JP2018083486A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2018083486A
JP2018083486A JP2016226777A JP2016226777A JP2018083486A JP 2018083486 A JP2018083486 A JP 2018083486A JP 2016226777 A JP2016226777 A JP 2016226777A JP 2016226777 A JP2016226777 A JP 2016226777A JP 2018083486 A JP2018083486 A JP 2018083486A
Authority
JP
Japan
Prior art keywords
vehicle
motor generator
engine
control device
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016226777A
Other languages
Japanese (ja)
Other versions
JP6597567B2 (en
JP2018083486A5 (en
Inventor
征輝 西山
Masateru Nishiyama
征輝 西山
宇鋒 寿
Yu Feng Shou
宇鋒 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016226777A priority Critical patent/JP6597567B2/en
Priority to PCT/JP2017/041985 priority patent/WO2018097170A1/en
Priority to CN201780071860.6A priority patent/CN109996712B/en
Publication of JP2018083486A publication Critical patent/JP2018083486A/en
Publication of JP2018083486A5 publication Critical patent/JP2018083486A5/ja
Application granted granted Critical
Publication of JP6597567B2 publication Critical patent/JP6597567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device that suppresses rotation of a motor generator while maintaining an engine running and protects an inverter from overvoltage when an abnormality occurs in a main machine power supply.SOLUTION: A vehicle control device 50 is applied to a hybrid vehicle 901 including an engine 70 and an MG 60 which are power sources and a main machine battery 20 capable of exchanging power with the MG 60 via an inverter 40. The vehicle control device 50 can control an operation of the engine 70 and the MG 60 and can control a power transmission between the engine 70 and the MG 60. When abnormality of the main machine battery 20 is detected, the vehicle control device 50 shuts off a power supply relay 21 provided between the main machine battery 20 and the inverter 40, and stops a power running operation of the MG 60. Then, while maintaining a vehicle running by the engine 70, the vehicle control device 50 executes "MG rotation suppression processing" that eliminates at least one factor of increasing the MG rotation number through an operation of a vehicle and suppresses a rotation of the MG 60.SELECTED DRAWING: Figure 1

Description

本発明は、ハイブリッド車両を制御する車両制御装置に関する。   The present invention relates to a vehicle control apparatus that controls a hybrid vehicle.

従来、エンジン及びモータジェネレータを備えるハイブリッド車両において、主機バッテリの異常時に変速操作を行い、エンジンにより車両を駆動しつつモータジェネレータを回生発電させる技術が知られている。このとき発生する電圧をコントロールすることで、補機バッテリへの電力が安定して供給される。
例えば特許文献1に記載されたハイブリッド車両の制御装置は、奇数段の第1クラッチと偶数段の第2クラッチとを備えるデュアルクラッチ式の車両において、主機バッテリの異常時に最低変速段までダウンシフト操作する。
2. Description of the Related Art Conventionally, in a hybrid vehicle including an engine and a motor generator, a technique is known in which a speed change operation is performed when a main battery is abnormal, and the motor generator is regeneratively generated while the vehicle is driven by the engine. By controlling the voltage generated at this time, the power to the auxiliary battery is stably supplied.
For example, a control apparatus for a hybrid vehicle described in Patent Document 1 is a dual-clutch type vehicle including an odd-numbered first clutch and an even-numbered second clutch, and performs a downshift operation to the lowest gear position when the main battery is abnormal. To do.

特許第5855603号公報Japanese Patent No. 5855603

特許文献1の従来技術では、高速走行時のダウンシフト操作等によりモータジェネレータの回転が上昇すると、回生電力の増大によりインバータに過電圧が印加される可能性がある。その結果、インバータを構成する素子が破損するおそれがある。
本発明は、このような点に鑑みて創作されたものであり、その目的は、主機電源の異常時に、エンジン走行を維持しつつモータジェネレータの回転を抑制し、インバータを過電圧から保護する車両制御装置を提供することにある。
In the prior art disclosed in Patent Document 1, when the rotation of the motor generator increases due to a downshift operation or the like during high-speed traveling, an overvoltage may be applied to the inverter due to an increase in regenerative power. As a result, the elements constituting the inverter may be damaged.
The present invention has been created in view of the above points, and an object of the present invention is to control a vehicle that suppresses rotation of a motor generator and protects an inverter from overvoltage while maintaining engine running when the main engine power supply is abnormal. To provide an apparatus.

本発明の車両制御装置は、動力源であるエンジン(70)及びモータジェネレータ(60)、並びに、インバータ(40)を介してモータジェネレータと電力を授受可能な主機電源(20)を備えたハイブリッド車両(901、902)に適用される。この車両制御装置は、エンジン及びモータジェネレータの動作を制御し、且つ、エンジンとモータジェネレータとの間の動力伝達又はモータジェネレータと車軸(96)との間の動力伝達の少なくともいずれか一方を制御可能である。   A vehicle control apparatus according to the present invention is a hybrid vehicle including an engine (70) and a motor generator (60), which are power sources, and a main engine power source (20) capable of transferring power to and from the motor generator via an inverter (40). (901, 902). This vehicle control device controls the operation of the engine and the motor generator, and can control at least one of the power transmission between the engine and the motor generator or the power transmission between the motor generator and the axle (96). It is.

この車両制御装置は、主機電源の異常が検出されたとき、主機電源とインバータとの間に設けられた電源リレー(21)を遮断してモータジェネレータの力行動作を停止する。そして、車両制御装置は、エンジンによる車両走行を維持しつつ、車両の動作によりモータジェネレータの回転数(以下「MG回転数」)を増加させる要因を少なくとも一つ排除しモータジェネレータの回転を抑制する「MG回転抑制処理」を実行する。   When an abnormality of the main engine power supply is detected, this vehicle control device cuts off the power supply relay (21) provided between the main engine power supply and the inverter and stops the power running operation of the motor generator. The vehicle control device suppresses the rotation of the motor generator by eliminating at least one factor that increases the rotation speed of the motor generator (hereinafter referred to as “MG rotation speed”) by the operation of the vehicle while maintaining the vehicle running by the engine. “MG rotation suppression processing” is executed.

具体的に車両制御装置は、MG回転抑制処理において、モータジェネレータに直接的に伝達され、もしくは、車両の走行に伴って間接的に伝達されるエンジンの回転を抑制するか、又は、モータジェネレータの回転を直接抑制する。
MG回転抑制処理の例としては、トラクションコントロールカットの禁止、マニュアルトランスミッションモードの禁止、減速ブリッピングの禁止、高速走行時におけるダウンシフトの禁止等がある。
Specifically, the vehicle control device suppresses the rotation of the engine that is directly transmitted to the motor generator or indirectly transmitted as the vehicle travels in the MG rotation suppression process, or the motor generator Suppresses rotation directly.
Examples of MG rotation suppression processing include prohibition of traction control cut, prohibition of manual transmission mode, prohibition of deceleration blipping, prohibition of downshifting at high speeds, and the like.

本発明では、主機バッテリの異常時にモータジェネレータの力行動作を停止しつつも、エンジン走行が維持されるため、退避走行(いわゆるリンプホーム)が可能である。
その上で、MG回転抑制処理を実行することにより、エンジン又は車軸の回転がモータジェネレータに伝達されることによるMG回転数の増加を回避する。これにより、回生発電によってインバータに印加される過電圧からインバータの素子を適切に保護することができる。
In the present invention, the engine running is maintained while stopping the power running operation of the motor generator when the main battery is abnormal, so that retreat running (so-called limp home) is possible.
Then, by executing the MG rotation suppression process, an increase in the MG rotation speed due to the rotation of the engine or axle transmitted to the motor generator is avoided. Thereby, the element of an inverter can be appropriately protected from the overvoltage applied to an inverter by regenerative power generation.

また、車両制御装置のインバータ制御部は、インバータ制御モードとして、MG回転数及びコンデンサ電圧について所定の実行条件が成立するとき、電圧制御を実行する。これにより、例えばインバータから補機バッテリに所望の電力を供給することができるため、退避走行中にスタータや電動パワーステアリング装置等の機能を確保することができる。一方、電圧制御実行条件が成立しないとき、インバータ制御部はゲート遮断を実行する。   Moreover, the inverter control part of a vehicle control apparatus performs voltage control, when predetermined execution conditions are satisfied about MG rotation speed and a capacitor | condenser voltage as inverter control mode. Thereby, for example, since desired power can be supplied from the inverter to the auxiliary battery, functions such as a starter and an electric power steering device can be ensured during the retreat travel. On the other hand, when the voltage control execution condition is not satisfied, the inverter control unit executes gate cutoff.

