JP2018085358A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2018085358A
JP2018085358A JP2016225772A JP2016225772A JP2018085358A JP 2018085358 A JP2018085358 A JP 2018085358A JP 2016225772 A JP2016225772 A JP 2016225772A JP 2016225772 A JP2016225772 A JP 2016225772A JP 2018085358 A JP2018085358 A JP 2018085358A
Authority
JP
Japan
Prior art keywords
layer
insulating material
material layer
forming
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016225772A
Other languages
Japanese (ja)
Inventor
正也 鳥羽
Masaya Toba
正也 鳥羽
蔵渕 和彦
Kazuhiko Kurabuchi
和彦 蔵渕
一行 満倉
Kazuyuki Mitsukura
一行 満倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016225772A priority Critical patent/JP2018085358A/en
Publication of JP2018085358A publication Critical patent/JP2018085358A/en
Priority to JP2021076288A priority patent/JP7529613B2/en
Priority to JP2023075683A priority patent/JP2023095942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method by which a semiconductor device having a fine wiring layer to establish electrical conduction with a high density superior in transmission between chips can be manufactured with good yield at low cost.SOLUTION: A semiconductor device manufacturing method comprises the steps of: (I) forming an insulative material layer on a support body; (II) forming a concave portion in the surface of the insulative material layer; (III) modifying the surface of the insulative material layer including the concave portion in quality; (IV) forming a palladium-adsorbed layer on the quality-modified surface of the insulative material layer including the concave portion; (V) forming, by electroless nickel plating, a nickel layer on the surface of the insulative material layer including the concave portion with the palladium-adsorbed layer formed thereon; (VI) forming a copper layer on the nickel layer by electrolytic copper plating; and (VII) removing the copper layer, the nickel layer and the palladium-adsorbed layer from the surface of the insulative material layer excluding the concave portion, thereby forming a wiring layer including a copper layer formed on the concave portion of the insulative material layer.SELECTED DRAWING: Figure 2

Description

本発明は、半導体装置の製造方法に関する。より詳しくは、微細化や高密度化の要求が高い半導体装置を効率よく、低コストに製造するための半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device. More specifically, the present invention relates to a method for manufacturing a semiconductor device for efficiently manufacturing a semiconductor device that is highly demanded for miniaturization and high density at low cost.

半導体パッケージの高密度化、高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されており、コスト面に優れたチップ間の高密度インターコネクト技術が重要になっている(例えば特許文献1参照)。   For the purpose of increasing the density and performance of semiconductor packages, a mounting form in which chips with different performances are mixedly mounted in one package has been proposed, and high-density interconnect technology between chips that is superior in cost has become important. (For example, refer to Patent Document 1).

パッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージがスマートフォンやタブレット端末に広く採用されている(例えば非特許文献1及び非特許文献2参照)。さらに高密度で実装するための形態として、高密度配線を有する有機基板を用いたパッケージ技術(有機インターポーザ)、スルーモールドビア(TMV)を有するファンアウト型のパッケージ技術(FO−WLP)、シリコン又はガラスインターポーザを用いたパッケージ技術、シリコン貫通電極(TSV)を用いたパッケージ技術、基板に埋め込まれたチップをチップ間伝送に用いるパッケージ技術等が提案されている。   A package-on-package that connects by stacking different packages on a package by flip-chip mounting is widely used in smartphones and tablet terminals (see, for example, Non-Patent Document 1 and Non-Patent Document 2). As a form for mounting at higher density, a package technology (organic interposer) using an organic substrate having high-density wiring, a fan-out type package technology (FO-WLP) having a through mold via (TMV), silicon or A package technique using a glass interposer, a package technique using a through silicon via (TSV), a package technique using a chip embedded in a substrate for inter-chip transmission, and the like have been proposed.

特に有機インタポーザやFO−WLPでは、半導体チップ同士を並列して搭載する場合には、高密度で導通させるために微細配線層が必要となる(例えば特許文献2参照)。   In particular, in the case of organic interposers and FO-WLP, when semiconductor chips are mounted in parallel, a fine wiring layer is required for conducting at high density (see, for example, Patent Document 2).

特表2012−529770号公報Special table 2012-529770 gazette 米国特許出願公開第2001/0221071号明細書US Patent Application Publication No. 2001/0221071

Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008 Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB−PoP) Technology, ECTC, 2012Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology, ECTC, 2012

上記の微細配線層の形成には、通常スパッタによりシード層形成、レジスト形成、電気めっき、レジスト除去、シード層除去の工程が必要となり、この方法ではプロセスコストが課題であった。従って、微細配線層を低コストで生産するために、より低コストな工程が強く望まれている。   In order to form the fine wiring layer, steps of seed layer formation, resist formation, electroplating, resist removal, and seed layer removal are usually required by sputtering, and this method has a problem of process cost. Therefore, in order to produce a fine wiring layer at low cost, a lower cost process is strongly desired.

本発明は、上記課題に鑑みてなされたものであり、チップ同士の伝送に優れた高密度で導通させるための微細配線層を有する半導体装置を良好な歩留まり、かつ低コストで製造できる半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a semiconductor device capable of manufacturing a semiconductor device having a fine wiring layer for conducting at a high density excellent in transmission between chips at a good yield and at a low cost. An object is to provide a manufacturing method.

