JP2018086962A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2018086962A
JP2018086962A JP2016231714A JP2016231714A JP2018086962A JP 2018086962 A JP2018086962 A JP 2018086962A JP 2016231714 A JP2016231714 A JP 2016231714A JP 2016231714 A JP2016231714 A JP 2016231714A JP 2018086962 A JP2018086962 A JP 2018086962A
Authority
JP
Japan
Prior art keywords
rubber
groove
curved surface
low
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231714A
Other languages
Japanese (ja)
Other versions
JP6783126B2 (en
Inventor
西川 修一
Shuichi Nishikawa
修一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2016231714A priority Critical patent/JP6783126B2/en
Priority to DE102017126011.0A priority patent/DE102017126011A1/en
Publication of JP2018086962A publication Critical patent/JP2018086962A/en
Application granted granted Critical
Publication of JP6783126B2 publication Critical patent/JP6783126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • B60C19/082Electric-charge-dissipating arrangements comprising a conductive tread insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire having a structure that optimizes a ground contact form.SOLUTION: A pneumatic tire has: cap rubber 50 forming a ground plane E; and base rubber 51 provided in an inner side of the cap rubber 50 in a tire radial direction RD. The cap rubber 50 is formed with: a main groove 5a extending in a tire circumferential direction CD; and a rib Rb defined by the main groove 5a. The main groove 5a has: a groove wall surface 30 forming the rib Rb; a groove bottom surface 31; and a groove curved surface 32 connecting the groove wall surface 30 with the groove bottom surface 31. Low hardness rubber 52 having lower rubber hardness than the cap rubber 50 is disposed at a first area Ar1 that is located within the cap rubber 50, below an upper end P1 of the groove curved surface 32, and at a groove outer side of a lower end P2 of the groove curved surface 32. The low hardness rubber 52 overlaps with an entire portion of the groove curved surface 32 in a side view and overlaps with an entire portion of the groove curved surface 32 in a plan view.SELECTED DRAWING: Figure 2

Description

本開示は、空気入りタイヤに関する。   The present disclosure relates to a pneumatic tire.

空気入りタイヤのトレッドパターンは、キャップゴムに形成される溝によって形成される。トレッドにおけるタイヤ周方向に延びる主溝は、リブ又はブロックを区画する。リブは、タイヤ周方向に連続して延びる陸部であり、ブロックは、主溝及び横溝で区画され、タイヤ周方向に複数配置される。リブは、ブロックよりも剛性が高いため、接地性が悪いと考えられる。   The tread pattern of the pneumatic tire is formed by grooves formed in the cap rubber. Main grooves extending in the tire circumferential direction in the tread define ribs or blocks. The rib is a land portion extending continuously in the tire circumferential direction, and the blocks are partitioned by a main groove and a lateral groove, and a plurality of blocks are arranged in the tire circumferential direction. Since the rib has higher rigidity than the block, it is considered that the grounding property is poor.

図6Bは、リブの接地形状を示す模式図である。図6Bに示すように、リブRbは、接地したとき、すなわち圧力が加わったときに、タイヤ周方向CDの両側にある接地端の形状がいびつになる。具体的には、リブRbの端(図中では点線丸で示す)が膨らみ、リブの中央が凹んでしまう。制動性能を向上させるためには、接地端の形状が、タイヤ周方向に直交する直線状になることが好ましい。制動時の圧力を適切に受けることができるからである。   FIG. 6B is a schematic diagram illustrating a ground contact shape of the rib. As shown in FIG. 6B, when the rib Rb is grounded, that is, when pressure is applied, the shape of the ground contact ends on both sides in the tire circumferential direction CD becomes distorted. Specifically, the end of the rib Rb (indicated by a dotted circle in the figure) swells and the center of the rib is recessed. In order to improve the braking performance, it is preferable that the shape of the ground contact end is a straight line perpendicular to the tire circumferential direction. It is because the pressure at the time of braking can be received appropriately.

リブRbの接地端形状がいびつになる原因は、溝の断面形状にあると考えられる。図6Aに示すように、一般的に、リブRbを形成する主溝5aの溝壁面30と溝底面31とが交差する部位は、曲面32に形成されている。直線同士が交差する構成にすれば、交差点を起点として、ゴムが割れてしまうため、ゴム割れを防止するために、曲面が採用されている。ところが、曲面32を採用すると、溝壁面30の土台が強固になり、溝壁面30の下部がしっかりと支えられた状態になり、溝壁面30の上部が動きやすくなる。その結果、図6Aにて点線で示すように、溝壁面30の上部が溝内側へ膨らむ。当然、材料はゴムであるので、膨らみが戻る方向へ反力が発生し、リブの端の圧力が高くなり、リブの端がタイヤ周方向に逃げて、接地端がいびつになると考えられる。   It is considered that the cause of the ground contact end shape of the rib Rb being distorted is the sectional shape of the groove. As shown in FIG. 6A, generally, a portion where the groove wall surface 30 and the groove bottom surface 31 of the main groove 5a forming the rib Rb intersect with each other is formed on a curved surface 32. If the straight lines intersect each other, the rubber will be cracked starting from the intersection, so a curved surface is employed to prevent rubber cracking. However, when the curved surface 32 is adopted, the foundation of the groove wall surface 30 becomes strong, the lower part of the groove wall surface 30 is firmly supported, and the upper part of the groove wall surface 30 becomes easy to move. As a result, as indicated by a dotted line in FIG. 6A, the upper portion of the groove wall surface 30 swells toward the inside of the groove. Naturally, since the material is rubber, a reaction force is generated in the direction in which the bulging returns, the pressure at the end of the rib increases, the end of the rib escapes in the tire circumferential direction, and the ground contact end is thought to be distorted.

上記とは直接の関係がないが、先行技術として、特許文献1、2には、溝のクラックを抑制する空気入りタイヤが記載されている。しかし、特許文献1,2には、接地端の形状に関する記載がない。   Although not directly related to the above, as a prior art, Patent Documents 1 and 2 describe pneumatic tires that suppress cracks in grooves. However, Patent Documents 1 and 2 do not describe the shape of the grounding end.