第1実施形態の車両制御装置が適用される車両の概略構成図。1 is a schematic configuration diagram of a vehicle to which a vehicle control device of a first embodiment is applied. 図1の車両における制御システムの構成図。The block diagram of the control system in the vehicle of FIG. 主機バッテリ異常時処理の全体を示すメインフローチャート。The main flowchart which shows the whole process at the time of main machine battery abnormality. 図3のMG回転抑制処理のサブフローチャート。FIG. 4 is a sub flowchart of the MG rotation suppression process of FIG. 3. 電圧制御及びゲート遮断でのMG回転数とコンデンサ電圧との特性図。The characteristic view of MG rotation speed and capacitor voltage in voltage control and gate interruption | blocking. MG回転数の変化による電圧制御とゲート遮断との切替えを示す図。The figure which shows the switching of voltage control and gate interruption | blocking by the change of MG rotation speed. 主機バッテリ異常時の第1の動作例を示すタイムチャート。The time chart which shows the 1st operation example at the time of main machine battery abnormality. 主機バッテリ異常時の第2の動作例を示すタイムチャート。The time chart which shows the 2nd operation example at the time of main machine battery abnormality. 第2実施形態の車両制御装置が適用されるアクスルスプリット方式の車両の概略構成図。The schematic block diagram of the vehicle of an axle split system to which the vehicle control apparatus of 2nd Embodiment is applied. アクスルスプリット方式の車両でのMG回転抑制の構成例を示す図。The figure which shows the structural example of MG rotation suppression in the vehicle of an axle split system.

以下、車両制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。また、第1及び第2実施形態を包括して「本実施形態」という。
本実施形態の車両制御装置は、動力源としてエンジン及びモータジェネレータ(以下、「MG」)を備えるハイブリッド車両に適用される。第1実施形態は、エンジンとMGとが協働して同一の駆動輪を駆動する通常のハイブリッド車両に適用される。第2実施形態は、エンジンとMGとがそれぞれ別の駆動輪を駆動するアクスルスプリット方式の車両に適用される。
Hereinafter, a plurality of embodiments of a vehicle control device will be described based on the drawings. In a plurality of embodiments, substantially the same configuration is denoted by the same reference numeral and description thereof is omitted. The first and second embodiments are collectively referred to as “this embodiment”.
The vehicle control device of the present embodiment is applied to a hybrid vehicle including an engine and a motor generator (hereinafter “MG”) as power sources. The first embodiment is applied to a normal hybrid vehicle in which the engine and the MG cooperate to drive the same drive wheel. The second embodiment is applied to an axle split type vehicle in which an engine and an MG drive different drive wheels.

(第1実施形態)
第1実施形態の車両制御装置について、図1〜図8を参照して説明する。
図1に示すように、車両901に適用される車両制御システム10は、エンジン70、MG60、主機バッテリ20、インバータ40、動力伝達系のクラッチ81、82、変速機84、及び、車両制御装置50等を含む。
エンジン70は、燃料を燃焼させて発生する熱エネルギーを回転駆動力に変換する。
MG60は、主機バッテリ20から供給される電力を消費してトルクを発生する力行動作、及び、エンジン70又は駆動軸94側から伝達されるトルクにより発電した電力を主機バッテリ20に回生する回生動作を行う。本実施形態のMG60は、永久磁石式同期型の三相交流電動発電機である。
(First embodiment)
The vehicle control apparatus of 1st Embodiment is demonstrated with reference to FIGS.
As shown in FIG. 1, a vehicle control system 10 applied to a vehicle 901 includes an engine 70, an MG 60, a main battery 20, an inverter 40, power transmission clutches 81 and 82, a transmission 84, and a vehicle control device 50. Etc.
The engine 70 converts thermal energy generated by burning fuel into rotational driving force.
The MG 60 performs a power running operation for generating torque by consuming electric power supplied from the main battery 20, and a regenerative operation for regenerating power generated by the torque transmitted from the engine 70 or the drive shaft 94 side to the main battery 20. Do. The MG 60 of this embodiment is a permanent magnet type synchronous three-phase AC motor generator.

「主機電源」としての主機バッテリ20は、ニッケル水素電池、リチウムイオン電池等の充放電可能な二次電池により構成される。主機バッテリ20の正極は、高電位ラインPに接続され、主機バッテリ20の負極は、低電位ラインNに接続される。
なお、主機バッテリ20を「高圧バッテリ」と称し、後述の補機バッテリ32を「低圧バッテリ」と称してもよい。また、バッテリに代えて、電気二重層キャパシタ等の蓄電装置が主機電源として用いられてもよい。
The main battery 20 as the “main power supply” is constituted by a chargeable / dischargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery. The positive electrode of the main battery 20 is connected to the high potential line P, and the negative electrode of the main battery 20 is connected to the low potential line N.
The main battery 20 may be referred to as a “high voltage battery”, and an auxiliary battery 32 described later may be referred to as a “low voltage battery”. Further, instead of the battery, a power storage device such as an electric double layer capacitor may be used as the main power source.

主機バッテリ20とインバータ40との間には、電力経路を遮断可能な電源リレー21が設けられている。電源リレー21は、いわゆるシステムメインリレーに相当し、高電位ラインPに設けられる高電位側リレー22、及び、低電位ラインNに設けられる低電位側リレー23を含む。高電位側リレー22及び低電位側リレー23は、機械式リレー、半導体リレーのいずれでもよい。   A power relay 21 that can cut off the power path is provided between the main battery 20 and the inverter 40. The power supply relay 21 corresponds to a so-called system main relay, and includes a high potential side relay 22 provided on the high potential line P and a low potential side relay 23 provided on the low potential line N. The high potential side relay 22 and the low potential side relay 23 may be either a mechanical relay or a semiconductor relay.

インバータ40は、主機バッテリ20側の直流電力と、MG60側の三相交流電力とを相互に変換する。図2に示すように、インバータ40は、三相上下アームのスイッチング素子41−46により構成される。詳しくは、スイッチング素子41、42、43は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子44、45、46は、それぞれU相、V相、W相の下アームのスイッチング素子である。本実施形態のスイッチング素子41−46は、IGBT(絶縁ゲートバイポーラトランジスタ)である。また、スイッチング素子41−46には、低電位側のエミッタ側から高電位側のコレクタ側への通電を許容するフライホイールダイオードが付随している。   Inverter 40 mutually converts DC power on main battery 20 side and three-phase AC power on MG 60 side. As shown in FIG. 2, the inverter 40 includes switching elements 41-46 of three-phase upper and lower arms. Specifically, switching elements 41, 42, and 43 are U-arm, V-phase, and W-phase upper arm switching elements, respectively, and switching elements 44, 45, and 46 are respectively under the U-phase, V-phase, and W-phase. This is an arm switching element. The switching elements 41 to 46 of the present embodiment are IGBTs (insulated gate bipolar transistors). Further, the switching elements 41 to 46 are accompanied by flywheel diodes that allow energization from the low potential emitter side to the high potential collector side.

インバータ40の主機バッテリ20側には、入力電圧を平滑化するコンデンサ25が設けられる。コンデンサ25の両端電圧、すなわち、高電位ラインPと低電位ラインNとの電位差をコンデンサ電圧Vcという。コンデンサ電圧Vcが耐圧上限値を上回ると、インバータ40のスイッチング素子41−46等の素子が破損するおそれがある。
本実施形態において、例えば図示しない電圧センサによりコンデンサ電圧Vcが監視されてもよい。
A capacitor 25 for smoothing the input voltage is provided on the main battery 20 side of the inverter 40. A voltage across the capacitor 25, that is, a potential difference between the high potential line P and the low potential line N is referred to as a capacitor voltage Vc. If the capacitor voltage Vc exceeds the upper limit of the withstand voltage, elements such as the switching elements 41 to 46 of the inverter 40 may be damaged.
In the present embodiment, for example, the capacitor voltage Vc may be monitored by a voltage sensor (not shown).

また、図1に示す構成例では、電源リレー21とインバータ40との間の電力経路から分岐した経路にDCDCコンバータ30が接続されている。なお、図2には、DCDCコンバータ30の図示を省略する。
DCDCコンバータ30は、主機バッテリ20の高圧電力を降圧し、低圧電力を出力する。補機バッテリ32は、例えば鉛蓄電池等の二次電池で構成され、DCDCコンバータ30が出力した低圧電力により充電される。補機バッテリ32は、車両の各種補機負荷33に低圧電力を供給する。補機負荷33には、例えばエンジンのスタータ、電動パワーステアリング装置、ブレーキアクチュエータ等、退避走行時に必要な機能を有するものが含まれる。
In the configuration example shown in FIG. 1, the DCDC converter 30 is connected to a path branched from the power path between the power supply relay 21 and the inverter 40. Note that the illustration of the DCDC converter 30 is omitted in FIG.
DCDC converter 30 steps down the high voltage power of main battery 20 and outputs the low voltage power. The auxiliary battery 32 is composed of a secondary battery such as a lead storage battery, for example, and is charged with the low-voltage power output from the DCDC converter 30. The auxiliary battery 32 supplies low voltage power to various auxiliary loads 33 of the vehicle. The auxiliary machine load 33 includes, for example, an engine starter, an electric power steering device, a brake actuator, and the like that have functions necessary for retreat travel.

