult to reduce the diameter of the lens located on the object side, and it is difficult to reduce the weight of the entire system.

条件式(3)は高画質を得るためのものである。条件式(3)の上限値を超えて間隔d1aが広くなりすぎると、レンズ全長(第1レンズ面から像面までの長さ)が長くなりすぎるので良くない。条件式(3)の下限値を超えて間隔d1aが狭くなりすぎると、第1bレンズ要素L1bによる軸外光束の縮小作用を十分に活用するのが難しくなり、片絞りが顕著になる。ここで片絞りとは、軸外子午光束の主光線が上光線と下光線の中心位置と一致しないことをさす。片絞りになるとFナンバーを大きくしたとき、画面外の光量減少が顕著になり画質上良くない。   Conditional expression (3) is for obtaining high image quality. If the distance d1a becomes too large beyond the upper limit value of conditional expression (3), the total lens length (the length from the first lens surface to the image plane) becomes too long, which is not good. If the lower limit of conditional expression (3) is exceeded and the distance d1a becomes too narrow, it becomes difficult to fully utilize the reduction effect of the off-axis light beam by the first b lens element L1b, and the one-stop is remarkable. Here, the single stop means that the principal ray of the off-axis meridian beam does not coincide with the center position of the upper ray and the lower ray. When a single aperture is used, when the F-number is increased, the amount of light outside the screen is significantly reduced, resulting in poor image quality.

条件式(4)は全系の軽量化を得るためのものである。条件式(4)の上限値を超えて間隔d1cが広くなりすぎると、レンズ全長が長くなりすぎるので良くない。条件式(4)の下限値を超えて間隔d1cが狭くなりすぎると、第2レンズ群L2を小径化するのが困難となり、全系の軽量化が困難となる。   Conditional expression (4) is for obtaining weight reduction of the entire system. If the distance d1c is too wide beyond the upper limit of conditional expression (4), the total lens length becomes too long, which is not good. If the distance d1c is too narrow beyond the lower limit of conditional expression (4), it is difficult to reduce the diameter of the second lens unit L2, and it is difficult to reduce the weight of the entire system.

条件式(5)は全系の軽量化を図りつつ、高画質を得るためのものである。条件式(5)の上限値を超えて第1bレンズ要素L1bの最も物体側のレンズ面の有効径が小さくなりすぎると、第1bレンズ要素L1bによる色収差や球面収差、コマ収差等の収差補正作用が弱くなり、高画質を得ることが困難となる。条件式(5)の下限値を超えて第1bレンズ要素L1bの最も物体側のレンズ面の有効径が大きくなりすぎると、全系の軽量化が困難となる。   Conditional expression (5) is for obtaining high image quality while reducing the weight of the entire system. If the effective diameter of the lens surface closest to the object side of the 1b lens element L1b becomes too small beyond the upper limit value of the conditional expression (5), an aberration correcting action such as chromatic aberration, spherical aberration, and coma aberration by the 1b lens element L1b. Becomes weak and it becomes difficult to obtain high image quality. If the effective diameter of the lens surface closest to the object side of the 1b lens element L1b becomes too large beyond the lower limit value of the conditional expression (5), it is difficult to reduce the weight of the entire system.

条件式(6)は全系の軽量化を図りつつ、高画質を得るためのものである。条件式(6)の上限値を超えて第2レンズ群L2の最も物体側のレンズ面の有効径が小さくなりすぎると、第2レンズ群L2の色収差や球面収差等の収差補正作用が弱くなりすぎ高画質を得ることが困難となる。条件式(6)の下限値を超えて第2レンズ群L2の最も物体側のレンズ面の有効径が大きくなりすぎると全系の軽量化が困難となる。   Conditional expression (6) is for obtaining high image quality while reducing the weight of the entire system. If the upper limit of conditional expression (6) is exceeded and the effective diameter of the lens surface closest to the object in the second lens unit L2 becomes too small, the aberration correction function of the second lens unit L2, such as chromatic aberration and spherical aberration, becomes weak. It is difficult to obtain high image quality. If the lower limit of conditional expression (6) is exceeded and the effective diameter of the lens surface closest to the object side of the second lens unit L2 becomes too large, it is difficult to reduce the weight of the entire system.

好ましくは条件式(2)乃至(6)の数値範囲を次の如く設定するのが良い。
0.45<d1a/f1a<0.65 ・・・(2a)
0.09<d1b/|f1b|<0.28 ・・・(3a)
0.17<d1c/f1c<0.37 ・・・(4a)
11.3<f/ea1b<15.0 ・・・(5a)
17.5<f/ea2<22.5 ・・・(6a)
Preferably, the numerical ranges of conditional expressions (2) to (6) are set as follows.
0.45 <d1a / f1a <0.65 (2a)
0.09 <d1b / | f1b | <0.28 (3a)
0.17 <d1c / f1c <0.37 (4a)
11.3 <f / ea1b <15.0 (5a)
17.5 <f / ea2 <22.5 (6a)

更に好ましくは条件式(2a)乃至(6a)の数値範囲を次の如く設定するのが良い。
0.46<d1a/f1a<0.55 ・・・(2b)
0.11<d1b/|f1b|<0.20 ・・・(3b)
0.19<d1c/f1c<0.30 ・・・(4b)
12.0<f/ea1b<14.0 ・・・(5b)
18.5<f/ea2<21.0 ・・・(6b)
More preferably, the numerical ranges of the conditional expressions (2a) to (6a) are set as follows.
0.46 <d1a / f1a <0.55 (2b)
0.11 <d1b / | f1b | <0.20 (3b)
0.19 <d1c / f1c <0.30 (4b)
12.0 <f / ea1b <14.0 (5b)
18.5 <f / ea2 <21.0 (6b)

また、各実施例において第1bレンズ要素L1bの接合面に回折光学部(回折面)DOEを有するのが良い。第1bレンズ要素L1bに回折光学部を設定することで色収差を良好に補正することが容易となり、高画質化が容易になる。また、各実施例において、第1aレンズ要素L1aの像側のレンズ面を非球面形状とするのが良い。第1aレンズ要素L1aに非球面を設定することで球面収差やコマ収差を良好に補正でき高画質が容易に得られる。   In each embodiment, it is preferable to have a diffractive optical part (diffractive surface) DOE on the cemented surface of the 1b lens element L1b. By setting the diffractive optical part to the first-b lens element L1b, it becomes easy to correct chromatic aberration satisfactorily and to improve the image quality. In each embodiment, it is preferable that the image-side lens surface of the 1a lens element L1a has an aspherical shape. By setting an aspherical surface to the first-a lens element L1a, spherical aberration and coma can be corrected well, and high image quality can be easily obtained.

また、各実施例において第1bレンズ要素L1bは正レンズと負レンズから成ると良い。第1bレンズ要素L1bを2枚のレンズより構成することで全系の軽量化が容易になる。また、各実施例において無限遠から至近へのフォーカシングに際し、第2レンズ群L2を物体側から像側へ移動させるのが良い。これによれば開口絞りSPの有効径が小さくなり、光学系の軽量化が容易に得られる。   In each embodiment, the 1b lens element L1b may be composed of a positive lens and a negative lens. By configuring the first b lens element L1b from two lenses, it is easy to reduce the weight of the entire system. In each embodiment, it is preferable to move the second lens unit L2 from the object side to the image side during focusing from infinity to close. According to this, the effective diameter of the aperture stop SP is reduced, and the optical system can be easily reduced in weight.