本発明の半導体装置の製造方法は、支持体上に絶縁材料層を形成する工程(I)と、絶縁材料層の表面に凹部を形成する工程(II)と、前記絶縁材料層の凹部を含む表面を改質する工程(前処理する工程)(III)と、前記改質した絶縁材料層の凹部を含む表面に、パラジウム吸着層を形成する工程(IV)と、前記パラジム吸着層を形成した絶縁材料層の凹部を含む表面に、無電解ニッケルめっきによりニッケル層を形成する工程(V)と、前記ニッケル層上に電解銅めっきにより銅層を形成する工程(VI)と、前記絶縁材料層の凹部を含む表面から、前記銅層、ニッケル層及びパラジム吸着層を除去することによって、前記絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(表面研磨により配線層を露出させる工程)(VIII)と、を備える。
また、本発明は、前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)では、前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去する際に、絶縁材料層の表面と凹部に形成された銅層とを平坦化する、上記半導体装置の製造方法である。
また、本発明は、支持体上に絶縁材料層を形成する工程(I)では、前記絶縁材料層が感光性樹脂材料で形成され、前記絶縁材料層の表面に凹部を形成する工程(II)では、前記感光性樹脂材料を部分的に露光及び現像して凹部を形成する、上記の半導体装置の製造方法である。
また、本発明は、前記絶縁材料層の表面に形成した凹部が、幅方向に少なくとも0.5〜20μmの開口幅を有する、上記の半導体装置の製造方法である。
更に、本発明は、前記絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、前記絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)を行った後、さらに、前記絶縁材料層及び銅層を備える配線層を有する支持体に対して、前記支持体上に絶縁材料層を形成する工程(I)から、前記絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)までを、少なくとも1回以上繰り返し、配線層を多層にする工程(VIII)を有する、上記の半導体装置の製造方法である。
The method for manufacturing a semiconductor device of the present invention includes a step (I) of forming an insulating material layer on a support, a step (II) of forming a recess on the surface of the insulating material layer, and a recess of the insulating material layer. A surface modifying step (pretreatment step) (III), a palladium adsorbing layer forming step (IV) on the surface including the recessed portion of the modified insulating material layer, and the paradium adsorbing layer were formed. A step (V) of forming a nickel layer by electroless nickel plating on the surface of the insulating material layer including the recess, a step (VI) of forming a copper layer by electrolytic copper plating on the nickel layer, and the insulating material layer Removing the copper layer, the nickel layer, and the paradium adsorbing layer from the surface including the concave portion, thereby forming a wiring layer including the copper layer formed in the concave portion of the insulating material layer (the wiring layer is formed by surface polishing). Craft to expose Provided) and (VIII), the.
Moreover, this invention forms a wiring layer provided with the copper layer formed in the recessed part of the insulating material layer by removing the said copper layer, nickel layer, and palladium adsorption layer from the surface except the recessed part of the said insulating material layer. In the step (VII), the surface of the insulating material layer and the copper layer formed in the recess are flattened when removing the copper layer, nickel layer and palladium adsorption layer from the surface of the insulating material layer excluding the recess. This is a method for manufacturing the semiconductor device.
Further, in the step (I) of forming an insulating material layer on a support, the present invention is a step (II) in which the insulating material layer is formed of a photosensitive resin material and a recess is formed on the surface of the insulating material layer. Then, it is said manufacturing method of the semiconductor device which forms the recessed part by exposing and developing the said photosensitive resin material partially.
In addition, the present invention is the method for manufacturing the semiconductor device, wherein the recess formed on the surface of the insulating material layer has an opening width of at least 0.5 to 20 μm in the width direction.
Furthermore, this invention forms a wiring layer provided with the copper layer formed in the recessed part of the said insulating material layer by removing a copper layer, a nickel layer, and a palladium adsorption layer from the surface except the recessed part of the said insulating material layer. After performing the step (VII), the insulating material layer is formed on the support with respect to the support having the wiring layer including the insulating material layer and the copper layer. At least a step (VII) of forming a wiring layer including a copper layer formed in the recess of the insulating material layer by removing the copper layer, the nickel layer, and the palladium adsorption layer from the surface excluding the recess of the material layer. This is a method of manufacturing a semiconductor device, comprising the step (VIII) of repeating the wiring layer one or more times to make the wiring layer multilayer.

本発明によると、チップ同士の伝送に優れた高密度で導通させるための微細配線層を有する半導体装置を良好な歩留まり、かつ低コストで提供できる。   According to the present invention, it is possible to provide a semiconductor device having a fine wiring layer for conducting at a high density excellent in transmission between chips with good yield and low cost.

(a)支持体上に絶縁材料層を形成した状態を模式的に示す断面図である。(b)絶縁材料層に凹部を形成した状態を模式的に示す断面図である。(c)絶縁材料層の表面に前処理によってパラジウム-スズコロイド粒子吸着層を形成した状態を模式的に示す断面図である。(d)絶縁材料上に無電解ニッケルめっきした状態を模式的に示す断面図である。(A) It is sectional drawing which shows typically the state which formed the insulating material layer on the support body. (B) It is sectional drawing which shows typically the state which formed the recessed part in the insulating material layer. (C) It is sectional drawing which shows typically the state which formed the palladium-tin colloidal particle adsorption layer by the pretreatment on the surface of the insulating material layer. (D) It is sectional drawing which shows typically the state electroless nickel-plated on the insulating material. (e)無電解ニッケルをシード層として、電解銅めっきした状態を模式的に示す断面図である。(f)表面研磨により配線層が露出した状態を模式的に示す断面図である。(E) It is sectional drawing which shows typically the state electroplated with electroless nickel as a seed layer. (F) It is sectional drawing which shows typically the state which the wiring layer exposed by surface grinding | polishing.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本明細書の記載及び請求項において「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。また、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。   When terms such as “left”, “right”, “front”, “back”, “upper”, “lower”, “upper”, “lower” are used in the description and claims of the present specification, These are intended to be illustrative and do not necessarily mean they are permanently in this relative position. Further, the term “layer” includes a structure formed in a part in addition to a structure formed over the entire surface when observed as a plan view.

本発明の一実施形態にかかる半導体装置を製造する方法について説明する。尚、本発明の半導体装置の製造方法は、微細化及び多ピン化が必要とされる形態において特に好適である。特に、本発明の半導体装置の製造方法は、異種チップを混載するためのインターポーザが必要なパッケージ形態において好適である。   A method for manufacturing a semiconductor device according to an embodiment of the present invention will be described. The method for manufacturing a semiconductor device according to the present invention is particularly suitable in a form in which miniaturization and increase in the number of pins are required. In particular, the method for manufacturing a semiconductor device according to the present invention is suitable for a package form that requires an interposer for mounting different types of chips.

図1(a)から図2(f)を参照しながら、本実施の形態の半導体装置の製造方法、特に配線基板の製造方法について説明する。   With reference to FIGS. 1A to 2F, a method for manufacturing a semiconductor device according to the present embodiment, particularly a method for manufacturing a wiring board, will be described.

本実施の形態の半導体装置の製造方法は、支持体上に絶縁材料層を形成する工程(I)と、絶縁材料層の表面に凹部を形成する工程(II)と、前記絶縁材料層の凹部を含む表面を改質する工程(III)と、前記改質した絶縁材料層の凹部を含む表面に、パラジウム吸着層を形成する工程(IV)と、前記パラジウム吸着層を形成した絶縁材料層の凹部を含む表面に、無電解ニッケルめっきによりニッケル層を形成する工程(V)と、前記ニッケル層上に電解銅めっきにより銅層を形成する工程(VI)と、前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)と、を備える。   The method of manufacturing a semiconductor device according to the present embodiment includes a step (I) of forming an insulating material layer on a support, a step (II) of forming a recess on the surface of the insulating material layer, and a recess of the insulating material layer. A step (III) of reforming the surface including the step, a step (IV) of forming a palladium adsorption layer on the surface including the recess of the modified insulating material layer, and an insulating material layer on which the palladium adsorption layer is formed. A step (V) of forming a nickel layer by electroless nickel plating on a surface including a recess, a step (VI) of forming a copper layer by electrolytic copper plating on the nickel layer, and a recess of the insulating material layer are excluded. Forming a wiring layer including a copper layer formed in a recess of the insulating material layer by removing the copper layer, the nickel layer and the palladium adsorption layer from the surface (VII).