エンジン側クラッチ81は、エンジン70の出力軸71に設けられ、エンジン70とMG60との間の動力伝達を断続する。
車軸側クラッチ82は、MG60の出力側の駆動軸94に設けられ、MG60と車軸96との間の動力伝達を断続する。変速機84は、駆動軸94に伝達される動力を変速可能である。車軸側クラッチ82及び変速機84の機能は、例えばデュアルクラッチトランスミッション(略称「DCT」)として構成されてもよい。
変速機84の出力側の駆動軸94に伝達された駆動力は、デファレンシャルギア95を介して車軸96に伝達され、駆動輪98を回転させる。
The engine-side clutch 81 is provided on the output shaft 71 of the engine 70, and interrupts power transmission between the engine 70 and the MG 60.
The axle side clutch 82 is provided on the drive shaft 94 on the output side of the MG 60, and interrupts power transmission between the MG 60 and the axle 96. The transmission 84 can change the power transmitted to the drive shaft 94. The functions of the axle side clutch 82 and the transmission 84 may be configured as, for example, a dual clutch transmission (abbreviated as “DCT”).
The driving force transmitted to the drive shaft 94 on the output side of the transmission 84 is transmitted to the axle 96 via the differential gear 95 to rotate the drive wheels 98.

図2に示すように、車両制御装置50は、複数の個別ECU52、54、57、58と、それらを統括する統括ECU51とから構成され、車両の駆動に関する種々の制御を総合的に行う。各ECUは、いずれもマイコン等を主体として構成され、CAN等の通信網を介して情報を送受信可能である。各ECUにおける処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。   As shown in FIG. 2, the vehicle control device 50 includes a plurality of individual ECUs 52, 54, 57, 58 and a general ECU 51 that controls them, and comprehensively performs various controls related to driving of the vehicle. Each ECU is composed mainly of a microcomputer or the like, and can transmit and receive information via a communication network such as CAN. The processing in each ECU may be software processing by a CPU executing a program stored in advance in a substantial memory device such as a ROM, or may be hardware processing by a dedicated electronic circuit.

図2において車両制御装置50は、統括ECU51、バッテリECU52、MG−ECU54、エンジンECU57及びトランスミッションECU(図中「T/M−ECU」)58を有する。なお、現実の車両では、図2に示すもの以外の個別ECUが更に含まれるが、図2には、本実施形態の主な動作に関連する構成や信号の入出力のみを図示する。
以下、本実施形態の主な動作に関連する機能のみを説明する。また、各ECUによる機能分担は下記に示す構成に限らず、車両制御装置50の全体として、いずれかのECUが同様の機能を実現可能であればよい。
In FIG. 2, the vehicle control device 50 includes a general ECU 51, a battery ECU 52, an MG-ECU 54, an engine ECU 57, and a transmission ECU (“T / M-ECU” in the figure) 58. The actual vehicle further includes individual ECUs other than those shown in FIG. 2, but FIG. 2 shows only the configuration and signal input / output related to the main operation of this embodiment.
Only the functions related to the main operation of this embodiment will be described below. Further, the function sharing by each ECU is not limited to the configuration shown below, and any ECU may be able to realize the same function as the entire vehicle control device 50.

統括ECU51は、バッテリECU52、MG−ECU54、エンジンECU57及びトランスミッションECU58から、各情報を取得する。また、統括ECU51は、図示しないアクセルセンサ、シフトスイッチ、車速センサ等からアクセル開度、シフト位置、車速等に関する情報を取得する。統括ECU51は、取得したこれらの情報に基づいて、車両901全体の制御を司る。そして、統括ECU51は、MG−ECU54、エンジンECU57、トランスミッションECU58に対し、それぞれ指令信号を送信する。
また、回転速度が相対的に速い車輪の回転を抑制するトラクションコントロール(以下「TRC」)を実行可能な車両において、統括ECU51は、TRC機能を運転者が任意に喪失させる「TRCカット」を禁止することができる。
The overall ECU 51 acquires each piece of information from the battery ECU 52, the MG-ECU 54, the engine ECU 57, and the transmission ECU 58. Further, the overall ECU 51 acquires information on the accelerator opening, the shift position, the vehicle speed, and the like from an accelerator sensor, a shift switch, a vehicle speed sensor, and the like (not shown). The overall ECU 51 controls the entire vehicle 901 based on the acquired information. Then, the overall ECU 51 transmits command signals to the MG-ECU 54, the engine ECU 57, and the transmission ECU 58, respectively.
Further, in a vehicle capable of executing traction control (hereinafter referred to as “TRC”) that suppresses rotation of a wheel having a relatively high rotational speed, the overall ECU 51 prohibits “TRC cut” that causes the driver to arbitrarily lose the TRC function. can do.

バッテリECU52は、主機バッテリ20の電圧、電流、温度、SOC等の主機バッテリ情報を取得し、主機バッテリ20のSOCが所定の範囲内となるように、主機バッテリ20の状態を監視する。また、バッテリECU52は、取得した主機バッテリ情報に基づいて主機バッテリ20の異常を検出する。
主機バッテリ20の異常には、電圧が正常範囲を逸脱する電圧異常、電流が上限値を超える過電流異常、及び、SOCが正常範囲を逸脱するSOC異常等がある。主機バッテリ20の異常が検出されると、バッテリECU52は、電源リレー21を遮断し、主機バッテリ20とインバータ40及びMG60とを切り離す。
The battery ECU 52 acquires main battery information such as voltage, current, temperature, and SOC of the main battery 20, and monitors the state of the main battery 20 so that the SOC of the main battery 20 is within a predetermined range. Further, the battery ECU 52 detects an abnormality of the main unit battery 20 based on the acquired main unit battery information.
The abnormality of the main battery 20 includes a voltage abnormality in which the voltage deviates from the normal range, an overcurrent abnormality in which the current exceeds the upper limit value, and an SOC abnormality in which the SOC deviates from the normal range. When an abnormality in main unit battery 20 is detected, battery ECU 52 cuts off power supply relay 21 and disconnects main unit battery 20 from inverter 40 and MG 60.

「インバータ制御部」としてのMG−ECU54は、実MGトルクTm及び実MG回転数Nmの情報を統括ECU51に通知する。また、MG−ECU54は、統括ECU51から送信されたMGトルク指令Tm*、MG回転数指令Nm*に従って、インバータ40のスイッチング素子41−46を操作することにより、MG60の動作を制御する。
ここでMG−ECU54は、例えば電流センサ64が検出したモータ電流Im、及び、回転角センサ65が検出した電気角θを取得する。そして、MG−ECU54は、相電流を座標変換したdq軸電流を用いてMGトルクTmを算出してもよいし、図示しないトルクセンサが検出したMGトルクTmを取得してもよい。また、MG−ECU54は、電気角θの検出値を時間微分してMG回転数Nmを算出してもよいし、位置センサレスの構成における推定位置に基づいてMG回転数Nmを推定してもよい。
The MG-ECU 54 as the “inverter control unit” notifies the general ECU 51 of information on the actual MG torque Tm and the actual MG rotation speed Nm. The MG-ECU 54 controls the operation of the MG 60 by operating the switching elements 41-46 of the inverter 40 in accordance with the MG torque command Tm * and the MG rotational speed command Nm * transmitted from the overall ECU 51.
Here, the MG-ECU 54 acquires, for example, the motor current Im detected by the current sensor 64 and the electrical angle θ detected by the rotation angle sensor 65. Then, the MG-ECU 54 may calculate the MG torque Tm using the dq-axis current obtained by coordinate conversion of the phase current, or may acquire the MG torque Tm detected by a torque sensor (not shown). The MG-ECU 54 may calculate the MG rotation speed Nm by differentiating the detected value of the electrical angle θ with respect to time, or may estimate the MG rotation speed Nm based on the estimated position in the position sensorless configuration. .

MG−ECU54は、力行動作での通常制御時、電流フィードバック制御やトルクフィードバック制御により演算された電圧指令値に基づいてインバータ40をPWM駆動することにより、インバータ40に所望の電力を生成させ、MG60に供給する。
また、電源リレー21の遮断後における回生動作でのインバータ制御モードについて、MG−ECU54は、「電圧制御」又は「ゲート遮断」を実行する。
The MG-ECU 54 causes the inverter 40 to generate desired power by PWM driving the inverter 40 based on the voltage command value calculated by the current feedback control and the torque feedback control during the normal control in the power running operation. To supply.
Further, regarding the inverter control mode in the regenerative operation after the power supply relay 21 is shut off, the MG-ECU 54 executes “voltage control” or “gate shut-off”.

「電圧制御」モードでは、MG−ECU54は、インバータ40の複数のスイッチング素子41−46の動作を操作してコンデンサ電圧Vcを制御する。「ゲート遮断」モードでは、MG−ECU54は、インバータ40の複数のスイッチング素子41−46を全てオフ状態とする。ゲート遮断した状態では、MG60側からの電流は、スイッチング素子41−46に付随するフライホイールダイオードを経由して低電位側から高電位側に向かって流れる。   In the “voltage control” mode, the MG-ECU 54 operates the operations of the plurality of switching elements 41-46 of the inverter 40 to control the capacitor voltage Vc. In the “gate cut-off” mode, the MG-ECU 54 turns off all of the plurality of switching elements 41-46 of the inverter 40. In the state where the gate is cut off, the current from the MG 60 side flows from the low potential side to the high potential side via the flywheel diode associated with the switching element 41-46.