さらに、各実施例において第1bレンズ要素L1bの接合面に回折光学素子DOEを設け、回折光学部DOEの光路差関数による1次回折光の基準波長(d線)での焦点距離をfC2とするとき以下の条件式を満足するのが良い。
5.00<fC2/f<16.50 ・・・(7)
ここで焦点距離fC2は回折光学部DOEにおける回折による集光作用の焦点距離である。fC2は光路差関数の位相係数C2を用いて以下の式で表される。
fC2=−1/(2×C2)
条件式(7)は高画質化を図るためのものである。条件式(7)の上限値を超えてfC2が長くなりすぎると色収差を容易に補正することが困難となる。条件式(7)の下限値を超えてfC2が短くなりすぎると回折フレアが多く発生しやすくなり良くない。
Further, in each embodiment, when the diffractive optical element DOE is provided on the cemented surface of the 1b lens element L1b, and the focal length at the reference wavelength (d line) of the first-order diffracted light by the optical path difference function of the diffractive optical unit DOE is fC2. The following conditional expression should be satisfied.
5.00 <fC2 / f <16.50 (7)
Here, the focal length fC2 is the focal length of the condensing action by diffraction in the diffractive optical unit DOE. fC2 is expressed by the following equation using the phase coefficient C2 of the optical path difference function.
fC2 = −1 / (2 × C2)
Conditional expression (7) is for improving the image quality. If fC2 becomes too long beyond the upper limit of conditional expression (7), it will be difficult to easily correct chromatic aberration. If the lower limit of conditional expression (7) is exceeded and fC2 becomes too short, a lot of diffraction flare is likely to occur, which is not good.

好ましくは条件式(7)の数値範囲を次の如く設定するのが良い。
7.00<fC2/f<14.00 ・・・(7a)
更に好ましくは条件式(7a)の範囲を次の如く設定するのが良い。
9.00<fC2/f<12.00 ・・・(7b)
Preferably, the numerical range of conditional expression (7) is set as follows.
7.00 <fC2 / f <14.00 (7a)
More preferably, the range of conditional expression (7a) is set as follows.
9.00 <fC2 / f <12.00 (7b)

さらに、各実施例の光学系は以下の条件式(8)、(9)の少なくとも一方を満足することが好ましい。
0.20<f1a/f<0.60 ・・・(8)
0.10<f1c/f<0.30 ・・・(9)
Furthermore, it is preferable that the optical system of each embodiment satisfies at least one of the following conditional expressions (8) and (9).
0.20 <f1a / f <0.60 (8)
0.10 <f1c / f <0.30 (9)

条件式(8)は第1aレンズ要素L1aの焦点距離に関する。条件式(8)の下限値を超えて焦点距離f1aが小さくなりすぎると、第1aレンズ要素L1aにおいて生じる収差を第1aレンズ要素L1aより像側に配置されたレンズで十分に補正することが困難となる。また、条件式(8)の上限値を超えて焦点距離f1aが大きくなりすぎると、第1bレンズ要素L1bを十分に小径化することが困難となる。   Conditional expression (8) relates to the focal length of the 1a lens element L1a. If the focal length f1a becomes too small beyond the lower limit value of the conditional expression (8), it is difficult to sufficiently correct the aberration generated in the 1a lens element L1a with the lens disposed on the image side from the 1a lens element L1a. It becomes. If the focal length f1a becomes too large beyond the upper limit value of the conditional expression (8), it is difficult to sufficiently reduce the diameter of the first b lens element L1b.

条件式(9)は第1cレンズ要素L1cの焦点距離に関する。条件式(9)の下限値を超えて焦点距離f1cが小さくなると、球面収差や色収差等の諸収差が増大してしまう。条件式(9)の上限値を超えて焦点距離f1cが大きくなると、第2レンズ群L2を十分に小径化することが困難となる。   Conditional expression (9) relates to the focal length of the first c lens element L1c. When the focal length f1c is reduced beyond the lower limit value of conditional expression (9), various aberrations such as spherical aberration and chromatic aberration increase. When the focal length f1c increases beyond the upper limit value of conditional expression (9), it is difficult to sufficiently reduce the diameter of the second lens unit L2.

好ましくは条件式(8)、(9)の数値範囲を次の如く設定するのが良い。
0.27<f1a/f<0.50 ・・・(8a)
0.13<f1c/f<0.30 ・・・(9b)
より好ましくは条件式(8)、(9)の数値範囲を次の如く設定するのが良い。
0.32<f1a/f<0.45 ・・・(8a)
0.15<f1c/f<0.25 ・・・(9b)
Preferably, the numerical ranges of conditional expressions (8) and (9) are set as follows.
0.27 <f1a / f <0.50 (8a)
0.13 <f1c / f <0.30 (9b)
More preferably, the numerical ranges of conditional expressions (8) and (9) should be set as follows.
0.32 <f1a / f <0.45 (8a)
0.15 <f1c / f <0.25 (9b)

さらに、第1bレンズ要素L1bは両凹形状である負レンズを含んで形成されていることが好ましい。これによって第1bレンズ要素L1bの焦点距離を適切な大きさにしつつ第1bレンズ要素L1bを小型に構成することができる。またこの場合、第1bレンズ要素L1bに含まれる両凹形状の負レンズは以下の条件式(10)を満足することが好ましい。
−0.20<(ra+rb)/(ra−rb)<0.20 ・・・(10)
Furthermore, it is preferable that the 1b lens element L1b is formed including a negative lens having a biconcave shape. As a result, the first b lens element L1b can be made compact while the focal length of the first b lens element L1b is appropriately set. In this case, it is preferable that the biconcave negative lens included in the 1b lens element L1b satisfies the following conditional expression (10).
−0.20 <(ra + rb) / (ra−rb) <0.20 (10)

条件式(10)において、raは第1bレンズ要素L1bに含まれる両凹形状の負レンズの物体側のレンズ面の曲率半径である。rbは第1bレンズ要素L1bに含まれる両凹形状の負レンズの像側のレンズ面の曲率半径である。条件式(10)は第1bレンズ要素L1bに含まれる両凹形状の負レンズのシェープファクタに関する。式(10)の上限値または下限値を超える場合、第1bレンズ要素L1bの焦点距離を適切な長さにしつつ第1bレンズ要素L1bを小型に構成することが困難となる。   In conditional expression (10), ra is the radius of curvature of the object-side lens surface of the biconcave negative lens included in the first-b lens element L1b. rb is the radius of curvature of the image-side lens surface of the biconcave negative lens included in the 1b lens element L1b. Conditional expression (10) relates to the shape factor of the biconcave negative lens included in the 1b lens element L1b. When the upper limit value or lower limit value of Expression (10) is exceeded, it is difficult to make the first b lens element L1b compact while setting the focal length of the first b lens element L1b to an appropriate length.