特開2015−157547号公報Japanese Patent Laying-Open No. 2015-157547 特開2015−85700号公報JP2015-85700A

本開示は、このような事情に着目してなされたものであって、その目的は、接地形状を適正化させる構造を有する空気入りタイヤを提供することである。   This indication is made paying attention to such a situation, and the object is to provide a pneumatic tire which has a structure which makes a grounding shape appropriate.

本開示は、上記目的を達成するために、次のような手段を講じている。   In order to achieve the above object, the present disclosure takes the following measures.

すなわち、本開示の空気入りタイヤは、接地面を形成するキャップゴムと、前記キャップゴムのタイヤ径方向内側に設けられるベースゴムと、を有し、前記キャップゴムには、タイヤ周方向に延びる主溝と、前記主溝により区画されるリブと、が形成されており、前記主溝は、前記リブを形成する溝壁面と、溝底面と、前記溝壁面と前記溝底面とをつなぐ溝曲面と、を有し、前記キャップゴムの内部であって前記溝曲面の上端よりも下方で且つ前記溝曲面の下端よりも溝外側となる第1領域に、前記キャップゴムよりもゴム硬度の低い低硬度ゴムが配置されており、前記低硬度ゴムは、側面視で前記溝曲面の全体と重なると共に、平面視で前記溝曲面の全体と重なる。   That is, the pneumatic tire according to the present disclosure includes a cap rubber that forms a contact surface, and a base rubber that is provided on the inner side in the tire radial direction of the cap rubber, and the cap rubber extends in a tire circumferential direction. A groove and a rib defined by the main groove are formed, the main groove includes a groove wall surface forming the rib, a groove bottom surface, and a groove curved surface connecting the groove wall surface and the groove bottom surface. In a first region inside the cap rubber and below the upper end of the groove curved surface and outside the groove than the lower end of the groove curved surface, the rubber hardness is lower than that of the cap rubber. Rubber is disposed, and the low hardness rubber overlaps the entire groove curved surface in a side view and overlaps the entire groove curved surface in a plan view.

この構成であれば、低硬度ゴムは、溝曲面の全体を側方及び下方から覆うことになるので、溝曲面による溝壁面の支えが弱くなり、キャップゴムよりも先に低硬度ゴムが圧縮され、圧力が熱エネルギーとして消費される。その結果、溝壁面の上部に出てくる反力が低減するので、接地形状が良くなる。接地形状が良くなると制動性能が向上する。   With this configuration, the low-hardness rubber covers the entire groove curved surface from the side and below, so that the support of the groove wall surface by the groove curved surface becomes weak, and the low-hardness rubber is compressed before the cap rubber. , Pressure is consumed as thermal energy. As a result, the reaction force that appears at the top of the groove wall surface is reduced, so that the ground contact shape is improved. As the ground contact shape improves, braking performance improves.

本開示に係る空気入りタイヤの一例を示すタイヤ子午線断面図。The tire meridian cross-sectional view showing an example of a pneumatic tire according to the present disclosure. 主溝と低硬度ゴムとの位置関係を示す断面図。Sectional drawing which shows the positional relationship of a main groove and low-hardness rubber. 接地時の溝の変形を模式的に示す断面図。Sectional drawing which shows typically the deformation | transformation of the groove | channel at the time of grounding. リブの接地端形状を示す平面図。The top view which shows the earthing | grounding end shape of a rib. 変形例の低硬度ゴムを示す断面図。Sectional drawing which shows the low hardness rubber | gum of a modification. 変形例の低硬度ゴムを示す断面図。Sectional drawing which shows the low hardness rubber | gum of a modification. 変形例の低硬度ゴムを示す断面図。Sectional drawing which shows the low hardness rubber | gum of a modification. 変形例の低硬度ゴムを示す断面図。Sectional drawing which shows the low hardness rubber | gum of a modification. 従来構造において、接地時の溝の変形を模式的に示す断面図。Sectional drawing which shows typically the deformation | transformation of the groove | channel at the time of earthing | grounding in a conventional structure. 従来のリブの接地端形状を示す平面図。The top view which shows the earthing | grounding end shape of the conventional rib.

以下、本開示の一実施形態の空気入りタイヤについて、図面を参照して説明する。   Hereinafter, a pneumatic tire according to an embodiment of the present disclosure will be described with reference to the drawings.

図1に示すように、空気入りタイヤTは、一対のビード部1と、各々のビード部1からタイヤ径方向RD外側に延びるサイドウォール部2と、両サイドウォール部2のタイヤ径方向RD外側端に連なるトレッド部3とを備える。ビード部1には、鋼線等の収束体をゴム被覆してなる環状のビードコア1aと、硬質ゴムからなるビードフィラー1bとが配設されている。   As shown in FIG. 1, the pneumatic tire T includes a pair of bead portions 1, sidewall portions 2 that extend outward from the respective bead portions 1 in the tire radial direction RD, and outer sides in the tire radial direction RD of both sidewall portions 2. And a tread portion 3 connected to the end. The bead portion 1 is provided with an annular bead core 1a formed by covering a converging body such as a steel wire with rubber and a bead filler 1b made of hard rubber.

また、このタイヤTは、トレッド部3からサイドウォール部2を経てビード部1に至るトロイド状のカーカス層4を備える。カーカス層4は、一対のビード部同士1の間に設けられ、少なくとも一枚のカーカスプライにより構成され、その端部がビードコア1aを介して巻き上げられた状態で係止されている。カーカスプライは、タイヤ赤道CLに対して略直角に延びるコードをトッピングゴムで被覆して形成されている。カーカス層4の内側には、空気圧を保持するためのインナーライナーゴム4aが配置されている。   The tire T includes a toroidal carcass layer 4 that extends from the tread portion 3 through the sidewall portion 2 to the bead portion 1. The carcass layer 4 is provided between a pair of bead portions 1 and is constituted by at least one carcass ply, and its end is locked in a state of being wound up via a bead core 1a. The carcass ply is formed by covering a cord extending substantially perpendicular to the tire equator CL with a topping rubber. Inside the carcass layer 4 is disposed an inner liner rubber 4a for maintaining air pressure.