エンジンECU57は、実エンジントルクTe、実エンジン回転数Neの情報を統括ECU51に通知する。また、エンジンECU57は、統括ECU51から送信されたエンジントルク指令Te*に従って、燃料噴射弁の噴射量や噴射タイミング等を操作し、エンジン70の動作を制御する。
エンジンECU57は、例えば図示しないアクセルECU等と協働し、車両の減速時にエンジン回転数Neを増加させる減速ブリッピングを禁止することができる。
The engine ECU 57 notifies the general ECU 51 of information on the actual engine torque Te and the actual engine speed Ne. Further, the engine ECU 57 controls the operation of the engine 70 by operating the injection amount and the injection timing of the fuel injection valve in accordance with the engine torque command Te * transmitted from the general ECU 51.
The engine ECU 57 can inhibit deceleration blipping that increases the engine speed Ne when the vehicle decelerates, for example, in cooperation with an accelerator ECU (not shown).

トランスミッションECU58は、トランスミッション情報(図中「T/M情報)を統括ECU51に通知する。また、トランスミッションECU58は、統括ECU51から送信されたクラッチ、変速指令に従ってクラッチ81、82、変速機84の動作を制御する。車両901においては、トランスミッションECU58は、エンジン70とMG60との間の動力伝達、及び、MG60と車軸96との間の動力伝達を制御する。   The transmission ECU 58 notifies transmission information (“T / M information” in the figure) to the general ECU 51. The transmission ECU 58 controls the operations of the clutches 81 and 82 and the transmission 84 in accordance with the clutch and shift command transmitted from the general ECU 51. In vehicle 901, transmission ECU 58 controls power transmission between engine 70 and MG 60 and power transmission between MG 60 and axle 96.

例えば、トランスミッションECU58は、クラッチ81、82に対し、係合、半係合又は開放の状態を切り替えるように指令する。また、トランスミッションECU58は、変速機84に対し、シフト位置を切り替えるように指令したり、ダウンシフトを禁止したりする。さらに、車両901がオートマチックトランスミッションモードとマニュアルトランスミッションモード(以下「MTモード」)とを切替可能な車両である場合、トランスミッションECU58は、MTモードを禁止することができる。   For example, the transmission ECU 58 instructs the clutches 81 and 82 to switch between the engaged state, the semi-engaged state, and the released state. Further, the transmission ECU 58 instructs the transmission 84 to switch the shift position or prohibits downshifting. Further, when vehicle 901 is a vehicle that can switch between an automatic transmission mode and a manual transmission mode (hereinafter referred to as “MT mode”), transmission ECU 58 can prohibit the MT mode.

ところで、主機バッテリ20の異常が検出され、電源リレー21が遮断された後、MG60が発電した電力は、主機バッテリ20に回生されず、コンデンサ25に充電されるため、コンデンサ電圧Vcが上昇する。このとき、MG回転数Nmが高く回生発電量が大きいと、コンデンサ電圧Vcが過大となるロードダンプが発生する。このロードダンプによる過電圧で、スイッチング素子41−46、コンデンサ25、及び、DCDCコンバータ30の素子等が破損するおそれがある。   By the way, after the abnormality of the main battery 20 is detected and the power supply relay 21 is cut off, the electric power generated by the MG 60 is not regenerated in the main battery 20 but is charged in the capacitor 25, so that the capacitor voltage Vc increases. At this time, when the MG rotation speed Nm is high and the regenerative power generation amount is large, a load dump in which the capacitor voltage Vc becomes excessive occurs. The overvoltage due to the load dump may damage the switching elements 41-46, the capacitor 25, the elements of the DCDC converter 30, and the like.

そこで、車両制御装置50は、主機バッテリ20の異常により電源リレー21を遮断した後、エンジン70による車両走行を維持して退避走行を可能としつつ、MG回転数Nmの増加を抑制するための「MG回転抑制処理」を実行する。このMG回転抑制処理では、車両制御装置50は、車両の動作によりMG回転数を増加させる要因を少なくとも一つ排除する。具体的に車両制御装置50は、MG60に直接的に伝達される、もしくは、車両の走行に伴って間接的に伝達されるエンジン70の回転を抑制するか、又は、MG60の回転を直接抑制する。   Therefore, the vehicle control device 50 cuts off the power supply relay 21 due to an abnormality of the main battery 20, and then maintains the vehicle traveling by the engine 70 and enables retreat traveling, while suppressing an increase in the MG rotation speed Nm. "MG rotation suppression process" is executed. In this MG rotation suppression process, the vehicle control device 50 eliminates at least one factor that increases the MG rotation speed due to the operation of the vehicle. Specifically, vehicle control device 50 suppresses rotation of engine 70 that is directly transmitted to MG 60 or indirectly transmitted as the vehicle travels, or directly suppresses rotation of MG 60. .

続いて、車両制御装置50による主機バッテリ異常時処理について、図3のメインフローチャート、図4のサブフローチャート、及び、図5、図6を参照して説明する。フローチャートの説明で記号Sは「ステップ」を表す。
S1のレデイオンの後、S2で、MG−ECU54はインバータ40を通常制御する。S2による通常制御は、S3で、バッテリECU52により主機バッテリ異常が検出されるまで続けられる。
Subsequently, the main engine battery abnormality process by the vehicle control device 50 will be described with reference to the main flowchart of FIG. 3, the sub-flowchart of FIG. 4, and FIGS. 5 and 6. In the description of the flowchart, the symbol S represents “step”.
After the ready ion of S1, the MG-ECU 54 normally controls the inverter 40 in S2. The normal control by S2 is continued until the main battery abnormality is detected by the battery ECU 52 in S3.

S3で主機バッテリ異常が検出されると、S4では、その時点のMGトルクTmを閾値Tmthと比較し、現在のMG60の動作状態が力行であるか回生であるかを判別する。MGトルクTmが閾値Tmthより大きくS4でYESのとき、力行と判定し、S5に移行する。MGトルクTmが閾値Tmth以下でありS4でNOのとき、回生と判定し、S6に移行する。   When the main engine battery abnormality is detected in S3, in S4, the current MG torque Tm is compared with the threshold value Tmth to determine whether the current operating state of the MG 60 is power running or regeneration. When the MG torque Tm is greater than the threshold value Tmth and the answer is YES in S4, it is determined to be power running and the process proceeds to S5. When the MG torque Tm is equal to or less than the threshold value Tmth and NO in S4, the regeneration is determined and the process proceeds to S6.

MG60の力行動作中に主機バッテリ異常が検出された場合、車両制御装置50は、S5で電源リレー21をオフする。このときコンデンサ電圧Vcが低下するため、通常制御では電圧センサのダイアグ信号が生成される。しかし、本処理では意図的に電源リレー21をオフしているのでダイアグ信号は不要である。そこで、S7でダイアグ信号がマスクされた後、MG−ECU54は、電圧制御指令の受信を待つ。そして、MG−ECU54が電圧制御指令を受信し、S8でYESと判断されると、S10のMG回転抑制処理、及び、S21のゲート遮断に移行する。   When the main engine battery abnormality is detected during the power running operation of MG 60, vehicle control device 50 turns off power supply relay 21 in S5. At this time, since the capacitor voltage Vc decreases, a diagnosis signal of the voltage sensor is generated in the normal control. However, in this process, since the power supply relay 21 is intentionally turned off, a diagnosis signal is unnecessary. Therefore, after the diagnosis signal is masked in S7, the MG-ECU 54 waits for reception of a voltage control command. And if MG-ECU54 receives a voltage control command and it is judged as YES by S8, it will transfer to the MG rotation suppression process of S10, and the gate interruption | blocking of S21.

一方、MG60の回生動作中に主機バッテリ異常が検出された場合、S6で電源リレー21をオフすると、MG60が発電した電力によりインバータ40の電圧が上昇しロードダンプが発生するため、すぐにインバータ40を遮断する必要がある。そのため、S6での電源リレーオフとともに、すぐに、S10のMG回転抑制処理、及び、S21のゲート遮断が実行される。   On the other hand, if the main engine battery abnormality is detected during the regenerative operation of MG 60, when power relay 21 is turned off in S6, the voltage of inverter 40 rises due to the power generated by MG 60 and a load dump occurs. It is necessary to shut off. Therefore, at the same time as the power relay is turned off in S6, the MG rotation suppression process in S10 and the gate cutoff in S21 are executed.

図4に示すように、S10のMG回転抑制処理では、S11にて以下の3通りの処理が行われる。
(a)TRCカット禁止フラグON
(b)MTモード禁止フラグON
(c)減速ブリッピング禁止フラグON
さらに、車速が車速閾値を上回っておりS12でYESのとき、S13で(d)の処理が行われる。
(d)ダウンシフト禁止
車速が車速閾値以下でありS12でNOのとき、S14でダウンシフトが許可される。
As shown in FIG. 4, in the MG rotation suppression process in S10, the following three processes are performed in S11.
(A) TRC cut prohibition flag ON
(B) MT mode prohibition flag ON
(C) Deceleration blipping prohibition flag ON
Further, when the vehicle speed exceeds the vehicle speed threshold value and YES in S12, the process (d) is performed in S13.
(D) Downshift prohibited When the vehicle speed is equal to or lower than the vehicle speed threshold value and NO in S12, downshift is permitted in S14.