以下、支持体上に絶縁材料層を形成する工程(I)を「絶縁材料層を形成する工程(I)」と、絶縁材料層の表面に凹部を形成する工程(II)を「凹部を形成する工程(II)」と、絶縁材料層の凹部を含む表面を改質する工程(III)を「表面を改質する工程(III)」と、改質した絶縁材料層の凹部を含む表面に、パラジウム吸着層を形成する工程(IV)を「パラジム吸着層を形成する工程(IV)」と、パラジウム吸着層を形成した絶縁材料層の凹部を含む表面に、無電解ニッケルめっきによりニッケル層を形成する工程(V)を「ニッケル層を形成する工程(V)」と、ニッケル層上に電解銅めっきにより銅層を形成する工程(VI)を「銅層を形成する工程(VI)」と、絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)を「配線層を形成する工程(VII)」と、絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)を行った後、さらに、絶縁材料層及び銅層を備える配線層を有する支持体に対して、支持体上に絶縁材料層を形成する工程(I)から、絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)までを、少なくとも1回以上繰り返し、配線層を多層にする工程(VIII)を、「配線層を多層化する工程」と、いうことがある。   Hereinafter, the step (I) of forming an insulating material layer on a support is referred to as “the step of forming an insulating material layer (I)” and the step of forming a recess on the surface of the insulating material layer (II) is referred to as “forming a recess. Step (II) ”and the step (III) of modifying the surface of the insulating material layer including the recesses into the step of modifying the surface (III) and the surface of the modified insulating material layer including the recesses. The step (IV) of forming the palladium adsorbing layer is the step of forming the palladium adsorbing layer (IV), and the surface of the insulating material layer having the palladium adsorbing layer formed on the surface including the recess is formed by electroless nickel plating. The step (V) of forming is a “step of forming a nickel layer (V)”, and the step of forming a copper layer by electrolytic copper plating on the nickel layer (VI) is a step of forming a copper layer (VI). From the surface of the insulating material layer excluding the recesses, the copper layer, nickel Forming a wiring layer comprising a copper layer formed in the recess of the insulating material layer by removing the layer and the palladium adsorbing layer (VII) is a step of forming a wiring layer (VII); After performing the step (VII) of forming a wiring layer including a copper layer formed in the concave portion of the insulating material layer by removing the copper layer, the nickel layer, and the palladium adsorption layer from the surface excluding the concave portion of From the step (I) of forming the insulating material layer on the support with respect to the support having the wiring layer including the insulating material layer and the copper layer, the copper layer, the nickel layer from the surface excluding the concave portion of the insulating material layer And the step (VII) of forming the wiring layer including the copper layer formed in the recess of the insulating material layer by removing the palladium adsorbing layer is repeated at least once to make the wiring layer a multilayer (V The II), the "step of multilayer wiring layer", sometimes referred to.

<支持体上に絶縁材料層を形成する工程(I)>
まず、半導体装置の支持体1上に絶縁材料層2を形成する工程(I)を行う(図1(a))。支持体1は、特に限定されないが、シリコン板、ガラス板、SUS板、ガラスクロス入り基板、半導体素子入り封止樹脂等であり、高剛性からなる基板が好適である。
<Step (I) of forming an insulating material layer on a support>
First, the step (I) of forming the insulating material layer 2 on the support 1 of the semiconductor device is performed (FIG. 1A). The support 1 is not particularly limited, and is a silicon plate, a glass plate, a SUS plate, a glass cloth-containing substrate, a semiconductor element-containing sealing resin, or the like, and a substrate having high rigidity is preferable.

支持体1の厚みは0.2mmから2.0mmの範囲であることが好ましい。0.2mmより薄い場合はハンドリングが困難になる一方、2.0mmより厚い場合は材料費が高くなる傾向にある。   The thickness of the support 1 is preferably in the range of 0.2 mm to 2.0 mm. When it is thinner than 0.2 mm, handling becomes difficult, while when it is thicker than 2.0 mm, the material cost tends to increase.

支持体1はウェハ状でもパネル状でも構わない。サイズは特に限定されないが、直径200mm、直径300mm又は直径450mmのウェハや、一辺が300〜700mmの矩形パネルが好ましく用いられる。   The support 1 may be a wafer or a panel. Although the size is not particularly limited, a wafer having a diameter of 200 mm, a diameter of 300 mm, or a diameter of 450 mm, or a rectangular panel having a side of 300 to 700 mm is preferably used.

支持体1上に絶縁材料層2を形成する工程(I)では、絶縁材料層が感光性樹脂材料で形成されるのが、フォトリソグラフィープロセスで微細な凹部3を容易に形成できる点で好ましい。絶縁材料層2を形成するのに用いる感光性絶縁材料としては、液状やフィルム状のものが挙げられるが、膜厚平坦性とコストの観点からフィルム状の感光性絶縁材料が好ましい。また、微細なトレンチ構造を形成できる点で、感光性絶縁材料に含有するフィラ(充填材)のサイズは平均粒径500nm以下、もしくはフィラを含有しないことが好ましい。   In the step (I) of forming the insulating material layer 2 on the support 1, it is preferable that the insulating material layer is formed of a photosensitive resin material because a fine recess 3 can be easily formed by a photolithography process. Examples of the photosensitive insulating material used to form the insulating material layer 2 include liquid and film-like materials, but a film-like photosensitive insulating material is preferable from the viewpoint of film thickness flatness and cost. Moreover, it is preferable that the size of the filler (filler) contained in the photosensitive insulating material is an average particle diameter of 500 nm or less or does not contain a filler in that a fine trench structure can be formed.

上記のフィルム状の感光性絶縁材料のラミネート工程は、低温工程であることが好ましく、40℃〜120℃でラミネート可能な感光性樹脂材料からなる感光性絶縁フィルムであることが好ましい。ラミネート可能な温度が40℃を下回る感光性絶縁フィルムは常温(約25℃)でのタックが強く取り扱い性に悪化する傾向があり、120℃を上回る感光性絶縁フィルムはラミネート後に反りが大きくなる傾向がある。   The laminating step of the film-like photosensitive insulating material is preferably a low temperature step, and is preferably a photosensitive insulating film made of a photosensitive resin material that can be laminated at 40 ° C to 120 ° C. A photosensitive insulating film with a laminating temperature lower than 40 ° C has a strong tack at normal temperature (about 25 ° C) and tends to deteriorate in handling property, and a photosensitive insulating film with a temperature higher than 120 ° C tends to be warped after lamination. There is.

絶縁材料層2は、硬化後の熱膨張係数は、反り抑制の観点から80×10−6/K以下であることが好ましく、高信頼性が得られる点で70×10−6/K以下であることがより好ましい。また、絶縁材料の応力緩和性、高精細なパターンが得られる点で20×10−6/K以上であることが好ましい。 The insulating material layer 2 preferably has a thermal expansion coefficient of 80 × 10 −6 / K or less from the viewpoint of suppressing warpage, and 70 × 10 −6 / K or less in terms of obtaining high reliability. More preferably. Moreover, it is preferable that it is 20 * 10 < -6 > / K or more at the point from which the stress relaxation property of an insulating material and a high-definition pattern are obtained.

この後の工程で絶縁材料層2に形成する凹部3を、微細なトレンチ構造とするために、絶縁材料層2の膜厚は10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更に好ましい。また、電気的信頼性の観点から1μm以上であることが好ましい。   In order to make the recess 3 formed in the insulating material layer 2 in a subsequent process into a fine trench structure, the thickness of the insulating material layer 2 is preferably 10 μm or less, more preferably 5 μm or less, More preferably, it is 3 μm or less. Moreover, it is preferable that it is 1 micrometer or more from a viewpoint of electrical reliability.