さらに、サイドウォール部2におけるカーカス層4の外側には、サイドウォールゴム6が設けられている。また、ビード部1におけるカーカス層4の外側には、リム装着時にリム(図示しない)と接するリムストリップゴム7が設けられている。本実施形態では、カーカス層4のトッピングゴム及びリムストリップゴム7が導電性ゴムで形成されており、サイドウォールゴム6は非導電性ゴムで形成されている。   Further, a sidewall rubber 6 is provided outside the carcass layer 4 in the sidewall portion 2. A rim strip rubber 7 is provided outside the carcass layer 4 in the bead portion 1 so as to come into contact with a rim (not shown) when the rim is mounted. In the present embodiment, the topping rubber and rim strip rubber 7 of the carcass layer 4 are made of conductive rubber, and the side wall rubber 6 is made of non-conductive rubber.

トレッド部3におけるカーカス層4の外側には、カーカス層4を補強するためのベルト4bと、ベルト補強材4cと、トレッドゴム5とが内側から外側に向けて順に設けられている。ベルト4bは、複数枚のベルトプライにより構成されている。ベルト補強材4bは、タイヤ周方向に延びるコードをトッピングゴムで被覆して構成されている。ベルト補強材4bは、必要に応じて省略しても構わない。   On the outer side of the carcass layer 4 in the tread portion 3, a belt 4b for reinforcing the carcass layer 4, a belt reinforcing material 4c, and a tread rubber 5 are provided in order from the inner side to the outer side. The belt 4b is composed of a plurality of belt plies. The belt reinforcing member 4b is configured by covering a cord extending in the tire circumferential direction with a topping rubber. The belt reinforcing material 4b may be omitted as necessary.

図1及び図2に示すように、トレッドゴム5は、非導電性ゴムで形成され且つ接地面Eを構成するキャップゴム50と、キャップゴム50のタイヤ径方向内側に設けられるベースゴム51と、を有する。キャップゴム50の表面には、タイヤ周方向に沿って延びる複数本の主溝5aが形成されている。   As shown in FIGS. 1 and 2, the tread rubber 5 includes a cap rubber 50 that is formed of a non-conductive rubber and that constitutes the ground contact surface E, and a base rubber 51 that is provided inside the tire rubber in the tire radial direction. Have A plurality of main grooves 5 a extending along the tire circumferential direction are formed on the surface of the cap rubber 50.

上記において接地面Eは、正規リムにリム組みし、正規内圧を充填した状態でタイヤを平坦な路面に垂直に置き、正規荷重を加えたときの路面に接地する面であり、そのタイヤ幅方向WDの最外位置が接地端となる。なお、正規荷重及び正規内圧とは、JISD4202(自動車タイヤの諸元)等に規定されている最大荷重(乗用車用タイヤの場合は設計常用荷重)及びこれに見合った空気圧とし、正規リムとは、原則としてJISD4202等に定められている標準リムとする。   In the above, the ground contact surface E is a surface that is assembled to a regular rim and filled with a regular internal pressure, and the tire is placed vertically on a flat road surface and contacted to the road surface when a regular load is applied. The outermost position of WD is the grounding end. The normal load and the normal internal pressure are the maximum load (design normal load in the case of passenger car tires) specified in JIS D4202 (specifications of automobile tires) and the air pressure corresponding to this, and the normal rim is As a rule, the standard rim specified in JIS D4202 etc. shall be used.

本実施形態では、トレッドゴム5の両側端部にサイドウォールゴム6を載せてなるサイドウォールオントレッド(SWOT;side wall on tread)構造を採用しているが、この構造に限られるものではなく、トレッドゴムの両側端部をサイドウォールゴムのタイヤ径方向RD外側端に載せてなるトレッドオンサイド(TOS;tread on side)構造を採用することも可能である。   In the present embodiment, a side wall on tread (SWOT) structure in which the side wall rubber 6 is placed on both end portions of the tread rubber 5 is adopted, but the present invention is not limited to this structure. It is also possible to adopt a tread on side (TOS) structure in which both end portions of the tread rubber are placed on the outer end in the tire radial direction RD of the sidewall rubber.

ここで、導電性ゴムは、体積抵抗率が10Ω・cm未満を示すゴムが例示され、例えば原料ゴムに補強剤としてカーボンブラックを高比率で配合することにより作製される。カーボンブラック以外にも、カーボンファイバーや、グラファイト等のカーボン系、及び金属粉、金属酸化物、金属フレーク、金属繊維等の金属系の公知の導電性付与材を配合することでも得られる。 Here, the conductive rubber is exemplified by a rubber having a volume resistivity of less than 10 8 Ω · cm. For example, the conductive rubber is produced by blending carbon black as a reinforcing agent in a high ratio with a raw material rubber. In addition to carbon black, carbon fibers such as carbon fiber and graphite, and metal-based known conductivity imparting materials such as metal powders, metal oxides, metal flakes, and metal fibers can also be blended.

また、非導電性ゴムは、体積抵抗率が10Ω・cm以上を示すゴムが例示され、原料ゴムに補強剤としてシリカを高比率で配合したものが例示される。該シリカは、例えば原料ゴム成分100重量部に対して30〜100重量部で配合される。シリカとしては、湿式シリカを好ましく用いるが、補強材として汎用されているものは制限なく使用できる。非導電性ゴムは、沈降シリカや無水ケイ酸などのシリカ類以外にも、焼成クレーやハードクレー、炭酸カルシウムなどを配合して作製してもよい。 Further, the non-conductive rubber is exemplified by a rubber having a volume resistivity of 10 8 Ω · cm or more, and a rubber blended with a raw material rubber in a high ratio as a reinforcing agent is exemplified. For example, the silica is blended in an amount of 30 to 100 parts by weight with respect to 100 parts by weight of the raw rubber component. As silica, wet silica is preferably used, but those commonly used as reinforcing materials can be used without limitation. The nonconductive rubber may be prepared by blending calcined clay, hard clay, calcium carbonate, or the like, in addition to silicas such as precipitated silica and anhydrous silicic acid.

