JP2018083967A - Iron-based sintered material and method for producing the same - Google Patents

Iron-based sintered material and method for producing the same Download PDF

Info

Publication number
JP2018083967A
JP2018083967A JP2016227155A JP2016227155A JP2018083967A JP 2018083967 A JP2018083967 A JP 2018083967A JP 2016227155 A JP2016227155 A JP 2016227155A JP 2016227155 A JP2016227155 A JP 2016227155A JP 2018083967 A JP2018083967 A JP 2018083967A
Authority
JP
Japan
Prior art keywords
powder
iron
sintering
raw material
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227155A
Other languages
Japanese (ja)
Inventor
松本 伸彦
Nobuhiko Matsumoto
伸彦 松本
近藤 幹夫
Mikio Kondo
幹夫 近藤
賢武 三宅
Kenbu Miyake
賢武 三宅
雄介 大石
Yusuke Oishi
雄介 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016227155A priority Critical patent/JP2018083967A/en
Publication of JP2018083967A publication Critical patent/JP2018083967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dense and high rigidity iron-based sintered material.SOLUTION: Provided is an iron-based sintered material made of a sintered compact in which compound grains are dispersed into an iron-based matrix. At least a part of the compound grains is made of a nitrogen compound including Ti and/or V and N. The sintered compact includes C by 1.5 to 10%, N by 0.4 to 3% and Ti and/or V by 2.5 to 36% with the whole thereof as 100 mass% (simply referred as%). Its relative density can reach 93% or higher and its Young's modulus can reach 165 GPa or higher. The iron-based sintered material can be obtained, e.g., by sintering a molded body made of raw material powder obtained by mixing iron-based powder, TiC powder or VC powder and Gr powder at 1,140°C or higher in a nitrogen atmosphere. It is considered that the densification of the sintered compact is generated by the promotion of the generation of an Fe-C based liquid phase together with Gr or the like by isolated C owing to reaction of TiC or VC with N.SELECTED DRAWING: Figure 1A

Description

本発明は、緻密化または高剛性化を図れる鉄基焼結材とその製造方法に関する。   The present invention relates to an iron-based sintered material that can be densified or highly rigid and a method for producing the same.

鉄(Fe)を主成分とする原料粉末(混合粉末)の成形体を焼結させた部材(「鉄基焼結材」または単に「焼結材」という。)が多く利用される。鉄基焼結材を用いれば、複雑形状の部材でも、最終製品の形状に近い状態(いわゆるニアネットシェイプ)で得ることができるため、加工コスト削減や歩留り向上等による製造コストの低減を図れる。   A member ("iron-based sintered material" or simply "sintered material") obtained by sintering a compact of a raw material powder (mixed powder) containing iron (Fe) as a main component is often used. If an iron-based sintered material is used, even a member having a complicated shape can be obtained in a state close to the shape of the final product (so-called near net shape), so that manufacturing costs can be reduced by reducing processing costs and improving yield.

ところで鉄基焼結材は、その機械的特性を向上させるため、原料粉末の組成、成形圧力、焼結条件等が適宜調整されて製造される。しかし、一般的に焼結したままの鉄基焼結材は微細な空孔を内包するため、密度または剛性(ヤング率)等が溶製鋼より劣ることが多い。   By the way, in order to improve the mechanical characteristics of the iron-based sintered material, the composition of the raw material powder, the molding pressure, the sintering conditions, and the like are adjusted as appropriate. However, since an iron-based sintered material as it is generally sintered contains fine pores, the density or rigidity (Young's modulus) is often inferior to that of molten steel.

このような状況の下、溶製以外の方法で高剛性鋼を得る提案等がなされており、例えば下記の特許文献に関連した記載がある。   Under such circumstances, proposals for obtaining high-rigidity steel by methods other than melting have been made, and for example, there are descriptions related to the following patent documents.

特開2002−60885号公報JP 2002-60885 A

特許文献1は、窒素ガス雰囲気中でアトマイズしたFe―Cr―V粉末(原料粉末)からなる熱間押出材(高剛性鋼)を提案している。この熱間押出材は、Fe―Crマトリックス中にVN粒子が分散した粒子分散型鉄基合金となっており、高いヤング率を発揮している。   Patent Document 1 proposes a hot extruded material (high-rigidity steel) made of Fe-Cr-V powder (raw material powder) atomized in a nitrogen gas atmosphere. This hot extruded material is a particle-dispersed iron-based alloy in which VN particles are dispersed in an Fe—Cr matrix, and exhibits a high Young's modulus.

しかし、特許文献1にあるような高剛性鋼は、熱間押出素材として得られるに過ぎず、ニアネットシェイプ化による加工コストの削減や歩留りの向上等を図れるものではない。また、特許文献1の原料粉末は、高剛性なVNが粒子表面に予め分布したものであり、従来の焼結方法等では、高密度な成形体や焼結体を得ることも困難である。   However, the high-rigidity steel as disclosed in Patent Document 1 is only obtained as a hot-extrusion material, and cannot reduce the processing cost and improve the yield due to the near net shape. Moreover, the raw material powder of Patent Document 1 is a material in which highly rigid VN is distributed in advance on the particle surface, and it is difficult to obtain a high-density molded body or sintered body by a conventional sintering method or the like.

本発明はこのような事情に鑑みて為されたものであり、従来とは全く異なるアプローチにより緻密化または高剛性化を図れる鉄基焼結材と、その製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an iron-based sintered material that can be densified or increased in rigidity by an entirely different approach, and a method for producing the same. .

本発明者は上記の課題を解決すべく鋭意研究した結果、原料粉末中に含まれる炭素化合物が焼結中に窒素と反応してFe―C系液相の出現を促進することにより、高密度な焼結体が得られることを新たに見出した。この発見を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventor reacted with nitrogen during sintering to promote the appearance of a Fe-C liquid phase, thereby increasing the density. It was newly found out that a sintered body can be obtained. By developing this discovery, the present invention described below has been completed.

《鉄基焼結材の製造方法》
(1)本発明の鉄基焼結材の製造方法は、鉄基粉末に化合物粉末が混在した原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、前記化合物粉末の少なくとも一部は、Tiおよび/またはVを含む炭素化合物からなり、
前記原料粉末は、該原料粉末全体を100質量%(単に「%」という。)として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、前記焼結工程は、窒素を含有した焼結雰囲気中で、前記成形体を1140〜1350℃の焼結温度で加熱する工程である。
《Method for producing iron-based sintered material》
(1) The method for producing an iron-based sintered material according to the present invention comprises an iron-based sintered material comprising a sintering step of heating a raw material powder compact in which compound powder is mixed with iron-based powder to form a sintered body. It is a manufacturing method, Comprising: At least one part of the said compound powder consists of a carbon compound containing Ti and / or V,
The raw material powder comprises 100% by mass (simply referred to as “%”) of the raw material powder as a whole, and contains 1.5 to 10% of C and 2.5 to 36% of Ti and / or V in total, A sintering process is a process of heating the said molded object at the sintering temperature of 1140-1350 degreeC in the sintering atmosphere containing nitrogen.

本発明の製造方法によれば、熱間鍛造等を施すまでもなく、一回の成形と焼結で十分に緻密な焼結体を得ることが可能となる。しかも、焼結時の寸法収縮に伴う形状変化は等方的である。従って本発明によれば、複雑な形状の部材であっても、高密度化や高剛性化と、ニアネットシェイプによる製造コスト低減とを両立し得る。   According to the manufacturing method of the present invention, it is possible to obtain a sufficiently dense sintered body by one molding and sintering without performing hot forging or the like. Moreover, the shape change accompanying the dimensional shrinkage during sintering is isotropic. Therefore, according to the present invention, even if the member has a complicated shape, it is possible to achieve both high density and high rigidity and reduction in manufacturing cost by the near net shape.

本発明の製造方法により、少なくとも緻密な鉄基焼結材が得られる理由は、現状、次のように考えられる。本発明に係る成形体は、その構成粒子中にTiまたはVの炭素化合物(粒子)を含む。この炭素化合物は、焼結時の高温環境下でNまたはNと接触すると、少なくとも一部がより安定な窒素化合物へ変化し得る。その際、炭素化合物から遊離したCが、その周囲に存在するFeと反応してFe―C系液相の出現を促進するようになる。Fe―C系液相が比較的多く出現することにより、本発明では緻密な焼結体が得られるようになったと考えられる。 The reason why at least a dense iron-based sintered material can be obtained by the production method of the present invention is considered as follows. The molded body according to the present invention contains Ti or V carbon compounds (particles) in the constituent particles. This carbon compound can be at least partially converted into a more stable nitrogen compound when contacted with N or N 2 in a high temperature environment during sintering. At that time, C liberated from the carbon compound reacts with Fe present around the carbon compound and promotes the appearance of the Fe—C liquid phase. It is considered that a dense sintered body can be obtained in the present invention by the appearance of a relatively large number of Fe—C liquid phases.

但し、本発明者が鋭意研究したところによれば、上述したようなニアネットシェイプ化と緻密化・高剛性化を両立できる炭素化合物の種類は限られており、好ましい炭素化合物は上述したTiおよび/またはVの炭素化合物であった。本発明は、このような炭素化合物を発見すると共に、その炭素化合物を用いて形状維持と緻密化を両立できる鉄基焼結材の製造方法を完成させた点で画期的といえる。   However, as a result of earnest research by the present inventors, the types of carbon compounds that can achieve both the above-described near net shaping and densification / high rigidity are limited, and preferred carbon compounds are Ti and And / or V carbon compounds. The present invention is epoch-making in that it has found such a carbon compound and has completed a method for producing an iron-based sintered material that can achieve both shape maintenance and densification using the carbon compound.

(2)ところで、上述したFe―C系液相の生成に寄与する炭素化合物(単に(Ti、V)Cとも表記する。)は、鉄基粉末と別な化合物粉末として供給する場合の他、鉄基粉末自体または別な合金粉末として供給することも可能である。また、Fe―C系液相の生成に寄与するNは、成形体の外部(焼結雰囲気)からガス状態(N)で供給する場合の他、窒素化合物またはN含有合金等として成形体の内部から供給することも可能である。従って、(Ti、V)CとNの供給源の組合わせは、前述した組合わせ((Ti、V)C源:化合物粉末、N源:窒素含有雰囲気)に限られず、次のような組合わせも考えられる。 (2) By the way, the carbon compound that contributes to the generation of the above-described Fe—C-based liquid phase (also simply referred to as (Ti, V) C) is supplied as a compound powder different from the iron-based powder, It is also possible to supply the iron-based powder itself or another alloy powder. Further, N that contributes to the generation of the Fe—C-based liquid phase is supplied from the outside (sintered atmosphere) of the molded body in a gas state (N 2 ), or in the molded body as a nitrogen compound or an N-containing alloy. It is also possible to supply from the inside. Therefore, the combination of the (Ti, V) C and N supply sources is not limited to the combination described above ((Ti, V) C source: compound powder, N source: nitrogen-containing atmosphere). A combination is also possible.

(i)先ず本発明は、鉄基粉末に化合物粉末が混在した原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、前記化合物粉末の少なくとも一部は、Tiおよび/またはVを含む炭素化合物からなり、前記原料粉末は、さらに窒素源粉末を含むと共に、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、前記焼結工程は、前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法でもよい。 (I) First, the present invention is a method for producing an iron-based sintered material, comprising a sintering step of heating a raw material powder compact in which compound powder is mixed with iron-based powder to form a sintered body, wherein the compound At least a part of the powder is composed of a carbon compound containing Ti and / or V. The raw material powder further contains a nitrogen source powder, and the total raw material powder is 100%, and C is 1.5 to 10%. Ti and / or V in a total of 2.5 to 36%, and the sintering step is a method for producing an iron-based sintered material, which is a step of heating the molded body at a sintering temperature of 1140 to 1350 ° C. Good.

本発明の製造方法は、(Ti、V)C源を化合物粉末、N源を窒素源粉とした場合である。この場合、Nが原料粉末の一部として供給されるため、焼結工程は真空雰囲気やAr等の不活性ガス雰囲気で行うことができる。勿論、焼結雰囲気をさらに窒素含有雰囲気としてもよい。   The production method of the present invention is a case where the (Ti, V) C source is a compound powder and the N source is a nitrogen source powder. In this case, since N is supplied as a part of the raw material powder, the sintering step can be performed in a vacuum atmosphere or an inert gas atmosphere such as Ar. Of course, the sintering atmosphere may be a nitrogen-containing atmosphere.

(ii)また本発明は、鉄基粉末を含む原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、前記鉄基粉末は、Tiおよび/またはVとCを含み、前記原料粉末は、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、前記焼結工程は、窒素を含有した焼結雰囲気中で前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法でもよい。 (Ii) Moreover, this invention is a manufacturing method of the iron-based sintered material provided with the sintering process which heats the molded object of the raw material powder containing iron-based powder, and makes it a sintered compact, Comprising: Ti and / or V and C, and the raw material powder includes 100% of the raw material powder as a whole, C includes 1.5 to 10%, and Ti and / or V in total 2.5 to 36%, The sintering step may be a method for producing an iron-based sintered material, which is a step of heating the compact at a sintering temperature of 1140 to 1350 ° C. in a sintering atmosphere containing nitrogen.

本発明の製造方法は、(Ti、V)C源を鉄基粉末、N源を窒素含有雰囲気とした場合である。この場合、(Ti、V)C源となる化合物粉末の配合は必ずしも必要ではない。なお、(Ti、V)C源を含む鉄基粉末は、それ自体が主たる鉄源粉末でも良いし、鉄源粉末に別途添加される合金粉末でもよい。   The production method of the present invention is a case where the (Ti, V) C source is an iron-based powder and the N source is a nitrogen-containing atmosphere. In this case, it is not always necessary to add the compound powder as the (Ti, V) C source. The iron-based powder containing the (Ti, V) C source itself may be a main iron source powder or an alloy powder added separately to the iron source powder.

(iii)さらに本発明は、鉄基粉末を含む原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、前記鉄基粉末は、Tiおよび/またはVとCを含み、前記原料粉末は、さらに窒素源粉末を含むと共に、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、前記焼結工程は、前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法でもよい。 (Iii) Further, the present invention is a method for producing an iron-based sintered material, comprising a sintering step of heating a raw material powder compact containing iron-based powder to form a sintered body, wherein the iron-based powder comprises: Ti and / or V and C are included, and the raw material powder further includes a nitrogen source powder, the total raw material powder is 100%, C is 1.5 to 10%, and Ti and / or V in total Including 2.5 to 36%, the sintering step may be a method for producing an iron-based sintered material, which is a step of heating the compact at a sintering temperature of 1140 to 1350 ° C.

本発明の製造方法は、(Ti、V)C源を鉄基粉末、N源を窒素源粉末とした場合である。この場合、(Ti、V)C源となる化合物粉末や窒素含有雰囲気(焼結雰囲気)は必ずしも必要ではない。   The production method of the present invention is a case where the (Ti, V) C source is an iron-based powder and the N source is a nitrogen source powder. In this case, a compound powder serving as a (Ti, V) C source and a nitrogen-containing atmosphere (sintering atmosphere) are not necessarily required.

《鉄基焼結材》
(1)本発明は、上述した製造方法に限らず、緻密化された鉄基焼結材としても把握できる。すなわち本発明は、鉄基マトリックス中に化合物粒子が分散した焼結体からなる鉄基焼結材であって、前記化合物粒子の少なくとも一部は、Tiおよび/またはVとNとを含む窒素化合物からなり、前記焼結体は、該焼結体全体を100質量%(単に「%」という。)として、Cを1.5〜10%と、Nを0.4〜3%と、Tiおよび/またはVを合計で2.5〜36%含むと共に、真密度(ρ)に対する嵩密度(ρ)の割合である相対密度(ρ/ρ)が93%以上である鉄基焼結材でもよい。
《Iron-based sintered material》
(1) The present invention is not limited to the manufacturing method described above, and can be grasped as a densified iron-based sintered material. That is, the present invention provides an iron-based sintered material comprising a sintered body in which compound particles are dispersed in an iron-based matrix, wherein at least a part of the compound particles includes Ti and / or V and N. The sintered body comprises 100% by mass (simply referred to as “%”) of the entire sintered body, C is 1.5 to 10%, N is 0.4 to 3%, Ti and / or with containing 2.5 to 36% of V in total, true density ([rho 0) bulk density for ([rho) relative density (ρ / ρ 0) is the ratio of 93% or more iron-based sintered material But you can.

(2)本発明に係る鉄基マトリックス中に分散している窒素化合物からなる化合物粒子は、元々原料として供給されたものの他、原料として供給された炭素化合物が焼結工程中にNと反応して生成されたものでもよい。原料として供給される炭素化合物は、その全てが窒素化合物に変化してもよいし、その一部が変化せずに焼結体中に残存してもよい。後者の場合、鉄基マトリックス中に分散している化合物粒子は、窒素化合物粒子の他、例えば、チタン炭化物、チタン炭窒化物、バナジウム炭化物またはバナジウム炭窒化物のいずれか一種以上からなる炭素化合物粒子を含むこととなる。 (2) The compound particles composed of nitrogen compounds dispersed in the iron-based matrix according to the present invention are originally supplied as a raw material, and the carbon compound supplied as a raw material reacts with N during the sintering process. May be generated. All of the carbon compound supplied as a raw material may be changed to a nitrogen compound, or a part thereof may remain in the sintered body without being changed. In the latter case, the compound particles dispersed in the iron-based matrix are, in addition to nitrogen compound particles, for example, carbon compound particles made of any one or more of titanium carbide, titanium carbonitride, vanadium carbide, or vanadium carbonitride. Will be included.

(3)本発明に係る焼結体は、上述したように緻密であるため、その相対密度は93%以上、95%以上、97%以上、98%以上さらには99%以上ともなり得る。 (3) Since the sintered body according to the present invention is dense as described above, the relative density can be 93% or more, 95% or more, 97% or more, 98% or more, or even 99% or more.

本発明に係る焼結体は、高い剛性(ヤング率)も発揮し得る。焼結体の組成や密度等にも依るが、例えば、本発明に係る焼結体はヤング率が165GPa以上、170GPa以上、180GPa以上、200GPa以上さらには210GPa以上ともなり得る。   The sintered body according to the present invention can also exhibit high rigidity (Young's modulus). For example, the sintered body according to the present invention can have a Young's modulus of 165 GPa or more, 170 GPa or more, 180 GPa or more, 200 GPa or more, or 210 GPa or more, depending on the composition, density, and the like of the sintered body.

《その他》
(1)本明細書でいう「相対密度」は、真密度(ρ)に対する嵩密度(ρ)の比(ρ/ρ×100%)である。嵩密度(ρ)は、試料を実測した寸法および質量から算出してもよいし、試料の形状が複雑で寸法の実測が困難であればアルキメデス法により求めてもよい。
<Others>
(1) “Relative density” as used herein is the ratio (ρ / ρ 0 × 100%) of the bulk density (ρ) to the true density (ρ 0 ). The bulk density (ρ) may be calculated from the actually measured size and mass of the sample, or may be obtained by the Archimedes method if the sample shape is complicated and it is difficult to measure the size.

製造時の原料粉末(混合粉末)の配合組成が既知であれば、その調製に用いた各粉末(素粉)の配合質量(Wi)と真密度(比重/文献値またはカタログ値)から算出されるポアフリー密度(PFD)を真密度(ρ)とする。既にある鉄基焼結材(焼結体)のPFDは、熱間鍛造等によりポアフリー状態とした試料をもちいてアルキメデス法で求めることができる。 If the composition of the raw material powder (mixed powder) at the time of manufacture is known, it is calculated from the blended mass (Wi) and true density (specific gravity / literature value or catalog value) of each powder (elementary powder) used for the preparation. The pore free density (PFD) is the true density (ρ 0 ). The PFD of an existing iron-based sintered material (sintered body) can be obtained by the Archimedes method using a sample that has been made a pore-free state by hot forging or the like.

なお、既知な原料粉末の配合割合から算出されるポアフリー密度(PFD)を用いた場合、焼結体が外部(焼結雰囲気)からNを吸収等して重量増加していると、相対密度が100%を僅かに超過することがあり得る。但し、それは通常、誤差レベルである。 In addition, when the pore-free density (PFD) calculated from the blending ratio of known raw material powders is used, if the sintered body absorbs N 2 from the outside (sintering atmosphere) and increases in weight, the relative density Can slightly exceed 100%. However, it is usually an error level.

(2)本明細書でいう「ヤング率」は超音波パルス法により測定される。 (2) “Young's modulus” as used herein is measured by the ultrasonic pulse method.

(3)本明細書でいう粉末の「粒度」は、篩い分けまたは平均粒径により特定される。篩いを用いた分級に関してはJIS Z 8801に準拠して特定される。例えば、「aμm以下(−aμm)」は、公称目開き:aμmの篩いを通過した粉末であることを意味する。「平均粒径」は、レーザー回折式粒度分布測定器による粒度分布測定に基づくメジアン径(D50)より特定される。 (3) The “particle size” of the powder in the present specification is specified by sieving or an average particle size. The classification using a sieve is specified in accordance with JIS Z 8801. For example, “a μm or less (−a μm)” means a powder having passed through a sieve having a nominal opening of a μm. The “average particle diameter” is specified from the median diameter (D50) based on the particle size distribution measurement by a laser diffraction particle size distribution analyzer.

(4)本発明の鉄基焼結材は、Fe、C、N、Ti、V、Mo、Cr等以外にも、少量の改質元素(Si、Mn、Cu、Ni、Co、Nb、W、P、B等)や不可避不純物を含み得る。本発明に係る鉄基焼結材は、製品の最終形状に近い焼結部材に限らず、例えば、インゴット状、棒状、管状、板状等の素材であっても良い。 (4) In addition to Fe, C, N, Ti, V, Mo, Cr, etc., the iron-based sintered material according to the present invention contains a small amount of modifying elements (Si, Mn, Cu, Ni, Co, Nb, W). , P, B, etc.) and inevitable impurities. The iron-based sintered material according to the present invention is not limited to a sintered member close to the final shape of the product, and may be a material such as an ingot shape, a rod shape, a tubular shape, or a plate shape.

(5)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (5) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

TiC量と相対密度の関係を示すグラフである。It is a graph which shows the relationship between the amount of TiC and relative density. VC量と相対密度の関係を示すグラフである。It is a graph which shows the relationship between VC amount and relative density. 焼結前後の重量変化と焼結体中のN量との関係を示すグラフである。It is a graph which shows the relationship between the weight change before and behind sintering, and the amount of N in a sintered compact. TiC粉末を配合したときのGr量と相対密度の関係を示すグラフである。It is a graph which shows the relationship between the amount of Gr when a TiC powder is mix | blended, and a relative density. TiC粉末を配合したときのGr量とヤング率の関係を示すグラフである。It is a graph which shows the relationship between the amount of Gr when a TiC powder is mix | blended, and Young's modulus. VC粉末を配合したときのGr量と相対密度の関係を示すグラフである。It is a graph which shows the relationship between the amount of Gr when a VC powder is mix | blended, and a relative density. VC粉末を配合したときのGr量とヤング率の関係を示すグラフである。It is a graph which shows the relationship between the amount of Gr when a VC powder is mix | blended, and Young's modulus. VC量と相対密度の関係に及ぼす焼結温度の影響を示すグラフである。It is a graph which shows the influence of the sintering temperature which has on the relationship between VC amount and relative density. VC量とヤング率の関係に及ぼす焼結温度の影響を示すグラフである。It is a graph which shows the influence of the sintering temperature which has on the relationship between VC amount and Young's modulus. TiC量と相対密度の関係に及ぼす鉄基粉末の影響を示すグラフである。It is a graph which shows the influence of the iron-base powder on the relationship between the amount of TiC and relative density. TiC量とヤング率の関係に及ぼす鉄基粉末の影響を示すグラフである。It is a graph which shows the influence of the iron base powder on the relationship between the amount of TiC and Young's modulus. VC量と相対密度の関係に及ぼす鉄基粉末の影響を示すグラフである。It is a graph which shows the influence of the iron-base powder on the relationship between VC amount and relative density. VC量とヤング率の関係に及ぼす鉄基粉末の影響を示すグラフである。It is a graph which shows the influence of the iron base powder on the relationship between VC amount and Young's modulus. Si粉末を原料粉末に加えて真空雰囲気で焼結したときのTiC量と相対密度の関係を示すグラフである。The Si 3 N 4 powder added to the raw material powder is a graph showing the relationship between the TiC content and the relative density when sintering in a vacuum atmosphere. 真空雰囲気で焼結したときのSi量と相対密度の関係を示すグラフである。It is a graph showing the relationship between the Si 3 N 4 content and relative density when sintering in a vacuum atmosphere. 真空雰囲気で焼結したときのSi量とヤング率の関係を示すグラフである。It is a graph which shows the relationship between the amount of Si 3 N 4 and Young's modulus when sintered in a vacuum atmosphere. SKH57(鉄基粉末)を用いたときのTiC量と相対密度の関係に及ぼす焼結雰囲気の影響を示すグラフである。It is a graph which shows the influence of sintering atmosphere on the relationship between TiC amount and relative density when using SKH57 (iron-based powder). SKH57を用いたときのTiC量とヤング率の関係に及ぼす焼結雰囲気の影響を示すグラフである。It is a graph which shows the influence of a sintering atmosphere which has on the relationship between the amount of TiC when using SKH57, and Young's modulus. SKH57を用いたときのTiC量と相対密度の関係に及ぼす成形圧力の影響を示すグラフである。It is a graph which shows the influence of the shaping | molding pressure on the relationship between the amount of TiC and relative density when using SKH57. SKH57を用いたときのTiC量とヤング率の関係に及ぼす成形圧力の影響を示すグラフである。It is a graph which shows the influence of the shaping | molding pressure which has on the relationship between the amount of TiC when using SKH57, and Young's modulus. SKH57に種々の化合物粉末を配合したときの各化合物量と相対密度の関係を示すグラフである。It is a graph which shows the relationship between each compound amount when a various compound powder is mix | blended with SKH57, and a relative density. SKH57に種々の化合物粉末を配合したときの各化合物量とヤング率の関係を示すグラフである。It is a graph which shows the relationship between each compound amount when a various compound powder is mix | blended with SKH57, and Young's modulus. 試料B12(TiC添加)に係る金属組織中における各元素の分布を示すEPMA像である。It is an EPMA image which shows distribution of each element in the metal structure which concerns on sample B12 (TiC addition). 試料B31(VC添加)に係る金属組織中における各元素の分布を示すEPMA像である。It is an EPMA image which shows distribution of each element in the metal structure which concerns on sample B31 (VC addition).

上述した本発明の各構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。製造方法に関する構成要素も鉄基焼結材に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to each component of the present invention described above. Components related to the manufacturing method can also be components related to the iron-based sintered material. Which embodiment is the best depends on the target, required performance, and the like.

《原料粉末》
(1)本発明に係る原料粉末は全体として、主成分であるFeと、Tiおよび/またはV(単に「Ti/V」と表記する。)と、Cとを少なくとも含み、少なくとも一部のTi/VとCが同じ粒子中に共存している粉末を含む。これを満たす限り、原料粉末は一種の鉄基粉末のみでも良いし、二種以上の粉末を混合した混合粉末でもよい。混合粉末は、二種以上の鉄基粉末のみからなる場合でも、一種以上の鉄基粉末と別な一種以上の添加粉末とからなる場合でもよい。鉄基粉末以外の添加粉末として、化合物粉末、合金粉末、炭素源粉末(例えば黒鉛粉末)等がある。化合物粉末や合金粉末は、(Ti、V)C源の他、N源、焼結体の各種特性(強度、延性、耐食性等)を向上させる合金元素源でもよい。
<Raw material powder>
(1) The raw material powder according to the present invention as a whole contains at least a part of Ti, including at least Fe as a main component, Ti and / or V (simply expressed as “Ti / V”), and C. / V and C include powder in the same particle. As long as this is satisfied, the raw material powder may be only one kind of iron-based powder, or may be a mixed powder in which two or more kinds of powders are mixed. The mixed powder may be composed of only two or more types of iron-based powders, or may be composed of one or more types of iron-based powders and another type of one or more additional powders. Examples of additive powders other than iron-based powders include compound powders, alloy powders, and carbon source powders (eg, graphite powder). The compound powder and the alloy powder may be an alloy element source for improving various characteristics (strength, ductility, corrosion resistance, etc.) of the N source and the sintered body in addition to the (Ti, V) C source.

(2)鉄基粉末は、純鉄または鉄合金からなる。鉄合金は、CやTi/Vの他、Cr、Mo等を含むものでもよい。MoやCrは、焼結材(マトリックス)の強度や靱性の向上に寄与する。Mo、Crは、原料粉末全体を100質量%(単に「%」という。)として、例えば、それぞれ0.2〜4%さらには0.7〜2.5%、合計で0.5〜5%さらには1〜3%であると好ましい。なお、鉄基粉末の粒度は、例えば、300μm以下さらには250μm以下とするとよい。 (2) The iron-based powder is made of pure iron or an iron alloy. The iron alloy may contain Cr, Mo, etc. in addition to C and Ti / V. Mo and Cr contribute to the improvement of the strength and toughness of the sintered material (matrix). Mo and Cr are 100% by mass (simply referred to as “%”) as a whole of the raw material powder, for example, 0.2 to 4%, further 0.7 to 2.5%, and 0.5 to 5% in total. Furthermore, it is preferable in it being 1-3%. The particle size of the iron-based powder is preferably 300 μm or less, and more preferably 250 μm or less.

(3)鉄基粉末に添加する(Ti、V)C源粉末として、例えば、Ti/Vの炭素化合物粉末がある。具体的には、TiC、VC、TiC―TiN等の炭化物粉末または炭窒化物粉末である。 (3) Examples of the (Ti, V) C source powder added to the iron-based powder include Ti / V carbon compound powder. Specifically, it is carbide powder or carbonitride powder such as TiC, VC, TiC-TiN.

原料粉末全体を100%として、例えば、Tiは2.5〜35%、3.5〜30%さらには5〜20%であり、Vは4.5〜25%、5.5〜20%さらには7〜15%、Ti/Vの合計なら2.5〜36%、5〜30%さらには8〜20%であると好ましい。Cは、原料粉末全体を100%として、例えば、1.5〜10%、2〜9%、2.5〜8%さらには3〜6%であると好ましい。これら各元素が過少では焼結体の高密度化を図れず、過多では原料費が高くなるともに、生成するTiCやVC粒子が多量となり、脆化して強度特性(特に延性)の低下を招く。   For example, Ti is 2.5 to 35%, 3.5 to 30%, more preferably 5 to 20%, and V is 4.5 to 25%, 5.5 to 20%. Is 7 to 15%, and the total Ti / V is preferably 2.5 to 36%, 5 to 30%, and more preferably 8 to 20%. C is preferably 1.5% to 10%, 2% to 9%, 2.5% to 8%, and more preferably 3% to 6%, assuming that the entire raw material powder is 100%. If these elements are too small, the density of the sintered body cannot be increased. If the elements are too large, the cost of raw materials becomes high, and the amount of TiC and VC particles to be produced increases, resulting in embrittlement and reduced strength properties (particularly ductility).

(Ti、V)C源粉末としてTiC粉末を用いる場合なら、原料粉末全体を100%として、例えば、TiC粉末を3〜43%、5〜30%さらには7〜25%配合するとよい。またVC粉末を用いる場合なら、原料粉末全体を100%として、例えば、VC粉末を6〜30%、7〜25%さらには8〜20%配合するとよい。   When TiC powder is used as the (Ti, V) C source powder, the entire raw material powder is 100%, for example, 3 to 43%, 5 to 30%, or 7 to 25% of TiC powder may be blended. If VC powder is used, the entire raw material powder may be 100%, for example, 6 to 30%, 7 to 25%, or 8 to 20% of VC powder may be blended.

Cは、(Ti、V)C源粉末や鉄基粉末等から供給される他、黒鉛(Gr)粉末として別途供給されると好ましい。黒鉛粉末は、(Ti、V)Cと協働してFe―C系液相の生成量を増加させ、焼結体の緻密化に寄与する。黒鉛粉末は、原料粉末全体を100%として、例えば、0.2〜2.0%、0.5〜1.4%さらには0.7〜1.1%配合するとよい。特に、TiC粉末と共に添加する場合なら0.7〜1.4%、VC粉末と共に添加する場合なら0.5〜1.1%を配合するとよい。   C is preferably supplied separately from (Ti, V) C source powder, iron-based powder, etc., or as graphite (Gr) powder. The graphite powder contributes to densification of the sintered body by increasing the amount of Fe—C liquid phase generated in cooperation with (Ti, V) C. The graphite powder may be blended, for example, 0.2 to 2.0%, 0.5 to 1.4%, and further 0.7 to 1.1%, with the entire raw material powder being 100%. In particular, when added together with TiC powder, 0.7 to 1.4%, and when added together with VC powder, 0.5 to 1.1% may be blended.

少なくとも非窒素雰囲気で成形体を焼結する場合、鉄基粉末に添加するN源粉末が必要となる。N源粉末は、焼結中にNを放出して(Ti、V)Cを(Ti、V)Nへ変化させるものが好ましい。このようなN源粉末として、例えば、窒化ケイ素(Si)粉末がある。なお、本発明に係る原料粉末中には、そのようなN源粉末以外にも、Nを含む化合物粉末や合金粉末等を含んでいてもよい。例えばTiN粉末のように、焼結温度域で安定で緻密化への寄与は大きくないが、焼結体の高剛性化には寄与し得る粉末を原料粉末に配合してもよい。 When the molded body is sintered at least in a non-nitrogen atmosphere, an N source powder to be added to the iron-based powder is required. The N source powder is preferably one that releases N during sintering and changes (Ti, V) C to (Ti, V) N. An example of such N source powder is silicon nitride (Si 3 N 4 ) powder. In addition to the N source powder, the raw material powder according to the present invention may contain a compound powder containing N, an alloy powder, or the like. For example, a powder that is stable in the sintering temperature range and does not contribute significantly to densification, such as TiN powder, may be blended in the raw material powder, which can contribute to increasing the rigidity of the sintered body.

《成形工程》
所望組成の原料粉末から成形体を得る際の成形圧力は、例えば、300〜1200MPa、350〜900MPaさらには390〜600MPaの範囲とすると好ましい。本発明によれば、成形圧力が比較的低い場合でも緻密な焼結体を得ることができる。但し、成形圧力が過小では、成形体に対する焼結体の寸法変化が大きくなる。過大な成形圧力は工業的な生産性に欠ける。
<Molding process>
The molding pressure at the time of obtaining a molded body from a raw material powder having a desired composition is preferably in the range of, for example, 300 to 1200 MPa, 350 to 900 MPa, or even 390 to 600 MPa. According to the present invention, a dense sintered body can be obtained even when the molding pressure is relatively low. However, if the molding pressure is too small, the dimensional change of the sintered body relative to the molded body increases. Excessive molding pressure lacks industrial productivity.

成形圧力は、成形体の相対密度が60〜92%さらには65〜90%となるように調整されると好ましい。特に、外部(窒素含有雰囲気)から成形体へ窒素を導入する場合、成形体の密度が過大になると、窒素が成形体の内部まで導入されず、焼結体の緻密化が困難となる。   The molding pressure is preferably adjusted so that the relative density of the molded body is 60 to 92%, more preferably 65 to 90%. In particular, when nitrogen is introduced into the molded body from the outside (nitrogen-containing atmosphere), if the density of the molded body becomes excessive, nitrogen is not introduced into the molded body, making it difficult to densify the sintered body.

成形工程は、冷間成形(室温成形)でも温間成形でも良い。また、原料粉末と金型との潤滑は、原料粉末に配合する内部潤滑剤により行ってもよいし、金型潤滑により行ってもよい。金型潤滑を行う場合、金型潤滑温間加圧成形法(詳細は特許3309970号公報等を参照)を用いると好ましい。   The forming process may be cold forming (room temperature forming) or warm forming. The lubrication between the raw material powder and the mold may be performed by an internal lubricant blended in the raw material powder or by mold lubrication. When performing mold lubrication, it is preferable to use a mold lubrication warm pressure molding method (refer to Japanese Patent No. 3309970 for details).

《焼結工程》
(1)成形体を焼結させる焼結温度は、Fe―C系液相を生成し得る1140〜1350℃、1175〜1300℃さらには1225〜1280℃であると好ましい。焼結温度が過小では、焼結体の緻密化を十分に図れないか、焼結体の緻密化に長時間を要する。焼結温度が過大になると、エネルギーコストの増大、形状崩れ等を招く。ちなみに、Fe―C(二元系)の共晶点は1147℃である。
<< Sintering process >>
(1) The sintering temperature at which the compact is sintered is preferably 1140 to 1350 ° C., 1175 to 1300 ° C., or 1225 to 1280 ° C. at which an Fe—C liquid phase can be generated. If the sintering temperature is too low, the sintered body cannot be sufficiently densified, or it takes a long time to densify the sintered body. When the sintering temperature is excessive, the energy cost increases and the shape collapses. Incidentally, the eutectic point of Fe—C (binary system) is 1147 ° C.

上記の焼結温度で成形体を加熱する焼結時間は、例えば、0.2〜3時間さらには0.4〜1.5時間とするとよい。焼結時間が過小では、焼結体の緻密化が不十分になるのみならず、焼結自体が不十分となる。焼結時間が過大では生産性が低下する。焼結温度に応じて焼結時間は調整されるが、本発明の場合、焼結温度が低くない限り、比較的短い焼結時間で緻密な焼結体を得ることができる。逆に、焼結温度が低い場合でも、焼結時間を長くすれば、緻密な焼結体が得られる。   The sintering time for heating the molded body at the above sintering temperature is preferably 0.2 to 3 hours, and more preferably 0.4 to 1.5 hours. When the sintering time is too short, the sintered body is not sufficiently densified, and the sintering itself is insufficient. If the sintering time is excessive, the productivity is lowered. Although the sintering time is adjusted according to the sintering temperature, in the case of the present invention, a dense sintered body can be obtained in a relatively short sintering time unless the sintering temperature is low. Conversely, even when the sintering temperature is low, a dense sintered body can be obtained by increasing the sintering time.

本発明に係る焼結工程は、焼結雰囲気を真空雰囲気や不活性ガス雰囲気とすることもできる。もっとも、焼結雰囲気を窒素含有雰囲気とすることにより、効率的に焼結体の緻密化を図れる。この窒素含有雰囲気は、例えば、Nのガス圧(分圧を含む)が0.5〜1000kPaさらには2〜300kPaであると好ましい。ガス圧が過小では、窒素を成形体内へ十分に導入できず、過大なガス圧は生産コストの増大を招く。 In the sintering step according to the present invention, the sintering atmosphere can be a vacuum atmosphere or an inert gas atmosphere. However, when the sintering atmosphere is a nitrogen-containing atmosphere, the sintered body can be efficiently densified. In this nitrogen-containing atmosphere, for example, the N 2 gas pressure (including partial pressure) is preferably 0.5 to 1000 kPa, and more preferably 2 to 300 kPa. If the gas pressure is too low, nitrogen cannot be sufficiently introduced into the molded body, and an excessive gas pressure causes an increase in production cost.

(2)外部から成形体へ窒素を導入する場合、前述した焼結温度で成形体を加熱する前に、焼結温度未満の窒素含有雰囲気中に成形体を曝す予備工程を行うと好ましい。これにより成形体内に十分に窒素を導入でき、焼結体の緻密化を効率的に図ることができる。 (2) When nitrogen is introduced into the molded body from the outside, it is preferable to perform a preliminary step of exposing the molded body in a nitrogen-containing atmosphere below the sintering temperature before heating the molded body at the sintering temperature described above. Thereby, nitrogen can be sufficiently introduced into the molded body, and the sintered body can be efficiently densified.

予備工程は、焼結工程と独立して行うこともできるが、焼結炉内にある成形体を焼結温度まで加熱する途中で行うと効率的である。予備工程は、例えば、焼結温度未満の一定温度の窒素含有雰囲気中に成形体に保持してもよいし、焼結温度に到達する加熱過程で兼用させてもよい。前者の場合、例えば、窒素含有雰囲気の温度を800〜1120℃さらには1000〜1100℃とするとよい。後者の場合、通常よりも焼結温度へ至る昇温速度を低くすると好ましい。例えば、その昇温速度を5〜30℃/分とするとよい。なお、焼結温度の前後(予備工程と焼結過程)で窒素含有雰囲気中のガス圧を変更してもよい。   Although the preliminary process can be performed independently of the sintering process, it is efficient to perform the preliminary process while heating the compact in the sintering furnace to the sintering temperature. For example, the preliminary process may be held in the molded body in a nitrogen-containing atmosphere at a constant temperature lower than the sintering temperature, or may be combined in a heating process that reaches the sintering temperature. In the former case, for example, the temperature of the nitrogen-containing atmosphere is preferably 800 to 1120 ° C, and more preferably 1000 to 1100 ° C. In the latter case, it is preferable to lower the rate of temperature rise to the sintering temperature than usual. For example, the temperature increase rate may be 5 to 30 ° C./min. Note that the gas pressure in the nitrogen-containing atmosphere may be changed before and after the sintering temperature (preliminary process and sintering process).

(3)焼結工程は、加熱された焼結体を強制冷却する冷却工程を備えると好ましい。これにより、焼結体の金属組織の粗大化等を抑制でき、ひいてはその機械的特性の向上を図れる。なお、強制冷却は、例えば、炉内に冷媒ガス(N、Ar等)を導入して行うことができる。 (3) The sintering step preferably includes a cooling step for forcibly cooling the heated sintered body. Thereby, the coarsening etc. of the metal structure of a sintered compact can be suppressed, and the improvement of the mechanical characteristic can be aimed at by extension. Note that the forced cooling can be performed, for example, by introducing a refrigerant gas (N 2 , Ar, etc.) into the furnace.

《鉄基焼結材》
本発明の鉄基焼結材は、緻密化されて高密度であるため、優れた機械的特性(剛性、強度等)を発揮する。特に本発明の鉄基焼結材は、硬質(高剛性)な化合物(TiN、VNなどの窒素化合物、TiC、VCなどの炭素化合物等)を内包するため、その密度に応じた高いヤング率を発揮する。なお、本発明の鉄基焼結材は、(Ti、V)Cが(Ti、V)Nへ変化して緻密化が図られるため、焼結体全体を100質量%(単に「%」という。)として、Nを0.4〜3%、0.5〜2.5%さらには0.8〜2%含むことになる。但し、本発明に係る焼結体に含まれるNの存在形態は(Ti、V)Nに限らない。
《Iron-based sintered material》
Since the iron-based sintered material of the present invention is densified and has a high density, it exhibits excellent mechanical properties (rigidity, strength, etc.). In particular, since the iron-based sintered material of the present invention includes a hard (high rigidity) compound (nitrogen compounds such as TiN and VN, carbon compounds such as TiC and VC), it has a high Young's modulus corresponding to its density. Demonstrate. In the iron-based sintered material of the present invention, since (Ti, V) C changes to (Ti, V) N and densification is achieved, the entire sintered body is 100% by mass (simply referred to as “%”). .), N is contained in an amount of 0.4 to 3%, 0.5 to 2.5%, and further 0.8 to 2%. However, the presence form of N contained in the sintered body according to the present invention is not limited to (Ti, V) N.

本発明の鉄基焼結材は、その用途を問わないが、高剛性が要求される各種部材、特に形状が比較的複雑でニアネットシェイプにより生産コストを削減できる部材に好適である。例えば、自動車等のエンジン部品(例えばコンロッド)、変速機部品、シャーシ部品、サスペンション部品、各種のシャフト類やプーリー類等に本発明の鉄基焼結材が用いられると好ましい。   The iron-based sintered material of the present invention is suitable for various members that require high rigidity, particularly for members that have a relatively complicated shape and can reduce production costs by a near net shape. For example, the iron-based sintered material of the present invention is preferably used for engine parts (for example, connecting rods) for automobiles, transmission parts, chassis parts, suspension parts, various shafts, pulleys, and the like.

原料粉末の配合、成形圧力、焼結条件(雰囲気、温度)等を種々変更した試料(成形体および焼結体)を製造し、それらの相対密度、寸法変化、重量変化、ヤング率等を測定した。これらに基づいて、本発明の内容をさらに具体的に説明する。   Manufacture samples (molded body and sintered body) with various changes in raw material powder composition, molding pressure, sintering conditions (atmosphere, temperature), etc., and measure their relative density, dimensional change, weight change, Young's modulus, etc. did. Based on these, the content of the present invention will be described more specifically.

《試料の製造》
[原料粉末]
(1)鉄基粉末
先ず、以下に示す4種類の鉄基粉末を用意した。
(i) 純Fe粉
(ヘガネスAB社製ASC100.29/比重:7.86g/cm)、
(ii) Fe―Mo合金粉:Fe―1.5%Mo
(ヘガネスAB社製Astaloy Mo/比重:7.86g/cm)、
(iii) Fe―Cr系合金粉:Fe―1.5%Cr―0.2%Mo
(ヘガネスAB社製Astaloy CrL/比重:7.82g/cm)、
(iv) SKH57粉:Fe―1.3%C―0.34%Si―0.34%Mn―4%Cr―3.5%Mo―9.9%W―3.3%V―10%Co
(JIS 高速度工具鋼/比重:8.26g/cm
<Production of sample>
[Raw material powder]
(1) Iron-based powder First, the following four types of iron-based powders were prepared.
(i) Pure Fe powder
(ASC100.29 / specific gravity: 7.86 g / cm 3 manufactured by Höganäs AB),
(ii) Fe-Mo alloy powder: Fe-1.5% Mo
(Astaloy Mo manufactured by Höganäs AB / specific gravity: 7.86 g / cm 3 ),
(iii) Fe-Cr alloy powder: Fe-1.5% Cr-0.2% Mo
(Astaloy CrL / specific gravity: 7.82 g / cm 3 manufactured by Höganäs AB),
(iv) SKH57 powder: Fe—1.3% C—0.34% Si—0.34% Mn—4% Cr—3.5% Mo—9.9% W—3.3% V—10% Co
(JIS high-speed tool steel / specific gravity: 8.26 g / cm 3 )

SKH57粉は平均粒径:11μm、他の鉄基粉末は粒度:―212μmであり、いずれの粉末も入手したまま用いた。なお、各粉末の組成(%)は、いずれも質量割合を意味する(以下同様)。後述する原料粉末の配合割合や含有組成も同様に質量割合である。   SKH57 powder had an average particle size of 11 μm, and other iron-based powders had a particle size of −212 μm, and all powders were used as received. The composition (%) of each powder means a mass ratio (the same applies hereinafter). The blending ratio and content composition of the raw material powder described later are also mass ratios.

(2)化合物粉末
次に、以下に示す5種類の化合物粉末を用意した。
(i) TiC粉末:Ti―19.8%C
(平均粒径:1.6μm/比重:4.93g/cm
(ii) VC粉末:V―16.9%C
(平均粒径:1.4μm/比重:5.43g/cm
(iii) TiC―TiN粉末:Ti―9.9%C―10.7%N
(平均粒径:1.4μm/比重:5.19g/cm
(iv) TiN粉末:Ti―21.9%N
(平均粒径:1.3μm/比重:5.44g/cm
(v) Si粉末:Si―40%N
(平均粒径:3.2μm/比重:3.44g/cm
なお、Si粉末はデンカ株式会社製であり、他の化合物粉末は日本新金属株式会社製である。
(2) Compound powder Next, the following five types of compound powder were prepared.
(i) TiC powder: Ti-19.8% C
(Average particle diameter: 1.6 μm / specific gravity: 4.93 g / cm 3 )
(ii) VC powder: V-16.9% C
(Average particle diameter: 1.4 μm / specific gravity: 5.43 g / cm 3 )
(iii) TiC-TiN powder: Ti-9.9% C-10.7% N
(Average particle diameter: 1.4 μm / specific gravity: 5.19 g / cm 3 )
(iv) TiN powder: Ti-21.9% N
(Average particle diameter: 1.3 μm / specific gravity: 5.44 g / cm 3 )
(v) Si 3 N 4 powder: Si-40% N
(Average particle diameter: 3.2 μm / specific gravity: 3.44 g / cm 3 )
Si 3 N 4 powder is manufactured by Denka Co., Ltd., and other compound powders are manufactured by Nippon Shin Metal Co., Ltd.

(3)さらに、黒鉛(Gr)粉末:日本黒鉛工業株式会社製JCPB(平均粒径:5.1μm/比重:2.25g/cm)も用意した。 (3) Further, graphite (Gr) powder: JCPB (average particle diameter: 5.1 μm / specific gravity: 2.25 g / cm 3 ) manufactured by Nippon Graphite Industry Co., Ltd. was also prepared.

[混合工程]
一種の鉄基粉末のみを用いる場合を除き、所望の配合割合に秤量した各粉末を乳鉢で3分間混合した後、さらにボールミルで30分間回転混合した。こうして得られた混合粉末を原料粉末として用いた。
[Mixing process]
Except for the case where only one kind of iron-based powder was used, each powder weighed to a desired blending ratio was mixed for 3 minutes in a mortar, and further rotated and mixed for 30 minutes by a ball mill. The mixed powder thus obtained was used as a raw material powder.

[成形工程]
金型潤滑温間加圧成形法(特許3309970号公報参照)により原料粉末を加圧成形して成形体(φ14×10mm)を製造した。成形圧力は、392MPa、588MPaまたは784MPaのいずれかとした。
[Molding process]
A raw material powder was pressure-molded by a mold lubrication warm pressure molding method (see Japanese Patent No. 3309970) to produce a compact (φ14 × 10 mm). The molding pressure was either 392 MPa, 588 MPa or 784 MPa.

[焼結工程]
(1)各成形体をバッチ式焼結炉で焼結した。焼結雰囲気は、真空雰囲気(1〜5×10-2Pa)または窒素(N)雰囲気とした。窒素雰囲気は、一定量(5リットル/分)の窒素ガスを炉内へ導入し、そのガス圧を100〜102kPaに調整して構成した。
[Sintering process]
(1) Each compact was sintered in a batch-type sintering furnace. The sintering atmosphere was a vacuum atmosphere (1-5 × 10 −2 Pa) or a nitrogen (N 2 ) atmosphere. The nitrogen atmosphere was configured by introducing a certain amount (5 liters / minute) of nitrogen gas into the furnace and adjusting the gas pressure to 100 to 102 kPa.

焼結温度は、1250℃、1200℃または1150℃のいずれかとした。その焼結温度を保持する均熱保持時間(焼結時間)は30分間(0.5時間)とした。その焼結時間経過後の加熱状態にある焼結体は、冷媒(ガス)を吹き付けて60℃位まで急冷(冷却速度:約90℃/分)した(冷却工程)。この際、真空雰囲気で焼結したときはAr、窒素雰囲気で焼結したときはNを冷媒とした。 The sintering temperature was either 1250 ° C, 1200 ° C or 1150 ° C. The soaking time (sintering time) for maintaining the sintering temperature was 30 minutes (0.5 hours). The sintered body in a heated state after the sintering time passed was sprayed with a refrigerant (gas) and rapidly cooled to about 60 ° C. (cooling rate: about 90 ° C./min) (cooling step). At this time, Ar was used as a refrigerant when sintered in a vacuum atmosphere, and N 2 was used as a refrigerant when sintered in a nitrogen atmosphere.

(2)窒素雰囲気中で焼結するときは、上述の焼結工程を行う前に予備工程を行った。予備工程は、上述した窒素雰囲気の焼結炉内に成形体を載置した状態で、焼結温度に至る昇温過程中の一定温度(1100℃)で一定時間(30分間)保持して行った。 (2) When sintering in a nitrogen atmosphere, a preliminary process was performed before performing the above-described sintering process. The preliminary process is performed by holding the molded body in the above-described sintering furnace in a nitrogen atmosphere and holding at a constant temperature (1100 ° C.) during the temperature rising process up to the sintering temperature for a certain time (30 minutes). It was.

《測定》
(1)密度、重量変化、寸法変化、
各試料の成形体と焼結体について、先ず、寸法および重量を実測して、嵩密度(ρ)、焼結前後の寸法(高さ、直径)と重量の変化をそれぞれ求めた。
<Measurement>
(1) density, weight change, dimensional change,
For the compact and sintered body of each sample, first, the dimensions and weight were measured, and the changes in bulk density (ρ), dimensions before and after sintering (height, diameter), and weight were determined.

嵩密度(ρ)と真密度(ρ)に基づいて、各試料の相対密度を算出した。なお、真密度(ρ)には、各粉末の配合組成と比重に基づいて算出したポアフリー密度(PFD)を用いた。 Based on the bulk density (ρ) and the true density (ρ 0 ), the relative density of each sample was calculated. For the true density (ρ 0 ), a pore-free density (PFD) calculated based on the blend composition and specific gravity of each powder was used.

また、焼結後の寸法から焼結前の寸法(成形体の寸法)を引いた差分を、その焼結前の寸法で除して焼結前後の寸法変化率を求めた。寸法変化率は、高さと直径の両方について算出した。   Further, the difference between the dimensions after sintering minus the dimensions before sintering (dimensions of the molded body) was divided by the dimensions before sintering to obtain the dimensional change rate before and after sintering. The rate of dimensional change was calculated for both height and diameter.

さらに、焼結後の重量から焼結前の重量(成形体の重量)を引いた差分を、その焼結前の重量で除して焼結前後の重量変化率も求めた。   Furthermore, the weight change rate before and after sintering was determined by dividing the difference obtained by subtracting the weight before sintering (weight of the compact) from the weight after sintering by the weight before sintering.

(2)ヤング率
各試料に係る焼結体(試験片)のヤング率を超音波パルス法により求めた。具体的にいうと、縦波用および横波用の振動子を用いて試験片へ超音波パルスを伝播させ、その試験片内を伝播する縦波及び横波の伝播速度からヤング率を算出した。
(2) Young's modulus The Young's modulus of the sintered body (test piece) according to each sample was determined by an ultrasonic pulse method. Specifically, the Young's modulus was calculated from the propagation speed of the longitudinal wave and the transverse wave propagating through the test piece by using the longitudinal wave and transverse wave vibrators to propagate the ultrasonic pulse.

(3)N量
一部の試料について、焼結体中に含まれるN量(質量%)を測定した。測定は、酸素・窒素分析装置(株式会社堀場製作所製 EMGA−650)を用いて、不活性ガス中溶融−熱伝導度法により行った。
(3) N amount About some samples, N amount (mass%) contained in a sintered compact was measured. The measurement was carried out using an oxygen / nitrogen analyzer (EMGA-650, manufactured by Horiba, Ltd.) by an inert gas melting-thermal conductivity method.

《観察》
一部の試料(No.B12、B31)について、焼結体(金属組織)中に含まれる各元素の分布を電界放出型電子線マイクロアナライザー(FE−EPMA/日本電子株式会社製 JXA−8500F)で分析した。
<< Observation >>
For some samples (No. B12, B31), the distribution of each element contained in the sintered body (metal structure) was measured using a field emission electron beam microanalyzer (FE-EPMA / JXA-8500F manufactured by JEOL Ltd.). Analyzed with

《評価》
各試料の製造条件と特性等を各表1〜6にまとめて示した。また、各試料の特性等をまとめたグラフを各図1A〜12Bに示した。これらに基づいて、本発明の特徴を以下に具体的に説明する。なお、各表に示した含有組成は、各粉末の組成と配合割合に基づいて、原料粉末中に含まれるC、Ti、VまたはNの質量割合を換算して示したものである。
<Evaluation>
The production conditions and characteristics of each sample are summarized in Tables 1 to 6. Moreover, the graph which put together the characteristic etc. of each sample was shown to each FIG. Based on these, the features of the present invention will be specifically described below. In addition, the containing composition shown to each table | surface converts and shows the mass ratio of C, Ti, V, or N contained in raw material powder based on the composition and mixture ratio of each powder.

(1)焼結雰囲気と炭化物量(TiC量、VC量)の影響
鉄基粉末を純Fe粉として、化合物粉末(TiC粉末またはVC粉末)とGr粉末の配合割合を種々変化させた試料を、表1と表2A、2B(両者を併せて単に「表2」という。)に示した。表1には真空雰囲気で焼結した各試料を示し、表2には窒素雰囲気で焼結した各試料を示した。
(1) Influence of sintering atmosphere and carbide amount (TiC amount, VC amount) Samples with various changes in the blending ratio of compound powder (TiC powder or VC powder) and Gr powder with pure Fe powder as iron-based powder, The results are shown in Table 1 and Tables 2A and 2B (both are simply referred to as “Table 2”). Table 1 shows each sample sintered in a vacuum atmosphere, and Table 2 shows each sample sintered in a nitrogen atmosphere.

また、Gr粉末の配合割合(単に「Gr量」という。)を1.2%とした各試料について、TiC粉末の配合割合(単に「TiC量」という。)と相対密度の関係を図1Aに、Gr粉末:0.8%とした各試料について、VC粉末の配合割合(単に「VC量」という。)と相対密度の関係を図1Bに示した。図1Aおよび図1B(両者を併せて単に「図1」という。)には成形体の相対密度も併せて示した。以後、特に断らない限り、焼結体の相対密度を単に「相対密度」という。   FIG. 1A shows the relationship between the mixing ratio of TiC powder (simply referred to as “TiC amount”) and the relative density for each sample in which the mixing ratio of Gr powder (simply referred to as “Gr amount”) is 1.2%. FIG. 1B shows the relationship between the blending ratio of VC powder (simply referred to as “VC amount”) and the relative density for each sample with Gr powder: 0.8%. 1A and 1B (both are simply referred to as “FIG. 1”) also show the relative density of the molded body. Hereinafter, unless otherwise specified, the relative density of the sintered body is simply referred to as “relative density”.

先ず、図1から明らかなように、TiC粉末またはVC粉末を原料粉末中に配合した成形体を窒素雰囲気中で焼結すると、焼結体の相対密度化がTiC量またはVC量にほぼ比例して増加することがわかった。ちなみに、真空雰囲気で焼結した場合、焼結体の相対密度は成形体の相対密度とほぼ同様で、殆ど増加しないこともわかった。   First, as is apparent from FIG. 1, when a molded body in which TiC powder or VC powder is mixed in raw material powder is sintered in a nitrogen atmosphere, the relative density of the sintered body is substantially proportional to the TiC amount or the VC amount. It was found that it increased. Incidentally, it was also found that when sintered in a vacuum atmosphere, the relative density of the sintered body was almost the same as the relative density of the molded body and hardly increased.

次に、窒素雰囲気で焼結させた各試料(TiC粉末配合、Gr量:1.2%)について、焼結前後の重量変化率(ΔW)と焼結体中に含有されている窒素の質量割合(単に「N量」という。)との関係を図2に示した。図2から明らかなように、N量の増加分は焼結体中の重量の増加分とほぼ比例関係にあることがわかった。さらにいえば、真空雰囲気中で焼結したときの重量の減少分:約0.2%を考慮すると、窒素雰囲気中で焼結した焼結体中に含まれるN量は、ほぼΔW+0.2と見積り得る。   Next, for each sample (TiC powder blend, Gr amount: 1.2%) sintered in a nitrogen atmosphere, the weight change rate (ΔW) before and after sintering and the mass of nitrogen contained in the sintered body The relationship with the ratio (simply referred to as “N amount”) is shown in FIG. As is apparent from FIG. 2, it was found that the increase in the N amount is substantially proportional to the increase in the weight in the sintered body. Furthermore, considering the decrease in weight when sintered in a vacuum atmosphere: about 0.2%, the amount of N contained in the sintered body sintered in a nitrogen atmosphere is approximately ΔW + 0.2. Can be estimated.

なお、各表に示した一部の試料で、焼結体の相対密度が100%超となっている。この主な理由は、外部(窒素雰囲気)中から吸蔵したNの増分に依ると考えられる(以下、同様)。   In some of the samples shown in each table, the relative density of the sintered body is over 100%. The main reason is considered to depend on the increment of N occluded from the outside (nitrogen atmosphere) (the same applies hereinafter).

(2)Gr量の影響
表2に示した各試料に基づいて、原料粉末に配合したGr量と焼結体の相対密度またはヤング率との関係を図3A〜4Bに示した。図3A、3B(両者を併せて単に「図3」という。)は原料粉末中にTiC粉末を配合した場合であり、図4A、4B(両者を併せて単に「図4」という。)は原料粉末中にVC粉末を配合した場合である。
(2) Effect of Gr Amount Based on the respective samples shown in Table 2, the relationship between the amount of Gr blended in the raw material powder and the relative density or Young's modulus of the sintered body is shown in FIGS. 3A and 3B (both of them are simply referred to as “FIG. 3”) are cases where TiC powder is blended in the raw material powder, and FIGS. 4A and 4B (both of them are simply referred to as “FIG. 4”) are raw materials. This is a case where VC powder is blended in the powder.

図3および図4から明らかなように、原料粉末中にGr粉末を配合することにより、TiC量とVC量が少なくても、相対密度およびヤング率を十分に向上させ得ることがわかった。換言すれば、Gr量が少なくても、TiC量とVC量が多くなれば、相対密度およびヤング率を十分に向上させ得る。従って、焼結体の緻密化または高剛性化を図るために、合計したC量が本発明で規定する範囲内であると好ましいといえる。   As is apparent from FIGS. 3 and 4, it was found that the relative density and Young's modulus can be sufficiently improved by blending the Gr powder in the raw material powder even if the TiC amount and the VC amount are small. In other words, even if the amount of Gr is small, the relative density and the Young's modulus can be sufficiently improved if the amount of TiC and the amount of VC increase. Therefore, it can be said that the total amount of C is preferably within the range defined by the present invention in order to achieve densification or high rigidity of the sintered body.

(3)焼結温度の影響
純Fe粉、VC粉末およびGr粉末を配合した原料粉末からなる成形体を窒素雰囲気中で焼結するときの温度を変化させた試料を表3に示した。表2Bと表3に示した各試料に基づいて、VC量と相対密度またはヤング率との関係を図5A、5B(両者を併せて単に「図5」という。)に示した。
(3) Influence of sintering temperature Table 3 shows samples in which the temperature at which a compact formed of a raw material powder containing pure Fe powder, VC powder and Gr powder was sintered in a nitrogen atmosphere was changed. Based on the samples shown in Table 2B and Table 3, the relationship between the VC amount and the relative density or Young's modulus is shown in FIGS. 5A and 5B (both are simply referred to as “FIG. 5”).

図5から明らかなように、焼結温度が高くなると、VC量が少なくても、短時間の焼結工程で十分に高い相対密度とヤング率を実現できることがわかった。但し、焼結温度が低くても、VC量が多くなると、十分な相対密度およびヤング率が得られることもわかった。このことから、焼結温度が低く、VC量が少ない場合でも、例えば焼結時間を適切に設定すれば、相対密度およびヤング率を十分に高め得るとも言える。   As is clear from FIG. 5, it was found that when the sintering temperature is increased, a sufficiently high relative density and Young's modulus can be realized in a short sintering process even if the amount of VC is small. However, it was also found that sufficient relative density and Young's modulus can be obtained when the amount of VC increases even at a low sintering temperature. From this, it can be said that even when the sintering temperature is low and the amount of VC is small, for example, if the sintering time is set appropriately, the relative density and the Young's modulus can be sufficiently increased.

(4)鉄基粉末の影響
鉄基粉末の種類を変更した各試料を表4に示した。表2と表4に示した各試料に基づいて、TiC量またはVC量と相対密度またはヤング率との関係に及ぼす鉄基粉末の影響を図6A〜7Bに示した。図6A、6B(両者を併せて単に「図6」という。)は原料粉末中にTiC粉末を配合した場合であり、図7A、7B(両者を併せて単に「図7」という。)は原料粉末中にVC粉末を配合した場合である。
(4) Effect of iron-based powder Table 4 shows samples in which the type of iron-based powder was changed. Based on each sample shown in Table 2 and Table 4, the influence of the iron-based powder on the relationship between the TiC amount or VC amount and the relative density or Young's modulus is shown in FIGS. 6A and 6B (both are simply referred to as “FIG. 6”) are cases where TiC powder is blended in the raw material powder, and FIGS. 7A and 7B (both are simply referred to as “FIG. 7”) are raw materials. This is a case where VC powder is blended in the powder.

図6、7から明らかなように、Fe―Cr系合金粉を用いた場合に少し緻密化し易い傾向が観られるもの、基本的に、鉄基粉末の種類による影響は小さく、いずれの鉄基粉末を用いても緻密化や高剛性化を図れ得ることがわかった。   As is apparent from FIGS. 6 and 7, when the Fe—Cr alloy powder is used, there is a tendency to be slightly densified. Basically, the influence of the type of iron-based powder is small, and any iron-based powder. It has been found that densification and high rigidity can be achieved even when using.

(5)N源の影響
純Fe粉、TiC粉末およびGr粉末の他にSi粉末(N源粉末)を配合した原料粉末からなる成形体を真空雰囲気中で焼結させた試料を表5に示した。Si粉末の配合割合(単に「Si量」という。)を一定としたときのTiC量と相対密度の関係を図8に示した。またTiC量を一定としたときのSi量と相対密度またはヤング率との関係を図9A、図9B(両者を併せて単に「図9」という。)に示した。
(5) Influence of N source A sample obtained by sintering a molded body made of a raw material powder containing Si 3 N 4 powder (N source powder) in addition to pure Fe powder, TiC powder and Gr powder in a vacuum atmosphere is shown. This is shown in FIG. FIG. 8 shows the relationship between the TiC content and the relative density when the mixing ratio of the Si 3 N 4 powder (simply referred to as “Si 3 N 4 content”) is constant. Further, the relationship between the amount of Si 3 N 4 and the relative density or Young's modulus when the TiC amount is constant is shown in FIGS. 9A and 9B (both are simply referred to as “FIG. 9”).

図8、9から明らかなように、成形体中に適量なN源があれば、真空雰囲気で焼結した場合でも、窒素雰囲気で焼結した場合と同様に、焼結体の緻密化や高剛性化を図れることがわかった。   As is apparent from FIGS. 8 and 9, if there is an appropriate amount of N source in the molded body, even when sintered in a vacuum atmosphere, as in the case of sintering in a nitrogen atmosphere, densification and high It was found that rigidity could be achieved.

(6)予合金化の影響
VおよびCが予め合金化されているSKH57を鉄基粉末として、化合物粉末の種類および配合量、成形圧力、焼結雰囲気を種々変更した各試料を表6A、表6B(両者を併せて単に「表6」という。)に示した。
(6) Influence of pre-alloying Table 6A, Table 6A shows each sample in which V and C are pre-alloyed with SKH57 as an iron-based powder, and various types and amounts of compound powder, molding pressure, and sintering atmosphere are changed. 6B (both are simply referred to as “Table 6”).

先ず、真空雰囲気または窒素雰囲気で焼結した各試料について、TiC量と相対密度またはヤング率との関係を図10A、図10B(両者を併せて単に「図10」という。)に示した。図10から明らかなように、SKH57を用いて真空雰囲気で焼結すると、TiC量が増加するほど相対密度およびヤング率が逆に低下することがわかった。一方、窒素雰囲気で焼結すると、TiC量を約40質量%まで増量しても、ほぼ100%の高い相対密度が安定的に得られ、TiC量にほぼ比例してヤング率も増加することがわかった。   First, for each sample sintered in a vacuum atmosphere or a nitrogen atmosphere, the relationship between the amount of TiC and the relative density or Young's modulus is shown in FIGS. 10A and 10B (both are simply referred to as “FIG. 10”). As is clear from FIG. 10, it was found that when SKH57 was used for sintering in a vacuum atmosphere, the relative density and Young's modulus decreased as the amount of TiC increased. On the other hand, when sintered in a nitrogen atmosphere, even if the amount of TiC is increased to about 40% by mass, a high relative density of almost 100% can be stably obtained, and the Young's modulus can be increased almost in proportion to the amount of TiC. all right.

次に、成形圧力の異なる成形体を窒素雰囲気中で焼結した各試料について、TiC量と相対密度またはヤング率との関係を図11A、図11B(両者を併せて単に「図11」という。)に示した。図11から明らかなように、成形圧力が変化しても、上述したTiC量と相対密度またはヤング率との関係は維持されることがわかった。   Next, for each sample obtained by sintering compacts having different molding pressures in a nitrogen atmosphere, the relationship between the amount of TiC and the relative density or Young's modulus is simply referred to as “FIG. 11”. )Pointing out toungue. As is clear from FIG. 11, it was found that the relationship between the TiC amount and the relative density or Young's modulus described above was maintained even when the molding pressure was changed.

ちなみに、表6Aに示した試料F1と試料F4を比較すると明らかなように、原料粉末が化合物粉末を全く含まず鉄基粉末(SKH57)のみである場合でも、窒素雰囲気で焼結することにより、真空雰囲気で焼結したときよりも相対密度が約2%、重量変化率が約0.8%高くなった。このことから、窒素雰囲気中のNが予合金化された鉄基粒子中に含まれるVCとも反応して、焼結体を緻密化させるといえる。 By the way, as is clear when comparing sample F1 and sample F4 shown in Table 6A, even when the raw material powder does not contain any compound powder and is only iron-based powder (SKH57), by sintering in a nitrogen atmosphere, The relative density was about 2% and the weight change rate was about 0.8% higher than when sintered in a vacuum atmosphere. From this, it can be said that N 2 in the nitrogen atmosphere also reacts with VC contained in the iron-based particles prealloyed to densify the sintered body.

さらに、TiC以外のTi系化合物粉末(TiC―TiN粉末またはTiN粉末)を配合した原料粉末からなる成形体を窒素雰囲気で焼結した各試料について、それら化合物の配合割合(単に「化合物量」という。)と相対密度またはヤング率との関係を図12A、図12B(両者を併せて単に「図12」という。)に示した。図12から明らかなように、TiC粉末以外にTiC―TiN粉末またはTiN粉末を配合しても、高い相対密度が得られ、ヤング率を増加させ得ることもわかる。但し、C含有量が多い化合物粉末ほど、焼結体の緻密化や高剛性化を図り易いこともわかった。   Furthermore, for each sample obtained by sintering a molded body made of a raw material powder containing a Ti-based compound powder other than TiC (TiC-TiN powder or TiN powder) in a nitrogen atmosphere, the compounding ratio of these compounds (simply referred to as “compound amount”) .) And the relative density or Young's modulus are shown in FIGS. 12A and 12B (both are simply referred to as “FIG. 12”). As is clear from FIG. 12, it can be seen that even when a TiC—TiN powder or TiN powder is blended in addition to the TiC powder, a high relative density can be obtained and the Young's modulus can be increased. However, it was also found that the compound powder having a higher C content is easier to achieve densification and higher rigidity of the sintered body.

(7)金属組織
TiCを配合した試料B12とVCを配合した試料B31との各焼結体をFE−EPMAで観察した結果を、図13Aと図13B(両者を併せて単に「図13」という。)にそれぞれ示した。図13から明らかなように、TiCまたはVCの分布とNの分布とが一致していることがわかった。これらの結果から、原料粉末中に存在していた炭化物の一部が窒化物、炭窒化物またはそれらの混合物に変化することにより、Fe―C系液相が出現して焼結体が緻密化されたといえる。
(7) Metal structure The result of observing each sintered body of the sample B12 containing TiC and the sample B31 containing VC by FE-EPMA is shown in FIG. 13A and FIG. 13B (both are simply referred to as “FIG. 13”). .) Respectively. As is clear from FIG. 13, it was found that the TiC or VC distribution and the N distribution coincided. From these results, part of the carbide that was present in the raw material powder changed to nitride, carbonitride, or a mixture of them, and the Fe-C liquid phase appeared and the sintered body became dense. It can be said that it was done.

以上、多数の試料に基づく評価、分析等により、本発明に規定した範囲内で鉄基焼結材の緻密化や高剛性化を図れることが確認された。   As described above, it has been confirmed by the evaluation, analysis, and the like based on a large number of samples that the iron-based sintered material can be densified and highly rigid within the range defined in the present invention.

Claims (12)

鉄基粉末に化合物粉末が混在した原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、
前記化合物粉末の少なくとも一部は、Tiおよび/またはVを含む炭素化合物からなり、
前記原料粉末は、該原料粉末全体を100質量%(単に「%」という。)として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、
前記焼結工程は、窒素を含有した焼結雰囲気中で、前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法。
A method for producing an iron-based sintered material comprising a sintering step of heating a raw material powder compact in which compound powder is mixed with iron-based powder into a sintered body,
At least a part of the compound powder is composed of a carbon compound containing Ti and / or V,
The raw material powder includes 100% by mass (hereinafter simply referred to as “%”) of the raw material powder, C includes 1.5 to 10%, and Ti and / or V in total 2.5 to 36%,
The said sintering process is a manufacturing method of the iron-based sintered material which is a process of heating the said molded object at the sintering temperature of 1140-1350 degreeC in the sintering atmosphere containing nitrogen.
鉄基粉末に化合物粉末が混在した原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、
前記化合物粉末の少なくとも一部は、Tiおよび/またはVを含む炭素化合物からなり、
前記原料粉末は、さらに窒素源粉末を含むと共に、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、
前記焼結工程は、前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法。
A method for producing an iron-based sintered material comprising a sintering step of heating a raw material powder compact in which compound powder is mixed with iron-based powder into a sintered body,
At least a part of the compound powder is composed of a carbon compound containing Ti and / or V,
The raw material powder further contains a nitrogen source powder, the total raw material powder is 100%, C is 1.5 to 10%, and Ti and / or V is 2.5 to 36% in total,
The said sintering process is a manufacturing method of the iron-based sintered material which is a process of heating the said molded object at the sintering temperature of 1140-1350 degreeC.
前記炭素化合物は、チタン炭化物、チタン炭窒化物、バナジウム炭化物またはバナジウム炭窒化物のいずれか一種以上である請求項1または2に記載の鉄基焼結材の製造方法。   The method for producing an iron-based sintered material according to claim 1, wherein the carbon compound is at least one of titanium carbide, titanium carbonitride, vanadium carbide, and vanadium carbonitride. 鉄基粉末を含む原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、
前記鉄基粉末は、Tiおよび/またはVとCを含み、
前記原料粉末は、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、
前記焼結工程は、窒素を含有した焼結雰囲気中で前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法。
A method for producing an iron-based sintered material comprising a sintering step of heating a compact of a raw material powder containing iron-based powder to form a sintered body,
The iron-based powder includes Ti and / or V and C,
The raw material powder includes 100% of the raw material powder as a whole, 1.5 to 10% of C, and 2.5 to 36% of Ti and / or V in total,
The said sintering process is a manufacturing method of the iron-based sintered material which is a process of heating the said molded object at the sintering temperature of 1140-1350 degreeC in the sintering atmosphere containing nitrogen.
鉄基粉末を含む原料粉末の成形体を加熱して焼結体とする焼結工程を備える鉄基焼結材の製造方法であって、
前記鉄基粉末は、Tiおよび/またはVとCを含み、
前記原料粉末は、さらに窒素源粉末を含むと共に、該原料粉末全体を100%として、Cを1.5〜10%と、Tiおよび/またはVを合計で2.5〜36%含み、
前記焼結工程は、前記成形体を1140〜1350℃の焼結温度で加熱する工程である鉄基焼結材の製造方法。
A method for producing an iron-based sintered material comprising a sintering step of heating a compact of a raw material powder containing iron-based powder to form a sintered body,
The iron-based powder includes Ti and / or V and C,
The raw material powder further contains a nitrogen source powder, the total raw material powder is 100%, C is 1.5 to 10%, and Ti and / or V is 2.5 to 36% in total,
The said sintering process is a manufacturing method of the iron-based sintered material which is a process of heating the said molded object at the sintering temperature of 1140-1350 degreeC.
前記原料粉末は、さらに、黒鉛粉末を含む請求項1〜5のいずれかに記載の鉄基焼結材の製造方法。   The method for producing an iron-based sintered material according to any one of claims 1 to 5, wherein the raw material powder further contains graphite powder. 前記焼結工程は、前記焼結温度で前記成形体を加熱する焼結時間を0.2〜3時間とする工程である請求項1〜6のいずれかに記載の鉄基焼結材の製造方法。   The said sintering process is a process which makes the sintering time which heats the said molded object at the said sintering temperature 0.2 to 3 hours, Manufacture of the iron-based sintered material in any one of Claims 1-6 Method. 前記焼結工程は、前記焼結温度未満の窒素含有雰囲気中に前記成形体を曝す予備工程を備える請求項1〜7のいずれかに記載の鉄基焼結材の製造方法。   The said sintering process is a manufacturing method of the iron-based sintered material in any one of Claims 1-7 provided with the preliminary | backup process which exposes the said molded object in nitrogen-containing atmosphere below the said sintering temperature. 前記成形体は、前記原料粉末を300〜1200MPaで加圧成形してなる請求項1〜8のいずれかに記載の鉄基焼結材の製造方法。   The said molded object is a manufacturing method of the iron-based sintered material in any one of Claims 1-8 formed by press-molding the said raw material powder at 300-1200 MPa. 鉄基マトリックス中に化合物粒子が分散した焼結体からなる鉄基焼結材であって、
前記化合物粒子の少なくとも一部は、Tiおよび/またはVとNとを含む窒素化合物からなり、
前記焼結体は、該焼結体全体を100質量%(単に「%」という。)として、Cを1.5〜10%と、Nを0.4〜3%と、Tiおよび/またはVを合計で2.5〜36%含むと共に、真密度(ρ)に対する嵩密度(ρ)の割合である相対密度(ρ/ρ)が93%以上である鉄基焼結材。
An iron-based sintered material comprising a sintered body in which compound particles are dispersed in an iron-based matrix,
At least a part of the compound particles comprises a nitrogen compound containing Ti and / or V and N,
The sintered body is 100% by mass (simply referred to as “%”), and C is 1.5 to 10%, N is 0.4 to 3%, Ti and / or V. together with containing 2.5 to 36% in total, the true density ([rho 0) iron-based sintered material relative density is the ratio of bulk density (ρ) (ρ / ρ 0 ) is 93% or more relative to.
前記焼結体は、ヤング率が165GPa以上である請求項10に記載の鉄基焼結材。   The iron-based sintered material according to claim 10, wherein the sintered body has a Young's modulus of 165 GPa or more. 前記化合物粒子は、さらに、チタン炭化物、チタン炭窒化物、バナジウム炭化物またはバナジウム炭窒化物のいずれか一種以上からなる炭素化合物粒子を含む請求項10または11に記載の鉄基焼結材。   The iron-based sintered material according to claim 10 or 11, wherein the compound particles further include carbon compound particles made of at least one of titanium carbide, titanium carbonitride, vanadium carbide, and vanadium carbonitride.
JP2016227155A 2016-11-22 2016-11-22 Iron-based sintered material and method for producing the same Pending JP2018083967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227155A JP2018083967A (en) 2016-11-22 2016-11-22 Iron-based sintered material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227155A JP2018083967A (en) 2016-11-22 2016-11-22 Iron-based sintered material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018083967A true JP2018083967A (en) 2018-05-31

Family

ID=62238213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227155A Pending JP2018083967A (en) 2016-11-22 2016-11-22 Iron-based sintered material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018083967A (en)

Similar Documents

Publication Publication Date Title
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP5147184B2 (en) Iron-based sintered alloy and method for producing the same
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
JP5613049B2 (en) Iron-based composite powder
JP5949952B2 (en) Method for producing iron-based sintered body
JP5929967B2 (en) Alloy steel powder for powder metallurgy
KR20170080668A (en) Alloy steel powder for powder metallurgy, and sintered body
JP5108531B2 (en) Iron-based composite powder
KR102350989B1 (en) A method for producing a sintered component and a sintered component
JP5305206B2 (en) Cemented carbide and carbide tools
JP2018016881A (en) Mixed powder for powder metallurgy, and method for producing iron-based sintered body
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JPWO2019111834A1 (en) Partially diffused alloy steel powder
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JP2018083967A (en) Iron-based sintered material and method for producing the same
JP7186144B2 (en) Iron-based alloy member
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP6942434B2 (en) Manufacturing method of high-density iron-based sintered material
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
WO2021044869A1 (en) Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member
US20070292301A1 (en) Making Sintered, Iron-Based Alloy Parts By Using Boron-Containing Master Alloys
JP2011214097A (en) Alloy-steel-powder mixed powder with small variation of sintering strength
JPH0114985B2 (en)
JP2018076582A (en) Powder high speed tool steel having fine carbide particle and manufacturing method therefor