<凹部を形成する工程(II)>
次に、絶縁材料層2の表面に凹部3を形成する工程(II)を行う(図1(b))。本実施の形態において、凹部3とは、絶縁材料層2の表面に対して、絶縁材料層2の厚さ方向に凹んだ部位をいい、この凹んだ部位の内壁(側壁及び底壁等)を含む。絶縁材料層の表面に凹部を形成する工程(II)では、絶縁材料層2が感光性樹脂材料で形成され、感光性樹脂材料を部分的に露光及び現像して凹部を形成するのが好ましい。凹部3の形成方法は、レーザアブレーション、フォトリソグラフィーやインプリントなどが挙げられるが、微細化とコストの観点から、このように、感光性樹脂材料を部分的に露光及び現像して凹部を形成するフォトリソグラフィープロセスが好ましい。従って、絶縁材料としては、フィルム状の感光性樹脂材料が最も好ましく用いられる。
<Step of forming recess (II)>
Next, the step (II) of forming the recesses 3 on the surface of the insulating material layer 2 is performed (FIG. 1B). In the present embodiment, the concave portion 3 refers to a portion that is recessed in the thickness direction of the insulating material layer 2 with respect to the surface of the insulating material layer 2, and the inner walls (side walls, bottom walls, and the like) of the recessed portion. Including. In the step (II) of forming a recess on the surface of the insulating material layer, the insulating material layer 2 is preferably formed of a photosensitive resin material, and the photosensitive resin material is partially exposed and developed to form a recess. The method for forming the recess 3 includes laser ablation, photolithography, imprint, and the like. From the viewpoint of miniaturization and cost, the photosensitive resin material is partially exposed and developed to form the recess. A photolithography process is preferred. Therefore, a film-like photosensitive resin material is most preferably used as the insulating material.

感光性樹脂材料の露光方法としては、通常の投影露光方式、コンタクト露光方式、直描露光方式等を用いることができ、現像方法としては炭酸ナトリウムやTMAH(水酸化テトラメチルアンモニウム)のアルカリ水溶液を用いることが好ましい。   As an exposure method for the photosensitive resin material, a normal projection exposure method, a contact exposure method, a direct drawing exposure method, or the like can be used. As a development method, an alkaline aqueous solution of sodium carbonate or TMAH (tetramethylammonium hydroxide) is used. It is preferable to use it.

また、絶縁材料層の表面に凹部を形成する工程(II)では、絶縁材料層の表面に形成した凹部が、幅方向に少なくとも0.5〜20μmの開口幅を有するのが、高密度化を実現する半導体装置を提供できる点で、また、微細配線層を有する半導体装置を良好な歩留まり、かつコストで製造できる点で好ましい。   Further, in the step (II) of forming the recesses on the surface of the insulating material layer, the recesses formed on the surface of the insulating material layer have an opening width of at least 0.5 to 20 μm in the width direction. This is preferable in that a semiconductor device to be realized can be provided, and a semiconductor device having a fine wiring layer can be manufactured with good yield and cost.

凹部3を形成した後、絶縁材料をさらに加熱硬化させてもよい。加熱温度は100℃〜200℃、加熱時間は30分〜3時間の間で実施される。   After forming the recess 3, the insulating material may be further heat-cured. The heating temperature is 100 ° C. to 200 ° C., and the heating time is 30 minutes to 3 hours.

<表面を改質する工程(III)>
次に、絶縁材料層2の凹部を含む表面を改質する工程(III)を行う(図示しない。)。本実施の形態において、改質とは、(III)パラジウム吸着層を形成する工程の前に、絶縁材料層2の表面を、パラジウム−スズコロイド粒子がより吸着しやすい状態とする前処理のことをいう。このため、本実施の形態における前処理とは、(III)パラジウム吸着層を形成する工程の前に行なう、絶縁材料層2の凹部を含む表面を改質するための前処理をいう。このような改質のための前処理を、単に「前処理」ということがある。
<Step of modifying surface (III)>
Next, a step (III) of modifying the surface including the concave portion of the insulating material layer 2 is performed (not shown). In the present embodiment, the reforming means (III) a pretreatment that makes the surface of the insulating material layer 2 more easily adsorbed with palladium-tin colloid particles before the step of forming the palladium adsorption layer. Say. For this reason, the pretreatment in the present embodiment refers to a pretreatment for modifying the surface including the concave portion of the insulating material layer 2 performed before the step of forming the (III) palladium adsorption layer. Such pretreatment for reforming may be simply referred to as “pretreatment”.

改質の方法としては、以下の湿式法での前処理、乾式法での前処理の何れを用いることもできる。
湿式法での前処理で用いる前処理液(改質液)としては、例えば分子内にポリエーテル、グリコールエーテル、アミン、アミド、ウレイド、トリアジン、メラミン、イミダゾール、トリアゾール、ベンゾトリアゾール等を含むシランカップリング剤からなる群より選択される少なくとも1種を含むものが挙げられる。これらの前処理液で用いる溶媒の種類は特に制限されず、一般に用いられる有機溶媒や水から選択でき、1種単独で用いても、2種以上を併用してもよい。また、絶縁材料層2の表面の濡れ性を向上させる目的で、界面活性剤を含んでいても良い。さらに、これら以外の湿式法での前処理による改質の方法として、酸、アルカリによる粗化処理が挙げられる。
また、乾式法での前処理としては、プラズマ処理、コロナ処理、紫外線処理等による表面改質が挙げられる。
なお、以上述べたような絶縁材料層2の表面に対する改質方法の中でも、湿式法での前処理である、シランカップリング剤を含む前処理液(改質液)による絶縁材料層2表面の改質を、前処理として行なうのが好ましい。
As the reforming method, any of the following pretreatment by a wet method and pretreatment by a dry method can be used.
Examples of the pretreatment liquid (modification liquid) used in the pretreatment by the wet method include, for example, a silane cup containing polyether, glycol ether, amine, amide, ureido, triazine, melamine, imidazole, triazole, benzotriazole, etc. in the molecule. What contains at least 1 sort (s) selected from the group which consists of a ring agent is mentioned. The type of the solvent used in these pretreatment liquids is not particularly limited, and can be selected from generally used organic solvents and water, and may be used alone or in combination of two or more. Further, a surfactant may be included for the purpose of improving the wettability of the surface of the insulating material layer 2. Furthermore, as a modification method by a pretreatment with a wet method other than these, a roughening treatment with an acid or an alkali can be mentioned.
Examples of the pretreatment by the dry method include surface modification by plasma treatment, corona treatment, ultraviolet treatment and the like.
In addition, among the modification methods for the surface of the insulating material layer 2 as described above, the surface of the insulating material layer 2 by a pretreatment liquid (modification liquid) containing a silane coupling agent, which is a pretreatment by a wet method. The modification is preferably performed as a pretreatment.

湿式法での前処理の方法としては、絶縁材料層2の表面に、前処理液が接触するスプレー法、ディップ法、スピンコート法、印刷法等が挙げられるが、効率良く処理できるディップ法が好ましい。   Examples of the pretreatment method using a wet method include a spray method, a dip method, a spin coating method, and a printing method in which the surface of the insulating material layer 2 is in contact with the pretreatment liquid. preferable.

前処理液の成分と絶縁材料層2との反応性を上げるために、これらの改質のための前処理を行なう前に、絶縁材料層2の表面を活性化してもよい。活性化の方法としては、紫外線照射、電子線照射、オゾン水処理、コロナ放電処理、プラズマ処理等の方法が挙げられる。   In order to increase the reactivity between the components of the pretreatment liquid and the insulating material layer 2, the surface of the insulating material layer 2 may be activated before the pretreatment for the modification. Examples of the activation method include ultraviolet irradiation, electron beam irradiation, ozone water treatment, corona discharge treatment, and plasma treatment.