上記の原料ゴムとしては、天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)等が挙げられ、これらは1種単独で又は2種以上混合して使用される。かかる原料ゴムには、加硫剤や加硫促進剤、可塑剤、老化防止剤等も適宜に配合される。   Examples of the raw rubber include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), and butyl rubber (IIR). These may be used alone or in combination of two or more. Used. A vulcanizing agent, a vulcanization accelerator, a plasticizer, an anti-aging agent and the like are appropriately blended with the raw rubber.

導電性ゴムは、耐久性を高めて通電性能を向上する観点から、窒素吸着非表面積:NSA(m/g)×カーボンブラックの配合量(質量%)が1900以上、好ましくは2000以上であって、且つ、ジブチルフタレート吸油量:DBP(ml/100g)×カーボンブラックの配合量(質量%)が1500以上、好ましくは1700以上を満たす配合であることが望ましい。NSAはASTM D3037−89に、DBPはASTM D2414−90に準拠して求められる。 The conductive rubber has a nitrogen adsorption non-surface area: N 2 SA (m 2 / g) × carbon black content (mass%) of 1900 or more, preferably 2000 or more, from the viewpoint of improving durability and improving current carrying performance. In addition, it is desirable that the blending amount of the dibutyl phthalate oil absorption: DBP (ml / 100 g) × carbon black is 1500 or more, preferably 1700 or more. N 2 SA is determined according to ASTM D3037-89, and DBP is determined according to ASTM D2414-90.

本実施形態では、図2に示すように、キャップゴム50には、主溝5aによって区画されたリブRbが形成されている。同図に示すように、主溝5aは、リブRbを形成する溝壁面30と、溝底面31と、溝底面31と溝壁面30とをつなぐ溝曲面32と、を有する。溝壁面30は全部又はその一部が平坦面であり、溝底面31は平坦面である。溝曲面32は、1又は複数の曲面の組み合わせである。溝曲面32の平均曲率半径は1.5〜2.0mmであるが、これに限定されない。平均曲率半径は、溝曲面32を構成する曲面の曲率半径の平均値である。   In the present embodiment, as shown in FIG. 2, the cap rubber 50 is formed with ribs Rb partitioned by the main groove 5a. As shown in the figure, the main groove 5 a has a groove wall surface 30 that forms the rib Rb, a groove bottom surface 31, and a groove curved surface 32 that connects the groove bottom surface 31 and the groove wall surface 30. All or part of the groove wall surface 30 is a flat surface, and the groove bottom surface 31 is a flat surface. The groove curved surface 32 is a combination of one or a plurality of curved surfaces. The average radius of curvature of the groove curved surface 32 is 1.5 to 2.0 mm, but is not limited thereto. The average radius of curvature is an average value of the curvature radii of the curved surfaces constituting the groove curved surface 32.

図2に示すように、キャップゴム50の内部であって、溝曲面32の周辺には、キャップゴム50よりもゴム硬度の低い低硬度ゴム52が配置されている。ここでいうゴム硬度は、JISK6253のデュロメータ硬さ試験(タイプA)に準じて測定した硬度を意味する。低硬度ゴム52は、キャップゴム50の内部であって溝曲面32の上端P1よりも下方で且つ溝曲面32の下端P2よりも溝外側となる第1領域Ar1に配置されている。第1領域Ar1は、図2において斜線で示す領域である。低硬度ゴム52は、側面視で溝曲面32の全体と重なり、溝曲面32の全体を側方から覆う。また、低硬度ゴム52は、平面視で溝曲面32の全体と重なり、溝曲面32の全体を下方から覆う。   As shown in FIG. 2, a low hardness rubber 52 having a rubber hardness lower than that of the cap rubber 50 is disposed inside the cap rubber 50 and around the groove curved surface 32. The rubber hardness here means the hardness measured according to JISK6253 durometer hardness test (type A). The low hardness rubber 52 is disposed in the first region Ar1 inside the cap rubber 50, below the upper end P1 of the groove curved surface 32 and outside the groove from the lower end P2 of the groove curved surface 32. The first region Ar1 is a region indicated by hatching in FIG. The low hardness rubber 52 overlaps the entire groove curved surface 32 in a side view and covers the entire groove curved surface 32 from the side. Further, the low hardness rubber 52 overlaps the entire groove curved surface 32 in plan view and covers the entire groove curved surface 32 from below.

図3Aは、接地時の溝の変形を模式的に示す断面図である。図3Aでは、接地していないときの形状が実線で描かれており、接地したときの形状が破線で描いている。低硬度ゴム52は、溝曲面32の全体を側方及び下方から覆うので、溝曲面32による溝壁面30の支えが弱くなる。そうすれば、図3Aに示すように、キャップゴム50よりも先に低硬度ゴム52が圧縮され、圧力が熱エネルギーとして消費される。低硬度ゴム52が優先的に圧縮されるので、反力RFが溝壁面30の下方で主に発現する。その結果、溝曲面32の上部に出てくる反力が低減するので、接地形状が良くなる。図3Bが接地形状であり、図6Bに示すようにリブRbの端の膨らみが低減されている。   FIG. 3A is a cross-sectional view schematically showing the deformation of the groove at the time of grounding. In FIG. 3A, the shape when not grounded is drawn by a solid line, and the shape when grounded is drawn by a broken line. Since the low hardness rubber 52 covers the entire groove curved surface 32 from the side and below, the support of the groove wall surface 30 by the groove curved surface 32 becomes weak. Then, as shown in FIG. 3A, the low-hardness rubber 52 is compressed before the cap rubber 50, and the pressure is consumed as heat energy. Since the low hardness rubber 52 is preferentially compressed, the reaction force RF is mainly developed below the groove wall surface 30. As a result, the reaction force that appears on the upper surface of the groove curved surface 32 is reduced, so that the ground contact shape is improved. FIG. 3B shows a ground contact shape, and the swelling of the end of the rib Rb is reduced as shown in FIG. 6B.