好ましくは条件式(10)の数値範囲を次の如く設定するのが良い。
−0.15<(ra+rb)/(ra−rb)<0.15 ・・・(10a)
Preferably, the numerical range of conditional expression (10) is set as follows.
−0.15 <(ra + rb) / (ra−rb) <0.15 (10a)

より好ましくは条件式(10)の数値範囲を次の如く設定するのが良い。
−0.12<(ra+rb)/(ra−rb)<0.12 ・・・(10b)
More preferably, the numerical range of conditional expression (10) should be set as follows.
−0.12 <(ra + rb) / (ra−rb) <0.12 (10b)

各実施例は、いずれかのレンズもしくはレンズ要素またはセンサを光軸と垂直方向の成分を有するように移動させて像ぶれを補正するようにしても良い。また、歪曲収差については、各種公知の手法を適用し電子的に補正しても良い。   In each embodiment, any lens or lens element or sensor may be moved so as to have a component perpendicular to the optical axis to correct image blur. Further, the distortion aberration may be corrected electronically by applying various known methods.

次に、各実施例における各レンズ群のレンズ構成に関して説明する。
[実施例1]
実施例1は焦点距離780.00mm、Fナンバー5.80程度の撮像光学系である。第1レンズ群L1は物体側から像側へ順に配置された正の屈折力の第1aレンズ要素L1a、負の屈折力の第1bレンズ要素L1b、正の屈折力の第1cレンズ要素L1cにより構成されている。
Next, the lens configuration of each lens group in each embodiment will be described.
[Example 1]
Example 1 is an imaging optical system having a focal length of 780.00 mm and an F number of about 5.80. The first lens unit L1 includes a first-a lens element L1a having a positive refractive power, a first-b lens element L1b having a negative refractive power, and a first-c lens element L1c having a positive refractive power, which are arranged in order from the object side to the image side. Has been.

第1aレンズ要素L1aは両凸形状の正レンズからなり、像側のレンズ面は非球面形状である。この非球面により球面収差等の諸収差を良好に補正している。第1bレンズ要素L1bは両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズより構成されている。接合レンズの接合面は回折光学部(回折面)である。これにより色収差を良好に補正している。   The 1a lens element L1a is a biconvex positive lens, and the image-side lens surface is aspheric. Various aberrations such as spherical aberration are satisfactorily corrected by this aspherical surface. The 1b lens element L1b is composed of a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented. The cemented surface of the cemented lens is a diffractive optical part (diffraction surface). This corrects chromatic aberration well.

第1cレンズ要素L1cは両凸形状の正レンズより構成されている。これにより後述する第2レンズ群L2、第3レンズ群L3の小径化を図っている。負の屈折力の第2レンズ群L2は両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズより構成されている。無限遠から至近へのフォーカシングに際し、第2レンズ群L2は物体側から像側へ移動する。   The first c lens element L1c is composed of a biconvex positive lens. Accordingly, the diameters of the second lens unit L2 and the third lens unit L3 described later are reduced. The second lens unit L2 having a negative refractive power is composed of a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented. During focusing from infinity to the closest distance, the second lens unit L2 moves from the object side to the image side.

第3レンズ群L3は、物体側に凸面を向けたメニスカス形状の負レンズと両凸形状の正レンズを接合した接合レンズ、両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズ、両凹形状の負レンズで構成されている。   The third lens unit L3 includes a cemented lens in which a meniscus negative lens having a convex surface directed toward the object side and a biconvex positive lens are cemented, and a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented. It is composed of a biconcave negative lens.

更に、両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズ、両凸形状の正レンズと像側に凸面を向けたメニスカス形状の負レンズを接合した接合レンズ、両凹形状の負レンズより構成されている。更に、両凸形状の正レンズと像側に凸面を向けたメニスカスレンズ形状の負レンズを接合した接合レンズで構成されている。これにより像面湾曲や倍率色収差等を良好に補正している。   Furthermore, a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented, a cemented lens in which a biconvex positive lens and a meniscus negative lens having a convex surface facing the image side are cemented, and a biconcave lens It consists of a negative lens. Further, it is composed of a cemented lens in which a biconvex positive lens and a meniscus negative lens having a convex surface facing the image side are cemented. Thereby, curvature of field, lateral chromatic aberration and the like are corrected satisfactorily.

[実施例2]
実施例2は焦点距離780.00mm、Fナンバー5.80程度の撮像光学系である。第1レンズ群L1は物体側から像側へ順に配置された正の屈折力の第1aレンズ要素L1a、負の屈折力の第1bレンズ要素L1b、正の屈折力の第1cレンズ要素L1cにより構成されている。
[Example 2]
Example 2 is an imaging optical system having a focal length of 780.00 mm and an F number of about 5.80. The first lens unit L1 includes a first-a lens element L1a having a positive refractive power, a first-b lens element L1b having a negative refractive power, and a first-c lens element L1c having a positive refractive power, which are arranged in order from the object side to the image side. Has been.

第1aレンズ要素L1aは両凸形状の正レンズからなり、像側のレンズ面は非球面形状である。この非球面により球面収差等の諸収差を良好に補正している。第1bレンズ要素L1bは両凹形状の負レンズと両凸形状の正レンズを接合した接合レンズより構成されている。接合レンズの接合面は回折光学部(回折面)である。これにより色収差を良好に補正している。   The 1a lens element L1a is a biconvex positive lens, and the image-side lens surface is aspheric. Various aberrations such as spherical aberration are satisfactorily corrected by this aspherical surface. The 1b lens element L1b is composed of a cemented lens in which a biconcave negative lens and a biconvex positive lens are cemented. The cemented surface of the cemented lens is a diffractive optical part (diffraction surface). This corrects chromatic aberration well.

第1cレンズ要素L1cは両凸形状の正レンズより構成されている。これにより後述する第2レンズ群L2、第3レンズ群L3の小径化を図っている。第2レンズ群L2のレンズ構成は実施例1と同じである。第3レンズ群L3は、物体側に凸面を向けたメニスカス形状の負レンズと両凸形状の正レンズを接合した接合レンズ、両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズ、両凹形状の負レンズで構成されている。   The first c lens element L1c is composed of a biconvex positive lens. Accordingly, the diameters of the second lens unit L2 and the third lens unit L3 described later are reduced. The lens configuration of the second lens unit L2 is the same as that of the first embodiment. The third lens unit L3 includes a cemented lens in which a meniscus negative lens having a convex surface directed toward the object side and a biconvex positive lens are cemented, and a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented. It is composed of a biconcave negative lens.

更に両凸形状の正レンズと像側に凸面を向けたメニスカス形状の負レンズを接合した接合レンズ、像側へ凸面を向けたメニスカス形状の正レンズと像側に凸面を向けたメニスカス形状の負レンズを接合した接合レンズ、両凹形状の負レンズで構成されている。更に両凸形状の正レンズと両凹形状の負レンズを接合した接合レンズで構成されている。これにより像面湾曲や倍率色収差等を良好に補正している。   Furthermore, a cemented lens in which a biconvex positive lens and a meniscus negative lens with a convex surface facing the image side are cemented, a meniscus positive lens with a convex surface facing the image side, and a meniscus negative with a convex surface facing the image side It is composed of a cemented lens in which lenses are cemented and a biconcave negative lens. Further, it is composed of a cemented lens in which a biconvex positive lens and a biconcave negative lens are cemented. Thereby, curvature of field, lateral chromatic aberration and the like are corrected satisfactorily.