前処理は、25℃〜80℃で行うことが好ましい。より反応性を早めるために40℃〜80℃がより好ましく、60℃〜80℃が更に好ましい。   The pretreatment is preferably performed at 25 ° C to 80 ° C. In order to accelerate the reactivity, 40 ° C to 80 ° C is more preferable, and 60 ° C to 80 ° C is still more preferable.

前処理は、5分〜30分で行うことが好ましい。より反応性を早めるために10分〜30分がより好ましく、15分〜30分が更に好ましい。   The pretreatment is preferably performed in 5 minutes to 30 minutes. In order to accelerate the reactivity, it is more preferably 10 minutes to 30 minutes, and further preferably 15 minutes to 30 minutes.

前処理で用いる前処理液を接触させた後、余分な前処理液を除去するために、水や有機溶剤で洗浄しても良い。   After contacting the pretreatment liquid used in the pretreatment, it may be washed with water or an organic solvent in order to remove excess pretreatment liquid.

前処理を行なった後、絶縁材料層2と前処理液の成分であるシランカップリング剤との結合力を高めるために、熱処理を行っても良い。熱処理温度は、80℃〜200℃で加熱することが好ましい。より反応性を早めるために120℃〜200℃がより好ましく、120℃〜180℃で加熱することが更に好ましい。熱処理時間は5分〜60分が好ましく、10分〜60分がより好ましく、20分〜60分が更に好ましい。また、前処理と熱処理を複数回繰り返しても良い。   After performing the pretreatment, heat treatment may be performed in order to increase the bonding strength between the insulating material layer 2 and the silane coupling agent that is a component of the pretreatment liquid. The heat treatment temperature is preferably 80 ° C. to 200 ° C. In order to accelerate the reactivity, 120 ° C to 200 ° C is more preferable, and heating at 120 ° C to 180 ° C is more preferable. The heat treatment time is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 60 minutes, and even more preferably 20 minutes to 60 minutes. Further, the pretreatment and the heat treatment may be repeated a plurality of times.

<パラジウム吸着層を形成する工程(IV)>
次に、改質した絶縁材料層2の凹部3を含む表面に、パラジウム吸着層4を形成する工程(IV)を行う(図1(c))。本実施の形態において、パラジウム吸着層4とは、パラジウム−スズコロイド粒子を絶縁材料層2の凹部3を含む表面に吸着させた後、パラジウムを触媒として作用させるための活性化を行い、パラジウム(II)からパラジウム(0)(金属パラジウム)に還元させたものをいい、この後の工程で行う無電解ニッケルめっきの無電解めっき反応の触媒となるものである。このパラジウム吸着層4の形成方法について、以下詳細に説明する。
<Process for forming palladium adsorption layer (IV)>
Next, the step (IV) of forming the palladium adsorption layer 4 on the surface including the recessed portion 3 of the modified insulating material layer 2 is performed (FIG. 1C). In the present embodiment, the palladium adsorption layer 4 is formed by adsorbing palladium-tin colloidal particles on the surface of the insulating material layer 2 including the recesses 3 and then activating palladium to act as a catalyst. ) To palladium (0) (metallic palladium), which serves as a catalyst for the electroless plating reaction of electroless nickel plating performed in the subsequent steps. The formation method of this palladium adsorption layer 4 is demonstrated in detail below.

前処理を行なった後、まず、絶縁材料層2の表面にパラジウム−スズコロイド粒子を付着させる。パラジウム−スズコロイド粒子は、市販のコロイド溶液でよく、水中にパラジウム−スズコロイドが分散された溶液(パラジウム−スズコロイド溶液)を用いればよい。パラジウム−スズコロイド粒子を付着させるために浸漬するパラジウム−スズコロイド溶液の温度は、25℃〜80℃、付着させるための浸漬時間は1分〜60分の間で実施される。パラジウム−スズコロイド粒子を付着させた後、余分なパラジウム−スズコロイド粒子を除去するため、水や有機溶剤で洗浄しても良い。   After the pretreatment, first, palladium-tin colloidal particles are adhered to the surface of the insulating material layer 2. The palladium-tin colloidal particles may be a commercially available colloid solution, and a solution in which palladium-tin colloid is dispersed in water (palladium-tin colloid solution) may be used. The temperature of the palladium-tin colloidal solution immersed for attaching the palladium-tin colloidal particles is 25 ° C. to 80 ° C., and the immersion time for attaching is 1 to 60 minutes. After depositing the palladium-tin colloidal particles, it may be washed with water or an organic solvent in order to remove excess palladium-tin colloidal particles.

パラジウム−スズコロイド粒子付着後、パラジウムを触媒として作用させるための活性化を行い、パラジウム(II)からパラジウム(0)(金属パラジウム)に還元させる。パラジウムを活性化させる試薬は市販の活性化剤(活性化処理液)で良い。パラジウムを活性化させるために浸漬する活性化剤の温度は、25℃〜80℃、活性化させるために浸漬する時間は1分〜60分の間で実施される。パラジウムの活性化後、余分な活性化剤を除去するため、水や有機溶剤で洗浄しても良い。   After the palladium-tin colloidal particles are attached, activation is performed to make palladium act as a catalyst, and palladium (II) is reduced to palladium (0) (metallic palladium). The reagent for activating palladium may be a commercially available activator (activation treatment liquid). The temperature of the activator immersed for activating palladium is 25 ° C. to 80 ° C., and the time of immersing for activating is between 1 minute and 60 minutes. After the activation of palladium, it may be washed with water or an organic solvent in order to remove excess activator.

<ニッケル層を形成する工程(V)>
続いて、パラジウム吸着層4を形成した絶縁材料層2の凹部3を含む表面に、無電解ニッケルめっきによりニッケル層5を形成する工程(V)を行う(図1(d))。このニッケル層5は、この後の工程で銅層6を形成するために行う電解銅めっきのシード層(電解銅めっきのための給電層)となる。
<Step of forming a nickel layer (V)>
Subsequently, a step (V) of forming a nickel layer 5 by electroless nickel plating is performed on the surface including the recess 3 of the insulating material layer 2 on which the palladium adsorption layer 4 is formed (FIG. 1D). This nickel layer 5 serves as a seed layer (feeding layer for electrolytic copper plating) of electrolytic copper plating performed to form the copper layer 6 in the subsequent process.

無電解ニッケルめっきとしては、無電解純ニッケルめっき(純度99質量%以上)、無電解ニッケル−リンめっき(リン含有量:1質量%〜13質量%)や無電解ニッケル−ホウ素めっき(ホウ素含有量:0.3質量%〜1質量%)等が挙げられるが、コストの観点から、無電解ニッケル−リンめっきが好ましい。   As electroless nickel plating, electroless pure nickel plating (purity 99% by mass or more), electroless nickel-phosphorus plating (phosphorus content: 1% by mass to 13% by mass) or electroless nickel-boron plating (boron content) : 0.3 mass% to 1 mass%), etc., from the viewpoint of cost, electroless nickel-phosphorous plating is preferable.

無電解ニッケルめっき液は市販のめっき液で良く、例えば、中リンタイプ(リン含有量:7質量%〜9質量%)の無電解ニッケルめっき液(株式会社三明社製、商品名「ICPニコロンGM−SB−M」、「ICPニコロンGMSD」)を用いることができる。無電解ニッケルめっきは、60℃〜90℃の無電解ニッケルめっき液中で実施される。   The electroless nickel plating solution may be a commercially available plating solution. For example, a medium phosphorus type (phosphorus content: 7 mass% to 9 mass%) electroless nickel plating solution (manufactured by Sanmeisha Co., Ltd., trade name "ICP Nicolon GM -SB-M "," ICP Nicolon GMSD "). The electroless nickel plating is performed in an electroless nickel plating solution at 60 ° C to 90 ° C.