上記の各MG回転抑制処理は、次のような目的で行われるものである。
(a)TRCでは、ある車輪が他の車輪よりも極端に回転速度が速い場合、空転したと判断し、その車輪の回転を抑制する制御を行う。仮にこの機能をカットしてしまうと、空転した車輪の回転が伝達されてMG回転数が増加するおそれがある。そこで、MG回転数の増加要因となり得るTRCカットを禁止する。
(b)MTモードでは、車両制御装置50が制御可能な範囲を超えて、運転者の人為操作によってMG回転数の増加に至るおそれがある。そこで、MG回転数の増加要因となり得るMTモードを禁止する。
Each MG rotation suppression process is performed for the following purpose.
(A) In TRC, when a certain wheel has an extremely higher rotational speed than other wheels, it is determined that the wheel has idled, and control for suppressing the rotation of the wheel is performed. If this function is cut, the rotation of the idle wheel may be transmitted to increase the MG rotation speed. Therefore, the TRC cut that can increase the MG rotation speed is prohibited.
(B) In the MT mode, the vehicle control device 50 may exceed the controllable range, and the MG rotation speed may increase due to the driver's manual operation. Therefore, the MT mode that can increase the MG rotation speed is prohibited.

(c)減速シフト時に運転者がアクセルを踏み込んでエンジン回転数を増加させる減速ブリッピングを行うと、エンジン回転の伝達によりMG回転数が増加するおそれがある。そこで、車速に依らず、MG回転数の増加要因となり得る減速ブリッピングを禁止する。
(d)特に高速走行時には、ダウンシフト自体を禁止することで、ダウンシフトに伴うエンジン回転数の増加、及び、それに伴うMG回転数の増加を防止することができる。
(C) When the driver depresses the accelerator during the deceleration shift and performs the deceleration blipping that increases the engine speed, the MG speed may increase due to the transmission of the engine speed. Therefore, deceleration blipping, which can increase the MG speed, is prohibited regardless of the vehicle speed.
(D) By prohibiting the downshift itself particularly during high-speed traveling, it is possible to prevent an increase in the engine speed accompanying the downshift and an accompanying increase in the MG speed.

図3に戻り、S21〜S24はインバータ制御の切替に関するステップである。
S21では、MG−ECU54はインバータ40をゲート遮断する。つまり、S5又はS6で電源リレー21がオフされた直後、インバータ40は、一旦ゲート遮断される。
次にS22で、電圧制御実行条件の成否が判定される。電圧制御実行条件は、MG回転数Nm及びコンデンサ電圧Vcがそれぞれの上下限値の範囲内に入っている場合に成立すると判定される。ここで、MG回転数Nmの上限値をNmH、下限値をNmLと表し、コンデンサ電圧Vcの上限値をVcH、下限値をVcLと表すと、式(1)、(2)がいずれも成立するとき、S22でYESと判断される。
NmL≦Nm≦NmH ・・・(1)
VcL≦Vc≦VcH ・・・(2)
Returning to FIG. 3, S21 to S24 are steps relating to switching of inverter control.
In S21, the MG-ECU 54 gates the inverter 40. That is, immediately after the power supply relay 21 is turned off in S5 or S6, the inverter 40 is once gate-cut.
Next, in S22, whether or not the voltage control execution condition is satisfied is determined. It is determined that the voltage control execution condition is satisfied when the MG rotation speed Nm and the capacitor voltage Vc are within the respective upper and lower limit values. Here, when the upper limit value of the MG rotation speed Nm is expressed as NmH, the lower limit value is expressed as NmL, the upper limit value of the capacitor voltage Vc is expressed as VcH, and the lower limit value is expressed as VcL, both equations (1) and (2) hold. When YES, it is determined YES in S22.
NmL ≦ Nm ≦ NmH (1)
VcL ≦ Vc ≦ VcH (2)

電圧制御実行条件が成立せず、S22でNOのとき、S21の前に戻り、ゲート遮断が継続される。
電圧制御実行条件が成立し、S22でYESのとき、S23でレディオフの有無が判定される。レディオフされた場合、S23でYESと判断され、処理ルーチンは終了する。レディオフされず、S23でNOと判断されると、S24に移行する。
S24では、MG−ECU54は、インバータ40を駆動し電圧制御を実行する。その後、S22の前に戻り、電圧制御実行条件の成否が繰り返し判定される。
If the voltage control execution condition is not satisfied and the answer is NO in S22, the process returns to before S21 and the gate interruption is continued.
When the voltage control execution condition is satisfied and YES in S22, the presence or absence of ready-off is determined in S23. If ready-off, YES is determined in S23 and the processing routine ends. If it is not ready-off and it is judged as NO in S23, it will transfer to S24.
In S24, the MG-ECU 54 drives the inverter 40 to execute voltage control. Thereafter, the process returns to before S22, and whether or not the voltage control execution condition is satisfied is repeatedly determined.

図5に示すように、ゲート遮断の場合には、MG回転数Nmとコンデンサ電圧Vcとは正の相関を有しており、MG回転数Nmが増加するほどコンデンサ電圧Vcが上昇する。
一方、電圧制御は、MG回転数Nmが下限値NmLから上限値NmHの間にあり、且つコンデンサ電圧Vcが下限値VcLから上限値VcHの間にある領域でのみ実行可能であり、この範囲では、MG−ECU54の指令に応じてコンデンサ電圧Vcが制御される。
As shown in FIG. 5, when the gate is cut off, the MG rotation speed Nm and the capacitor voltage Vc have a positive correlation, and the capacitor voltage Vc increases as the MG rotation speed Nm increases.
On the other hand, the voltage control can be executed only in a region where the MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH, and the capacitor voltage Vc is between the lower limit value VcL and the upper limit value VcH. The capacitor voltage Vc is controlled in accordance with a command from the MG-ECU 54.

また、実用上では、電圧制御実行条件領域におけるMG回転数上限値NmHを跨いで、MG回転数Nmが変化するときのハンチング防止が課題となる。本実施形態では、図6に示すように、MG回転数Nmに制御モード切替のヒステリシスが設定されている。
つまり、MG回転数Nmが増加し、電圧制御からゲート遮断に切り替えられる増速切替回転数Nx+は、上限値NmH以下の値に設定される。一方、MG回転数Nmが減少し、ゲート遮断から電圧制御に切り替えられる減速切替回転数Nx−は、増速切替回転数Nx+よりも小さい値に設定される。これにより、MG回転数Nmが上限値NmH付近にあるとき、電圧制御とゲート遮断との頻繁な切替えによって制御が不安定になることが防止される。
Further, in practical use, there is a problem of preventing hunting when the MG rotation speed Nm changes across the MG rotation speed upper limit value NmH in the voltage control execution condition region. In the present embodiment, as shown in FIG. 6, the hysteresis of control mode switching is set to the MG rotation speed Nm.
That is, the MG rotation speed Nm increases, and the acceleration switching speed Nx + that is switched from voltage control to gate cutoff is set to a value that is equal to or lower than the upper limit value NmH. On the other hand, the deceleration switching rotational speed Nx− at which the MG rotational speed Nm decreases and the gate control is switched to the voltage control is set to a value smaller than the acceleration switching rotational speed Nx +. Thereby, when the MG rotation speed Nm is in the vicinity of the upper limit value NmH, it is possible to prevent the control from becoming unstable due to frequent switching between the voltage control and the gate cutoff.

次に、図7、図8のタイムチャートを参照し、車両制御装置50による主機バッテリ異常時処理の動作例を説明する。各図の時間軸において共通の記号で示す時刻t0、t1、t3は、互いに対応するタイミングを意味する。各図の縦方向の破線矢印は、ある状態の変化と、他の状態の変化との関連を示す。また、上述のMG回転抑制処理のうち、「TRCカット禁止」及び「MTモード禁止」を図7、図8に共通に示し、さらに「高速走行時のダウンシフト禁止」を図7に示す。これらに代えて又は加えて、「減速ブリッピング禁止」等のMG回転抑制処理が実行されてもよい。   Next, with reference to the time charts of FIG. 7 and FIG. 8, an operation example of the main battery abnormality process by the vehicle control device 50 will be described. Times t0, t1, and t3 indicated by common symbols on the time axes in the drawings mean timings corresponding to each other. The vertical dashed arrows in each figure indicate the relationship between a change in one state and a change in another state. Of the above-described MG rotation suppression processing, “TRC cut prohibition” and “MT mode prohibition” are shown in common in FIGS. 7 and 8, and “downshift prohibition during high-speed driving” is shown in FIG. Instead of or in addition to these, an MG rotation suppression process such as “prohibited deceleration blipping” may be executed.

図7に第1の動作例を示す。図7の下の部分には、比較例として、「高速走行時のダウンシフト禁止」を実行しない場合の動作を二点鎖線で示す。
時刻t0以前の初期にはインバータ40は通常制御されている。コンデンサ電圧Vcは下限値VcLと上限値VcHとの間にあり、MG回転数Nmは下限値NmLと上限値NmHとの間にある。また、変速ギアの位置は「5速」とする。
FIG. 7 shows a first operation example. In the lower part of FIG. 7, as a comparative example, an operation in the case where “prohibition of downshift at high speed” is not executed is indicated by a two-dot chain line.
In the initial stage before time t0, the inverter 40 is normally controlled. Capacitor voltage Vc is between lower limit value VcL and upper limit value VcH, and MG rotational speed Nm is between lower limit value NmL and upper limit value NmH. The position of the transmission gear is “5th speed”.