図2に示すように、第1領域Ar1に配置される低硬度ゴム52は、溝曲面32の法線方向に沿って溝曲面32からの距離R1が1.7mmである範囲内に配置されていることが好ましい。この範囲に低硬度ゴム52があれば、低硬度ゴム52が優先的に圧縮させる作用が発現しやすい。   As shown in FIG. 2, the low-hardness rubber 52 disposed in the first region Ar <b> 1 is disposed within a range where the distance R <b> 1 from the groove curved surface 32 is 1.7 mm along the normal direction of the groove curved surface 32. Preferably it is. If the low-hardness rubber 52 is in this range, the low-hardness rubber 52 is likely to compress preferentially.

さらに、低硬度ゴム52は、第1領域Ar1から上方へ向かい接地面Eまで延びていることが好ましい。勿論、図4Aに示すように、低硬度ゴム52が接地面Eまで延びなくてもよい。第1領域Ar1にある低硬度ゴム52の厚みD2は、接地面Eに露出する低硬度ゴム52の厚みD1に比べて大きい。厚みD1は0.1〜1.0mm、厚みD2は0.4〜1.5mmが好ましい。本実施形態では、キャップゴム50が非導電性ゴムであり、低硬度ゴム52が導電性ゴムであるので、導電性ゴムのボリュームを抑えて転がり抵抗の悪化を抑制することと、低硬度ゴム52が圧縮されることにより接地端形状が改善されること、を両立する観点である。勿論、この数値範囲外でも効果はある。   Furthermore, it is preferable that the low hardness rubber 52 extends upward from the first region Ar1 to the ground contact surface E. Of course, as shown in FIG. 4A, the low hardness rubber 52 does not have to extend to the ground contact surface E. The thickness D2 of the low hardness rubber 52 in the first region Ar1 is larger than the thickness D1 of the low hardness rubber 52 exposed to the ground contact surface E. The thickness D1 is preferably 0.1 to 1.0 mm, and the thickness D2 is preferably 0.4 to 1.5 mm. In this embodiment, since the cap rubber 50 is a non-conductive rubber and the low-hardness rubber 52 is a conductive rubber, the volume of the conductive rubber is suppressed to suppress the deterioration of rolling resistance, and the low-hardness rubber 52 It is a viewpoint which makes compatible that a grounding end shape is improved by being compressed. Of course, there is an effect even outside this numerical range.

図2に示すように、第1領域Ar1に配置される低硬度ゴム52は、三日月状である。図5A及び図5Bに示すように、低硬度ゴム52は、台形の片側のような形状でもよい。また、低硬度ゴム52は、リブRbの中心RCLと、主溝5aの中心GCLとの間に配置されていることが好ましい。この範囲を外れると、接地端形状を改善する効果が発現しないか、別の部位に対して悪影響を与える可能性があるからである。   As shown in FIG. 2, the low hardness rubber 52 arranged in the first region Ar1 has a crescent shape. As shown in FIGS. 5A and 5B, the low hardness rubber 52 may be shaped like one side of a trapezoid. In addition, the low hardness rubber 52 is preferably disposed between the center RCL of the rib Rb and the center GCL of the main groove 5a. If it is out of this range, the effect of improving the ground contact end shape may not be exhibited, or another part may be adversely affected.

図1に示すように、主溝5aは、溝底面31から突出するタイヤウェアインディケータTWIを有する。タイヤウェアインディケータTWIは、タイヤの交換時期を示す突起であり、溝底面31から1.6mmの高さを有する。図2に示すように、タイヤウェアインディケータTWIよりも上にある低硬度ゴム52の厚みが相対的に小さく、タイヤウェアインディケータTWIよりも下方であって第1領域Ar1にある低硬度ゴム52の厚みが相対的に大きいことが好ましい。タイヤウェアインディケータTWIよりも上方は、接地面として露出するため、この領域の導電性ゴムの露出を抑えて、転がり抵抗及びウェット性能の悪化を抑制するためである。   As shown in FIG. 1, the main groove 5 a has a tire wear indicator TWI protruding from the groove bottom surface 31. The tire wear indicator TWI is a protrusion indicating the replacement time of the tire, and has a height of 1.6 mm from the groove bottom surface 31. As shown in FIG. 2, the thickness of the low hardness rubber 52 above the tire wear indicator TWI is relatively small, and the thickness of the low hardness rubber 52 below the tire wear indicator TWI and in the first region Ar1. Is preferably relatively large. This is because the area above the tire wear indicator TWI is exposed as a ground contact surface, so that exposure of the conductive rubber in this region is suppressed, and deterioration of rolling resistance and wet performance is suppressed.

また、図2に示すように、低硬度ゴム52は、導電性ゴムで形成され、接地面Eからキャップゴム50の底面に至る。この構成であれば、低硬度ゴム52が、接地面Eからベースゴム51までの導電経路としても機能することになる。勿論、導電経路が不要であれば、図4A及び図4Bに示すように、低硬度ゴム52がキャップゴム50の底面に延びなくてもよい。また、低硬度ゴム52を導電性ゴムで形成しなくてもよく、非導電性ゴムでもよい。接地端形状の適正化という観点であれば、キャップゴム50についても非導電性ゴムでなくてもよく、導電性ゴムにすることも可能である。   As shown in FIG. 2, the low-hardness rubber 52 is formed of a conductive rubber and extends from the ground contact surface E to the bottom surface of the cap rubber 50. With this configuration, the low hardness rubber 52 also functions as a conductive path from the ground contact surface E to the base rubber 51. Of course, if the conductive path is unnecessary, the low hardness rubber 52 may not extend to the bottom surface of the cap rubber 50 as shown in FIGS. 4A and 4B. Further, the low hardness rubber 52 may not be formed of conductive rubber, and may be non-conductive rubber. From the viewpoint of optimizing the shape of the ground end, the cap rubber 50 may not be a non-conductive rubber, and may be a conductive rubber.

本開示の構成と効果を具体的に示すために、下記実施例について下記の評価を行った。   In order to specifically show the configuration and effects of the present disclosure, the following evaluations were performed on the following examples.

(1)制動性能
日本産セダン車(2000cc)の車両に各タイヤを装着させて、時速100キロメートルで路面を走行させた状態からABSを作動させた際の制動距離を測定し、その測定値の逆数を算出した。比較例1の結果を100とする指数で評価し、指数が大きいほど、制動性能が優れていることを示す。
(1) Braking performance Measure the braking distance when the ABS is operated from a state where the tire is mounted on a Japanese sedan car (2000cc) and the road surface is running at 100 km / h. The reciprocal was calculated. The result of Comparative Example 1 is evaluated with an index of 100, and the larger the index, the better the braking performance.