無電解ニッケルめっきにより形成されるニッケル層5の厚みは、20nm〜200nmが好ましく、40nm〜200nmがより好ましく、60nm〜200nmが更に好ましい。   The thickness of the nickel layer 5 formed by electroless nickel plating is preferably 20 nm to 200 nm, more preferably 40 nm to 200 nm, and still more preferably 60 nm to 200 nm.

無電解ニッケルめっき後、余分なめっき液を除去するため、水や有機溶剤で洗浄しても良い。   After the electroless nickel plating, in order to remove excess plating solution, it may be washed with water or an organic solvent.

無電解ニッケルめっき後、ニッケル層5と絶縁材料層2の密着力を高めるため、熱硬化(アニーリング:加熱による時効硬化処理)を行っても良い。熱硬化温度は、80℃〜200℃で加熱することが好ましい。より反応性を早めるために120℃〜200℃がより好ましく、120℃〜180℃で加熱することが更に好ましい。熱硬化時間は5分〜60分が好ましく、10分〜60分がより好ましく、20分〜60分が更に好ましい。   After the electroless nickel plating, in order to increase the adhesion between the nickel layer 5 and the insulating material layer 2, heat curing (annealing: age hardening treatment by heating) may be performed. The thermosetting temperature is preferably heated at 80 ° C to 200 ° C. In order to accelerate the reactivity, 120 ° C to 200 ° C is more preferable, and heating at 120 ° C to 180 ° C is more preferable. The heat curing time is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 60 minutes, and even more preferably 20 minutes to 60 minutes.

<銅層を形成する工程(VI)>
次に、ニッケル層5上に電解銅めっきにより銅層6を形成する工程(VI)を行う(図2(e))。より具体的には、無電解ニッケルめっきで形成したニッケル層5をシード層として、その上に電解銅めっきにより、銅層6を形成する(図1(d))。なお、本実施の形態では、銅層6を形成する方法として、電解銅めっきを用いたが、これ以外に、例えば、無電解めっきを選択できる。
<Step of forming a copper layer (VI)>
Next, a step (VI) of forming a copper layer 6 on the nickel layer 5 by electrolytic copper plating is performed (FIG. 2 (e)). More specifically, a nickel layer 5 formed by electroless nickel plating is used as a seed layer, and a copper layer 6 is formed thereon by electrolytic copper plating (FIG. 1 (d)). In the present embodiment, electrolytic copper plating is used as a method for forming the copper layer 6, but other than this, for example, electroless plating can be selected.

また、本実施の形態では、銅層6は、絶縁材料層2の表面の凹部3内に充填される。このように、銅層6が絶縁材料層2の表面の凹部3内に充填されることで、この後の工程で絶縁材料層2の凹部3を除く表面から、銅層6、ニッケル層5及びパラジウム吸着層4(以下、「金属層6、5、4」ということがある。)を除去するだけで、絶縁材料層2の表面を削ることなく、絶縁材料層2の表面と凹部3に形成された銅層6とを平坦化することが可能になる。なお、金属層6、5、4を除去した後、さらに絶縁材料層2の表面を削っても絶縁材料層2の表面と凹部3に形成された銅層6とを平坦化することが可能である。電解銅めっきによって、銅層6を絶縁材料層2の表面の凹部3内に充填するためには、絶縁材料層2の表面に比べて、凹部3内への電解銅めっきの析出量(めっき厚)が大きい、いわゆるフィルドめっきを用いるのが好ましい。
なお、銅層6は、絶縁材料層2の表面の凹部3内に充填されなくてもよく、凹部3の内壁(底壁及び側壁)に沿って形成されてもよい。この場合は、絶縁材料層2の凹部3を除く表面から、金属層6、5、4を除去するだけでなく、さらに絶縁材料層2の表面を削ることによって、凹部3内(凹部3の底壁)の銅層6を露出させて、絶縁材料層2の表面と凹部3に形成された銅層6とを平坦化することが可能になる。
In the present embodiment, the copper layer 6 is filled in the recess 3 on the surface of the insulating material layer 2. In this way, the copper layer 6 is filled in the recess 3 on the surface of the insulating material layer 2, so that the copper layer 6, the nickel layer 5, and the Forming the surface of the insulating material layer 2 and the recess 3 without removing the surface of the insulating material layer 2 simply by removing the palladium adsorbing layer 4 (hereinafter sometimes referred to as “metal layers 6, 5, 4”). It is possible to planarize the copper layer 6 formed. Note that after removing the metal layers 6, 5, and 4, it is possible to planarize the surface of the insulating material layer 2 and the copper layer 6 formed in the recess 3 by further grinding the surface of the insulating material layer 2. is there. In order to fill the copper layer 6 in the recess 3 on the surface of the insulating material layer 2 by electrolytic copper plating, the amount of electrolytic copper plating deposited in the recess 3 (plating thickness) compared to the surface of the insulating material layer 2. It is preferable to use so-called filled plating.
The copper layer 6 may not be filled in the recess 3 on the surface of the insulating material layer 2, and may be formed along the inner wall (bottom wall and side wall) of the recess 3. In this case, not only the metal layers 6, 5, and 4 are removed from the surface of the insulating material layer 2 excluding the concave portion 3, but the surface of the insulating material layer 2 is further shaved to remove the inside of the concave portion 3 (the bottom of the concave portion 3 By exposing the copper layer 6 on the wall), the surface of the insulating material layer 2 and the copper layer 6 formed in the recess 3 can be planarized.

<配線層を形成する工程(VII)>
次に、絶縁材料層2の凹部3を除く表面から、銅層6、ニッケル層5及びパラジウム吸着層4を除去することによって、絶縁材料層2の凹部3に形成された銅層6からなる配線層を形成する工程(VII)を行う(図2(f))。すなわち、絶縁材料層2上部(表面)の金属層6、5、4を除去する(図2(f))ことによって、絶縁材料層2の凹部3を含む表面においては、凹部3にのみ銅層6等(詳細には、銅層6、ニッケル層5、パラジウム吸着層4)が残され、この凹部3の銅層6等が配線層を形成する。
<Process for forming wiring layer (VII)>
Next, by removing the copper layer 6, the nickel layer 5, and the palladium adsorption layer 4 from the surface of the insulating material layer 2 excluding the concave portion 3, a wiring composed of the copper layer 6 formed in the concave portion 3 of the insulating material layer 2. Step (VII) for forming a layer is performed (FIG. 2F). That is, by removing the metal layers 6, 5, 4 on the top (surface) of the insulating material layer 2 (FIG. 2 (f)), the copper layer is formed only on the concave portion 3 on the surface including the concave portion 3 of the insulating material layer 2. 6 (more specifically, the copper layer 6, the nickel layer 5, and the palladium adsorption layer 4) are left, and the copper layer 6 and the like of the recess 3 form a wiring layer.

なお、絶縁材料層2の凹部3を除く表面から、銅層6、ニッケル層5及びパラジウム吸着層4を除去する際に、絶縁材料層2の表面と凹部3に形成された銅層6とを平坦化するのが好ましい。また、これらの絶縁材料層2の上部の金属層6、5、4を除去する際に、絶縁材料層2の上部(表面)側から厚さ方向の一部を除去してもよい。   When removing the copper layer 6, the nickel layer 5, and the palladium adsorption layer 4 from the surface of the insulating material layer 2 excluding the recess 3, the surface of the insulating material layer 2 and the copper layer 6 formed in the recess 3 are removed. It is preferable to planarize. Further, when removing the metal layers 6, 5, 4 on the upper side of the insulating material layer 2, a part in the thickness direction may be removed from the upper side (surface) side of the insulating material layer 2.

これらの絶縁材料層2の上部の金属層6、5、4及び絶縁材料層2の除去方法としては、バックグラインド法、フライカット法や化学的機械研磨(CMP)が挙げられる。また、複数の除去方法を併用してもよい。フライカット法では、例えば、ダイヤモンドバイトによる研削装置を使用する。具体例としては、300mmウェハ対応のオートマチックサーフェースプレーナ(株式会社ディスコ製、商品名「DAS8930」)を用いることができる。なお、フライカット法による金属層6、5、4の除去は、絶縁材料層2の上部側(表面側)から面全体を均一に研磨するので、研磨面が平坦となるため、平坦化処理であるともいえる。   Examples of a method for removing the metal layers 6, 5, 4 and the insulating material layer 2 above the insulating material layer 2 include a back grinding method, a fly-cut method, and chemical mechanical polishing (CMP). A plurality of removal methods may be used in combination. In the fly-cut method, for example, a grinding device using a diamond tool is used. As a specific example, an automatic surface planer (manufactured by DISCO Corporation, trade name “DAS8930”) compatible with a 300 mm wafer can be used. The removal of the metal layers 6, 5, and 4 by the fly-cut method polishes the entire surface uniformly from the upper side (surface side) of the insulating material layer 2, so that the polished surface becomes flat, and therefore, a flattening process is performed. It can be said that there is.

<配線層を多層にする工程(VIII)>
絶縁材料層2の凹部3を除く表面から、銅層6、ニッケル層5及びパラジウム吸着層4を除去することによって、絶縁材料層2の凹部3に形成された銅層6からなる配線層を形成する工程(VII)を行った後、さらに、絶縁材料層2及び銅層6からなる配線層を有する支持体1に対して、支持体1上に絶縁材料層2を形成する工程(I)から、絶縁材料層2の凹部3を除く表面から、銅層6、ニッケル層5及びパラジウム吸着層4を除去することによって、絶縁材料層2の凹部3に形成された銅層6からなる配線層を形成する工程(VII)までを、少なくとも1回以上繰り返し、配線層を多層にする工程(VIII)を行う(図示しない。)。
<Process of multilayer wiring layer (VIII)>
By removing the copper layer 6, the nickel layer 5 and the palladium adsorption layer 4 from the surface of the insulating material layer 2 excluding the concave portion 3, a wiring layer made of the copper layer 6 formed in the concave portion 3 of the insulating material layer 2 is formed. After performing the step (VII), the step (I) of forming the insulating material layer 2 on the support 1 with respect to the support 1 having the wiring layer composed of the insulating material layer 2 and the copper layer 6 is further performed. By removing the copper layer 6, the nickel layer 5 and the palladium adsorption layer 4 from the surface of the insulating material layer 2 excluding the concave portion 3, a wiring layer made of the copper layer 6 formed in the concave portion 3 of the insulating material layer 2 is formed. The process (VII) is repeated at least once until the process (VII) to be formed, and the process (VIII) for forming the wiring layer in multiple layers is performed (not shown).

以上、半導体装置製造用部材、及び、それを用いる半導体装置の製造方法等の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。   The preferred embodiments of the semiconductor device manufacturing member and the semiconductor device manufacturing method using the same have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and does not depart from the gist thereof. You may change suitably in the range.

1…支持体、2…絶縁材料層、3…凹部、4…パラジウム吸着層又は金属層、5…ニッケル層又は金属層、6…銅層又は金属層 DESCRIPTION OF SYMBOLS 1 ... Support body, 2 ... Insulating material layer, 3 ... Recessed part, 4 ... Palladium adsorption layer or metal layer, 5 ... Nickel layer or metal layer, 6 ... Copper layer or metal layer

Claims (5)

支持体上に絶縁材料層を形成する工程(I)と、
絶縁材料層の表面に凹部を形成する工程(II)と、
前記絶縁材料層の凹部を含む表面を改質する工程(III)と、
前記改質した絶縁材料層の凹部を含む表面に、パラジウム吸着層を形成する工程(IV)と、
前記パラジウム吸着層を形成した絶縁材料層の凹部を含む表面に、無電解ニッケルめっきによりニッケル層を形成する工程(V)と、
前記ニッケル層上に電解銅めっきにより銅層を形成する工程(VI)と、
前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)と、
を備える半導体装置の製造方法。
Forming an insulating material layer on the support (I);
Forming a recess in the surface of the insulating material layer (II);
Modifying the surface of the insulating material layer including the recesses (III);
A step (IV) of forming a palladium adsorption layer on the surface of the modified insulating material layer including the recesses;
A step (V) of forming a nickel layer by electroless nickel plating on the surface including the concave portion of the insulating material layer on which the palladium adsorption layer is formed;
Forming a copper layer on the nickel layer by electrolytic copper plating (VI);
Forming a wiring layer comprising a copper layer formed in the recess of the insulating material layer by removing the copper layer, the nickel layer and the palladium adsorbing layer from the surface of the insulating material layer excluding the recess (VII); ,
A method for manufacturing a semiconductor device comprising:
前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)では、前記絶縁材料層の凹部を除く表面から、前記銅層、ニッケル層及びパラジウム吸着層を除去する際に、絶縁材料層の表面と凹部に形成された銅層とを平坦化する、請求項1に記載の半導体装置の製造方法。   In the step (VII) of forming a wiring layer including a copper layer formed in the recess of the insulating material layer by removing the copper layer, the nickel layer, and the palladium adsorption layer from the surface excluding the recess of the insulating material layer. The surface of the insulating material layer and the copper layer formed in the recess are flattened when the copper layer, nickel layer and palladium adsorption layer are removed from the surface of the insulating material layer excluding the recess. The manufacturing method of the semiconductor device as described in any one of. 支持体上に絶縁材料層を形成する工程(I)では、前記絶縁材料層が感光性樹脂材料で形成され、絶縁材料層の表面に凹部を形成する工程(II)では、前記感光性樹脂材料を部分的に露光及び現像して凹部を形成する、請求項1又は2に記載の半導体装置の製造方法。   In the step (I) of forming an insulating material layer on a support, the insulating material layer is formed of a photosensitive resin material, and in the step (II) of forming a recess on the surface of the insulating material layer, the photosensitive resin material is formed. The method for manufacturing a semiconductor device according to claim 1, wherein a recess is formed by partially exposing and developing the substrate. 前記絶縁材料層の表面に凹部を形成する工程(II)では、前記絶縁材料層の表面に形成した凹部が、幅方向に少なくとも0.5〜20μmの開口幅を有する、請求項1から3の何れか一項に記載の半導体装置の製造方法。   In the step (II) of forming a recess on the surface of the insulating material layer, the recess formed on the surface of the insulating material layer has an opening width of at least 0.5 to 20 μm in the width direction. The manufacturing method of the semiconductor device as described in any one. 前記絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、前記絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)を行った後、さらに、前記絶縁材料層及び銅層を備える配線層を有する支持体に対して、前記支持体上に絶縁材料層を形成する工程(I)から、前記絶縁材料層の凹部を除く表面から、銅層、ニッケル層及びパラジウム吸着層を除去することによって、絶縁材料層の凹部に形成された銅層を備える配線層を形成する工程(VII)までを、少なくとも1回以上繰り返し、配線層を多層にする工程(VIII)を有する、請求項1から4何れか一項に記載の半導体装置の製造方法。   Removing a copper layer, a nickel layer, and a palladium adsorption layer from the surface of the insulating material layer excluding the recesses, thereby forming a wiring layer having a copper layer formed in the recesses of the insulating material layer (VII); After the step, the step of forming the insulating material layer on the support (I) is further removed from the support having the wiring layer including the insulating material layer and the copper layer. From the surface, by removing the copper layer, the nickel layer and the palladium adsorbing layer, the step (VII) of forming the wiring layer including the copper layer formed in the concave portion of the insulating material layer is repeated at least once. The manufacturing method of the semiconductor device as described in any one of Claim 1 to 4 which has the process (VIII) of making a layer into a multilayer.
JP2016225772A 2016-11-21 2016-11-21 Semiconductor device manufacturing method Pending JP2018085358A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016225772A JP2018085358A (en) 2016-11-21 2016-11-21 Semiconductor device manufacturing method
JP2021076288A JP7529613B2 (en) 2016-11-21 2021-04-28 Semiconductor device manufacturing method
JP2023075683A JP2023095942A (en) 2016-11-21 2023-05-01 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225772A JP2018085358A (en) 2016-11-21 2016-11-21 Semiconductor device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021076288A Division JP7529613B2 (en) 2016-11-21 2021-04-28 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2018085358A true JP2018085358A (en) 2018-05-31