時刻t0で主機バッテリ異常が発生し、電源リレー21がオフされる。その後、コンデンサ25の放電によりコンデンサ電圧Vcは下限値VcLを下回り、0にまで低下する。
時刻t0以前にMG60が力行動作していたと仮定すると、時刻t1に、MG−ECU54が電圧制御指令を受信するとともに、車両制御装置50はMG回転抑制処理として、TRCカット及びMTモードを禁止する。これにより、車両の動作によりMG回転数Nmを増加させる要因のうちのいくつかが排除される。
この時、MG−ECU54は、インバータ制御モードをゲート遮断とする。
At time t0, a main battery abnormality occurs and the power relay 21 is turned off. Thereafter, the capacitor voltage Vc falls below the lower limit value VcL and decreases to 0 by the discharge of the capacitor 25.
Assuming that the MG 60 was in a power running operation before time t0, the MG-ECU 54 receives a voltage control command at time t1, and the vehicle control device 50 prohibits the TRC cut and MT mode as MG rotation suppression processing. Thereby, some of the factors that increase the MG rotation speed Nm by the operation of the vehicle are eliminated.
At this time, the MG-ECU 54 sets the inverter control mode to gate cutoff.

時刻t1の後、MG60の回生発電によりコンデンサ電圧Vcが上昇し、時刻t3に、下限値VcHに達する。また、MG回転数Nmは、下限値NmLと上限値NmHとの間にあるため、電圧制御実行条件が成立する。したがって、MG−ECU54は、インバータ制御モードをゲート遮断から電圧制御に切り替える。
その後、時刻t5に車速が低下し始めるとき、比較例では、クラッチを係合状態から開放し、変速ギアを例えば「5速」から「3速」へダウンシフトした後、再び係合させる。
これに対し本実施形態では、車速が図4のS12の車速閾値よりも大きければ、ダウンシフトを禁止し、クラッチを係合させたまま、変速ギアを「5速」に維持する。
After time t1, the capacitor voltage Vc increases due to regenerative power generation of the MG 60, and reaches the lower limit value VcH at time t3. Further, since the MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH, the voltage control execution condition is satisfied. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control.
Thereafter, when the vehicle speed starts to decrease at time t5, in the comparative example, the clutch is released from the engaged state, and the transmission gear is downshifted from “5th speed” to “3rd speed”, for example, and then engaged again.
On the other hand, in this embodiment, if the vehicle speed is larger than the vehicle speed threshold value of S12 in FIG. 4, the downshift is prohibited and the transmission gear is maintained at "5th speed" while the clutch is engaged.

比較例では、ダウンシフトに伴って、時刻t5の前後にMG回転数Nmが増加し上限値NmHを上回るとともに、コンデンサ電圧Vcが上昇し上限値VcHを上回るため、インバータ40に過電圧が印加され、素子が破損するおそれがある。
これに対し本実施形態では、ダウンシフトを禁止することで、MG回転数Nmの増加を抑制し、コンデンサ電圧Vcの上昇を防ぐことができる。よって、インバータ40の素子を過電圧から適切に保護することができる。
In the comparative example, with the downshift, the MG rotation speed Nm increases before and after time t5 and exceeds the upper limit value NmH, and the capacitor voltage Vc increases and exceeds the upper limit value VcH. Therefore, an overvoltage is applied to the inverter 40, The element may be damaged.
On the other hand, in this embodiment, by prohibiting the downshift, an increase in the MG rotation speed Nm can be suppressed, and an increase in the capacitor voltage Vc can be prevented. Therefore, the element of the inverter 40 can be appropriately protected from overvoltage.

図8に第2の動作例を示す。時刻t0で主機バッテリ異常が発生し、時刻t1でTRCカット及びMTモードが禁止され、且つインバータ制御モードがゲート遮断になるまでの動作は図7と同じであるため、説明を省略する。
時刻t1の後、MG60の回生発電により、コンデンサ電圧Vcが上昇する。しかし、コンデンサ電圧Vcが下限値VcHに達する時刻t3よりも早い時刻t2に、MG回転数Nmが上限値NmHを上回る状況が発生する。したがって、時刻t3においても電圧制御実行条件が成立しないため、インバータ制御モードは、ゲート遮断のまま継続される。
FIG. 8 shows a second operation example. The operation until the main engine battery abnormality occurs at time t0, the TRC cut and MT mode are prohibited at time t1, and the inverter control mode is gate cut-off is the same as in FIG.
After time t1, the capacitor voltage Vc rises due to regenerative power generation of the MG 60. However, at time t2 earlier than time t3 when the capacitor voltage Vc reaches the lower limit value VcH, a situation occurs in which the MG rotation speed Nm exceeds the upper limit value NmH. Therefore, since the voltage control execution condition is not satisfied at time t3, the inverter control mode is continued with the gate shut off.

また、MG回転数Nmが上限値NmHを上回った時刻t2に、車両制御装置50のトランスミッションECU58は、MG回転数Nmを低下させるように、エンジン側クラッチ81を半係合状態とし、エンジン70からMG60への動力伝達を不十分なものとする。そして、時刻t4にMG回転数Nmが上限値NmHを下回ると、トランスミッションECU58は、エンジン側クラッチ81を再び係合状態とする。なお、時刻t2から時刻t4の間に、係合状態と半係合状態とを断続的に繰り返すようにしてもよい。   Further, at time t2 when the MG rotational speed Nm exceeds the upper limit value NmH, the transmission ECU 58 of the vehicle control device 50 places the engine-side clutch 81 in a semi-engaged state so as to reduce the MG rotational speed Nm. Insufficient power transmission to MG60. When the MG rotation speed Nm falls below the upper limit value NmH at time t4, the transmission ECU 58 brings the engine side clutch 81 into the engaged state again. Note that the engaged state and the semi-engaged state may be intermittently repeated between time t2 and time t4.

時刻t3の後、コンデンサ電圧Vcは下限値VcLと上限値VcHとの間に保たれる。これにより、インバータ40の素子を過電圧から適切に保護することができる。
そして、時刻t4にMG回転数Nmが上限値NmHを下回ることにより電圧制御実行条件が成立する。したがって、MG−ECU54は、インバータ制御モードをゲート遮断から電圧制御に切り替える。
After time t3, the capacitor voltage Vc is maintained between the lower limit value VcL and the upper limit value VcH. Thereby, the element of the inverter 40 can be appropriately protected from overvoltage.
Then, the voltage control execution condition is satisfied when the MG rotation speed Nm falls below the upper limit value NmH at time t4. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control.

また、図1に示すようにインバータ40と並列にDCDCコンバータ30が接続されている構成では、電圧制御の実行開始と同時にDCDCコンバータ30を駆動することで、補機バッテリ32への低圧電力供給が可能となる。その結果、主機バッテリ20が異常であっても、MG60による回生電力を利用して補機負荷33を駆動することができる。
これにより、退避走行中に、補機バッテリ32からスタータや電動パワーステアリング装置等の補機負荷33への電力供給を継続することができる。
Further, in the configuration in which the DCDC converter 30 is connected in parallel with the inverter 40 as shown in FIG. 1, the low voltage power supply to the auxiliary battery 32 is achieved by driving the DCDC converter 30 simultaneously with the start of execution of the voltage control. It becomes possible. As a result, even if the main engine battery 20 is abnormal, the auxiliary machine load 33 can be driven using the regenerative power generated by the MG 60.
Thereby, the power supply from the auxiliary battery 32 to the auxiliary load 33 such as the starter or the electric power steering device can be continued during the retreat traveling.

(第2実施形態)
第2実施形態について、図9、図10を参照して説明する。第2実施形態は、エンジン70に接続された車輪と、MG60に接続された車輪とが分離したアクスルスプリット方式の車両902に適用される。
図9に示す例では、エンジン70の出力軸71は変速機83を介して駆動軸91に接続されており、駆動軸91は、デファレンシャルギア92および車軸93を介して駆動輪である前輪97に接続されている。また、MG60は、車軸96を介して後輪98に接続されている。インバータ40は、主機バッテリ20の電力を変換してMG60に供給する。
なお、他の実施形態では、図9に対し前輪と後輪とを逆の構成としてもよい。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. 9 and 10. The second embodiment is applied to an axle split type vehicle 902 in which a wheel connected to the engine 70 and a wheel connected to the MG 60 are separated.
In the example shown in FIG. 9, the output shaft 71 of the engine 70 is connected to a drive shaft 91 via a transmission 83, and the drive shaft 91 is connected to a front wheel 97 that is a drive wheel via a differential gear 92 and an axle 93. It is connected. The MG 60 is connected to the rear wheel 98 via the axle 96. The inverter 40 converts the power of the main battery 20 and supplies it to the MG 60.
In other embodiments, the front wheels and the rear wheels may be reversed with respect to FIG.