比較例1
図6Aに示すように、主溝5aによりリブRbが形成されており、主溝5aが、リブRbを形成する溝壁面30と、溝底面31と、溝壁面30及び溝底面31をつなぐ溝曲面32と、を有する一般的なキャップゴム50の構造を有するタイヤを作製した。
Comparative Example 1
As shown in FIG. 6A, a rib Rb is formed by a main groove 5a, and the main groove 5a is a groove wall surface 30 that forms the rib Rb, a groove bottom surface 31, and a groove curved surface that connects the groove wall surface 30 and the groove bottom surface 31. Thus, a tire having a structure of a general cap rubber 50 having 32 is manufactured.

実施例1
図2に示すように、第1領域に三日月状の低硬度ゴム52を配置した。低硬度ゴム52は、第1領域Ar1から上方に延びて接地面Eに至る。また、低硬度ゴム52は、下方に延びてキャップゴム50の底面に至る。それ以外は、比較例1と同じとした。
Example 1
As shown in FIG. 2, a crescent-shaped low-hardness rubber 52 is disposed in the first region. The low hardness rubber 52 extends upward from the first region Ar1 and reaches the ground contact surface E. The low hardness rubber 52 extends downward and reaches the bottom surface of the cap rubber 50. Otherwise, it was the same as Comparative Example 1.

Figure 2018086962
Figure 2018086962

表1より、実施例1は比較例1に対し、制動性能について優れていることが分かる。これは、接地端形状が良くなり、接地端が制動時に力を適切に受けやすくなったためと考えられる。   From Table 1, it can be seen that Example 1 is superior to Comparative Example 1 in terms of braking performance. This is considered to be because the contact end shape is improved, and the contact end easily receives a force appropriately during braking.

以上のように、本実施形態の空気入りタイヤは、接地面Eを形成するキャップゴム50と、キャップゴム50のタイヤ径方向RD内側に設けられるベースゴム51と、を有し、キャップゴム50には、タイヤ周方向CDに延びる主溝5aと、主溝5aにより区画されるリブRbと、が形成されており、主溝5aは、リブRbを形成する溝壁面30と、溝底面31と、溝壁面30と溝底面31とをつなぐ溝曲面32と、を有し、キャップゴム50の内部であって溝曲面32の上端P1よりも下方で且つ溝曲面32の下端P2よりも溝外側となる第1領域Ar1に、キャップゴム50よりもゴム硬度の低い低硬度ゴム52が配置されており、低硬度ゴム52は、側面視で溝曲面32の全体と重なると共に、平面視で溝曲面32の全体と重なる。   As described above, the pneumatic tire of the present embodiment includes the cap rubber 50 that forms the ground contact surface E, and the base rubber 51 provided inside the tire rubber radial direction RD of the cap rubber 50. Is formed with a main groove 5a extending in the tire circumferential direction CD, and a rib Rb defined by the main groove 5a. The main groove 5a includes a groove wall surface 30 that forms the rib Rb, a groove bottom surface 31, and A groove curved surface 32 that connects the groove wall surface 30 and the groove bottom surface 31, and is inside the cap rubber 50, below the upper end P <b> 1 of the groove curved surface 32, and outside the groove from the lower end P <b> 2 of the groove curved surface 32. A low-hardness rubber 52 having a lower hardness than the cap rubber 50 is disposed in the first region Ar1, and the low-hardness rubber 52 overlaps the entire groove curved surface 32 in a side view and also has a groove curved surface 32 in a plan view. It overlaps with the whole.

この構成であれば、低硬度ゴム52は、溝曲面32の全体を側方及び下方から覆うことになるので、溝曲面32による溝壁面30の支えが弱くなり、キャップゴム50よりも先に低硬度ゴム52が圧縮され、圧力が熱エネルギーとして消費される。その結果、溝壁面30の上部に出てくる反力が低減するので、接地形状が良くなる。接地形状が良くなると、制動性能が良くなる。   With this configuration, the low-hardness rubber 52 covers the entire groove curved surface 32 from the side and below, so that the support of the groove wall surface 30 by the groove curved surface 32 becomes weak and lower than the cap rubber 50. Hard rubber 52 is compressed and pressure is consumed as thermal energy. As a result, the reaction force that appears at the top of the groove wall surface 30 is reduced, so that the ground contact shape is improved. When the ground contact shape is improved, the braking performance is improved.

本実施形態では、低硬度ゴム52は、第1領域Ar1から上方へ向かい接地面Eまで延びている。   In the present embodiment, the low hardness rubber 52 extends upward from the first region Ar1 to the ground contact surface E.

この構成によれば、キャップゴム50のうち溝壁面30を形成する部分が低硬度ゴム52で区画されるので、溝壁面30を形成する部分全体が下方に動き、低硬度ゴム52が優先的に圧縮される。その結果、溝壁面30の上部に出てくる反力がより低減するので、接地形状がさらに良くなる。   According to this configuration, the portion of the cap rubber 50 that forms the groove wall surface 30 is partitioned by the low-hardness rubber 52. Therefore, the entire portion that forms the groove wall surface 30 moves downward, and the low-hardness rubber 52 is preferentially used. Compressed. As a result, the reaction force that appears at the upper part of the groove wall surface 30 is further reduced, so that the ground contact shape is further improved.

本実施形態では、第1領域Ar1にある低硬度ゴム52の厚みD2は、接地面Eに露出する低硬度ゴム52の厚みD1に比べて大きい。   In the present embodiment, the thickness D2 of the low hardness rubber 52 in the first region Ar1 is larger than the thickness D1 of the low hardness rubber 52 exposed to the ground contact surface E.

この構成によれば、接地時に圧縮されやすい第1領域Ar1にある低硬度ゴム52の厚みD2が相対的に大きいので、接地形状を良くする効果を高めることができる。キャップゴム50が非導電性ゴムで且つ低硬度ゴム52が導電性ゴムの場合には、導電性ゴムのボリュームを抑えて、転がり抵抗の悪化を抑制できる。   According to this configuration, since the thickness D2 of the low-hardness rubber 52 in the first region Ar1 that is easily compressed at the time of grounding is relatively large, the effect of improving the grounding shape can be enhanced. When the cap rubber 50 is a non-conductive rubber and the low hardness rubber 52 is a conductive rubber, the volume of the conductive rubber can be suppressed and deterioration of rolling resistance can be suppressed.

本実施形態では、第1領域に配置される低硬度ゴムは、前記溝曲面の法線方向に沿って前記溝曲面からの距離R1が1.7mmである範囲内に配置されている。   In the present embodiment, the low-hardness rubber disposed in the first region is disposed within a range in which the distance R1 from the groove curved surface is 1.7 mm along the normal direction of the groove curved surface.

この構成によれば、低硬度ゴムが優先的に圧縮される作用が発現しやすく、接地形状が良くなり易い。   According to this configuration, the effect of preferentially compressing the low-hardness rubber is easily exhibited, and the ground contact shape is likely to be improved.

本実施形態では、キャップゴム50は、非導電性ゴムで形成されており、低硬度ゴム52は、導電性ゴムで形成され、接地面Eからキャップゴム50の底面に至る。   In the present embodiment, the cap rubber 50 is made of non-conductive rubber, and the low hardness rubber 52 is made of conductive rubber and extends from the ground surface E to the bottom surface of the cap rubber 50.

この構成によれば、低硬度ゴム52を利用して導電経路を確保することが可能となる。   According to this configuration, it is possible to secure a conductive path using the low hardness rubber 52.

本実施形態では、主溝5aは、溝底面31から突出するタイヤウェアインディケータTWIを有し、タイヤウェアインディケータTWIよりも上にある低硬度ゴム52の厚みD1が相対的に小さく、タイヤウェアインディケータTWIよりも下方であって第1領域Ar1にある低硬度ゴム52の厚みD2が相対的に大きい。   In the present embodiment, the main groove 5a has a tire wear indicator TWI protruding from the groove bottom surface 31, the thickness D1 of the low hardness rubber 52 above the tire wear indicator TWI is relatively small, and the tire wear indicator TWI. The thickness D2 of the low-hardness rubber 52 in the first region Ar1 is lower than the thickness D2.

この構成によれば、タイヤウェアインディケータTWIよりも上方は、接地面として露出する領域であり、この領域の導電性ゴムの露出を抑えて、転がり抵抗及びウェット性能の悪化を抑制可能となる。   According to this configuration, the area above the tire wear indicator TWI is an area exposed as a ground contact surface, and the exposure of the conductive rubber in this area can be suppressed, and deterioration of rolling resistance and wet performance can be suppressed.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。   The structure employed in each of the above embodiments can be employed in any other embodiment. The specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present disclosure.

本実施形態では、リブRbとブロックの間にある主溝5aにおいて、リブRbを形成する溝壁面30側に低硬度ゴム52を設けているが、これに限定されない。例えば、リブ同士の間にある主溝5aにおいて、双方の溝壁面30側に低硬度ゴム52を設けてもよい。   In the present embodiment, the low hardness rubber 52 is provided on the side of the groove wall surface 30 that forms the rib Rb in the main groove 5a between the rib Rb and the block. However, the present invention is not limited to this. For example, in the main groove 5a between the ribs, the low hardness rubber 52 may be provided on both the groove wall surfaces 30 side.

30…溝壁面
31…溝底面
32…溝曲面
50…キャップゴム
51…ベースゴム
52…低硬度ゴム
5a…主溝
E…接地面
Rb…リブ
P1…溝曲面の上端
P2…溝曲面の下端
Ar1…第1領域
TWI…タイヤウェアインディケータ
30 ... groove wall 31 ... groove bottom surface 32 ... groove curved surface 50 ... cap rubber 51 ... base rubber 52 ... low hardness rubber 5a ... main groove E ... ground surface Rb ... rib P1 ... upper end of groove curved surface P2 ... lower end of groove curved surface Ar1 ... 1st region TWI ... Tire wear indicator

Claims (6)

接地面を形成するキャップゴムと、前記キャップゴムのタイヤ径方向内側に設けられるベースゴムと、を有し、
前記キャップゴムには、タイヤ周方向に延びる主溝と、前記主溝により区画されるリブと、が形成されており、
前記主溝は、前記リブを形成する溝壁面と、溝底面と、前記溝壁面と前記溝底面とをつなぐ溝曲面と、を有し、
前記キャップゴムの内部であって前記溝曲面の上端よりも下方で且つ前記溝曲面の下端よりも溝外側となる第1領域に、前記キャップゴムよりもゴム硬度の低い低硬度ゴムが配置されており、前記低硬度ゴムは、側面視で前記溝曲面の全体と重なると共に、平面視で前記溝曲面の全体と重なる、空気入りタイヤ。
A cap rubber that forms a ground contact surface, and a base rubber provided on the inner side in the tire radial direction of the cap rubber,
The cap rubber is formed with a main groove extending in the tire circumferential direction and a rib defined by the main groove,
The main groove has a groove wall surface that forms the rib, a groove bottom surface, and a groove curved surface that connects the groove wall surface and the groove bottom surface,
A low-hardness rubber having a rubber hardness lower than that of the cap rubber is disposed in a first region inside the cap rubber and below the upper end of the groove curved surface and outside the groove lower end of the groove curved surface. The low-hardness rubber is a pneumatic tire that overlaps the entire groove curved surface in a side view and overlaps the entire groove curved surface in a plan view.
前記低硬度ゴムは、前記第1領域から上方へ向かい接地面まで延びている、請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the low-hardness rubber extends upward from the first region to a ground contact surface. 前記第1領域にある低硬度ゴムの厚みは、接地面に露出する低硬度ゴムに比べて厚みが大きい、請求項2に記載の空気入りタイヤ。   The pneumatic tire according to claim 2, wherein the thickness of the low-hardness rubber in the first region is larger than that of the low-hardness rubber exposed on the ground contact surface. 前記第1領域に配置される低硬度ゴムは、前記溝曲面の法線方向に沿って前記溝曲面からの距離が1.7mmである範囲内に配置されている、請求項1〜3のいずれかに記載の空気入りタイヤ。   The low-hardness rubber disposed in the first region is disposed in a range in which a distance from the groove curved surface is 1.7 mm along a normal direction of the groove curved surface. The pneumatic tire according to Crab. 前記キャップゴムは、非導電性ゴムで形成されており、
前記低硬度ゴムは、導電性ゴムで形成され、接地面から前記キャップゴムの底面に至る、請求項1〜4のいずれかに記載の空気入りタイヤ。
The cap rubber is made of non-conductive rubber,
The pneumatic tire according to any one of claims 1 to 4, wherein the low hardness rubber is formed of a conductive rubber and extends from a ground contact surface to a bottom surface of the cap rubber.
前記主溝は、溝底面から突出するタイヤウェアインディケータを有し、
前記タイヤウェアインディケータよりも上にある前記低硬度ゴムの厚みが相対的に小さく、前記タイヤウェアインディケータよりも下方であって前記第1領域にある前記低硬度ゴムの厚みが相対的に大きい、請求項5に記載の空気入りタイヤ。
The main groove has a tire wear indicator protruding from the groove bottom surface,
The thickness of the low-hardness rubber above the tire wear indicator is relatively small, and the thickness of the low-hardness rubber below the tire wear indicator and in the first region is relatively large. Item 6. The pneumatic tire according to Item 5.
JP2016231714A 2016-11-29 2016-11-29 Pneumatic tires Active JP6783126B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016231714A JP6783126B2 (en) 2016-11-29 2016-11-29 Pneumatic tires
DE102017126011.0A DE102017126011A1 (en) 2016-11-29 2017-11-07 TIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231714A JP6783126B2 (en) 2016-11-29 2016-11-29 Pneumatic tires

Publications (2)

Publication Number Publication Date
JP2018086962A true JP2018086962A (en) 2018-06-07
JP6783126B2 JP6783126B2 (en) 2020-11-11

Family

ID=62117480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231714A Active JP6783126B2 (en) 2016-11-29 2016-11-29 Pneumatic tires

Country Status (2)

Country Link
JP (1) JP6783126B2 (en)
DE (1) DE102017126011A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20216131A1 (en) * 2021-11-03 2023-05-04 Nokian Renkaat Oyj A tire

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647305A (en) * 1979-09-25 1981-04-30 Sumitomo Rubber Ind Ltd Radial tire for passenger car
JPH0648115A (en) * 1992-07-27 1994-02-22 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2006062518A (en) * 2004-08-26 2006-03-09 Sumitomo Rubber Ind Ltd Pneumatic tire for heavy load and its manufacturing method
JP2007290485A (en) * 2006-04-24 2007-11-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012017001A (en) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2013052864A (en) * 2011-08-31 2013-03-21 Goodyear Tire & Rubber Co:The Pneumatic tire having dual layer tread
JP2013159302A (en) * 2012-02-08 2013-08-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2013189183A (en) * 2012-02-15 2013-09-26 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2014051136A (en) * 2012-09-05 2014-03-20 Toyo Tire & Rubber Co Ltd Pneumatic tire, method for producing pneumatic tire and rubber ribbon
JP2014162308A (en) * 2013-02-22 2014-09-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2015209189A (en) * 2014-04-30 2015-11-24 住友ゴム工業株式会社 Pneumatic tire
JP2015231812A (en) * 2014-06-10 2015-12-24 住友ゴム工業株式会社 Pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095225B2 (en) 2013-10-28 2017-03-15 東洋ゴム工業株式会社 Pneumatic tire
JP2015157547A (en) 2014-02-24 2015-09-03 横浜ゴム株式会社 pneumatic tire

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647305A (en) * 1979-09-25 1981-04-30 Sumitomo Rubber Ind Ltd Radial tire for passenger car
JPH0648115A (en) * 1992-07-27 1994-02-22 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2006062518A (en) * 2004-08-26 2006-03-09 Sumitomo Rubber Ind Ltd Pneumatic tire for heavy load and its manufacturing method
JP2007290485A (en) * 2006-04-24 2007-11-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012017001A (en) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2013052864A (en) * 2011-08-31 2013-03-21 Goodyear Tire & Rubber Co:The Pneumatic tire having dual layer tread
JP2013159302A (en) * 2012-02-08 2013-08-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2013189183A (en) * 2012-02-15 2013-09-26 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2014051136A (en) * 2012-09-05 2014-03-20 Toyo Tire & Rubber Co Ltd Pneumatic tire, method for producing pneumatic tire and rubber ribbon
JP2014162308A (en) * 2013-02-22 2014-09-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2015209189A (en) * 2014-04-30 2015-11-24 住友ゴム工業株式会社 Pneumatic tire
JP2015231812A (en) * 2014-06-10 2015-12-24 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP6783126B2 (en) 2020-11-11
DE102017126011A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP5992787B2 (en) Pneumatic tire
JP4611451B1 (en) Pneumatic tire
JP5389868B2 (en) Pneumatic tire
JP4783479B1 (en) Pneumatic tire
JP5808200B2 (en) Pneumatic tire
JP6051072B2 (en) Pneumatic tire
JP5342670B2 (en) Pneumatic tire
JP5939701B2 (en) Pneumatic tire
JP2013154765A (en) Pneumatic tire
JP4758366B2 (en) Pneumatic tire
JP2018086962A (en) Pneumatic tire
JP5851871B2 (en) Pneumatic tire
JP2015013519A (en) Pneumatic tire
JP6842298B2 (en) Pneumatic tires
JP6785139B2 (en) Pneumatic tires
JP6735175B2 (en) Pneumatic tire
JP6768441B2 (en) Pneumatic tires
JP6742187B2 (en) Pneumatic tire
JP2014213747A (en) Pneumatic tire
JP6735176B2 (en) Pneumatic tire
JP6754268B2 (en) Pneumatic tires
JP6289309B2 (en) Pneumatic tire
JP6792482B2 (en) Pneumatic tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250