Family

ID=62237295

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016225772A Pending JP2018085358A (en) 2016-11-21 2016-11-21 Semiconductor device manufacturing method
JP2021076288A Active JP7529613B2 (en) 2016-11-21 2021-04-28 Semiconductor device manufacturing method
JP2023075683A Withdrawn JP2023095942A (en) 2016-11-21 2023-05-01 Semiconductor device manufacturing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021076288A Active JP7529613B2 (en) 2016-11-21 2021-04-28 Semiconductor device manufacturing method
JP2023075683A Withdrawn JP2023095942A (en) 2016-11-21 2023-05-01 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (3) JP2018085358A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169166A (en) * 2018-11-20 2021-07-23 凸版印刷株式会社 Semiconductor package substrate and method of manufacturing the same
US11410855B2 (en) * 2017-07-28 2022-08-09 Tdk Corporation Method of producing electroconductive substrate, electronic device and display device
WO2024142742A1 (en) * 2022-12-27 2024-07-04 株式会社レゾナック Member for semiconductor device production, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355074A (en) * 2000-04-10 2001-12-25 Sony Corp Electroless plating method, and apparatus thereof
JP2005142534A (en) * 2003-10-17 2005-06-02 Univ Waseda Semiconductor multilalyer wiring board and its forming method
JP2014049170A (en) * 2012-09-04 2014-03-17 Dainippon Printing Co Ltd Substrate for suspension, suspension, suspension with element, hard disk drive and manufacturing method for them

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901401A (en) 1997-07-28 1999-05-11 Emerson Electric Company Feed control device for plumbing tools
JP2001267724A (en) 2000-03-23 2001-09-28 Victor Co Of Japan Ltd Printed board and its manufacturing method
JP4605888B2 (en) 2000-10-30 2011-01-05 イビデン株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
JP5110239B2 (en) * 2004-05-11 2012-12-26 Jsr株式会社 Method for forming organic silica film, composition for film formation
JP5120547B2 (en) * 2006-02-02 2013-01-16 Jsr株式会社 Organic silica film and method for forming the same, composition for forming insulating film of semiconductor device and method for manufacturing the same, and wiring structure and semiconductor device
JP2009132982A (en) * 2007-11-30 2009-06-18 Mitsui Mining & Smelting Co Ltd Method of manufacturing copper wiring
JP5560775B2 (en) * 2009-05-20 2014-07-30 富士通株式会社 Circuit board and manufacturing method thereof
JP5630241B2 (en) 2010-02-15 2014-11-26 日立化成株式会社 Insulating resin, wiring board, and method of manufacturing wiring board
WO2015129799A1 (en) 2014-02-28 2015-09-03 株式会社ニコン Wiring pattern production method and transistor production method
JP2016048779A (en) * 2014-08-27 2016-04-07 Jsr株式会社 Circuit device having three-dimensional wiring, method for forming three-dimensional wiring, and a composition for metal film formation for three-dimensional wiring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355074A (en) * 2000-04-10 2001-12-25 Sony Corp Electroless plating method, and apparatus thereof
JP2005142534A (en) * 2003-10-17 2005-06-02 Univ Waseda Semiconductor multilalyer wiring board and its forming method
JP2014049170A (en) * 2012-09-04 2014-03-17 Dainippon Printing Co Ltd Substrate for suspension, suspension, suspension with element, hard disk drive and manufacturing method for them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11410855B2 (en) * 2017-07-28 2022-08-09 Tdk Corporation Method of producing electroconductive substrate, electronic device and display device
CN113169166A (en) * 2018-11-20 2021-07-23 凸版印刷株式会社 Semiconductor package substrate and method of manufacturing the same
WO2024142742A1 (en) * 2022-12-27 2024-07-04 株式会社レゾナック Member for semiconductor device production, and method for producing same

Also Published As

Publication number Publication date
JP2023095942A (en) 2023-07-06
JP2021177546A (en) 2021-11-11
JP7529613B2 (en) 2024-08-06

Similar Documents

Publication Publication Date Title
JP6911982B2 (en) Semiconductor devices and their manufacturing methods
JP7529613B2 (en) Semiconductor device manufacturing method
US20120205816A1 (en) Semiconductor chip and fabricating method thereof
JP6651769B2 (en) Wiring pattern and manufacturing method thereof
JP2022164707A (en) Manufacturing method of wiring layer
TWI793625B (en) Substrate for semiconductor packaging and method for manufacturing substrate for semiconductor packaging
JP7280011B2 (en) Manufacturing method for semiconductor device manufacturing member
JP4191740B2 (en) Method for manufacturing printed circuit board using imprint method
JP7119307B2 (en) Manufacturing method for semiconductor device manufacturing member
JP7315062B2 (en) Manufacturing method for semiconductor device manufacturing member
WO2024142742A1 (en) Member for semiconductor device production, and method for producing same
JP2017092385A (en) Semiconductor device and semiconductor device manufacturing method
JP2019212653A (en) Method for manufacturing wiring board
US20240030044A1 (en) Method for manufacturing wiring board, method for manufacturing semiconductor device, and resin sheet
JP7263710B2 (en) Wiring board manufacturing method
JP2006165254A (en) Electronic device, semiconductor device, and method of manufacturing them
JP2017157655A (en) Semiconductor device manufacturing method and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200903

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210510

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210511

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210709

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210713

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211026

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220315

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220419

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220419