第1実施形態と同様に、車両制御装置50は、主機バッテリ20、インバータ40、MG60、エンジン70、変速機83等との間で信号を通信し、各種情報の入力や指令信号の出力を行う。
この構成では、主機バッテリ20が異常となりMG60の力行動作を停止したとき、エンジン70により前輪97を駆動して車両902を走行させる。すると、前輪97に従動して後輪98が回転することにより、MG60が回生発電する。このとき発生する電圧が過大となるとインバータ40の素子が破損するおそれがあるため、車両制御装置50は、MG回転抑制処理をする。
As in the first embodiment, the vehicle control device 50 communicates signals with the main battery 20, the inverter 40, the MG 60, the engine 70, the transmission 83, and the like, and inputs various information and outputs command signals. .
In this configuration, when the main battery 20 becomes abnormal and the power running operation of the MG 60 is stopped, the front wheel 97 is driven by the engine 70 to cause the vehicle 902 to travel. Then, the MG 60 regeneratively generates power by following the front wheel 97 and rotating the rear wheel 98. If the voltage generated at this time is excessive, the element of the inverter 40 may be damaged, and therefore the vehicle control device 50 performs the MG rotation suppression process.

この構成では、一つの方法として、エンジン70により駆動される前輪97の回転速度を下げて車速を低速にすることにより、MG回転数Nmを低下させる方法がある。また、別の方法として、MG60の回転を直接抑制することも有効である。
図10に、アクスルスプリット方式の車両に特有のMG回転抑制の構成例を示す。ここでは、エンジン70による前輪97の駆動構成は図9と同様であるものとして図示を省略し、MG60に接続される後輪98側のみを図示する。なお、上述通り、前輪と後輪とを逆にした構成に適用してもよい。
In this configuration, as one method, there is a method of decreasing the MG rotation speed Nm by lowering the rotational speed of the front wheels 97 driven by the engine 70 to reduce the vehicle speed. As another method, it is also effective to directly suppress the rotation of MG60.
FIG. 10 shows a configuration example of MG rotation suppression unique to an axle split type vehicle. Here, the driving configuration of the front wheel 97 by the engine 70 is the same as that in FIG. 9, and the illustration is omitted, and only the side of the rear wheel 98 connected to the MG 60 is illustrated. As described above, the present invention may be applied to a configuration in which the front wheels and the rear wheels are reversed.

図10(a)に示す構成では、MG60とデファレンシャルギア95とを接続する駆動軸94の途中にクラッチ82が設けられている。エンジン70の駆動により車両902が一定の車速を維持して走行している状態で、車両制御装置50は、クラッチ82をスリップさせてMG回転数Nmを上限値NmH以下に低下させてから電圧制御を実行する。   In the configuration shown in FIG. 10A, a clutch 82 is provided in the middle of the drive shaft 94 that connects the MG 60 and the differential gear 95. In a state in which the vehicle 902 is running at a constant vehicle speed by driving the engine 70, the vehicle control device 50 slips the clutch 82 to reduce the MG rotation speed Nm to the upper limit value NmH or less, and then performs voltage control. Execute.

図10(b)に示す構成では、MG60とデファレンシャルギア95とを接続する駆動軸94の途中にクラッチ82及び変速機84が設けられている。エンジン70の駆動により車両902が一定の車速を維持して走行している状態で、車両制御装置50は、変速機84をHiギアにシフトさせてMG回転数Nmを上限値NmH以下に低下させてから電圧制御を実行する。   In the configuration shown in FIG. 10B, a clutch 82 and a transmission 84 are provided in the middle of the drive shaft 94 that connects the MG 60 and the differential gear 95. In a state in which the vehicle 902 is traveling at a constant vehicle speed by driving the engine 70, the vehicle control device 50 shifts the transmission 84 to the Hi gear and reduces the MG rotation speed Nm to the upper limit value NmH or less. Execute voltage control after that.

図10(c)に示す構成では、MG60と左右の後輪98とを接続する車軸97の途中にそれぞれクラッチ96が設けられている。エンジン70の駆動により車両902が一定の車速を維持して走行している状態で、車両制御装置50は、クラッチ96をスリップさせてMG回転数Nmを上限値NmH以下に低下させてから電圧制御を実行する。
このように、第2実施形態においても、第1実施形態と同様の効果が得られる。
In the configuration shown in FIG. 10C, the clutch 96 is provided in the middle of the axle 97 that connects the MG 60 and the left and right rear wheels 98. In a state in which the vehicle 902 is running at a constant vehicle speed by driving the engine 70, the vehicle control device 50 slips the clutch 96 to reduce the MG rotation speed Nm to the upper limit value NmH or less, and then performs voltage control. Execute.
Thus, also in 2nd Embodiment, the effect similar to 1st Embodiment is acquired.

(その他の実施形態)
(1)MG回転抑制処理の具体例は、上記実施形態に例示したものに限らず、「車両の動作によりモータジェネレータの回転数を増加させる要因」を排除するあらゆる処理が、MG回転抑制処理に含まれる。
(Other embodiments)
(1) The specific example of the MG rotation suppression process is not limited to that exemplified in the above embodiment, and any process that eliminates the “factor that increases the rotation speed of the motor generator by the operation of the vehicle” is the MG rotation suppression process. included.

(2)本発明の車両制御装置は、1台のモータジェネレータを備えるシステムに限らず、例えば動力分割機構によって連結される2台のモータジェネレータを備えるシステムに適用されてもよい。また、回生電力の一部が燃料電池により供給されるシステムにも適用可能である。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
(2) The vehicle control apparatus of the present invention is not limited to a system including one motor generator, and may be applied to a system including two motor generators connected by a power split mechanism, for example. Further, the present invention can be applied to a system in which a part of regenerative power is supplied by a fuel cell.
As mentioned above, this invention is not limited to the said embodiment at all, In the range which does not deviate from the meaning of invention, it can implement with a various form.

10・・・車両制御システム
20・・・主機バッテリ(主機電源)、
21・・・電源リレー、
40・・・インバータ、
50・・・車両制御装置、
60・・・MG(モータジェネレータ)、
70・・・エンジン、
901、902・・・車両、
96・・・車軸。
10 ... Vehicle control system 20 ... Main machine battery (main machine power supply),
21 ... Power relay,
40: Inverter,
50 ... Vehicle control device,
60 ... MG (motor generator),
70 ... Engine,
901, 902 ... vehicle,
96 ... Axle.

Claims (9)