[実施例3]
実施例3は焦点距離780.00mm、Fナンバー5.80程度の撮像光学系である。第1レンズ群L1のレンズ構成は実施例1と同じである。負の屈折力の第2レンズ群L2は両凹形状の負レンズより構成されている。無限遠から至近へのフォーカシングに際し、第2レンズ群L2は物体側から像側へ移動する。第3レンズ群L3のレンズ構成は、実施例1と同じである。
[Example 3]
Example 3 is an imaging optical system having a focal length of 780.00 mm and an F number of about 5.80. The lens configuration of the first lens unit L1 is the same as that of the first embodiment. The second lens unit L2 having a negative refractive power is composed of a biconcave negative lens. During focusing from infinity to the closest distance, the second lens unit L2 moves from the object side to the image side. The lens configuration of the third lens unit L3 is the same as that of Example 1.

次に本発明の撮像光学系を撮像装置(カメラシステム)に適用した実施例を説明する。
図7は一眼レフカメラの要部概略図である。図7において、10は実施例1乃至3のいずれか1つの撮像光学系1を有する撮像レンズである。撮影光学系1は保持部材である鏡筒2に保持されている。20はカメラ本体である。カメラ本体は撮像レンズ10からの光束を上方に反射するクイックリターンミラー3、撮像レンズ10の像形成位置に配置された焦点板4、焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5を有している。更に、その正立像を観察するための接眼レンズ6等によって構成されている。
Next, an embodiment in which the imaging optical system of the present invention is applied to an imaging apparatus (camera system) will be described.
FIG. 7 is a schematic diagram of a main part of a single-lens reflex camera. In FIG. 7, reference numeral 10 denotes an imaging lens having the imaging optical system 1 of any one of the first to third embodiments. The photographing optical system 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body. The camera body includes a quick return mirror 3 that reflects the light beam from the imaging lens 10 upward, a focusing plate 4 that is disposed at an image forming position of the imaging lens 10, and a pentagon that converts an inverted image formed on the focusing plate 4 into an erect image. A roof prism 5 is provided. Further, it is constituted by an eyepiece 6 for observing the erect image.

7は感光面であり、CCDセンサやCMOSセンサ等の撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮像レンズ10によって像が形成される。撮像素子7は撮像光学系1によって形成される像を受光する。   Reference numeral 7 denotes a photosensitive surface, on which an image pickup device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, or a silver salt film is arranged. At the time of shooting, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the imaging lens 10. The image sensor 7 receives an image formed by the imaging optical system 1.

本発明の撮像装置としては、クイックリターンミラー3のないミラーレスの一眼レフカメラにも同様に適用できる。   The imaging apparatus of the present invention can be similarly applied to a mirrorless single-lens reflex camera without the quick return mirror 3.

各実施例における回折光学部DOEの回折格子の形状は、その2i次項の位相係数をC2iとした時、光軸からの距離Hにおける位相φ(H)は次式で表される。ただしmは回折次数、λは基準波長である。 As for the shape of the diffraction grating of the diffractive optical part DOE in each embodiment, the phase φ (H) at the distance H from the optical axis is expressed by the following equation when the phase coefficient of the 2i-order term is C 2i . Where m is the diffraction order and λ 0 is the reference wavelength.

一般に、レンズ、プリズム等の屈折光学材料のアッベ数(分散値)νは、d、C、F線の各波長における屈折力をN、N、Nとした時、次式で表される。 In general, the Abbe number (dispersion value) ν d of a refractive optical material such as a lens or a prism is expressed by the following equation when the refractive power at each wavelength of d, C, and F lines is N d , N C , and N F. Is done.

ν=(N−1)/(N−N)>0 ・・・(b)
一方、回折光学部のアッベ数νはd、C、F線の各波長をλ、λ、λとした時
ν=λ/(λ−λ) ・・・(c)
と表され、ν=−3.45となる。
ν d = (N d −1) / (N F −N C )> 0 (b)
On the other hand, the Abbe number ν d of the diffractive optical unit is ν d = λ d / (λ F −λ C ) (c) when the wavelengths of the d, C, and F lines are λ d , λ C , and λ F. )
And ν d = −3.45.

これにより、任意波長における分散性は、屈折光学素子と逆作用を有する。また、回折光学部の基準波長における近軸的な一時回折光(m=1)の屈折力φは、回折光学部の位相を表す前式(a)から2次項の係数をCとしたとき、φ=−2×Cと表される。さらに、任意波長をλ、基準波長をλとしたとき、任意波長の基準波長に対する屈折力変化は、次式となる。 Thereby, the dispersibility at an arbitrary wavelength has an adverse effect on the refractive optical element. Further, the refractive power φ of the paraxial temporary diffracted light (m = 1) at the reference wavelength of the diffractive optical part is obtained when the coefficient of the second-order term is C 2 from the previous formula (a) representing the phase of the diffractive optical part. , Φ D = −2 × C 2 . Further, when the arbitrary wavelength is λ and the reference wavelength is λ 0 , the refractive power change with respect to the reference wavelength of the arbitrary wavelength is represented by the following equation.

φ’=(λ/λ)×(−2×C) ・・・(d)
これにより、回折光学部の特徴として、前式(a)の位相係数Cを変化させることにより、弱い近軸屈折力変化で大きな分散性が得られる。これは色収差以外の諸収差に大きな影響を与えることなく、色収差の補正を行うことを意味している。また位相係数C以降の高次数の係数については、回折光学部の光線入射高の変化に対する屈折力変化は非球面と類似した効果を得ることができる。
φ D '= (λ / λ 0) × (-2 × C 2) ··· (d)
Thus, as a feature of the diffractive optical part, by varying the phase coefficients C 2 of Equation (a), large dispersion can be obtained by a weak paraxial refractive power change. This means that chromatic aberration is corrected without greatly affecting various aberrations other than chromatic aberration. With respect to the higher order coefficients of the phase coefficient C 4 and later, the refractive power changes to the light incident height variation of the diffractive optical part can be obtained an effect similar to aspheric.

それと同時に、光線入射高の変化に応じて基準波長に対し任意波長の屈折力変化を与えることができる。このため、倍率色収差の補正に有効である。さらに本発明の撮像光学系の第1レンズ群L1のように、軸上光線がレンズ面を通過する際、光軸からの高さが高い位置を通過する面に回折光学部を配置すれば、軸上色収差の補正にも有効である。   At the same time, it is possible to change the refractive power at an arbitrary wavelength with respect to the reference wavelength according to the change in the incident light height. Therefore, it is effective for correcting lateral chromatic aberration. Further, as in the first lens unit L1 of the imaging optical system of the present invention, when the axial light beam passes through the lens surface, if the diffractive optical unit is disposed on a surface passing through a position where the height from the optical axis is high, It is also effective for correcting axial chromatic aberration.

以下に本発明の実施例1乃至3に対応する数値データ1乃至3を示す。各数値データにおいて、iは物体側からの面の順序を示し、rは物体側より第i番目の面の曲率半径、dは物体側より第i番目と第i+1番目の間隔、ndとνdは第i番目の光学部材の屈折率とアッベ数である。無限遠に焦点を合わせたときの全系の焦点距離、Fナンバー、半画角(度)、像高、レンズ全長、バックフォーカスを示す。 Numerical data 1 to 3 corresponding to the first to third embodiments of the present invention are shown below. In each numerical data, i indicates the order of the surfaces from the object side, r i is the radius of curvature of the i-th surface from the object side, d i is the i-th and i + 1-th interval from the object side, nd i And νd i are the refractive index and Abbe number of the i-th optical member. The focal length, F-number, half angle of view (degrees), image height, total lens length, and back focus of the entire system when focused at infinity are shown.

バックフォーカスBFは最終レンズ面から像面までの空気換算距離である。レンズ全長は第1レンズ面から最終レンズ面までの距離にバックフォーカスを加えた値である。回折光学部(回折面)は前述(a)式の位相関数の位相係数を与えることで表している。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正、Rを近軸曲率半径、kを離心率、A4、A6、A8、A10、A12を各々非球面係数としたとき、   The back focus BF is an air equivalent distance from the final lens surface to the image plane. The total lens length is a value obtained by adding back focus to the distance from the first lens surface to the final lens surface. The diffractive optical part (diffractive surface) is represented by giving a phase coefficient of the phase function of the above-described equation (a). Aspherical shape is X axis in the optical axis direction, H axis in the direction perpendicular to the optical axis, positive light traveling direction, R is paraxial radius of curvature, k is eccentricity, A4, A6, A8, A10, A12 When the aspheric coefficient is used,

なる式で表している。例えば「e−z」の表示は「10-Z」を意味している。前述の各条件式と数値データにおける諸数値との関係を表1に示す。 It is expressed by the following formula. For example, the display of “ ez ” means “10 −Z ”. Table 1 shows the relationship between the above conditional expressions and various numerical values in the numerical data.

[数値データ1]
単位 mm

面データ
面番号 r d nd νd 有効径
1 155.316 19.75 1.48749 70.2 134.48
2* -11936.522 149.66 133.10
3 141.692 11.62 1.43875 94.7 63.51
4(回折) -129.418 2.95 1.85478 24.8 61.55
5 138.580 25.24 59.24
6 148.568 6.77 1.80810 22.8 57.68
7 -430.938 36.30 57.05
8 376.152 3.64 1.80810 22.8 38.04
9 -341.903 2.41 1.91082 35.3 37.19
10 81.473 37.49 35.74
11(絞り) ∞ 5.00 30.10
12 59.113 1.51 1.95375 32.3 29.02
13 32.603 5.41 1.48749 70.2 28.08
14 -132.255 7.19 27.87
15 144.910 2.87 1.85478 24.8 25.20
16 -73.159 1.31 1.76385 48.5 24.89
17 60.985 1.97 23.89
18 -103.864 1.26 1.76385 48.5 23.87
19 101.074 3.51 23.85
20 44.068 6.16 1.65412 39.7 24.93
21 -221.182 1.26 1.59522 67.7 25.11
22 43.719 5.06 25.26
23 111.425 7.42 1.65412 39.7 27.09
24 -32.515 1.36 1.43875 94.9 27.68
25 -71.229 0.32 27.85
26 -65.657 1.36 1.49700 81.5 27.83
27 91.771 0.10 28.15
28 70.818 6.82 1.65412 39.7 28.27
29 -36.701 1.38 1.80810 22.8 28.28
30 -1117.363 66.61 28.59
31 ∞ 2.20 1.51633 64.1 50.00
32 ∞ 60.71 50.00
像面 ∞
[Numeric data 1]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 155.316 19.75 1.48749 70.2 134.48
2 * -11936.522 149.66 133.10
3 141.692 11.62 1.43875 94.7 63.51
4 (Diffraction) -129.418 2.95 1.85478 24.8 61.55
5 138.580 25.24 59.24
6 148.568 6.77 1.80810 22.8 57.68
7 -430.938 36.30 57.05
8 376.152 3.64 1.80810 22.8 38.04
9 -341.903 2.41 1.91082 35.3 37.19
10 81.473 37.49 35.74
11 (Aperture) ∞ 5.00 30.10
12 59.113 1.51 1.95375 32.3 29.02
13 32.603 5.41 1.48749 70.2 28.08
14 -132.255 7.19 27.87
15 144.910 2.87 1.85478 24.8 25.20
16 -73.159 1.31 1.76385 48.5 24.89
17 60.985 1.97 23.89
18 -103.864 1.26 1.76385 48.5 23.87
19 101.074 3.51 23.85
20 44.068 6.16 1.65412 39.7 24.93
21 -221.182 1.26 1.59522 67.7 25.11
22 43.719 5.06 25.26
23 111.425 7.42 1.65412 39.7 27.09
24 -32.515 1.36 1.43875 94.9 27.68
25 -71.229 0.32 27.85
26 -65.657 1.36 1.49700 81.5 27.83
27 91.771 0.10 28.15
28 70.818 6.82 1.65412 39.7 28.27
29 -36.701 1.38 1.80810 22.8 28.28
30 -1117.363 66.61 28.59
31 ∞ 2.20 1.51633 64.1 50.00
32 ∞ 60.71 50.00
Image plane ∞

非球面データ
第2面
K = 0.00000e+000 A 4= 1.33317e-008 A 6=-2.16396e-013 A 8= 1.24478e-017 A10=-7.29012e-022

第4面(回折面)
C2=-6.17761e-005 C4= 2.95632e-009 C6= 1.29493e-012 C8=-1.75952e-015
C10= 5.04522e-019

各種データ

焦点距離 780.00
Fナンバー 5.80
半画角(度) 1.59
像高 21.64
レンズ全長 485.85
BF 128.77

入射瞳位置 1529.20
射出瞳位置 -51.23
前側主点位置-1070.79
後側主点位置 -651.23

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 272.27 215.99 154.27 -159.51
2 8 -108.04 6.05 4.02 0.72
3 12 1845.10 56.25 68.75 25.59
1a 1 314.68 19.75 0.17 -13.11
1b 3 -168.62 14.56 14.30 4.24
1c 6 137.43 6.77 0.97 -2.80

単レンズデータ
レンズ 始面 焦点距離
1 1 314.68
2 3 156.20
3 4 -78.66
4 6 137.43
5 8 222.14
6 9 -72.04
7 12 -78.41
8 13 54.24
9 15 57.22
10 16 -43.36
11 18 -66.88
12 20 56.70
13 21 -61.22
14 23 39.28
15 24 -137.82
16 26 -76.79
17 28 37.91
18 29 -46.99
Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = 1.33317e-008 A 6 = -2.16396e-013 A 8 = 1.24478e-017 A10 = -7.29012e-022

4th surface (diffractive surface)
C2 = -6.17761e-005 C4 = 2.95632e-009 C6 = 1.29493e-012 C8 = -1.75952e-015
C10 = 5.04522e-019

Various data

Focal length 780.00
F number 5.80
Half angle of view (degrees) 1.59
Statue height 21.64
Total lens length 485.85
BF 128.77

Entrance pupil position 1529.20
Exit pupil position -51.23
Front principal point position -1070.79
Rear principal point position -651.23

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 272.27 215.99 154.27 -159.51
2 8 -108.04 6.05 4.02 0.72
3 12 1845.10 56.25 68.75 25.59
1a 1 314.68 19.75 0.17 -13.11
1b 3 -168.62 14.56 14.30 4.24
1c 6 137.43 6.77 0.97 -2.80

Single lens Data lens Start surface Focal length
1 1 314.68
2 3 156.20
3 4 -78.66
4 6 137.43
5 8 222.14
6 9 -72.04
7 12 -78.41
8 13 54.24
9 15 57.22
10 16 -43.36
11 18 -66.88
12 20 56.70
13 21 -61.22
14 23 39.28
15 24 -137.82
16 26 -76.79
17 28 37.91
18 29 -46.99

[数値データ2]
単位 mm

面データ
面番号 r d nd νd 有効径
1 155.647 21.59 1.48749 70.2 134.48
2* -1114.571 139.48 133.04
3 -161.207 2.84 1.85478 24.8 63.51
4(回折) 127.094 11.14 1.43875 94.7 62.79
5 -156.440 29.50 62.99
6 228.731 6.40 1.80810 22.8 59.19
7 -289.712 34.69 58.66
8 228.801 4.36 1.80810 22.8 40.00
9 -379.033 2.40 1.91082 35.3 38.94
10 73.684 37.82 37.21
11(絞り) ∞ 5.00 31.66
12 55.564 1.58 1.95375 32.3 30.54
13 32.399 6.06 1.48749 70.2 29.48
14 -207.155 3.88 29.16
15 154.516 4.01 1.85478 24.8 27.61
16 -66.541 1.36 1.76385 48.5 27.12
17 69.812 3.00 25.98
18 -106.915 1.29 1.76385 48.5 25.77
19 100.460 7.56 25.73
20 66.635 6.22 1.65412 39.7 27.37
21 -54.067 1.30 1.59522 67.7 27.67
22 -615.289 10.52 27.92
23 -256.386 4.46 1.65412 39.7 29.04
24 -38.652 1.38 1.43875 94.9 29.26
25 -74.872 2.52 29.27
26 -94.269 1.39 1.49700 81.5 28.79
27 44.161 0.42 28.75
28 50.666 7.24 1.65412 39.7 28.78
29 -34.245 1.40 1.80810 22.8 28.71
30 784.994 62.87 28.93
31 ∞ 2.20 1.51633 64.1 50.00
32 ∞ 60.71 50.00
像面 ∞
[Numeric data 2]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 155.647 21.59 1.48749 70.2 134.48
2 * -1114.571 139.48 133.04
3 -161.207 2.84 1.85478 24.8 63.51
4 (Diffraction) 127.094 11.14 1.43875 94.7 62.79
5 -156.440 29.50 62.99
6 228.731 6.40 1.80810 22.8 59.19
7 -289.712 34.69 58.66
8 228.801 4.36 1.80810 22.8 40.00
9 -379.033 2.40 1.91082 35.3 38.94
10 73.684 37.82 37.21
11 (Aperture) ∞ 5.00 31.66
12 55.564 1.58 1.95375 32.3 30.54
13 32.399 6.06 1.48749 70.2 29.48
14 -207.155 3.88 29.16
15 154.516 4.01 1.85478 24.8 27.61
16 -66.541 1.36 1.76385 48.5 27.12
17 69.812 3.00 25.98
18 -106.915 1.29 1.76385 48.5 25.77
19 100.460 7.56 25.73
20 66.635 6.22 1.65412 39.7 27.37
21 -54.067 1.30 1.59522 67.7 27.67
22 -615.289 10.52 27.92
23 -256.386 4.46 1.65412 39.7 29.04
24 -38.652 1.38 1.43875 94.9 29.26
25 -74.872 2.52 29.27
26 -94.269 1.39 1.49700 81.5 28.79
27 44.161 0.42 28.75
28 50.666 7.24 1.65412 39.7 28.78
29 -34.245 1.40 1.80810 22.8 28.71
30 784.994 62.87 28.93
31 ∞ 2.20 1.51633 64.1 50.00
32 ∞ 60.71 50.00
Image plane ∞

非球面データ
第2面
K = 0.00000e+000 A 4= 2.09277e-008 A 6=-4.70861e-013 A 8= 1.93144e-017 A10=-8.69953e-022

第4面(回折面)
C2=-5.93393e-005 C4= 3.90393e-010 C6= 1.88978e-012 C8=-6.92242e-016
C10=-5.02508e-021

各種データ

焦点距離 780.00
Fナンバー 5.80
半画角(度) 1.59
像高 21.64
レンズ全長 485.85
BF 125.03

入射瞳位置 1446.52
射出瞳位置 -54.97
前側主点位置-1153.47
後側主点位置 -654.97

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 272.72 210.96 173.29 -157.32
2 8 -111.83 6.75 5.14 1.41
3 12 3012.50 65.60 -45.25 -94.69
1a 1 281.73 21.59 1.79 -12.80
1b 3 -182.79 13.99 -3.89 -13.49
1c 6 159.05 6.40 1.57 -1.99

単レンズデータ
レンズ 始面 焦点距離
1 1 281.73
2 3 -82.76
3 4 158.78
4 6 159.05
5 8 177.13
6 9 -67.56
7 12 -84.28
8 13 57.95
9 15 54.87
10 16 -44.41
11 18 -67.62
12 20 46.58
13 21 -99.67
14 23 69.02
15 24 -184.26
16 26 -60.31
17 28 32.33
18 29 -40.58
Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = 2.09277e-008 A 6 = -4.70861e-013 A 8 = 1.93144e-017 A10 = -8.69953e-022

4th surface (diffractive surface)
C2 = -5.93393e-005 C4 = 3.90393e-010 C6 = 1.88978e-012 C8 = -6.92242e-016
C10 = -5.02508e-021

Various data

Focal length 780.00
F number 5.80
Half angle of view (degrees) 1.59
Statue height 21.64
Total lens length 485.85
BF 125.03

Entrance pupil position 1446.52
Exit pupil position -54.97
Front principal point position-1153.47
Rear principal point position -654.97

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 272.72 210.96 173.29 -157.32
2 8 -111.83 6.75 5.14 1.41
3 12 3012.50 65.60 -45.25 -94.69
1a 1 281.73 21.59 1.79 -12.80
1b 3 -182.79 13.99 -3.89 -13.49
1c 6 159.05 6.40 1.57 -1.99

Single lens Data lens Start surface Focal length
1 1 281.73
2 3 -82.76
3 4 158.78
4 6 159.05
5 8 177.13
6 9 -67.56
7 12 -84.28
8 13 57.95
9 15 54.87
10 16 -44.41
11 18 -67.62
12 20 46.58
13 21 -99.67
14 23 69.02
15 24 -184.26
16 26 -60.31
17 28 32.33
18 29 -40.58

[数値データ3]
単位 mm

面データ
面番号 r d nd νd 有効径
1 156.273 19.10 1.48749 70.2 134.48
2* -24883.763 151.56 133.26
3 135.673 11.87 1.43875 94.7 63.34
4(回折) -125.010 2.95 1.85478 24.8 61.36
5 132.968 20.35 59.01
6 140.658 5.93 1.80810 22.8 58.10
7 -461.544 37.23 57.68
8 -688.978 2.41 1.88300 40.8 38.71
9 125.930 40.18 37.75
10(絞り) ∞ 5.00 31.12
11 61.430 1.51 1.95375 32.3 29.95
12 32.808 5.81 1.48749 70.2 28.95
13 -110.302 1.15 28.74
14 187.739 3.10 1.85478 24.8 27.86
15 -71.920 1.31 1.76385 48.5 27.55
16 68.565 3.05 26.43
17 -113.322 1.26 1.76385 48.5 26.23
18 113.731 3.59 26.19
19 45.862 6.63 1.65412 39.7 26.94
20 -142.991 1.26 1.59522 67.7 26.35
21 45.848 6.33 25.75
22 117.974 7.03 1.65412 39.7 27.16
23 -36.165 1.36 1.43875 94.9 27.63
24 -88.833 4.25 27.73
25 -71.971 1.36 1.49700 81.5 27.36
26 61.745 0.11 27.65
27 62.183 7.70 1.65412 39.7 27.68
28 -37.559 1.38 1.80810 22.8 27.74
29 -638.763 68.94 28.07
30 ∞ 2.20 1.51633 64.1 50.00
31 ∞ 60.71 50.00
像面 ∞
[Numeric data 3]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 156.273 19.10 1.48749 70.2 134.48
2 * -24883.763 151.56 133.26
3 135.673 11.87 1.43875 94.7 63.34
4 (Diffraction) -125.010 2.95 1.85478 24.8 61.36
5 132.968 20.35 59.01
6 140.658 5.93 1.80810 22.8 58.10
7 -461.544 37.23 57.68
8 -688.978 2.41 1.88300 40.8 38.71
9 125.930 40.18 37.75
10 (Aperture) ∞ 5.00 31.12
11 61.430 1.51 1.95375 32.3 29.95
12 32.808 5.81 1.48749 70.2 28.95
13 -110.302 1.15 28.74
14 187.739 3.10 1.85478 24.8 27.86
15 -71.920 1.31 1.76385 48.5 27.55
16 68.565 3.05 26.43
17 -113.322 1.26 1.76385 48.5 26.23
18 113.731 3.59 26.19
19 45.862 6.63 1.65412 39.7 26.94
20 -142.991 1.26 1.59522 67.7 26.35
21 45.848 6.33 25.75
22 117.974 7.03 1.65412 39.7 27.16
23 -36.165 1.36 1.43875 94.9 27.63
24 -88.833 4.25 27.73
25 -71.971 1.36 1.49700 81.5 27.36
26 61.745 0.11 27.65
27 62.183 7.70 1.65412 39.7 27.68
28 -37.559 1.38 1.80810 22.8 27.74
29 -638.763 68.94 28.07
30 ∞ 2.20 1.51633 64.1 50.00
31 ∞ 60.71 50.00
Image plane ∞

非球面データ
第2面
K = 0.00000e+000 A 4= 1.06987e-008 A 6=-1.34605e-013 A 8= 5.73865e-018 A10=-3.16749e-022

第4面(回折面)
C2=-6.27977e-005 C4= 2.74753e-009 C6=-1.32756e-012 C8= 5.75052e-016
C10=-2.69884e-019

各種データ

焦点距離 780.00
Fナンバー 5.80
半画角(度) 1.59
像高 21.64
レンズ全長 485.85
BF 131.10

入射瞳位置 1464.99
射出瞳位置 -48.92
前側主点位置-1134.88
後側主点位置 -648.91

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 273.02 211.77 136.38 -157.92
2 8 -120.41 2.41 1.08 -0.20
3 11 -8404.54 58.16 -119.87 -165.38
1a 1 318.65 19.10 0.08 -12.77
1b 3 -162.90 14.82 14.65 4.38
1c 6 133.40 5.93 0.77 -2.53

単レンズデータ
レンズ 始面 焦点距離
1 1 318.65
2 3 150.38
3 4 -75.71
4 6 134.00
5 8 -120.41
6 11 -75.78
7 12 52.57
8 14 61.17
9 15 -45.77
10 17 -74.13
11 19 53.83
12 20 -58.18
13 22 43.09
14 23 -140.12
15 25 -66.64
16 27 36.92
17 28 -49.43
Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = 1.06987e-008 A 6 = -1.34605e-013 A 8 = 5.73865e-018 A10 = -3.16749e-022

4th surface (diffractive surface)
C2 = -6.27977e-005 C4 = 2.74753e-009 C6 = -1.32756e-012 C8 = 5.75052e-016
C10 = -2.69884e-019

Various data

Focal length 780.00
F number 5.80
Half angle of view (degrees) 1.59
Statue height 21.64
Total lens length 485.85
BF 131.10

Entrance pupil position 1464.99
Exit pupil position -48.92
Front principal point position -1134.88
Rear principal point position -648.91

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 273.02 211.77 136.38 -157.92
2 8 -120.41 2.41 1.08 -0.20
3 11 -8404.54 58.16 -119.87 -165.38
1a 1 318.65 19.10 0.08 -12.77
1b 3 -162.90 14.82 14.65 4.38
1c 6 133.40 5.93 0.77 -2.53

Single lens Data lens Start surface Focal length
1 1 318.65
2 3 150.38
3 4 -75.71
4 6 134.00
5 8 -120.41
6 11 -75.78
7 12 52.57
8 14 61.17
9 15 -45.77
10 17 -74.13
11 19 53.83
12 20 -58.18
13 22 43.09
14 23 -140.12
15 25 -66.64
16 27 36.92
17 28 -49.43

L0 撮像光学系 L1 第1レンズ群 L2 第2レンズ群
L3 第3レンズ群 L1a 第1aレンズ要素 L1b 第1bレンズ要素
L1c 第1cレンズ要素 SP 開口絞り
L0 imaging optical system L1 first lens group L2 second lens group L3 third lens group L1a 1a lens element L1b 1b lens element L1c 1c lens element SP aperture stop

Claims (16)

物体側から像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成され、フォーカシングに際して前記第2レンズ群が移動する撮像光学系において、
前記第1レンズ群は、物体側から像側へ順に配置された、正の屈折力の第1aレンズ要素、負の屈折力の第1bレンズ要素、正の屈折力の第1cレンズ要素より構成され、前記第1bレンズ要素の焦点距離をf1b、全系の焦点距離をfとするとき、
−0.65<f1b/f<−0.05
なる条件式を満足することを特徴とする撮像光学系。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens group that are arranged in order from the object side to the image side. In moving imaging optics,
The first lens group includes a first-a lens element having a positive refractive power, a first-b lens element having a negative refractive power, and a first-c lens element having a positive refractive power, which are arranged in order from the object side to the image side. When the focal length of the 1b lens element is f1b and the focal length of the entire system is f,
−0.65 <f1b / f <−0.05
An imaging optical system that satisfies the following conditional expression:
前記第1aレンズ要素と前記第1bレンズ要素との間隔をd1a、前記第1aレンズ要素の焦点距離をf1aとするとき、
0.43<d1a/f1a<0.80
なる条件式を満足することを特徴とする請求項1に記載の撮像光学系。
When the distance between the 1a lens element and the 1b lens element is d1a and the focal length of the 1a lens element is f1a,
0.43 <d1a / f1a <0.80
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1bレンズ要素と前記第1cレンズ要素との間隔をd1b、前記第1bレンズ要素の焦点距離をf1bとするとき、
0.07<d1b/|f1b|<0.35
なる条件式を満足することを特徴とする請求項1または2に記載の撮像光学系。
When the distance between the first b lens element and the first c lens element is d1b and the focal length of the first b lens element is f1b,
0.07 <d1b / | f1b | <0.35
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1bレンズ要素は回折光学部を有することを特徴とする請求項1乃至3のいずれか1項に記載の撮像光学系。   The imaging optical system according to claim 1, wherein the first b lens element includes a diffractive optical unit. 前記第1aレンズ要素の像側の面は非球面形状であることを特徴とする請求項1乃至4のいずれか1項に記載の撮像光学系。   5. The imaging optical system according to claim 1, wherein an image-side surface of the first lens element has an aspherical shape. 前記第1bレンズ要素は正レンズと負レンズが接合された接合レンズからなることを特徴とする請求項1乃至5のいずれか1項に記載の撮像光学系。   6. The imaging optical system according to claim 1, wherein the first b lens element includes a cemented lens in which a positive lens and a negative lens are cemented. 前記負レンズは両凹形状であることを特徴とする請求項6に記載の撮像光学系。   The imaging optical system according to claim 6, wherein the negative lens has a biconcave shape. 前記負レンズの物体側の面の曲率半径をra、前記負レンズの像側の面の曲率半径をrbとするとき、
−0.20<(ra+rb)/(ra−rb)<0.20
なる条件式を満足することを特徴とする請求項7に記載の撮像光学系。
When the radius of curvature of the object side surface of the negative lens is ra and the radius of curvature of the image side surface of the negative lens is rb,
−0.20 <(ra + rb) / (ra−rb) <0.20
The imaging optical system according to claim 7, wherein the following conditional expression is satisfied.
無限遠から至近へのフォーカシングに際し、前記第2レンズ群は像側へ移動することを特徴とする請求項1乃至8のいずれか1項に記載の撮像光学系。   The imaging optical system according to any one of claims 1 to 8, wherein the second lens group moves toward the image side during focusing from infinity to close. 前記光学系が無限遠に合焦している時において、前記第1cレンズ要素と前記第2レンズ群との間隔をd1c、前記第1cレンズ要素の焦点距離をf1cとするとき、
0.12<d1c/f1c<0.45
なる条件式を満足することを特徴とする請求項1乃至9のいずれか1項に記載の撮像光学系。
When the optical system is focused at infinity, the distance between the first c lens element and the second lens group is d1c, and the focal length of the first c lens element is f1c.
0.12 <d1c / f1c <0.45
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1bレンズ要素の最も物体側のレンズ面の有効径をea1bとするとき、
10.4<f/ea1b<16.0
なる条件式を満足することを特徴とする請求項1乃至10のいずれか1項に記載の撮像光学系。
When the effective diameter of the lens surface closest to the object side of the 1b lens element is ea1b,
10.4 <f / ea1b <16.0
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第2レンズ群の最も物体側のレンズ面の有効径をea2とするとき、
17.0<f/ea2<24.0
なる条件式を満足することを特徴とする請求項1乃至11のいずれか1項に記載の撮像光学系。
When the effective diameter of the lens surface closest to the object side of the second lens group is ea2,
17.0 <f / ea2 <24.0
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1bレンズ要素は回折光学部を有し、前記回折光学部における1次回折光の焦点距離をfC2とするとき、
5.0<fC2/f<16.5
なる条件式を満足することを特徴とする請求項1乃至12のいずれか1項に記載の撮像光学系。
The 1b lens element has a diffractive optical part, and when the focal length of the first-order diffracted light in the diffractive optical part is fC2,
5.0 <fC2 / f <16.5
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1aレンズ要素の焦点距離をf1aとするとき、
0.20<f1a/f<0.60
なる条件式を満足することを特徴とする請求項1乃至13のいずれか1項に記載の撮像光学系。
When the focal length of the 1a lens element is f1a,
0.20 <f1a / f <0.60
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1cレンズ要素の焦点距離をf1cとするとき、
0.10<f1c/f<0.30
なる条件式を満足することを特徴とする請求項1乃至13のいずれか1項に記載の撮像光学系。
When the focal length of the first c lens element is f1c,
0.10 <f1c / f <0.30
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至15のいずれか1項に記載の撮像光学系と該撮像光学系によって形成される像を受光する撮像素子とを有することを特徴とする撮像装置。   An image pickup apparatus comprising: the image pickup optical system according to any one of claims 1 to 15; and an image pickup element that receives an image formed by the image pickup optical system.
JP2017196646A 2016-11-21 2017-10-10 Imaging optical system and an imaging device having it Active JP6971760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/817,929 US10527825B2 (en) 2016-11-21 2017-11-20 Image pickup optical system and image pickup apparatus having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016225810 2016-11-21
JP2016225810 2016-11-21

Publications (2)

Publication Number Publication Date
JP2018087965A true JP2018087965A (en) 2018-06-07
JP6971760B2 JP6971760B2 (en) 2021-11-24

Family

ID=62494435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196646A Active JP6971760B2 (en) 2016-11-21 2017-10-10 Imaging optical system and an imaging device having it

Country Status (1)

Country Link
JP (1) JP6971760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11500220B2 (en) 2019-02-12 2022-11-15 Fujifilm Corporation Imaging lens and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097212A (en) * 2011-11-01 2013-05-20 Tamron Co Ltd Inner focus type telephoto lens
JP2015096915A (en) * 2013-11-15 2015-05-21 株式会社タムロン Inner focus lens and imaging apparatus
JP2016126086A (en) * 2014-12-26 2016-07-11 株式会社タムロン Inner focus type lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097212A (en) * 2011-11-01 2013-05-20 Tamron Co Ltd Inner focus type telephoto lens
JP2015096915A (en) * 2013-11-15 2015-05-21 株式会社タムロン Inner focus lens and imaging apparatus
JP2016126086A (en) * 2014-12-26 2016-07-11 株式会社タムロン Inner focus type lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11500220B2 (en) 2019-02-12 2022-11-15 Fujifilm Corporation Imaging lens and imaging apparatus

Also Published As

Publication number Publication date
JP6971760B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6537331B2 (en) Optical system and imaging apparatus having the same
JP2017191160A (en) Optical system and imaging apparatus having the same
JP5893423B2 (en) Zoom lens and imaging apparatus having the same
JP2012002999A (en) Photographic optical system and imaging device having the same
KR20180101269A (en) Zoom lens and image pickup apparatus including same
JP2017223755A (en) Imaging optical system
JPWO2013118467A1 (en) Ultra wide-angle lens and imaging device
JP5639625B2 (en) Imaging optical system and imaging apparatus having the same
JP5767335B2 (en) Zoom lens and imaging device
JP6253379B2 (en) Optical system and imaging apparatus having the same
JPWO2013031180A1 (en) Zoom lens and imaging device
JP6546076B2 (en) Wide-angle lens and imaging device
US10527825B2 (en) Image pickup optical system and image pickup apparatus having the same
US10539768B2 (en) Rear converter optical system and imaging apparatus including the same
JP6921617B2 (en) Imaging optical system and imaging equipment having it
JP5767330B2 (en) Zoom lens and imaging device
JP7171224B2 (en) Optical system and imaging device having the same
JP2021092694A (en) Optical system and imaging apparatus
JP6971760B2 (en) Imaging optical system and an imaging device having it
JP6579843B2 (en) Optical system and imaging apparatus
JP5767710B2 (en) Zoom lens and imaging device
JP5767334B2 (en) Zoom lens and imaging device
JP6549477B2 (en) Wide-angle lens and imaging device
WO2013031185A1 (en) Zoom lens and imaging device
WO2013031182A1 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R151 Written notification of patent or utility model registration

Ref document number: 6971760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151