動力源であるエンジン(70)及びモータジェネレータ(60)、並びに、インバータ(40)を介して前記モータジェネレータと電力を授受可能な主機電源(20)を備えたハイブリッド車両(901、902)に適用され、前記エンジン及び前記モータジェネレータの動作を制御し、且つ、前記エンジンと前記モータジェネレータとの間の動力伝達又は前記モータジェネレータと車軸(96)との間の動力伝達の少なくともいずれか一方を制御可能な車両制御装置であって、
前記主機電源の異常が検出されたとき、
前記主機電源と前記インバータとの間に設けられた電源リレー(21)を遮断して前記モータジェネレータの力行動作を停止し、
前記エンジンによる車両走行を維持しつつ、車両の動作により前記モータジェネレータの回転数を増加させる要因を少なくとも一つ排除し前記モータジェネレータの回転を抑制するMG回転抑制処理を実行する車両制御装置。
Applicable to hybrid vehicles (901, 902) equipped with an engine (70) and a motor generator (60), which are power sources, and a main power source (20) capable of transmitting and receiving electric power to and from the motor generator via an inverter (40). And controls the operation of the engine and the motor generator, and controls at least one of power transmission between the engine and the motor generator or power transmission between the motor generator and the axle (96). A possible vehicle control device,
When an abnormality of the main unit power supply is detected,
A power relay (21) provided between the main power supply and the inverter is cut off to stop the power running operation of the motor generator;
A vehicle control device that performs MG rotation suppression processing that suppresses rotation of the motor generator by eliminating at least one factor that increases the rotation speed of the motor generator by operation of the vehicle while maintaining vehicle travel by the engine.
前記MG回転抑制処理において、
前記モータジェネレータに直接的に伝達される、もしくは、車両の走行に伴って間接的に伝達される前記エンジンの回転を抑制するか、又は、
前記モータジェネレータの回転を直接抑制する請求項1に記載の車両制御装置。
In the MG rotation suppression process,
Suppressing rotation of the engine that is directly transmitted to the motor generator or indirectly transmitted as the vehicle travels, or
The vehicle control device according to claim 1, wherein rotation of the motor generator is directly suppressed.
回転速度が相対的に速い車輪の回転を抑制するトラクションコントロールを実行可能な車両に適用され、
前記MG回転抑制処理において、トラクションコントロール機能を運転者が任意に喪失させるトラクションコントロールカットを禁止する請求項2に記載の車両制御装置。
It is applied to vehicles that can execute traction control that suppresses the rotation of relatively fast wheels,
The vehicle control device according to claim 2, wherein in the MG rotation suppression process, a traction control cut that causes the driver to arbitrarily lose the traction control function is prohibited.
オートマチックトランスミッションモードとマニュアルトランスミッションモードとを切替可能な車両に適用され、
前記MG回転抑制処理において、マニュアルトランスミッションモードを禁止する請求項2または3に記載の車両制御装置。
Applies to vehicles that can switch between automatic transmission mode and manual transmission mode,
The vehicle control device according to claim 2 or 3, wherein manual transmission mode is prohibited in the MG rotation suppression processing.
前記MG回転抑制処理において、車両の減速時に前記エンジンの回転数を増加させる減速ブリッピングを禁止する請求項2〜4のいずれか一項に記載の車両制御装置。   5. The vehicle control device according to claim 2, wherein, in the MG rotation suppression process, deceleration blipping that increases the engine speed when the vehicle is decelerated is prohibited. 前記エンジンと前記モータジェネレータとの間又は前記モータジェネレータと車軸との間に、伝達される動力を変速可能な変速機(83、84)を設けた車両に適用され、
前記MG回転抑制処理において、車速が速度閾値を上回っているとき、前記変速機のダウンシフトを禁止する請求項2〜5のいずれか一項に記載の車両制御装置。
Applied to a vehicle provided with a transmission (83, 84) capable of shifting the power transmitted between the engine and the motor generator or between the motor generator and the axle;
The vehicle control device according to any one of claims 2 to 5, wherein, in the MG rotation suppression process, when the vehicle speed exceeds a speed threshold value, a downshift of the transmission is prohibited.
前記エンジンと前記モータジェネレータとの間の動力伝達を断続するエンジン側クラッチ(81)を備える車両に適用され、
少なくとも一つ以上の前記MG回転抑制処理の実行後に前記モータジェネレータの回転数が所定の上限値(NmH)を上回っているとき、前記エンジン側クラッチを半係合状態とし、又は、係合状態と半係合状態とを繰り返すように制御する請求項1〜6のいずれか一項に記載の車両制御装置。
Applied to a vehicle including an engine side clutch (81) for intermittently transmitting power between the engine and the motor generator;
When the number of rotations of the motor generator exceeds a predetermined upper limit (NmH) after execution of at least one of the MG rotation suppression processes, the engine side clutch is brought into a half-engaged state, or The vehicle control device according to any one of claims 1 to 6, wherein control is performed so as to repeat the half-engaged state.
検出又は推定された前記モータジェネレータの回転数を取得し、前記インバータの動作を制御するインバータ制御部(54)を有し、
前記インバータ制御部は、
前記主機電源の異常が検出され、前記電源リレーを遮断した後、
前記モータジェネレータの回転数(Nm)が所定の回転数範囲内にあり、且つ、前記インバータの前記主機電源側に設けられたコンデンサ(25)の両端電圧であるコンデンサ電圧(Vc)が所定の電圧範囲内にあるとき、前記インバータの複数のスイッチング素子(41−46)を操作して前記コンデンサ電圧を制御する電圧制御を実行し、
前記電圧制御を実行する条件以外のとき、前記インバータの前記複数のスイッチング素子を全てオフ状態とするゲート遮断を実行する請求項1〜7のいずれか一項に記載の車両制御装置。
An inverter control unit (54) for acquiring the detected or estimated rotation speed of the motor generator and controlling the operation of the inverter;
The inverter control unit
After the abnormality of the main engine power supply is detected and the power supply relay is cut off,
The rotation speed (Nm) of the motor generator is within a predetermined rotation speed range, and a capacitor voltage (Vc) that is a voltage across the capacitor (25) provided on the main power supply side of the inverter is a predetermined voltage. When in range, perform voltage control to control the capacitor voltage by operating a plurality of switching elements (41-46) of the inverter,
The vehicle control device according to any one of claims 1 to 7, wherein gate cutoff is performed to turn off all of the plurality of switching elements of the inverter under conditions other than the conditions for executing the voltage control.
前記モータジェネレータの回転数の変化に応じた前記電圧制御及び前記ゲート遮断の制御モードの切替において、
前記モータジェネレータの回転数が減少するときに制御モードが切り替えられる減速切替回転数(Nx−)は、前記モータジェネレータの回転数が増加するときに制御モードが切り替えられる増速切替回転数(Nx+)よりも小さい値に設定されている請求項8に記載の車両制御装置。
In the switching of the voltage control and the gate cutoff control mode according to the change in the rotation speed of the motor generator,
The deceleration switching rotational speed (Nx−) at which the control mode is switched when the rotational speed of the motor generator decreases is the speed increasing switching rotational speed (Nx +) at which the control mode is switched when the rotational speed of the motor generator increases. The vehicle control device according to claim 8, wherein the vehicle control device is set to a smaller value.
JP2016226777A 2016-11-22 2016-11-22 Vehicle control device Expired - Fee Related JP6597567B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016226777A JP6597567B2 (en) 2016-11-22 2016-11-22 Vehicle control device
PCT/JP2017/041985 WO2018097170A1 (en) 2016-11-22 2017-11-22 Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon
CN201780071860.6A CN109996712B (en) 2016-11-22 2017-11-22 Vehicle control device, vehicle control method, and storage medium storing vehicle control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226777A JP6597567B2 (en) 2016-11-22 2016-11-22 Vehicle control device

Publications (3)

Publication Number Publication Date
JP2018083486A true JP2018083486A (en) 2018-05-31
JP2018083486A5 JP2018083486A5 (en) 2019-02-28
JP6597567B2 JP6597567B2 (en) 2019-10-30

Family

ID=62195048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226777A Expired - Fee Related JP6597567B2 (en) 2016-11-22 2016-11-22 Vehicle control device

Country Status (3)

Country Link
JP (1) JP6597567B2 (en)
CN (1) CN109996712B (en)
WO (1) WO2018097170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220340A1 (en) * 2020-04-27 2021-11-04 日産自動車株式会社 Power supply control method and power supply control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082206A (en) * 1999-09-16 2001-03-27 Toyota Motor Corp Control device for vehicle with regenerative mechanism
JP2009225500A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Motor driving unit and its control method
EP2184212A2 (en) * 2008-11-05 2010-05-12 Delphi Technologies, Inc. Fast response failure mode control methodology for a hybrid vehicle having an AC electric machine
JP2013180635A (en) * 2012-03-01 2013-09-12 Honda Motor Co Ltd Hybrid vehicle
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594100B2 (en) * 1995-07-31 2004-11-24 富士電機システムズ株式会社 Electric vehicle electric system
JP3333814B2 (en) * 1996-12-24 2002-10-15 トヨタ自動車株式会社 Hybrid vehicle control device
JP4048787B2 (en) * 2002-01-30 2008-02-20 トヨタ自動車株式会社 Load drive device
JP5152085B2 (en) * 2009-04-17 2013-02-27 トヨタ自動車株式会社 Electric vehicle power supply control device
CN103754116B (en) * 2014-01-26 2016-07-13 北京智行鸿远汽车技术有限公司 The lower short circuit protection system of inverter and method during new-energy automobile unusual service condition
JP2015214187A (en) * 2014-05-08 2015-12-03 株式会社豊田自動織機 Engine control device in limp mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082206A (en) * 1999-09-16 2001-03-27 Toyota Motor Corp Control device for vehicle with regenerative mechanism
JP2009225500A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Motor driving unit and its control method
EP2184212A2 (en) * 2008-11-05 2010-05-12 Delphi Technologies, Inc. Fast response failure mode control methodology for a hybrid vehicle having an AC electric machine
JP2013180635A (en) * 2012-03-01 2013-09-12 Honda Motor Co Ltd Hybrid vehicle
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220340A1 (en) * 2020-04-27 2021-11-04 日産自動車株式会社 Power supply control method and power supply control device
JP7447996B2 (en) 2020-04-27 2024-03-12 日産自動車株式会社 Power control method and power control device

Also Published As

Publication number Publication date
JP6597567B2 (en) 2019-10-30
CN109996712B (en) 2022-06-03
CN109996712A (en) 2019-07-09
WO2018097170A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
US10160441B2 (en) Power controller of hybrid vehicle
US9376006B2 (en) Vehicle
KR101360060B1 (en) Method and system for controlling engine start when starter motor of hybrid electric vehicle is failure
US10059223B2 (en) Power supply control apparatus and power supply control method
EP2998154B1 (en) System and method of controlling motor for reducing vibration of electric vehicle
CN109624962B (en) Hybrid vehicle
JP2011031659A (en) Hybrid vehicle
KR101490922B1 (en) Method and system for changing drive mode when battery power of hybrid vehicle is limited
JP4780020B2 (en) Electric vehicle, electric vehicle control method, and computer-readable recording medium storing a program for causing a computer to execute the electric vehicle control method
JP2018102074A (en) Vehicle control device
JP2014218243A (en) Control device for hybrid vehicle
KR101509702B1 (en) Shift control method and system of hybrid vehicle
JP5999024B2 (en) Hybrid vehicle control system
WO2014103571A1 (en) Hybrid vehicle control device
WO2015011533A1 (en) Vehicle and control method for vehicle
JP6652804B2 (en) Electric motor control device
JP6597567B2 (en) Vehicle control device
JP6056627B2 (en) Hybrid vehicle travel control device
JP2012091770A (en) Method and device for protecting battery of hybrid vehicle
JP6649607B2 (en) Travel control device for hybrid vehicle
JP2017047846A (en) Hybrid vehicle
JP2018069947A (en) Drive control device of hybrid vehicle
JP6332298B2 (en) vehicle
KR102621563B1 (en) Method for controlling engine of hybrid electric vehicle
KR102001110B1 (en) Method and apparatus for controlling transmission of hybrid vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6597567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees