WO2018097170A1 - Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon - Google Patents

Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon Download PDF

Info

Publication number
WO2018097170A1
WO2018097170A1 PCT/JP2017/041985 JP2017041985W WO2018097170A1 WO 2018097170 A1 WO2018097170 A1 WO 2018097170A1 JP 2017041985 W JP2017041985 W JP 2017041985W WO 2018097170 A1 WO2018097170 A1 WO 2018097170A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor generator
engine
vehicle control
inverter
Prior art date
Application number
PCT/JP2017/041985
Other languages
French (fr)
Japanese (ja)
Inventor
征輝 西山
宇鋒 寿
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780071860.6A priority Critical patent/CN109996712B/en
Publication of WO2018097170A1 publication Critical patent/WO2018097170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to a vehicle control technique for controlling a vehicle.
  • Patent Document 1 describes the following hybrid vehicle control device.
  • the hybrid vehicle described in Patent Document 1 is a dual clutch vehicle including an odd-numbered first clutch and an even-numbered second clutch. In such a vehicle, the control device downshifts to the lowest gear position when the main engine battery is abnormal.
  • the rotation of the motor generator increases due to a downshift or the like during high-speed traveling.
  • the technique described in Patent Document 1 there is a possibility that an overvoltage is applied to the inverter due to an increase in regenerative power.
  • the elements constituting the inverter may be damaged.
  • the present disclosure provides a vehicle control technology that protects an inverter from overvoltage by suppressing rotation of a motor generator while maintaining engine running when a main engine power supply is abnormal.
  • a vehicle control device includes a main power source (20) that can exchange power with a motor generator via an engine (70) and a motor generator (60) that are power sources, and an inverter (40). It is applied to a vehicle (901, 902) provided with The vehicle control device controls operations of the engine and the motor generator. The vehicle control device controls at least one of power transmission between the engine and the motor generator and power transmission between the motor generator and the axle (96).
  • This vehicle control device shuts off the power running operation of the motor generator by shutting off the power relay (21) provided between the main power source and the inverter when an abnormality of the main power source is detected.
  • the vehicle control device controls the rotation of the motor generator while maintaining vehicle travel by the engine. That is, the vehicle control device executes a “motor generator rotation suppression process” (hereinafter “MG rotation suppression process”).
  • MG rotation suppression process the vehicle control device eliminates at least one of the factors that increase the rotation speed of the motor generator (hereinafter referred to as “MG rotation speed”) due to the operation of the vehicle, and suppresses the rotation of the motor generator. .
  • the vehicle control device suppresses rotation of the engine that is directly transmitted to the motor generator or indirectly transmitted as the vehicle travels in the MG rotation suppression process.
  • the vehicle control device directly suppresses the rotation of the motor generator in the MG rotation suppression process.
  • the MG rotation suppression processing includes, for example, prohibition of traction control function off, manual transmission mode operation prohibition, blipping operation prohibition during deceleration, and downshift operation prohibition during high-speed driving.
  • the operation of the above function is prohibited in the MG rotation suppression process.
  • the vehicle control device eliminates the factor that increases the MG rotation speed due to the operation of the vehicle.
  • the vehicle control device of the present disclosure maintains engine running while stopping the power running operation of the motor generator when the main engine battery is abnormal. Therefore, in the technology of the present disclosure, retreat travel (limp home) is possible when the main battery is abnormal.
  • the vehicle control device of the present disclosure executes the above-described MG rotation suppression process.
  • the vehicle control device avoids an increase in the MG rotation speed due to the rotation of the engine or axle being transmitted to the motor generator.
  • the technology of the present disclosure can protect the elements of the inverter from an overvoltage applied to the inverter by regenerative power generation.
  • the inverter control unit of the vehicle control device of the present disclosure executes voltage control when a predetermined execution condition is satisfied for the MG rotation speed and the capacitor voltage as the inverter control mode.
  • desired electric power can be supplied to an auxiliary machine battery from an inverter, for example. Therefore, with the technology of the present disclosure, functions such as a starter and an electric power steering device can be ensured while the vehicle is running away.
  • the inverter control unit executes the gate cutoff when the execution condition of the voltage control is not satisfied.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which a vehicle control device of a first embodiment is applied. It is a block diagram of the control system in the vehicle of FIG. It is a main flowchart of a main machine battery abnormality process. It is a subflowchart of the MG rotation suppression process of FIG. It is a characteristic view of MG rotation speed in each of voltage control and gate interruption
  • the vehicle control device is applied to a hybrid vehicle including an engine and a motor generator (hereinafter “MG”) as power sources.
  • the first embodiment is applied to a normal hybrid vehicle in which the engine and the MG cooperate to drive the same drive wheel.
  • the second embodiment is applied to an axle split type vehicle in which an engine and an MG drive different drive wheels.
  • the vehicle control system 10 is applied to a vehicle 901.
  • the vehicle control system 10 includes an engine 70, an MG 60, a main engine battery 20, an inverter 40, power transmission clutches 81 and 82, a transmission 84, a vehicle control device 50, and the like.
  • the engine 70 converts thermal energy generated by burning fuel into rotational driving force.
  • the MG 60 performs a power running operation and a regenerative operation. In the power running operation, electric power supplied from the main battery 20 is consumed to generate torque. In the regenerative operation, power generated by torque transmitted from the engine 70 or the drive shaft 94 is regenerated to the main battery 20.
  • the MG 60 of this embodiment is a permanent magnet type synchronous three-phase AC motor generator.
  • the main battery 20 functions as a main power source.
  • the main battery 20 is configured by a chargeable / dischargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery.
  • the positive electrode of the main battery 20 is connected to the high potential line P, and the negative electrode of the main battery 20 is connected to the low potential line N.
  • the main battery 20 may be referred to as a “high voltage battery”, and an auxiliary battery 32 described later may be referred to as a “low voltage battery”.
  • a power storage device such as an electric double layer capacitor may be used instead of the battery.
  • the power relay 21 corresponds to a system main relay.
  • the power supply relay 21 includes a high potential side relay 22 provided on the high potential line P and a low potential side relay 23 provided on the low potential line N.
  • the high potential side relay 22 and the low potential side relay 23 may be either a mechanical relay or a semiconductor relay.
  • the inverter 40 mutually converts the DC power on the main battery 20 side and the three-phase AC power on the MG 60 side.
  • the inverter 40 includes switching elements 41-46 of three-phase upper and lower arms.
  • the switching elements 41, 42, and 43 are upper-arm switching elements of the U phase, the V phase, and the W phase, respectively.
  • the switching elements 44, 45, and 46 are switching elements of the lower arm of the U phase, the V phase, and the W phase, respectively.
  • the switching elements 41 to 46 of the present embodiment are IGBTs (insulated gate bipolar transistors).
  • the switching elements 41-46 are accompanied by flywheel diodes that allow energization from the emitter side to the collector side. In other words, the switching element 41-46 is accompanied by a diode that allows energization from the low potential side to the high potential side.
  • a capacitor 25 for smoothing the input voltage is provided on the main battery 20 side of the inverter 40.
  • the capacitor voltage Vc is a voltage across the capacitor 25.
  • the capacitor voltage Vc is a potential difference between the high potential line P and the low potential line N.
  • the capacitor voltage Vc may be monitored by, for example, a voltage sensor (not shown).
  • the DCDC converter 30 is connected to a path branched from the power path between the power supply relay 21 and the inverter 40. Note that the illustration of the DCDC converter 30 is omitted in FIG. DCDC converter 30 steps down the high voltage power of main battery 20 and outputs the low voltage power.
  • the auxiliary battery 32 is configured by a secondary battery such as a lead storage battery, for example.
  • the auxiliary battery 32 is charged by the low voltage power output from the DCDC converter 30.
  • the auxiliary battery 32 supplies low voltage power to various auxiliary loads 33 of the vehicle.
  • the auxiliary machine load 33 includes devices having functions necessary for retreat travel, such as an engine starter, an electric power steering device, and a brake actuator.
  • the engine side clutch 81 is provided on the output shaft 71 of the engine 70.
  • the engine side clutch 81 interrupts power transmission between the engine 70 and the MG 60.
  • the axle clutch 82 is provided on the drive shaft 94 on the output side of the MG 60.
  • Axle side clutch 82 interrupts power transmission between MG 60 and axle 96.
  • the transmission 84 can change the power transmitted to the drive shaft 94.
  • the functions provided by the axle clutch 82 and the transmission 84 may be configured as, for example, a dual clutch transmission (DCT).
  • the driving force transmitted to the drive shaft 94 on the output side of the transmission 84 is transmitted to the axle 96 via the differential gear 95. As a result, the wheel 98 that is the driving wheel of the vehicle 901 rotates.
  • the vehicle control device 50 includes a plurality of ECUs 52, 54, 57, and 58 and a general ECU 51 that performs overall control thereof.
  • the vehicle control device 50 controls the driving of the vehicle 901 in an integrated manner.
  • the vehicle control device 50 communicates with the main engine battery 20, the power supply relay 21, the inverter 40, the MG 60, the engine 70, the clutches 81 and 82, the transmission 84, etc., and inputs various information and outputs command signals.
  • Each of the ECUs 51, 52, 54, 57, 58 is configured mainly with a microcomputer or the like.
  • the ECU can transmit and receive information via a communication network such as CAN.
  • the ECU includes, for example, a CPU, a semiconductor memory such as a RAM and a ROM, an I / O, and the like.
  • the semiconductor memory corresponds to a non-transitional tangible recording medium.
  • the semiconductor memory is a computer-readable recording medium.
  • the ECU reads a program stored in the semiconductor memory, and the CPU executes a process defined by the program code.
  • the ECU exchanges signals with external devices via the I / O.
  • the ECU executes a predetermined process based on the input signal via the I / O, and outputs an execution result signal.
  • EUC provides a predetermined control function.
  • the function providing method is not limited to the above-described software method.
  • a hardware method using an electronic circuit such as an IC or a logic circuit may be used.
  • the vehicle control device 50 includes control units such as a general ECU 51, a battery ECU 52, an MG-ECU 54, an engine ECU 57, and a transmission ECU (T / M-ECU) 58.
  • the vehicle on which vehicle control device 50 is mounted further includes an ECU (another ECU) other than the ECU shown in FIG.
  • FIG. 2 illustrates only the configuration and signal input / output related to the main operation of the ECU in the present embodiment, and the configuration and signal input / output related to the operation of another ECU described above are described. Omitted. Only the functions related to the main operation of this embodiment will be described below.
  • the function sharing by each ECU is not limited to the configuration shown below.
  • the function sharing by each ECU may be a configuration in which any ECU can realize the same function as the entire vehicle control device 50.
  • the overall ECU 51 functions as a main control unit.
  • the overall ECU 51 acquires information from the battery ECU 52, the MG-ECU 54, the engine ECU 57, and the transmission ECU 58.
  • the overall ECU 51 acquires information (vehicle information) related to the vehicle 901 such as the accelerator opening, the shift position, and the vehicle speed from, for example, an accelerator sensor, a shift switch, a vehicle speed sensor, and the like (not shown).
  • the overall ECU 51 controls the entire vehicle 901 based on the acquired vehicle information. Then, the overall ECU 51 transmits a control command signal to each of the MG-ECU 54, the engine ECU 57, and the transmission ECU 58.
  • the overall ECU 51 instructs the ECUs 54, 57, and 58 to execute processing. Further, it is assumed that vehicle 901 can execute traction control (hereinafter referred to as “TRC”) that suppresses the rotation of a relatively high rotational speed of driving wheels 98. In such a vehicle 901, the general ECU 51 can prohibit the operation of “TRC function off” in which the driver arbitrarily stops the TRC function.
  • TRC traction control
  • the battery ECU 52 functions as a power supply control unit.
  • Battery ECU 52 acquires main unit battery information such as voltage, current, temperature, and SOC of main unit battery 20.
  • the battery ECU 52 monitors the state of the main battery 20 so that the SOC of the main battery 20 is within a predetermined range.
  • Battery ECU 52 detects an abnormality of main unit battery 20 based on the acquired main unit battery information. Then, the battery ECU 52 transmits the detection result to the general ECU 51.
  • the abnormality of the main battery 20 includes, for example, a voltage abnormality in which the voltage deviates from the normal range, an overcurrent abnormality in which the current exceeds the upper limit value, and an SOC abnormality in which the SOC deviates from the normal range.
  • the battery ECU 52 shuts off the power supply relay 21 (ON ⁇ OFF). Thereby, main battery 20 and inverter 40 and MG 60 are disconnected.
  • the MG-ECU 54 functions as a motor generator control unit and an inverter control unit.
  • the MG-ECU 54 transmits information on the actual MG torque Tm and the actual MG rotation speed Nm to the overall ECU 51.
  • the MG-ECU 54 operates the operations of the switching elements 41-46 of the inverter 40 in accordance with the MG torque command Tm * and the MG rotational speed command Nm * transmitted from the overall ECU 51. Thereby, MG-ECU 54 controls driving of MG 60.
  • the MG-ECU 54 acquires, for example, the motor current Im detected by the current sensor 64 and the electrical angle ⁇ detected by the rotation angle sensor 65.
  • the MG-ECU 54 may calculate the MG torque Tm using the dq axis current obtained by coordinate conversion of the phase current.
  • the MG-ECU 54 may acquire the MG torque Tm detected by a torque sensor (not shown). Further, the MG-ECU 54 may calculate the MG rotation speed Nm by differentiating the detected value of the electrical angle ⁇ with respect to time. Further, the MG-ECU 54 may estimate the MG rotation speed Nm based on the estimated position in the position sensorless configuration.
  • the MG-ECU 54 performs PWM driving of the inverter 40 based on a voltage command value calculated by current feedback control or torque feedback control during normal control of the power running operation. Thereby, MG-ECU 54 causes inverter 40 to generate desired power, and supplies the generated power to MG 60. In addition, the MG-ECU 54 performs “voltage control” or “gate cutoff” on the inverter 40 in the inverter control mode of the regenerative operation after the power supply relay 21 is shut off.
  • the MG-ECU 54 operates the operations of the plurality of switching elements 41-46 of the inverter 40 to control the capacitor voltage Vc.
  • the MG-ECU 54 turns off all the plurality of switching elements 41-46 of the inverter 40. In the state where the gate is cut off, the current from the MG 60 side flows from the low potential side to the high potential side via the flywheel diode associated with the switching element 41-46.
  • the engine ECU 57 functions as an engine control unit.
  • the engine ECU 57 transmits information on the actual engine torque Te and the actual engine speed Ne to the overall ECU 51.
  • the engine ECU 57 operates the fuel injection valve injection amount, the injection timing, and the like in accordance with the engine torque command Te * transmitted from the general ECU 51. Thereby, engine ECU 57 controls the operation of engine 70.
  • the engine ECU 57 can inhibit the operation of “deceleration blipping” that increases the engine speed Ne when the vehicle 901 is decelerated, for example, in cooperation with an accelerator ECU or the like (not shown).
  • the transmission ECU 58 functions as a transmission control unit.
  • the transmission ECU 58 transmits transmission information (T / M information) to the overall ECU 51.
  • the transmission ECU 58 controls the operations of the clutches 81 and 82 and the transmission 84 in accordance with the shift command transmitted from the overall ECU 51.
  • transmission ECU 58 controls power transmission between engine 70 and MG 60 and power transmission between MG 60 and axle 96.
  • the transmission ECU 58 instructs the clutches 81 and 82 to switch between the engaged state, the semi-engaged state, and the released state. Further, the transmission ECU 58 instructs the transmission 84 to switch the shift position. The transmission ECU 58 prohibits the transmission 84 from performing a downshift. Furthermore, it is assumed that vehicle 901 can be switched between an automatic transmission mode (hereinafter “AT mode”) and a manual transmission mode (hereinafter “MT mode”). In the case of such a vehicle, the transmission ECU 58 can prohibit the operation in the MT mode.
  • AT mode automatic transmission mode
  • MT mode manual transmission mode
  • the capacitor voltage Vc increases.
  • the MG rotation speed Nm is high and the regenerative power generation amount is large, a load dump in which the capacitor voltage Vc becomes excessive occurs.
  • the overvoltage due to the load dump may damage the switching elements 41-46, the capacitor 25, the elements of the DCDC converter 30, and the like.
  • the vehicle control device 50 of the present embodiment shuts off the power relay 21 due to the abnormality of the main engine battery 20 and stops the power running operation of the MG 60. Then, the vehicle control device 50 controls the rotation of the MG 60 while maintaining the vehicle traveling by the engine 70 and enabling the retreat traveling. That is, the vehicle control device 50 executes “MG rotation suppression processing” for suppressing an increase in the MG rotation speed Nm.
  • MG rotation suppression processing for suppressing an increase in the MG rotation speed Nm.
  • vehicle control device 50 suppresses the rotation of MG 60 by eliminating at least one of the factors that increase MG rotation speed Nm due to the operation of vehicle 901. Specifically, vehicle control device 50 prohibits the operation of at least one of the factors that increase MG rotation speed Nm due to the operation of vehicle 901. Then, vehicle control device 50 suppresses rotation of engine 70 that is directly transmitted to MG 60 or indirectly transmitted as vehicle 901 travels. Alternatively, the vehicle control device 50 directly suppresses the rotation of the MG 60.
  • FIG. 3 shows a main flowchart of this process.
  • FIG. 4 shows a sub-flowchart of this process.
  • the symbol S represents “step”.
  • the CPU executes a vehicle control program stored in a recording medium such as a semiconductor memory and executed by the CPU in the vehicle control device 50, for example.
  • the vehicle control device 50 is redeioned (S1).
  • the MG-ECU 54 normally controls the inverter 40 (S2).
  • the MG-ECU 54 continues normal control until the battery ECU 52 detects abnormality of the main battery 20 (S3: NO).
  • the vehicle control device 50 compares the MG torque Tm at that time with the threshold value Tmth (S4). Then, the vehicle control device 50 determines whether the overall operation state of the MG 60 is a power running operation or a regenerative operation based on the comparison result. If the MG torque Tm is greater than the threshold value Tmth (S4: YES), the overall ECU 51 determines that the operation state of the MG 60 is a power running operation, and proceeds to the process of S5. On the other hand, when the MG torque Tm is equal to or less than the threshold value Tmth (S4: NO), the overall ECU 51 determines that the operation state of the MG 60 is a regenerative operation, and proceeds to the process of S6.
  • the battery ECU 52 turns off the power supply relay 21 (S5).
  • the capacitor voltage Vc decreases. Therefore, in the normal control of the inverter 40, a diagnosis signal of the voltage sensor is generated.
  • the power supply relay 21 is intentionally turned off. Therefore, the diagnosis signal of the voltage sensor is unnecessary. Therefore, the vehicle control device 50 masks the diagnosis signal of the voltage sensor (S7).
  • the MG-ECU 54 waits for reception of a voltage control command transmitted from the overall ECU 51 (S8: NO).
  • the vehicle control device 50 executes an MG rotation suppression process (S10) and a gate cutoff process (S21) for the inverter 40. That is, the MG rotation suppression process is executed in accordance with an instruction from the overall ECU 51.
  • the vehicle control device 50 executes the following processes (a), (b), and (c) in the MG rotation suppression process (S10) (S11). Specifically, the overall ECU 51 turns on the following operation prohibition flags (control flags).
  • the transmission ECU 58 determines whether or not the vehicle speed is greater than a predetermined speed threshold (S12). If the vehicle speed is greater than the speed threshold value (S12: YES), the transmission ECU 58 executes a process of (d) “prohibition of downshift operation” (S13). On the other hand, when the vehicle speed is equal to or lower than the speed threshold (S12: NO), the transmission ECU 58 permits downshifting (S14).
  • TRC function OFF operation prohibition process In TRC, when a wheel has an extremely high rotational speed compared to other wheels, it is determined that the wheel is idling and control is performed so that rotation of the wheel is suppressed. To do. If this function is stopped, the rotation of the idle wheel is transmitted, and the MG rotation speed Nm may increase. Therefore, in the present embodiment, the overall ECU 51 prohibits the “TRC function off” operation, which can be an increase factor of the MG rotation speed Nm, based on the operation prohibition flag.
  • the MG rotation speed Nm may increase due to the driver's manual operation beyond the range that the vehicle control device 50 can control. Therefore, in the present embodiment, the transmission ECU 58 prohibits the “MT mode” operation, which can be an increase factor of the MG rotation speed Nm, based on the operation prohibition flag.
  • (C) Processing prohibition processing of blipping at the time of deceleration It is assumed that at the time of the deceleration shift, the driver depresses the accelerator and performs the deceleration blipping to increase the engine speed Ne. In this case, the transmission of the engine rotation Ne may increase the MG rotation speed Nm. Thus, in the present embodiment, the engine ECU 57 prohibits the operation of “deceleration blipping” that can be an increase factor of the MG rotation speed Nm, regardless of the vehicle speed, based on the operation prohibition flag. (D) Downshift prohibition processing during high speed traveling The vehicle 901 may travel faster than a preset speed threshold. During such high speed traveling, it is preferable to prohibit downshifting by the transmission 84 itself.
  • the transmission ECU 58 prohibits “downshift” for the transmission 84 based on the determination result of the vehicle speed.
  • the increase in the engine speed Ne accompanying a downshift and the increase in the MG speed Nm accompanying it can be prevented.
  • the vehicle control device 50 in the MG rotation suppression process, the operation of at least one of the factors that increase the MG rotation speed Nm due to the operation of the vehicle 901 is prohibited.
  • the vehicle control device 50 eliminates at least one of the factors that increase the MG rotation speed Nm.
  • S21 to S24 are processes relating to switching of inverter control.
  • the MG-ECU 54 gates the inverter 40 (S21). That is, immediately after the power supply relay 21 is turned off (S5 or S6), the inverter 40 is once gate-cut.
  • the MG-ECU 54 determines whether or not a predetermined voltage control execution condition is met (S22). In this voltage control execution condition, the MG rotation speed Nm is within the range between the upper limit value and the lower limit value (within a predetermined rotation speed range), and the capacitor voltage Vc is within the range between the upper limit value and the lower limit value ( In the predetermined voltage range), it is determined that the condition is satisfied.
  • the upper limit value of the MG rotation speed Nm is expressed as NmH
  • the lower limit value is expressed as NmL
  • the upper limit value of the capacitor voltage Vc is expressed as VcH
  • the lower limit value is expressed as VcL.
  • the MG-ECU 54 determines that the voltage control execution condition is satisfied when the expressions (1) and (2) are satisfied. That is, an affirmative determination is made in S22 (S22: YES). NmL ⁇ Nm ⁇ NmH (1) VcL ⁇ Vc ⁇ VcH (2)
  • the MG-ECU 54 When it is determined that the voltage control execution condition is not satisfied (S22: NO), the MG-ECU 54 continues to block the gate (S21). When it is determined that the voltage control execution condition is satisfied (S22: YES), the MG-ECU 54 determines whether or not it is ready-off (S23). As a result, when it is determined that the vehicle is ready-off (S23: YES), the vehicle control device 50 ends the processing routine. On the other hand, when it determines with not being ready-off (S23: NO), the vehicle control apparatus 50 transfers to the process of S24. The MG-ECU 54 drives the inverter 40 and executes voltage control (S24). Thereafter, the vehicle control device 50 repeatedly determines whether or not the voltage control execution condition is satisfied (S22).
  • the MG rotation speed Nm and the capacitor voltage Vc have a positive correlation.
  • the capacitor voltage Vc increases as the MG rotation speed Nm increases.
  • voltage control can be executed within the range of voltage control execution conditions. Specifically, the present invention can be executed within a range in which the MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH, and the capacitor voltage Vc is between the lower limit value VcL and the upper limit value VcH. In this range, the capacitor voltage Vc is controlled in accordance with a command from the MG-ECU 54.
  • a hysteresis for switching the control mode is set for the MG rotation speed Nm.
  • the MG rotation speed Nm increases, and the rotation speed switching speed Nx + for switching from voltage control to gate cutoff is set to a value equal to or lower than the upper limit value NmH.
  • the rotational speed Nx ⁇ of the deceleration switching that is switched from the gate cutoff to the voltage control when the MG rotational speed Nm decreases is set to a value smaller than the rotational speed Nx + of the acceleration switching.
  • FIGS. 7 and 8 also show “TRC function off operation prohibition” and “MT mode operation prohibition” in common in the MG rotation suppression processing described above.
  • “downshift prohibition at high speed travel” is shown only in FIG.
  • an MG rotation suppression process such as “prohibition of deceleration blipping operation” may be executed instead of or in addition to these operation prohibition processes.
  • FIG. 7 shows a first operation example of the main battery abnormality process.
  • a comparative example with the first operation an operation in the case where “prohibition of downshift at high speed” is not executed is indicated by a two-dot chain line. That is, in the comparative example, it is possible to downshift during high speed traveling.
  • the inverter 40 In the initial stage before time t0, the inverter 40 is normally controlled.
  • the capacitor voltage Vc is between the lower limit value VcL and the upper limit value VcH.
  • MG rotation speed Nm is between lower limit value NmL and upper limit value NmH.
  • the position of the transmission gear at this time is “5th speed”.
  • the capacitor voltage Vc rises from zero by regenerative power generation of the MG 60.
  • the capacitor voltage Vc reaches the lower limit value VcL.
  • the MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH. Therefore, the voltage control execution condition is satisfied. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control. Thereafter, the vehicle speed starts to decrease at time t5.
  • the clutch is released from the engaged state, the transmission gear is downshifted from, for example, “5-speed” to “3-speed”, and then the clutch is engaged again.
  • the first operation example of the present embodiment as shown in S12 of FIG. 4, if the vehicle speed is larger than the speed threshold value (during high speed traveling), the downshift of the transmission gear is prohibited. In the first operation example, the transmission gear is maintained at “5th speed” while the engine side clutch 81 is engaged.
  • the vehicle control device 50 can protect the elements of the inverter 40 from overvoltage.
  • FIG. 8 shows a second operation example of the main battery abnormality process. It is assumed that an abnormality has occurred in the main battery 20 at time t0. In this case, at time t1, the vehicle control device 50 prohibits the TRC function off and the MT mode operations. Then, the vehicle control device 50 switches the inverter control mode from normal control to gate cutoff. The operation so far is the same as the first operation example of FIG. Therefore, the description is omitted here. After time t1, the capacitor voltage Vc rises from zero by regenerative power generation of the MG 60. However, in the second operation example, MG rotation speed Nm exceeds upper limit value NmH at time t2 earlier than time t3 when capacitor voltage Vc reaches lower limit value VcL. Therefore, the voltage control execution condition is not satisfied even at time t3. Therefore, the inverter control mode is continued with the gate shut off.
  • the transmission ECU 58 places the engine-side clutch 81 in a half-engaged state in order to reduce the MG rotational speed Nm. That is, the engine side clutch 81 is slipped. Thereby, the power from engine 70 is not sufficiently transmitted to MG 60. Then, at time t4 when the MG rotation speed Nm falls below the upper limit value NmH, the transmission ECU 58 brings the engine side clutch 81 into the engaged state again. In the second operation example, the transmission ECU 58 may control the engine-side clutch 81 so as to intermittently repeat the engaged state and the semi-engaged state between time t2 and time t4.
  • the capacitor voltage Vc is kept between the lower limit value VcL and the upper limit value VcH. Thereby, in vehicle control device 50, the element of inverter 40 can be protected from overvoltage.
  • MG rotation speed Nm falls below upper limit value NmH. Therefore, the voltage control execution condition is satisfied. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control.
  • the DCDC converter 30 is driven simultaneously with the start of the voltage control.
  • the vehicle control system 10 can supply low-voltage power to the auxiliary battery 32.
  • the auxiliary machine load 33 can be driven using the regenerative power by the MG 60. Therefore, the vehicle control system 10 can continue to supply power from the auxiliary battery 32 to the auxiliary load 33 such as a starter or an electric power steering device during the retreat travel when the main battery 20 is abnormal.
  • FIGS. 9 and 10 A second embodiment of the technology of the present disclosure will be described with reference to FIGS. 9 and 10.
  • the second embodiment is applied to an axle split type vehicle 902 in which a wheel connected to the engine 70 and a wheel connected to the MG 60 are separated.
  • the output shaft 71 of the engine 70 is connected to the drive shaft 91 via the transmission 83.
  • the driving force transmitted to the drive shaft 91 is transmitted to the axle 93 via the differential gear 92.
  • the MG 60 is connected to the rear wheel 98 via the axle 96.
  • the inverter 40 converts the power of the main battery 20 and supplies it to the MG 60.
  • the configuration of the present embodiment is not limited to the configuration shown in FIG.
  • the engine 70 may be disposed on the rear wheel side and the MG 60 may be disposed on the front wheel side.
  • the vehicle control device 50 communicates with the main engine battery 20, the power relay 21, the inverter 40, the MG 60, the engine 70, the transmission 83, etc., and inputs various information. And output command signals.
  • the axle split type vehicle 902 when the main engine battery 20 becomes abnormal and the power running operation of the MG 60 is stopped, the front wheel 97 is driven by the engine 70 to cause the vehicle 902 to travel. As a result, the rear wheel 98 is rotated by the traveling associated with the driving of the front wheel 97. As a result, the MG 60 generates regenerative power. If the voltage generated at this time becomes excessive (when a load dump occurs), the elements of the inverter 40 may be damaged by the overvoltage. Therefore, in the present embodiment, the vehicle control device 50 executes the MG rotation suppression process.
  • the vehicle control device 50 reduces the rotational speed of the front wheels 97 driven by the engine 70 to reduce the vehicle speed.
  • the vehicle control device 50 reduces the rotational speed of the front wheels 97 driven by the engine 70 to reduce the vehicle speed.
  • reducing the MG rotation speed Nm As another method, it is also effective to directly suppress the rotation of MG60.
  • FIGS. 10A to 10C show a configuration example for realizing MG rotation suppression in the axle split type vehicle 902. 10A to 10C, the driving configuration of the front wheels 97 by the engine 70 is the same as in FIG. Therefore, illustration is omitted and only the configuration on the rear wheel 98 side connected to the MG 60 is illustrated.
  • a clutch 82 is provided on the drive shaft 94 that connects the MG 60 and the differential gear 95.
  • vehicle control device 50 slips clutch 82 and reduces MG rotation speed Nm to upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
  • a clutch 82 and a transmission 84 are provided on the drive shaft 94 that connects the MG 60 and the differential gear 95.
  • vehicle control device 50 shifts the transmission gear to H (high), and reduces MG rotation speed Nm to an upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
  • a clutch 82 is provided on each axle 96 that connects the MG 60 and the left and right rear wheels 98.
  • vehicle control device 50 slips clutch 82 and reduces MG rotation speed Nm to upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
  • the same effect as the first embodiment can be obtained.
  • the MG rotation suppression process of the present disclosure is not limited to the content exemplified in the above embodiment.
  • the MG rotation suppression process of the present disclosure includes all processes that exclude “a factor that increases the MG rotation speed Nm due to the operation of the vehicle”. That is, the MG rotation suppression process of the present disclosure includes all processes for suppressing the rotation of the MG 60 by prohibiting the operation of at least one of the factors that increase the MG rotation speed Nm due to the operation of the vehicle. It is.
  • the vehicle control device of the present disclosure is not applied only to a vehicle control system including one motor generator.
  • the vehicle control device of the present disclosure may be applied to a vehicle control system including, for example, two motor generators connected by a power split mechanism.
  • the vehicle control device of the present disclosure can be applied to a vehicle control system in which a part of regenerative power is supplied by a fuel cell.
  • the technique of this indication is not limited to the content of the said embodiment.
  • the technology of the present disclosure can be implemented in various forms without departing from the spirit of the disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This vehicle control apparatus (50) is applicable to a vehicle (901, 902) that is provided with: an engine (70) and a motor-generator (60) which serve as power sources; and a main battery (20) which can transfer power to and from the motor-generator through an inverter (40). This vehicle control apparatus controls the operation of the engine and the motor-generator, and is capable of controlling the power transmission between the engine and the motor-generator. When abnormalities in the main battery are detected, the vehicle control apparatus interrupts a power relay (21) disposed between the main battery and the inverter and stops the power running operation of the motor-generator. Then the vehicle control apparatus eliminates at least one of the factors responsible for the increase in motor-generator rotational speed caused by the operation of the vehicle and suppresses the rotation of the motor-generator, while maintaining vehicle travel using the engine.

Description

車両制御装置、車両制御方法、及び車両制御プログラムを記憶した記録媒体Vehicle control device, vehicle control method, and recording medium storing vehicle control program
 本開示は、車両を制御する車両制御技術に関する。 This disclosure relates to a vehicle control technique for controlling a vehicle.
 従来では、エンジン及びモータジェネレータを備えるハイブリッド車両において、次のような技術が知られている。具体的には、主機バッテリの異常時に変速し、エンジンにより車両を駆動しながらモータジェネレータを回生発電させる。そして、このとき発生する電圧をコントロールする。これにより、補機バッテリへの電力が安定して供給される。
 例えば特許文献1には、次のようなハイブリッド車両の制御装置について記載されている。特許文献1に記載のハイブリッド車両は、奇数段の第1クラッチと、偶数段の第2クラッチと、を備えるデュアルクラッチ式の車両である。このような車両において、制御装置は、主機バッテリの異常時に最低変速段までダウンシフトする。
Conventionally, the following techniques are known in a hybrid vehicle including an engine and a motor generator. Specifically, the speed is changed when the main engine battery is abnormal, and the motor generator is regeneratively generated while the vehicle is driven by the engine. The voltage generated at this time is controlled. Thereby, the power to the auxiliary battery is stably supplied.
For example, Patent Document 1 describes the following hybrid vehicle control device. The hybrid vehicle described in Patent Document 1 is a dual clutch vehicle including an odd-numbered first clutch and an even-numbered second clutch. In such a vehicle, the control device downshifts to the lowest gear position when the main engine battery is abnormal.
特許第5855603号公報Japanese Patent No. 5855603
 特許文献1の技術では、高速走行時のダウンシフト等により、モータジェネレータの回転が上昇する。この場合、特許文献1に記載の技術では、回生電力が増大することによって、インバータに過電圧が印加される可能性がある。その結果、インバータを構成する素子が破損するおそれがある。
 本開示は、主機電源の異常時に、エンジン走行を維持しつつモータジェネレータの回転を抑制し、インバータを過電圧から保護する車両制御技術を提供する。
In the technique of Patent Document 1, the rotation of the motor generator increases due to a downshift or the like during high-speed traveling. In this case, in the technique described in Patent Document 1, there is a possibility that an overvoltage is applied to the inverter due to an increase in regenerative power. As a result, the elements constituting the inverter may be damaged.
The present disclosure provides a vehicle control technology that protects an inverter from overvoltage by suppressing rotation of a motor generator while maintaining engine running when a main engine power supply is abnormal.
 本開示の技術の一態様である車両制御装置は、動力源であるエンジン(70)及びモータジェネレータ(60)、並びに、インバータ(40)を介してモータジェネレータと電力を授受可能な主機電源(20)を備えた車両(901,902)に適用される。車両制御装置は、エンジン及びモータジェネレータの動作を制御する。且つ、車両制御装置は、エンジンとモータジェネレータとの間の動力伝達と、モータジェネレータと車軸(96)との間の動力伝達と、のうちの少なくとも一方を制御する。 A vehicle control device according to an aspect of the technology of the present disclosure includes a main power source (20) that can exchange power with a motor generator via an engine (70) and a motor generator (60) that are power sources, and an inverter (40). It is applied to a vehicle (901, 902) provided with The vehicle control device controls operations of the engine and the motor generator. The vehicle control device controls at least one of power transmission between the engine and the motor generator and power transmission between the motor generator and the axle (96).
 この車両制御装置は、主機電源の異常が検出されたとき、主機電源とインバータとの間に設けられた電源リレー(21)を遮断して、モータジェネレータの力行動作を停止する。そして、車両制御装置は、エンジンによる車両走行を維持しつつ、モータジェネレータの回転を制御する。つまり、車両制御装置は、「モータジェネレータ回転抑制処理」(以下「MG回転抑制処理」)を実行する。車両制御装置は、MG回転抑制処理において、車両の動作によってモータジェネレータの回転数(以下「MG回転数」)が増加する要因のうちの少なくとも1つを排除して、モータジェネレータの回転を抑制する。 This vehicle control device shuts off the power running operation of the motor generator by shutting off the power relay (21) provided between the main power source and the inverter when an abnormality of the main power source is detected. The vehicle control device controls the rotation of the motor generator while maintaining vehicle travel by the engine. That is, the vehicle control device executes a “motor generator rotation suppression process” (hereinafter “MG rotation suppression process”). In the MG rotation suppression process, the vehicle control device eliminates at least one of the factors that increase the rotation speed of the motor generator (hereinafter referred to as “MG rotation speed”) due to the operation of the vehicle, and suppresses the rotation of the motor generator. .
 具体的に車両制御装置は、MG回転抑制処理において、モータジェネレータに直接的に伝達される、もしくは、車両の走行に伴って間接的に伝達される、エンジンの回転を抑制する。又は、車両制御装置は、MG回転抑制処理において、モータジェネレータの回転を直接抑制する。
 MG回転抑制処理としては、例えばトラクションコントロール機能オフの作動禁止、マニュアルトランスミッションモードの作動禁止、減速時のブリッピングの作動禁止、高速走行時におけるダウンシフトの作動禁止等がある。車両制御装置では、MG回転抑制処理において、上記機能の作動を禁止する。これにより、車両制御装置では、車両の動作によってMG回転数が増加する要因を排除する。
Specifically, the vehicle control device suppresses rotation of the engine that is directly transmitted to the motor generator or indirectly transmitted as the vehicle travels in the MG rotation suppression process. Alternatively, the vehicle control device directly suppresses the rotation of the motor generator in the MG rotation suppression process.
The MG rotation suppression processing includes, for example, prohibition of traction control function off, manual transmission mode operation prohibition, blipping operation prohibition during deceleration, and downshift operation prohibition during high-speed driving. In the vehicle control device, the operation of the above function is prohibited in the MG rotation suppression process. As a result, the vehicle control device eliminates the factor that increases the MG rotation speed due to the operation of the vehicle.
 以上のように、本開示の車両制御装置は、主機バッテリの異常時に、モータジェネレータの力行動作を停止しつつも、エンジン走行を維持する。そのため、本開示の技術では、主機バッテリの異常時に退避走行(リンプホーム)が可能である。
 その上で、本開示の車両制御装置は、上述したMG回転抑制処理を実行する。これにより、車両制御装置は、エンジン又は車軸の回転がモータジェネレータに伝達されることに起因するMG回転数の増加を回避する。その結果、本開示の技術では、回生発電によってインバータに印加される過電圧から、インバータの素子を保護できる。
As described above, the vehicle control device of the present disclosure maintains engine running while stopping the power running operation of the motor generator when the main engine battery is abnormal. Therefore, in the technology of the present disclosure, retreat travel (limp home) is possible when the main battery is abnormal.
In addition, the vehicle control device of the present disclosure executes the above-described MG rotation suppression process. Thus, the vehicle control device avoids an increase in the MG rotation speed due to the rotation of the engine or axle being transmitted to the motor generator. As a result, the technology of the present disclosure can protect the elements of the inverter from an overvoltage applied to the inverter by regenerative power generation.
 また、本開示の車両制御装置のインバータ制御部は、インバータ制御モードとして、MG回転数及びコンデンサの電圧について、所定の実行条件が成立するときに、電圧制御を実行する。これにより、本開示の技術では、例えばインバータから、補機バッテリに所望の電力を供給できる。そのため、本開示の技術では、車両が退避走行中に、スタータや電動パワーステアリング装置等の機能を確保できる。一方、インバータ制御部は、電圧制御の実行条件が成立しないときに、ゲート遮断を実行する。 In addition, the inverter control unit of the vehicle control device of the present disclosure executes voltage control when a predetermined execution condition is satisfied for the MG rotation speed and the capacitor voltage as the inverter control mode. Thereby, in the technique of this indication, desired electric power can be supplied to an auxiliary machine battery from an inverter, for example. Therefore, with the technology of the present disclosure, functions such as a starter and an electric power steering device can be ensured while the vehicle is running away. On the other hand, the inverter control unit executes the gate cutoff when the execution condition of the voltage control is not satisfied.
第1実施形態の車両制御装置が適用される車両の概略構成図である。1 is a schematic configuration diagram of a vehicle to which a vehicle control device of a first embodiment is applied. 図1の車両における制御システムの構成図である。It is a block diagram of the control system in the vehicle of FIG. 主機バッテリ異常時処理のメインフローチャートである。It is a main flowchart of a main machine battery abnormality process. 図3のMG回転抑制処理のサブフローチャートである。It is a subflowchart of the MG rotation suppression process of FIG. 電圧制御及びゲート遮断それぞれにおけるMG回転数とコンデンサ電圧との特性図である。It is a characteristic view of MG rotation speed in each of voltage control and gate interruption | blocking, and a capacitor voltage. MG回転数の変化による電圧制御とゲート遮断との切り替えを示す図である。It is a figure which shows switching with voltage control and gate interruption | blocking by the change of MG rotation speed. 主機バッテリ異常時の第1の動作例を示すタイムチャートである。It is a time chart which shows the 1st operation example at the time of main machine battery abnormality. 主機バッテリ異常時の第2の動作例を示すタイムチャートである。It is a time chart which shows the 2nd operation example at the time of main machine battery abnormality. 第2実施形態の車両制御装置が適用されるアクスルスプリット方式の車両の概略構成図である。It is a schematic block diagram of the axle split type vehicle to which the vehicle control apparatus of 2nd Embodiment is applied. アクスルスプリット方式の車両においてMG回転抑制を実現する構成例を示す図である。It is a figure which shows the structural example which implement | achieves MG rotation suppression in the vehicle of an axle split system.
 以下、本開示の技術における車両制御装置の実施形態について図面に基づいて説明する。なお、実施形態において、実質的に同一の構成には同一の符号を付し、その説明を省略する。
 本開示の技術の一態様であるの車両制御装置は、動力源として、エンジン及びモータジェネレータ(以下「MG」)を備える、ハイブリッド車両に適用される。第1実施形態は、エンジンとMGとが協働して同一の駆動輪を駆動する、通常のハイブリッド車両に適用される。第2実施形態は、エンジンとMGとがそれぞれ別の駆動輪を駆動する、アクスルスプリット方式の車両に適用される。
Hereinafter, an embodiment of a vehicle control device according to the technology of the present disclosure will be described with reference to the drawings. In the embodiments, substantially the same components are denoted by the same reference numerals, and the description thereof is omitted.
The vehicle control device according to one aspect of the technology of the present disclosure is applied to a hybrid vehicle including an engine and a motor generator (hereinafter “MG”) as power sources. The first embodiment is applied to a normal hybrid vehicle in which the engine and the MG cooperate to drive the same drive wheel. The second embodiment is applied to an axle split type vehicle in which an engine and an MG drive different drive wheels.
 (第1実施形態)
 本開示の技術の第1実施形態について、図1~図8を参照して説明する。
 図1に示すように、車両制御システム10は、車両901に適用される。車両制御システム10は、エンジン70、MG60、主機バッテリ20、インバータ40、動力伝達系のクラッチ81,82、変速機84、及び、車両制御装置50等を含む。
 エンジン70は、燃料を燃焼させて発生する熱エネルギーを、回転駆動力に変換する。
 MG60は、力行動作、及び、回生動作を行う。力行動作は、主機バッテリ20から供給される電力を消費して、トルクを発生する。回生動作は、エンジン70又は駆動軸94から伝達されるトルクにより発電した電力を、主機バッテリ20に回生する。本実施形態のMG60は、永久磁石式同期型の三相交流電動発電機である。
(First embodiment)
A first embodiment of the technology of the present disclosure will be described with reference to FIGS. 1 to 8.
As shown in FIG. 1, the vehicle control system 10 is applied to a vehicle 901. The vehicle control system 10 includes an engine 70, an MG 60, a main engine battery 20, an inverter 40, power transmission clutches 81 and 82, a transmission 84, a vehicle control device 50, and the like.
The engine 70 converts thermal energy generated by burning fuel into rotational driving force.
The MG 60 performs a power running operation and a regenerative operation. In the power running operation, electric power supplied from the main battery 20 is consumed to generate torque. In the regenerative operation, power generated by torque transmitted from the engine 70 or the drive shaft 94 is regenerated to the main battery 20. The MG 60 of this embodiment is a permanent magnet type synchronous three-phase AC motor generator.
 主機バッテリ20は、主機電源として機能する。主機バッテリ20は、例えばニッケル水素電池、リチウムイオン電池等の充放電可能な二次電池により構成される。主機バッテリ20の正極は、高電位ラインPに接続され、主機バッテリ20の負極は、低電位ラインNに接続される。
 なお、主機バッテリ20を「高圧バッテリ」と称し、後述の補機バッテリ32を「低圧バッテリ」と称してもよい。また、主機電源としては、バッテリに代えて、例えば電気二重層キャパシタ等の蓄電装置を用いてもよい。
The main battery 20 functions as a main power source. The main battery 20 is configured by a chargeable / dischargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery. The positive electrode of the main battery 20 is connected to the high potential line P, and the negative electrode of the main battery 20 is connected to the low potential line N.
The main battery 20 may be referred to as a “high voltage battery”, and an auxiliary battery 32 described later may be referred to as a “low voltage battery”. As the main power source, a power storage device such as an electric double layer capacitor may be used instead of the battery.
 主機バッテリ20とインバータ40との間には、電力経路を遮断可能な電源リレー21が設けられている。電源リレー21は、システムメインリレーに相当する。電源リレー21は、高電位ラインPに設けられる高電位側リレー22、及び、低電位ラインNに設けられる低電位側リレー23を含む。高電位側リレー22及び低電位側リレー23は、機械式リレー、半導体リレーのいずれでもよい。 Between the main battery 20 and the inverter 40, a power supply relay 21 capable of interrupting the power path is provided. The power relay 21 corresponds to a system main relay. The power supply relay 21 includes a high potential side relay 22 provided on the high potential line P and a low potential side relay 23 provided on the low potential line N. The high potential side relay 22 and the low potential side relay 23 may be either a mechanical relay or a semiconductor relay.
 インバータ40は、主機バッテリ20側の直流電力と、MG60側の三相交流電力と、を相互に変換する。図2に示すように、インバータ40は、三相上下アームのスイッチング素子41-46により構成される。詳しくは、スイッチング素子41,42,43は、それぞれU相、V相、W相の上アームのスイッチング素子である。スイッチング素子44,45,46は、それぞれU相、V相、W相の下アームのスイッチング素子である。本実施形態のスイッチング素子41-46は、IGBT(絶縁ゲートバイポーラトランジスタ)である。また、スイッチング素子41-46には、エミッタ側からコレクタ側への通電を許容するフライホイールダイオードが付随している。換言すると、スイッチング素子41-46には、低電位側から高電位側への通電を許容するダイオードが付随している。 The inverter 40 mutually converts the DC power on the main battery 20 side and the three-phase AC power on the MG 60 side. As shown in FIG. 2, the inverter 40 includes switching elements 41-46 of three-phase upper and lower arms. Specifically, the switching elements 41, 42, and 43 are upper-arm switching elements of the U phase, the V phase, and the W phase, respectively. The switching elements 44, 45, and 46 are switching elements of the lower arm of the U phase, the V phase, and the W phase, respectively. The switching elements 41 to 46 of the present embodiment are IGBTs (insulated gate bipolar transistors). Further, the switching elements 41-46 are accompanied by flywheel diodes that allow energization from the emitter side to the collector side. In other words, the switching element 41-46 is accompanied by a diode that allows energization from the low potential side to the high potential side.
 インバータ40の主機バッテリ20側には、入力電圧を平滑化するコンデンサ25が設けられる。コンデンサ電圧Vcは、コンデンサ25の両端電圧である。換言すると、コンデンサ電圧Vcは、高電位ラインPと低電位ラインNとの電位差である。コンデンサ電圧Vcが耐電圧上限値を超えると、インバータ40のスイッチング素子41-46等の素子が破損するおそれがある。
 そこで、本実施形態では、例えば電圧センサ(非図示)によって、コンデンサ電圧Vcを監視するようにしてもよい。
A capacitor 25 for smoothing the input voltage is provided on the main battery 20 side of the inverter 40. The capacitor voltage Vc is a voltage across the capacitor 25. In other words, the capacitor voltage Vc is a potential difference between the high potential line P and the low potential line N. When the capacitor voltage Vc exceeds the withstand voltage upper limit value, elements such as the switching elements 41 to 46 of the inverter 40 may be damaged.
Therefore, in this embodiment, the capacitor voltage Vc may be monitored by, for example, a voltage sensor (not shown).
 また、図1に示す構成例では、電源リレー21とインバータ40との間の電力経路から分岐した経路に、DCDCコンバータ30が接続されている。なお、図2には、DCDCコンバータ30の図示を省略する。
 DCDCコンバータ30は、主機バッテリ20の高圧電力を降圧し、低圧電力を出力する。補機バッテリ32は、例えば鉛蓄電池等の二次電池で構成される。補機バッテリ32は、DCDCコンバータ30が出力した低圧電力により充電される。補機バッテリ32は、車両の各種補機負荷33に低圧電力を供給する。補機負荷33には、例えばエンジンのスタータ、電動パワーステアリング装置、ブレーキアクチュエータ等、退避走行時に必要な機能を有する装置が含まれる。
In the configuration example shown in FIG. 1, the DCDC converter 30 is connected to a path branched from the power path between the power supply relay 21 and the inverter 40. Note that the illustration of the DCDC converter 30 is omitted in FIG.
DCDC converter 30 steps down the high voltage power of main battery 20 and outputs the low voltage power. The auxiliary battery 32 is configured by a secondary battery such as a lead storage battery, for example. The auxiliary battery 32 is charged by the low voltage power output from the DCDC converter 30. The auxiliary battery 32 supplies low voltage power to various auxiliary loads 33 of the vehicle. The auxiliary machine load 33 includes devices having functions necessary for retreat travel, such as an engine starter, an electric power steering device, and a brake actuator.
 エンジン側クラッチ81は、エンジン70の出力軸71に設けられている。エンジン側クラッチ81は、エンジン70とMG60との間の動力伝達を断続する。
 車軸側クラッチ82は、MG60の出力側の駆動軸94に設けられている。車軸側クラッチ82は、MG60と車軸96との間の動力伝達を断続する。変速機84は、駆動軸94に伝達される動力を変速可能である。なお、車軸側クラッチ82及び変速機84が提供する機能は、例えばデュアルクラッチトランスミッション(DCT)として構成されてもよい。
 変速機84の出力側の駆動軸94に伝達された駆動力は、デファレンシャルギア95を介して車軸96に伝達される。その結果、車両901の駆動輪である車輪98が回転する。
The engine side clutch 81 is provided on the output shaft 71 of the engine 70. The engine side clutch 81 interrupts power transmission between the engine 70 and the MG 60.
The axle clutch 82 is provided on the drive shaft 94 on the output side of the MG 60. Axle side clutch 82 interrupts power transmission between MG 60 and axle 96. The transmission 84 can change the power transmitted to the drive shaft 94. The functions provided by the axle clutch 82 and the transmission 84 may be configured as, for example, a dual clutch transmission (DCT).
The driving force transmitted to the drive shaft 94 on the output side of the transmission 84 is transmitted to the axle 96 via the differential gear 95. As a result, the wheel 98 that is the driving wheel of the vehicle 901 rotates.
 図2に示すように、車両制御装置50は、複数のECU52,54,57,58と、それらを統括制御する統括ECU51と、から構成される。車両制御装置50は、車両901の駆動を統括して制御する。車両制御装置50は、主機バッテリ20、電源リレー21、インバータ40、MG60、エンジン70、クラッチ81,82、変速機84等との間で通信し、各種情報の入力や指令信号の出力を行う。各ECU51,52,54,57,58は、いずれもマイクロコンピュータ等を主体として構成されている。ECUは、CAN等の通信網を介して情報を送受信可能である。ECUは、例えばCPU、RAMやROM等の半導体メモリ、I/O等を備える。半導体メモリは、非遷移的実体的記録媒体に相当する。換言すれば、半導体メモリは、コンピュータが読み取り可能な記録媒体である。ECUは、例えば半導体メモリに記憶されたプログラムを読み出して、CPUがプログラムコードによって定義された処理を実行する。ECUは、I/Oを介して外部機器と信号を授受する。ECUは、I/Oを介して、入力された信号を基に所定の処理を実行し、実行結果の信号を出力する。これにより、EUCは、所定の制御機能を提供する。なお、機能の提供方法は、上述したソフトウェアによる方法に限らない。他の提供方法としては、例えばICや論理回路等の電子回路を用いたハードウェアによる方法であってもよい。 As shown in FIG. 2, the vehicle control device 50 includes a plurality of ECUs 52, 54, 57, and 58 and a general ECU 51 that performs overall control thereof. The vehicle control device 50 controls the driving of the vehicle 901 in an integrated manner. The vehicle control device 50 communicates with the main engine battery 20, the power supply relay 21, the inverter 40, the MG 60, the engine 70, the clutches 81 and 82, the transmission 84, etc., and inputs various information and outputs command signals. Each of the ECUs 51, 52, 54, 57, 58 is configured mainly with a microcomputer or the like. The ECU can transmit and receive information via a communication network such as CAN. The ECU includes, for example, a CPU, a semiconductor memory such as a RAM and a ROM, an I / O, and the like. The semiconductor memory corresponds to a non-transitional tangible recording medium. In other words, the semiconductor memory is a computer-readable recording medium. For example, the ECU reads a program stored in the semiconductor memory, and the CPU executes a process defined by the program code. The ECU exchanges signals with external devices via the I / O. The ECU executes a predetermined process based on the input signal via the I / O, and outputs an execution result signal. Thereby, EUC provides a predetermined control function. Note that the function providing method is not limited to the above-described software method. As another providing method, for example, a hardware method using an electronic circuit such as an IC or a logic circuit may be used.
 図2において、車両制御装置50は、統括ECU51、バッテリECU52、MG-ECU54、エンジンECU57、及び、トランスミッションECU(T/M-ECU)58等の各制御部を有する。なお、車両制御装置50の搭載車両では、図2に示すECU以外のECU(別のECU)が更に含まれる。しかし、図2には、本実施形態におけるECUの主な動作に関連する構成や信号の入出力のみを図示し、上述した別のECUの動作に関する構成や信号の入出力については、その説明を省略する。
 以下、本実施形態の主な動作に関連する機能のみを説明する。また、各ECUによる機能分担は、下記に示す構成に限らない。各ECUによる機能分担は、車両制御装置50の全体として、いずれかのECUが同様の機能を実現可能な構成であればよい。
In FIG. 2, the vehicle control device 50 includes control units such as a general ECU 51, a battery ECU 52, an MG-ECU 54, an engine ECU 57, and a transmission ECU (T / M-ECU) 58. The vehicle on which vehicle control device 50 is mounted further includes an ECU (another ECU) other than the ECU shown in FIG. However, FIG. 2 illustrates only the configuration and signal input / output related to the main operation of the ECU in the present embodiment, and the configuration and signal input / output related to the operation of another ECU described above are described. Omitted.
Only the functions related to the main operation of this embodiment will be described below. Further, the function sharing by each ECU is not limited to the configuration shown below. The function sharing by each ECU may be a configuration in which any ECU can realize the same function as the entire vehicle control device 50.
 統括ECU51は、主制御部として機能する。統括ECU51は、バッテリECU52、MG-ECU54、エンジンECU57、及び、トランスミッションECU58から、各情報を取得する。統括ECU51は、例えばアクセルセンサ、シフトスイッチ、車速センサ等(非図示)から、アクセル開度、シフト位置、車速等の車両901に関する情報(車両情報)を取得する。統括ECU51は、取得した車両情報に基づいて、車両901全体を制御する。そして、統括ECU51は、MG-ECU54、エンジンECU57、及び、トランスミッションECU58それぞれに対し、制御指令信号を送信する。これにより、統括ECU51は、各ECU54,57,58に対して、処理の実行を指示する。
 また、車両901は、駆動輪98のうち、回転速度が相対的に速い車輪の回転を抑制するトラクションコントロール(以下「TRC」)を実行可能であるとする。このような車両901において、統括ECU51は、運転者が任意にTRC機能を停止する「TRC機能オフ」の作動を禁止できる。
The overall ECU 51 functions as a main control unit. The overall ECU 51 acquires information from the battery ECU 52, the MG-ECU 54, the engine ECU 57, and the transmission ECU 58. The overall ECU 51 acquires information (vehicle information) related to the vehicle 901 such as the accelerator opening, the shift position, and the vehicle speed from, for example, an accelerator sensor, a shift switch, a vehicle speed sensor, and the like (not shown). The overall ECU 51 controls the entire vehicle 901 based on the acquired vehicle information. Then, the overall ECU 51 transmits a control command signal to each of the MG-ECU 54, the engine ECU 57, and the transmission ECU 58. As a result, the overall ECU 51 instructs the ECUs 54, 57, and 58 to execute processing.
Further, it is assumed that vehicle 901 can execute traction control (hereinafter referred to as “TRC”) that suppresses the rotation of a relatively high rotational speed of driving wheels 98. In such a vehicle 901, the general ECU 51 can prohibit the operation of “TRC function off” in which the driver arbitrarily stops the TRC function.
 バッテリECU52は、電源制御部として機能する。バッテリECU52は、主機バッテリ20の電圧、電流、温度、SOC等の主機バッテリ情報を取得する。バッテリECU52は、主機バッテリ20のSOCが所定の範囲内となるように、主機バッテリ20の状態を監視する。バッテリECU52は、取得した主機バッテリ情報に基づいて、主機バッテリ20の異常を検出する。そして、バッテリECU52は、統括ECU51に対して、検出結果を送信する。
 主機バッテリ20の異常には、例えば電圧が正常範囲を逸脱する電圧異常、電流が上限値を超える過電流異常、及び、SOCが正常範囲を逸脱するSOC異常等がある。主機バッテリ20の異常が検出されると、バッテリECU52は、電源リレー21を遮断する(ON→OFF)。これにより、主機バッテリ20と、インバータ40及びMG60と、は切り離される。
The battery ECU 52 functions as a power supply control unit. Battery ECU 52 acquires main unit battery information such as voltage, current, temperature, and SOC of main unit battery 20. The battery ECU 52 monitors the state of the main battery 20 so that the SOC of the main battery 20 is within a predetermined range. Battery ECU 52 detects an abnormality of main unit battery 20 based on the acquired main unit battery information. Then, the battery ECU 52 transmits the detection result to the general ECU 51.
The abnormality of the main battery 20 includes, for example, a voltage abnormality in which the voltage deviates from the normal range, an overcurrent abnormality in which the current exceeds the upper limit value, and an SOC abnormality in which the SOC deviates from the normal range. When the abnormality of the main battery 20 is detected, the battery ECU 52 shuts off the power supply relay 21 (ON → OFF). Thereby, main battery 20 and inverter 40 and MG 60 are disconnected.
 MG-ECU54は、モータジェネレータ制御部及びインバータ制御部として機能する。MG-ECU54は、実MGトルクTm及び実MG回転数Nmの情報を、統括ECU51に送信する。MG-ECU54は、統括ECU51から送信されたMGトルク指令Tm*,MG回転数指令Nm*に従って、インバータ40のスイッチング素子41-46の動作を操作する。これにより、MG-ECU54は、MG60の駆動を制御する。
 ここでMG-ECU54は、例えば電流センサ64が検出したモータ電流Im、及び、回転角センサ65が検出した電気角θを取得する。そして、MG-ECU54は、相電流を座標変換したdq軸電流を用いて、MGトルクTmを算出してもよい。また、MG-ECU54は、トルクセンサ(非図示)が検出したMGトルクTmを取得してもよい。また、MG-ECU54は、電気角θの検出値を時間微分して、MG回転数Nmを算出してもよい。また、MG-ECU54は、位置センサレスの構成における推定位置に基づいて、MG回転数Nmを推定してもよい。
The MG-ECU 54 functions as a motor generator control unit and an inverter control unit. The MG-ECU 54 transmits information on the actual MG torque Tm and the actual MG rotation speed Nm to the overall ECU 51. The MG-ECU 54 operates the operations of the switching elements 41-46 of the inverter 40 in accordance with the MG torque command Tm * and the MG rotational speed command Nm * transmitted from the overall ECU 51. Thereby, MG-ECU 54 controls driving of MG 60.
Here, the MG-ECU 54 acquires, for example, the motor current Im detected by the current sensor 64 and the electrical angle θ detected by the rotation angle sensor 65. Then, the MG-ECU 54 may calculate the MG torque Tm using the dq axis current obtained by coordinate conversion of the phase current. The MG-ECU 54 may acquire the MG torque Tm detected by a torque sensor (not shown). Further, the MG-ECU 54 may calculate the MG rotation speed Nm by differentiating the detected value of the electrical angle θ with respect to time. Further, the MG-ECU 54 may estimate the MG rotation speed Nm based on the estimated position in the position sensorless configuration.
 MG-ECU54は、力行動作の通常制御時において、電流フィードバック制御やトルクフィードバック制御により演算された電圧指令値に基づいて、インバータ40をPWM駆動する。これにより、MG-ECU54は、インバータ40に所望の電力を生成させ、生成させた電力をMG60に供給する。
 また、MG-ECU54は、電源リレー21の遮断後における回生動作のインバータ制御モードにおいて、インバータ40に対し、「電圧制御」又は「ゲート遮断」を実行する。
The MG-ECU 54 performs PWM driving of the inverter 40 based on a voltage command value calculated by current feedback control or torque feedback control during normal control of the power running operation. Thereby, MG-ECU 54 causes inverter 40 to generate desired power, and supplies the generated power to MG 60.
In addition, the MG-ECU 54 performs “voltage control” or “gate cutoff” on the inverter 40 in the inverter control mode of the regenerative operation after the power supply relay 21 is shut off.
 「電圧制御」モードでは、MG-ECU54は、インバータ40の複数のスイッチング素子41-46の動作を操作して、コンデンサ電圧Vcを制御する。「ゲート遮断」モードでは、MG-ECU54は、インバータ40の複数のスイッチング素子41-46を全てオフ状態とする。ゲート遮断した状態では、MG60側からの電流は、スイッチング素子41-46に付随するフライホイールダイオードを経由して、低電位側から高電位側に向かって流れる。 In the “voltage control” mode, the MG-ECU 54 operates the operations of the plurality of switching elements 41-46 of the inverter 40 to control the capacitor voltage Vc. In the “gate cutoff” mode, the MG-ECU 54 turns off all the plurality of switching elements 41-46 of the inverter 40. In the state where the gate is cut off, the current from the MG 60 side flows from the low potential side to the high potential side via the flywheel diode associated with the switching element 41-46.
 エンジンECU57は、エンジン制御部として機能する。エンジンECU57は、実エンジントルクTe及び実エンジン回転数Neの情報を、統括ECU51に送信する。エンジンECU57は、統括ECU51から送信されたエンジントルク指令Te*に従って、燃料噴射弁の噴射量や噴射タイミング等を操作する。これにより、エンジンECU57は、エンジン70の動作を制御する。
 エンジンECU57は、例えばアクセルECU等(非図示)と協働し、車両901の減速時に、エンジン回転数Neを増加させる「減速ブリッピング」の作動を禁止できる。
The engine ECU 57 functions as an engine control unit. The engine ECU 57 transmits information on the actual engine torque Te and the actual engine speed Ne to the overall ECU 51. The engine ECU 57 operates the fuel injection valve injection amount, the injection timing, and the like in accordance with the engine torque command Te * transmitted from the general ECU 51. Thereby, engine ECU 57 controls the operation of engine 70.
The engine ECU 57 can inhibit the operation of “deceleration blipping” that increases the engine speed Ne when the vehicle 901 is decelerated, for example, in cooperation with an accelerator ECU or the like (not shown).
 トランスミッションECU58は、トランスミッション制御部として機能する。トランスミッションECU58は、トランスミッション情報(T/M情報)を、統括ECU51に送信する。トランスミッションECU58は、統括ECU51から送信された変速指令に従って、クラッチ81,82、変速機84の動作を制御する。車両901においては、トランスミッションECU58は、エンジン70とMG60との間の動力伝達、及び、MG60と車軸96との間の動力伝達を制御する。 The transmission ECU 58 functions as a transmission control unit. The transmission ECU 58 transmits transmission information (T / M information) to the overall ECU 51. The transmission ECU 58 controls the operations of the clutches 81 and 82 and the transmission 84 in accordance with the shift command transmitted from the overall ECU 51. In vehicle 901, transmission ECU 58 controls power transmission between engine 70 and MG 60 and power transmission between MG 60 and axle 96.
 例えば、トランスミッションECU58は、クラッチ81,82に対し、係合、半係合、又は、開放の、各状態を切り替えるように指令する。また、トランスミッションECU58は、変速機84に対し、シフト位置を切り替えるように指令する。また、トランスミッションECU58は、変速機84に対し、ダウンシフトの作動を禁止する。さらに、車両901は、オートマチックトランスミッションモード(以下「ATモード」)と、マニュアルトランスミッションモード(以下「MTモード」)と、を切替可能であるとする。このような車両の場合、トランスミッションECU58は、MTモードの作動を禁止できる。 For example, the transmission ECU 58 instructs the clutches 81 and 82 to switch between the engaged state, the semi-engaged state, and the released state. Further, the transmission ECU 58 instructs the transmission 84 to switch the shift position. The transmission ECU 58 prohibits the transmission 84 from performing a downshift. Furthermore, it is assumed that vehicle 901 can be switched between an automatic transmission mode (hereinafter “AT mode”) and a manual transmission mode (hereinafter “MT mode”). In the case of such a vehicle, the transmission ECU 58 can prohibit the operation in the MT mode.
 ところで、主機バッテリ20の異常が検出され、電源リレー21が遮断された後、MG60が発電した電力は、主機バッテリ20に回生されず、コンデンサ25に充電される。そのため、コンデンサ電圧Vcは上昇する。このとき、MG回転数Nmが高く、回生発電量が大きいと、コンデンサ電圧Vcが過大となるロードダンプが発生する。このロードダンプによる過電圧によって、スイッチング素子41-46、コンデンサ25、及び、DCDCコンバータ30の素子等が破損するおそれがある。 By the way, after the abnormality of the main battery 20 is detected and the power supply relay 21 is cut off, the electric power generated by the MG 60 is not regenerated in the main battery 20 but is charged in the capacitor 25. Therefore, the capacitor voltage Vc increases. At this time, when the MG rotation speed Nm is high and the regenerative power generation amount is large, a load dump in which the capacitor voltage Vc becomes excessive occurs. The overvoltage due to the load dump may damage the switching elements 41-46, the capacitor 25, the elements of the DCDC converter 30, and the like.
 そこで、本実施形態の車両制御装置50は、主機バッテリ20の異常により電源リレー21を遮断し、MG60の力行動作を停止する。そして、車両制御装置50は、エンジン70による車両走行を維持して、退避走行を可能としつつ、MG60の回転を制御する。つまり、車両制御装置50は、MG回転数Nmの増加を抑制するための「MG回転抑制処理」を実行する。このMG回転抑制処理では、車両制御装置50は、車両901の動作によってMG回転数Nmが増加する要因のうちの少なくとも1つを排除して、MG60の回転を抑制する。具体的には、車両制御装置50は、車両901の動作によってMG回転数Nmが増加する要因のうちの少なくとも1つの機能の作動を禁止する。そして、車両制御装置50は、MG60に直接的に伝達される、もしくは、車両901の走行に伴って間接的に伝達される、エンジン70の回転を抑制する。又は、車両制御装置50は、MG60の回転を直接抑制する。 Therefore, the vehicle control device 50 of the present embodiment shuts off the power relay 21 due to the abnormality of the main engine battery 20 and stops the power running operation of the MG 60. Then, the vehicle control device 50 controls the rotation of the MG 60 while maintaining the vehicle traveling by the engine 70 and enabling the retreat traveling. That is, the vehicle control device 50 executes “MG rotation suppression processing” for suppressing an increase in the MG rotation speed Nm. In this MG rotation suppression process, vehicle control device 50 suppresses the rotation of MG 60 by eliminating at least one of the factors that increase MG rotation speed Nm due to the operation of vehicle 901. Specifically, vehicle control device 50 prohibits the operation of at least one of the factors that increase MG rotation speed Nm due to the operation of vehicle 901. Then, vehicle control device 50 suppresses rotation of engine 70 that is directly transmitted to MG 60 or indirectly transmitted as vehicle 901 travels. Alternatively, the vehicle control device 50 directly suppresses the rotation of the MG 60.
 続いて、車両制御装置50による主機バッテリ異常時処理について、図3~図6を参照して説明する。図3は本処理のメインフローチャートを示す。図4は本処理のサブフローチャートを示す。なお、以下のフローチャートの説明において、記号Sは「ステップ」を表す。なお、本実施形態では、車両制御装置50において、例えば半導体メモリ等の記録媒体に記憶された車両制御プログラムを、CPUが読み出し実行することで、本処理を実現する例を示す。
 車両制御装置50は、レデイオンされる(S1)。その後、MG-ECU54は、インバータ40を通常制御する(S2)。MG-ECU54は、バッテリECU52によって、主機バッテリ20の異常が検出されるまで、通常制御を続ける(S3:NO)。
Next, main battery abnormality processing by the vehicle control device 50 will be described with reference to FIGS. FIG. 3 shows a main flowchart of this process. FIG. 4 shows a sub-flowchart of this process. In the following description of the flowcharts, the symbol S represents “step”. In the present embodiment, an example is shown in which the CPU executes a vehicle control program stored in a recording medium such as a semiconductor memory and executed by the CPU in the vehicle control device 50, for example.
The vehicle control device 50 is redeioned (S1). Thereafter, the MG-ECU 54 normally controls the inverter 40 (S2). The MG-ECU 54 continues normal control until the battery ECU 52 detects abnormality of the main battery 20 (S3: NO).
 バッテリECU52によって、主機バッテリ20の異常が検出されると(S3:YES)、車両制御装置50は、統括ECU51が、その時点のMGトルクTmを閾値Tmthと比較する(S4)。そして、車両制御装置50は、統括ECU51が、その比較結果に基づいて、現在のMG60の動作状態が、力行動作であるか、回生動作であるか、を判別する。統括ECU51は、MGトルクTmが閾値Tmthより大きい場合(S4:YES)MG60の動作状態を力行動作と判定し、S5の処理に移行する。一方、統括ECU51は、MGトルクTmが閾値Tmth以下の場合(S4:NO)MG60の動作状態を回生動作と判定し、S6の処理に移行する。 When the abnormality of the main battery 20 is detected by the battery ECU 52 (S3: YES), the vehicle control device 50 compares the MG torque Tm at that time with the threshold value Tmth (S4). Then, the vehicle control device 50 determines whether the overall operation state of the MG 60 is a power running operation or a regenerative operation based on the comparison result. If the MG torque Tm is greater than the threshold value Tmth (S4: YES), the overall ECU 51 determines that the operation state of the MG 60 is a power running operation, and proceeds to the process of S5. On the other hand, when the MG torque Tm is equal to or less than the threshold value Tmth (S4: NO), the overall ECU 51 determines that the operation state of the MG 60 is a regenerative operation, and proceeds to the process of S6.
 MG60の力行動作中に、主機バッテリ20の異常が検出された場合(S3:YES,S4:YES)、車両制御装置50は、バッテリECU52が、電源リレー21をオフする(S5)。このときコンデンサ電圧Vcは低下する。そのため、インバータ40の通常制御では、電圧センサのダイアグ信号が生成される。しかし、本処理では、意図的に電源リレー21をオフしている。よって、電圧センサのダイアグ信号は不要である。そこで、車両制御装置50は、電圧センサのダイアグ信号をマスクする(S7)。その後、MG-ECU54は、統括ECU51から送信される電圧制御指令の受信を待つ(S8:NO)。そして、MG-ECU54が統括ECU51から電圧制御指令を受信すると(S8:YES)、車両制御装置50は、MG回転抑制処理(S10)、及び、インバータ40に対するゲート遮断処理(S21)を実行する。つまり、MG回転抑制処理は、統括ECU51からの指示に従って実行される。 When an abnormality of the main engine battery 20 is detected during the power running operation of the MG 60 (S3: YES, S4: YES), in the vehicle control device 50, the battery ECU 52 turns off the power supply relay 21 (S5). At this time, the capacitor voltage Vc decreases. Therefore, in the normal control of the inverter 40, a diagnosis signal of the voltage sensor is generated. However, in this process, the power supply relay 21 is intentionally turned off. Therefore, the diagnosis signal of the voltage sensor is unnecessary. Therefore, the vehicle control device 50 masks the diagnosis signal of the voltage sensor (S7). Thereafter, the MG-ECU 54 waits for reception of a voltage control command transmitted from the overall ECU 51 (S8: NO). When the MG-ECU 54 receives a voltage control command from the overall ECU 51 (S8: YES), the vehicle control device 50 executes an MG rotation suppression process (S10) and a gate cutoff process (S21) for the inverter 40. That is, the MG rotation suppression process is executed in accordance with an instruction from the overall ECU 51.
 一方、MG60の回生動作中に、主機バッテリ20の異常が検出された場合(S3:YES,S4:NO)、車両制御装置50は、バッテリECU52が、電源リレー21をオフする(S6)。このとき、MG60が発電した電力によって、インバータ40の電圧は上昇する。その結果、コンデンサ電圧Vcが過大となるロードダンプが発生する。このロードダンプによる過電圧による回路素子の破損を防ぐため、インバータ40をすぐに遮断する必要がある。そこで、車両制御装置50は、バッテリECU52が電源リレー21をオフするとともに、すぐに、MG回転抑制処理(S10)、及び、ゲート遮断処理(S21)を実行する。 On the other hand, when an abnormality of the main battery 20 is detected during the regenerative operation of the MG 60 (S3: YES, S4: NO), in the vehicle control device 50, the battery ECU 52 turns off the power supply relay 21 (S6). At this time, the voltage of the inverter 40 is increased by the power generated by the MG 60. As a result, a load dump in which the capacitor voltage Vc becomes excessive occurs. In order to prevent damage to circuit elements due to overvoltage due to this load dump, it is necessary to immediately shut off the inverter 40. Therefore, the vehicle control device 50 immediately executes the MG rotation suppression process (S10) and the gate cutoff process (S21) while the battery ECU 52 turns off the power supply relay 21.
 図4に示すように、車両制御装置50は、MG回転抑制処理(S10)において、以下の(a),(b),(c)の処理を実行する(S11)。具体的には、統括ECU51は、下記の各作動禁止フラグ(制御フラグ)をオンする。
 (a)TRC機能オフの作動禁止フラグ:ON
 (b)MTモードの作動禁止フラグ:ON
 (c)減速ブリッピングの作動禁止フラグ:ON
 さらに、トランスミッションECU58は、車速が所定の速度閾値より大きいか否かを判定する(S12)。トランスミッションECU58は、車速が速度閾値より大きい場合(S12:YES)、(d)「ダウンシフトの作動禁止」の処理を実行する(S13)。一方、トランスミッションECU58は、車速が速度閾値以下の場合(S12:NO)、ダウンシフトを許可する(S14)。
As shown in FIG. 4, the vehicle control device 50 executes the following processes (a), (b), and (c) in the MG rotation suppression process (S10) (S11). Specifically, the overall ECU 51 turns on the following operation prohibition flags (control flags).
(A) TRC function off operation prohibition flag: ON
(B) MT mode operation prohibition flag: ON
(C) Deceleration blipping operation prohibition flag: ON
Further, the transmission ECU 58 determines whether or not the vehicle speed is greater than a predetermined speed threshold (S12). If the vehicle speed is greater than the speed threshold value (S12: YES), the transmission ECU 58 executes a process of (d) “prohibition of downshift operation” (S13). On the other hand, when the vehicle speed is equal to or lower than the speed threshold (S12: NO), the transmission ECU 58 permits downshifting (S14).
 上述した処理は、次のような目的で実行される。
 (a)TRC機能オフの作動禁止処理
 TRCでは、車輪が他の車輪よりも極端に回転速度が速い場合、当該車輪が空転していると判定し、その車輪の回転が抑制されるように制御する。仮にこの機能を停止すると、空転した車輪の回転が伝達されて、MG回転数Nmは増加するおそれがある。そこで、本実施形態では、統括ECU51が、作動禁止フラグを基に、MG回転数Nmの増加要因となり得る「TRC機能オフ」の作動を禁止する。
 (b)MTモードの作動禁止処理
 MTモードでは、車両制御装置50が制御可能な範囲を超えて、運転者の人為操作によって、MG回転数Nmが増加するおそれがある。そこで、本実施形態では、トランスミッションECU58が、作動禁止フラグを基に、MG回転数Nmの増加要因となり得る「MTモード」の作動を禁止する。
The above-described processing is executed for the following purpose.
(A) TRC function OFF operation prohibition process In TRC, when a wheel has an extremely high rotational speed compared to other wheels, it is determined that the wheel is idling and control is performed so that rotation of the wheel is suppressed. To do. If this function is stopped, the rotation of the idle wheel is transmitted, and the MG rotation speed Nm may increase. Therefore, in the present embodiment, the overall ECU 51 prohibits the “TRC function off” operation, which can be an increase factor of the MG rotation speed Nm, based on the operation prohibition flag.
(B) MT Mode Operation Prohibition Process In the MT mode, the MG rotation speed Nm may increase due to the driver's manual operation beyond the range that the vehicle control device 50 can control. Therefore, in the present embodiment, the transmission ECU 58 prohibits the “MT mode” operation, which can be an increase factor of the MG rotation speed Nm, based on the operation prohibition flag.
 (c)減速時のブリッピングの作動禁止処理
 減速シフト時に、運転者は、アクセルを踏み込んで、エンジン回転数Neを増加させる減速ブリッピングを行ったとする。この場合、エンジン回転Neの伝達によって、MG回転数Nmが増加するおそれがある。そこで、本実施形態では、エンジンECU57が、作動禁止フラグを基に、車速に依らず、MG回転数Nmの増加要因となり得る「減速ブリッピング」の作動を禁止する。
 (d)高速走行時のダウンシフト禁止処理
 車両901は、予め設定しておいた速度閾値より速く走行する場合がある。このような高速走行時には、変速機84によるダウンシフト自体を禁止することが好ましい。そこで、本実施形態では、トランスミッションECU58が、車速の判定結果を基に、変速機84に対し、「ダウンシフト」を禁止する。これにより、車両制御装置50では、ダウンシフトに伴うエンジン回転数Neの増加、及び、それに伴うMG回転数Nmの増加を防止できる。
 このように、車両制御装置50では、MG回転抑制処理において、車両901の動作によってMG回転数Nmが増加する要因のうちの少なくとも1つの機能の作動を禁止する。これにより、車両制御装置50では、MG回転数Nmが増加する要因のうちの少なくとも1つを排除する。
(C) Processing prohibition processing of blipping at the time of deceleration It is assumed that at the time of the deceleration shift, the driver depresses the accelerator and performs the deceleration blipping to increase the engine speed Ne. In this case, the transmission of the engine rotation Ne may increase the MG rotation speed Nm. Thus, in the present embodiment, the engine ECU 57 prohibits the operation of “deceleration blipping” that can be an increase factor of the MG rotation speed Nm, regardless of the vehicle speed, based on the operation prohibition flag.
(D) Downshift prohibition processing during high speed traveling The vehicle 901 may travel faster than a preset speed threshold. During such high speed traveling, it is preferable to prohibit downshifting by the transmission 84 itself. Therefore, in the present embodiment, the transmission ECU 58 prohibits “downshift” for the transmission 84 based on the determination result of the vehicle speed. Thereby, in the vehicle control apparatus 50, the increase in the engine speed Ne accompanying a downshift and the increase in the MG speed Nm accompanying it can be prevented.
Thus, in the vehicle control device 50, in the MG rotation suppression process, the operation of at least one of the factors that increase the MG rotation speed Nm due to the operation of the vehicle 901 is prohibited. Thereby, the vehicle control device 50 eliminates at least one of the factors that increase the MG rotation speed Nm.
 図3の説明に戻る。S21~S24は、インバータ制御の切替に関する処理である。
 車両制御装置50において、MG-ECU54は、インバータ40をゲート遮断する(S21)。つまり、電源リレー21がオフされた直後(S5又はS6)、インバータ40は、一旦ゲート遮断される。
 次に車両制御装置50は、MG-ECU54が、所定の電圧制御実行条件の成否を判定する(S22)。この電圧制御実行条件は、MG回転数Nmが、上限値と下限値との範囲内(所定の回転数範囲内)であり、且つ、コンデンサ電圧Vcが、上限値と下限値との範囲内(所定の電圧範囲内)場合に、当該条件が成立すると判定される。ここで、MG回転数Nmの上限値をNmH,下限値をNmLと表す。コンデンサ電圧Vcの上限値をVcH,下限値をVcLと表す。この場合、MG-ECU54は、式(1)及び式(2)が成立するとき、電圧制御実行条件が成立したと判定する。つまり、S22は肯定判定される(S22:YES)。
  NmL≦Nm≦NmH  ・・・(1)
  VcL≦Vc≦VcH  ・・・(2)
Returning to the description of FIG. S21 to S24 are processes relating to switching of inverter control.
In the vehicle control device 50, the MG-ECU 54 gates the inverter 40 (S21). That is, immediately after the power supply relay 21 is turned off (S5 or S6), the inverter 40 is once gate-cut.
Next, in the vehicle control device 50, the MG-ECU 54 determines whether or not a predetermined voltage control execution condition is met (S22). In this voltage control execution condition, the MG rotation speed Nm is within the range between the upper limit value and the lower limit value (within a predetermined rotation speed range), and the capacitor voltage Vc is within the range between the upper limit value and the lower limit value ( In the predetermined voltage range), it is determined that the condition is satisfied. Here, the upper limit value of the MG rotation speed Nm is expressed as NmH, and the lower limit value is expressed as NmL. The upper limit value of the capacitor voltage Vc is expressed as VcH, and the lower limit value is expressed as VcL. In this case, the MG-ECU 54 determines that the voltage control execution condition is satisfied when the expressions (1) and (2) are satisfied. That is, an affirmative determination is made in S22 (S22: YES).
NmL ≦ Nm ≦ NmH (1)
VcL ≦ Vc ≦ VcH (2)
 電圧制御実行条件が成立しないと判定された場合(S22:NO)、MG-ECU54は、ゲート遮断を継続する(S21)。
 電圧制御実行条件が成立したと判定された場合(S22:YES)、MG-ECU54は、レディオフされたか否かを判定する(S23)。その結果、レディオフされたと判定された場合(S23:YES)、車両制御装置50は、処理ルーチンは終了する。一方、レディオフされていないと判定された場合(S23:NO)、車両制御装置50は、S24の処理に移行する。
 MG-ECU54は、インバータ40を駆動し、電圧制御を実行する(S24)。その後、車両制御装置50は、電圧制御実行条件の成否を繰り返し判定する(S22)。
When it is determined that the voltage control execution condition is not satisfied (S22: NO), the MG-ECU 54 continues to block the gate (S21).
When it is determined that the voltage control execution condition is satisfied (S22: YES), the MG-ECU 54 determines whether or not it is ready-off (S23). As a result, when it is determined that the vehicle is ready-off (S23: YES), the vehicle control device 50 ends the processing routine. On the other hand, when it determines with not being ready-off (S23: NO), the vehicle control apparatus 50 transfers to the process of S24.
The MG-ECU 54 drives the inverter 40 and executes voltage control (S24). Thereafter, the vehicle control device 50 repeatedly determines whether or not the voltage control execution condition is satisfied (S22).
 図5に示すように、ゲート遮断の場合には、MG回転数Nmとコンデンサ電圧Vcとは正の相関を有している。そして、MG回転数Nmが増加するほど、コンデンサ電圧Vcが上昇する。
 一方、電圧制御は、電圧制御実行条件の範囲内で実行可能である。具体的には、MG回転数Nmが下限値NmLから上限値NmHの間にあり、且つ、コンデンサ電圧Vcが下限値VcLから上限値VcHの間にある範囲内で実行可能である。この範囲では、MG-ECU54の指令に応じて、コンデンサ電圧Vcが制御される。
As shown in FIG. 5, when the gate is cut off, the MG rotation speed Nm and the capacitor voltage Vc have a positive correlation. The capacitor voltage Vc increases as the MG rotation speed Nm increases.
On the other hand, voltage control can be executed within the range of voltage control execution conditions. Specifically, the present invention can be executed within a range in which the MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH, and the capacitor voltage Vc is between the lower limit value VcL and the upper limit value VcH. In this range, the capacitor voltage Vc is controlled in accordance with a command from the MG-ECU 54.
 実用上では、MG回転数Nmが、電圧制御実行条件の範囲の上限値NmHを跨いで変化するときのハンチング防止が課題となる。そこで、本実施形態では、図6に示すように、MG回転数Nmに制御モード切替のヒステリシスが設定されている。
 具体的には、MG回転数Nmが増加し、電圧制御からゲート遮断に切り替えられる増速切替の回転数Nx+は、上限値NmH以下の値に設定される。一方、MG回転数Nmが減少し、ゲート遮断から電圧制御に切り替えられる減速切替の回転数Nx-は、増速切替の回転数Nx+よりも小さい値に設定される。これにより、車両制御装置50では、MG回転数Nmが上限値NmH付近にあるとき、電圧制御とゲート遮断との頻繁な切り替えによって、制御が不安定になることを防止できる。
Practically, there is a problem of preventing hunting when the MG rotation speed Nm changes over the upper limit value NmH in the range of the voltage control execution condition. Therefore, in the present embodiment, as shown in FIG. 6, a hysteresis for switching the control mode is set for the MG rotation speed Nm.
Specifically, the MG rotation speed Nm increases, and the rotation speed switching speed Nx + for switching from voltage control to gate cutoff is set to a value equal to or lower than the upper limit value NmH. On the other hand, the rotational speed Nx− of the deceleration switching that is switched from the gate cutoff to the voltage control when the MG rotational speed Nm decreases is set to a value smaller than the rotational speed Nx + of the acceleration switching. Thereby, in vehicle control device 50, when MG rotation speed Nm is in the vicinity of upper limit value NmH, it is possible to prevent control from becoming unstable due to frequent switching between voltage control and gate cutoff.
 続いて、車両制御装置50による主機バッテリ異常時処理の動作例について、図7,図8を参照して説明する。各図の時間軸において共通の記号で示す時刻t0,t1,t3は、同じタイミングを意味する。また、各図の縦方向の破線矢印は、状態変化の関連性を示す。また、図7,図8には、上述したMG回転抑制処理のうち、「TRC機能オフの作動禁止」及び「MTモードの作動禁止」が共通して示されている。一方、「高速走行時のダウンシフト禁止」は図7にのみ示す。なお、車両制御装置50では、図示されていないが、これらの作動禁止処理に代えて、又は、加えて、「減速ブリッピングの作動禁止」等のMG回転抑制処理が実行されてもよい。 Subsequently, an operation example of the main battery abnormality process by the vehicle control device 50 will be described with reference to FIGS. Times t0, t1, and t3 indicated by common symbols on the time axes in the drawings mean the same timing. Moreover, the broken-line arrow in the vertical direction in each figure indicates the relevance of the state change. FIGS. 7 and 8 also show “TRC function off operation prohibition” and “MT mode operation prohibition” in common in the MG rotation suppression processing described above. On the other hand, “downshift prohibition at high speed travel” is shown only in FIG. In the vehicle control device 50, although not shown, an MG rotation suppression process such as “prohibition of deceleration blipping operation” may be executed instead of or in addition to these operation prohibition processes.
 図7は、主機バッテリ異常時処理の第1動作例が示されている。なお、図7には、第1動作との比較例として、「高速走行時のダウンシフト禁止」を実行しない場合の動作が二点鎖線で示されている。つまり、比較例では、高速走行時にダウンシフトが可能である。
 時刻t0以前の初期には、インバータ40は通常制御されている。コンデンサ電圧Vcは、下限値VcLと上限値VcHとの間にある。MG回転数Nmは、下限値NmLと上限値NmHとの間にある。なお、このときの変速ギアの位置は「5速」とする。
FIG. 7 shows a first operation example of the main battery abnormality process. In FIG. 7, as a comparative example with the first operation, an operation in the case where “prohibition of downshift at high speed” is not executed is indicated by a two-dot chain line. That is, in the comparative example, it is possible to downshift during high speed traveling.
In the initial stage before time t0, the inverter 40 is normally controlled. The capacitor voltage Vc is between the lower limit value VcL and the upper limit value VcH. MG rotation speed Nm is between lower limit value NmL and upper limit value NmH. The position of the transmission gear at this time is “5th speed”.
 時刻t0において、主機バッテリ20に異常が発生したとする。この場合、電源リレー21はオフされる。その後、コンデンサ25の放電によって、コンデンサ電圧Vcは、下限値VcLを下回り、ゼロまで低下する。
 時刻t0以前に、MG60が力行動作していたと仮定する。この場合、時刻t1において、MG-ECU54は、電圧制御指令を受信する。そして、車両制御装置50は、MG回転抑制処理として、TRC機能オフ及びMTモードの各作動を禁止する。これにより、車両制御装置50では、車両901の動作に伴うMG回転数Nmの増加要因のうち、少なくとも2つが排除される。
 このとき、MG-ECU54は、インバータ制御モードを、通常制御からゲート遮断に切り替える。
It is assumed that an abnormality has occurred in the main battery 20 at time t0. In this case, the power relay 21 is turned off. Thereafter, due to the discharge of the capacitor 25, the capacitor voltage Vc falls below the lower limit value VcL and falls to zero.
Assume that the MG 60 was in a powering operation before time t0. In this case, at time t1, MG-ECU 54 receives a voltage control command. And the vehicle control apparatus 50 prohibits each operation | movement of TRC function off and MT mode as MG rotation suppression processing. As a result, the vehicle control device 50 eliminates at least two factors that increase the MG rotation speed Nm accompanying the operation of the vehicle 901.
At this time, the MG-ECU 54 switches the inverter control mode from normal control to gate cutoff.
 時刻t1の後、MG60の回生発電によって、コンデンサ電圧Vcはゼロから上昇する。そして、時刻t3に、コンデンサ電圧Vcは下限値VcLに達する。また、MG回転数Nmは、下限値NmLと上限値NmHとの間にある。そのため、電圧制御実行条件が成立する。したがって、MG-ECU54は、インバータ制御モードを、ゲート遮断から電圧制御に切り替える。
 その後、時刻t5に車速が低下し始める。このとき、比較例では、クラッチを係合状態から開放し、変速ギアを例えば「5速」から「3速」へダウンシフトした後、クラッチを再び係合させる。
 これに対し本実施形態の第1動作例では、図4のS12に示すように、車速が速度閾値よりも大きければ(高速走行時に)、変速ギアのダウンシフトを禁止する。そして、第1動作例では、エンジン側クラッチ81を係合させたまま、変速ギアを「5速」に維持する。
After time t1, the capacitor voltage Vc rises from zero by regenerative power generation of the MG 60. At time t3, the capacitor voltage Vc reaches the lower limit value VcL. The MG rotation speed Nm is between the lower limit value NmL and the upper limit value NmH. Therefore, the voltage control execution condition is satisfied. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control.
Thereafter, the vehicle speed starts to decrease at time t5. At this time, in the comparative example, the clutch is released from the engaged state, the transmission gear is downshifted from, for example, “5-speed” to “3-speed”, and then the clutch is engaged again.
On the other hand, in the first operation example of the present embodiment, as shown in S12 of FIG. 4, if the vehicle speed is larger than the speed threshold value (during high speed traveling), the downshift of the transmission gear is prohibited. In the first operation example, the transmission gear is maintained at “5th speed” while the engine side clutch 81 is engaged.
 上述したように、比較例では、高速走行時にダウンシフトできる。そのため、比較例では、そのダウンシフトに伴って、時刻t5の前後に、MG回転数Nmが増加し、上限値NmHを上回る。そして、コンデンサ電圧Vcが上昇し、上限値VcHを上回る。その結果、比較例では、インバータ40に過電圧が印加され、素子が破損するおそれがある。
 これに対し本実施形態の第1動作例では、高速走行時における変速ギアのダウンシフトを禁止している。これにより、本実施形態の第1動作例では、MG回転数Nmの増加を抑制し、コンデンサ電圧Vcの上昇を防げる。よって、車両制御装置50では、インバータ40の素子を過電圧から保護できる。
As described above, in the comparative example, it is possible to downshift during high speed traveling. Therefore, in the comparative example, with the downshift, the MG rotation speed Nm increases before and after time t5 and exceeds the upper limit value NmH. Then, the capacitor voltage Vc rises and exceeds the upper limit value VcH. As a result, in the comparative example, an overvoltage is applied to the inverter 40 and the element may be damaged.
On the other hand, in the first operation example of the present embodiment, the downshift of the transmission gear during high speed traveling is prohibited. Thereby, in the 1st operation example of this embodiment, the increase in MG rotation speed Nm is suppressed and the raise of the capacitor voltage Vc can be prevented. Therefore, the vehicle control device 50 can protect the elements of the inverter 40 from overvoltage.
 図8は、主機バッテリ異常時処理の第2動作例が示されている。時刻t0において、主機バッテリ20に異常が発生したとする。この場合、時刻t1において、車両制御装置50は、TRC機能オフ及びMTモードの各作動を禁止する。そして、車両制御装置50は、インバータ制御モードを、通常制御からゲート遮断に切り替える。ここまでの動作は、図7の第1動作例と同じである。そのため、ここではその説明を省略する。
 時刻t1の後、MG60の回生発電によって、コンデンサ電圧Vcはゼロから上昇する。しかし、第2動作例では、コンデンサ電圧Vcが下限値VcLに達する時刻t3よりも早い時刻t2に、MG回転数Nmは、上限値NmHを上回る。したがって、時刻t3においても、電圧制御実行条件が成立しない。そのため、インバータ制御モードは、ゲート遮断のまま継続される。
FIG. 8 shows a second operation example of the main battery abnormality process. It is assumed that an abnormality has occurred in the main battery 20 at time t0. In this case, at time t1, the vehicle control device 50 prohibits the TRC function off and the MT mode operations. Then, the vehicle control device 50 switches the inverter control mode from normal control to gate cutoff. The operation so far is the same as the first operation example of FIG. Therefore, the description is omitted here.
After time t1, the capacitor voltage Vc rises from zero by regenerative power generation of the MG 60. However, in the second operation example, MG rotation speed Nm exceeds upper limit value NmH at time t2 earlier than time t3 when capacitor voltage Vc reaches lower limit value VcL. Therefore, the voltage control execution condition is not satisfied even at time t3. Therefore, the inverter control mode is continued with the gate shut off.
 MG回転数Nmが上限値NmHを上回った時刻t2において、車両制御装置50では、MG回転数Nmを低下させるために、トランスミッションECU58が、エンジン側クラッチ81を半係合状態とする。つまり、エンジン側クラッチ81をスリップさせる。これにより、エンジン70からの動力は、MG60に十分に伝達されない。そして、MG回転数Nmが上限値NmHを下回る時刻t4において、トランスミッションECU58は、エンジン側クラッチ81を再び係合状態とする。なお、第2動作例では、時刻t2から時刻t4の間において、係合状態と半係合状態とを断続的に繰り返すように、トランスミッションECU58が、エンジン側クラッチ81を制御してもよい。 At time t2 when the MG rotational speed Nm exceeds the upper limit value NmH, in the vehicle control device 50, the transmission ECU 58 places the engine-side clutch 81 in a half-engaged state in order to reduce the MG rotational speed Nm. That is, the engine side clutch 81 is slipped. Thereby, the power from engine 70 is not sufficiently transmitted to MG 60. Then, at time t4 when the MG rotation speed Nm falls below the upper limit value NmH, the transmission ECU 58 brings the engine side clutch 81 into the engaged state again. In the second operation example, the transmission ECU 58 may control the engine-side clutch 81 so as to intermittently repeat the engaged state and the semi-engaged state between time t2 and time t4.
 時刻t3の後、コンデンサ電圧Vcは、下限値VcLと上限値VcHとの間に保たれる。これにより、車両制御装置50では、インバータ40の素子を過電圧から保護できる。
 そして、時刻t4に、MG回転数Nmは、上限値NmHを下回る。そのため、電圧制御実行条件が成立する。したがって、MG-ECU54は、インバータ制御モードを、ゲート遮断から電圧制御に切り替える。
After time t3, the capacitor voltage Vc is kept between the lower limit value VcL and the upper limit value VcH. Thereby, in vehicle control device 50, the element of inverter 40 can be protected from overvoltage.
At time t4, MG rotation speed Nm falls below upper limit value NmH. Therefore, the voltage control execution condition is satisfied. Therefore, MG-ECU 54 switches the inverter control mode from gate cutoff to voltage control.
 また、図1に示すように、インバータ40と並列にDCDCコンバータ30が接続されている車両制御システム10では、電圧制御の実行開始と同時に、DCDCコンバータ30を駆動させる。これにより、車両制御システム10では、補機バッテリ32への低圧電力供給が可能となる。その結果、車両制御システム10では、主機バッテリ20が異常であっても、MG60による回生電力を利用して、補機負荷33を駆動できる。
 よって、車両制御システム10では、主機バッテリ20の異常時における退避走行中に、補機バッテリ32から、スタータや電動パワーステアリング装置等の補機負荷33への電力供給を継続できる。
As shown in FIG. 1, in the vehicle control system 10 to which the DCDC converter 30 is connected in parallel with the inverter 40, the DCDC converter 30 is driven simultaneously with the start of the voltage control. As a result, the vehicle control system 10 can supply low-voltage power to the auxiliary battery 32. As a result, in the vehicle control system 10, even if the main engine battery 20 is abnormal, the auxiliary machine load 33 can be driven using the regenerative power by the MG 60.
Therefore, the vehicle control system 10 can continue to supply power from the auxiliary battery 32 to the auxiliary load 33 such as a starter or an electric power steering device during the retreat travel when the main battery 20 is abnormal.
 (第2実施形態)
 本開示の技術の第2実施形態について、図9,図10を参照して説明する。第2実施形態は、エンジン70に接続された車輪と、MG60に接続された車輪と、が分離したアクスルスプリット方式の車両902に適用される。
 図9に示すように、エンジン70の出力軸71は、変速機83を介して駆動軸91に接続されている。駆動軸91に伝達された駆動力は、デファレンシャルギア92を介して車軸93に伝達される。その結果、駆動輪である前輪97が回転する。また、MG60は、車軸96を介して後輪98に接続されている。インバータ40は、主機バッテリ20の電力を変換してMG60に供給する。
 なお、本実施形態の構成は、図9に示す構成に限らない。他の構成としては、例えばエンジン70が後輪側に配置され、MG60が前輪側に配置される構成であってもよい。
(Second Embodiment)
A second embodiment of the technology of the present disclosure will be described with reference to FIGS. 9 and 10. The second embodiment is applied to an axle split type vehicle 902 in which a wheel connected to the engine 70 and a wheel connected to the MG 60 are separated.
As shown in FIG. 9, the output shaft 71 of the engine 70 is connected to the drive shaft 91 via the transmission 83. The driving force transmitted to the drive shaft 91 is transmitted to the axle 93 via the differential gear 92. As a result, the front wheel 97 that is the driving wheel rotates. The MG 60 is connected to the rear wheel 98 via the axle 96. The inverter 40 converts the power of the main battery 20 and supplies it to the MG 60.
Note that the configuration of the present embodiment is not limited to the configuration shown in FIG. As another configuration, for example, the engine 70 may be disposed on the rear wheel side and the MG 60 may be disposed on the front wheel side.
 本実施形態では、第1実施形態と同様に、車両制御装置50は、主機バッテリ20、電源リレー21、インバータ40、MG60、エンジン70、変速機83等との間で通信し、各種情報の入力や指令信号の出力を行う。
 アクスルスプリット方式の車両902では、主機バッテリ20が異常となりMG60の力行動作を停止したとき、エンジン70により前輪97を駆動して、車両902を走行させる。これにより、前輪97の駆動に伴う走行によって、後輪98が回転する。その結果、MG60は回生発電する。このとき発生する電圧が過大となると(ロードダンプが発生すると)、過電圧によって、インバータ40の素子が破損するおそれがある。そのため、本実施形態では、車両制御装置50は、MG回転抑制処理を実行する。
In the present embodiment, as in the first embodiment, the vehicle control device 50 communicates with the main engine battery 20, the power relay 21, the inverter 40, the MG 60, the engine 70, the transmission 83, etc., and inputs various information. And output command signals.
In the axle split type vehicle 902, when the main engine battery 20 becomes abnormal and the power running operation of the MG 60 is stopped, the front wheel 97 is driven by the engine 70 to cause the vehicle 902 to travel. As a result, the rear wheel 98 is rotated by the traveling associated with the driving of the front wheel 97. As a result, the MG 60 generates regenerative power. If the voltage generated at this time becomes excessive (when a load dump occurs), the elements of the inverter 40 may be damaged by the overvoltage. Therefore, in the present embodiment, the vehicle control device 50 executes the MG rotation suppression process.
 本実施形態では、MG回転抑制処理の1つとして、次のような方法が挙げられる。例えば、車両制御装置50は、エンジン70により駆動される前輪97の回転速度を下げて、車速を低速にする。これにより、MG回転数Nmを低下させる方法がある。また、別の方法としては、MG60の回転を直接抑制することも有効である。
 図10A~10C、アクスルスプリット方式の車両902において、MG回転抑制を実現する構成例が示されている。なお、図10A~10Cにおいて、エンジン70による前輪97の駆動構成は、図9と同様である。よって、図示を省略し、MG60に接続される後輪98側の構成のみを図示する。
In this embodiment, the following method is mentioned as one of MG rotation suppression processes. For example, the vehicle control device 50 reduces the rotational speed of the front wheels 97 driven by the engine 70 to reduce the vehicle speed. Thereby, there is a method of reducing the MG rotation speed Nm. As another method, it is also effective to directly suppress the rotation of MG60.
FIGS. 10A to 10C show a configuration example for realizing MG rotation suppression in the axle split type vehicle 902. 10A to 10C, the driving configuration of the front wheels 97 by the engine 70 is the same as in FIG. Therefore, illustration is omitted and only the configuration on the rear wheel 98 side connected to the MG 60 is illustrated.
 図10Aに示す構成の車両902では、MG60とデファレンシャルギア95とを接続する駆動軸94に、クラッチ82が設けられている。例えば、車両902は、エンジン70の駆動によって、一定の速度を維持して走行しているとする。この状態で、車両制御装置50は、クラッチ82をスリップさせて、MG回転数Nmを上限値NmH以下に低下させる。その後、車両制御装置50は、インバータ40に対し、インバータ制御モードによる電圧制御を実行する。 In the vehicle 902 having the configuration shown in FIG. 10A, a clutch 82 is provided on the drive shaft 94 that connects the MG 60 and the differential gear 95. For example, it is assumed that the vehicle 902 is traveling at a constant speed by driving the engine 70. In this state, vehicle control device 50 slips clutch 82 and reduces MG rotation speed Nm to upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
 図10Bに示す構成の車両902では、MG60とデファレンシャルギア95とを接続する駆動軸94に、クラッチ82及び変速機84が設けられている。例えば、車両902は、エンジン70の駆動によって、一定の速度を維持して走行しているとする。この状態で、車両制御装置50は、変速ギアをH(ハイ)にシフトさせて、MG回転数Nmを上限値NmH以下に低下させる。その後、車両制御装置50は、インバータ40に対し、インバータ制御モードによる電圧制御を実行する。 In the vehicle 902 having the configuration shown in FIG. 10B, a clutch 82 and a transmission 84 are provided on the drive shaft 94 that connects the MG 60 and the differential gear 95. For example, it is assumed that the vehicle 902 is traveling at a constant speed by driving the engine 70. In this state, vehicle control device 50 shifts the transmission gear to H (high), and reduces MG rotation speed Nm to an upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
 図10Cに示す構成の車両902では、MG60と左右の後輪98とを接続するそれぞれの車軸96に、クラッチ82が設けられている。例えば、車両902は、エンジン70の駆動によって、一定の速度を維持して走行しているとする。この状態で、車両制御装置50は、クラッチ82をスリップさせて、MG回転数Nmを上限値NmH以下に低下させる。その後、車両制御装置50は、インバータ40に対し、インバータ制御モードによる電圧制御を実行する。
 このように、本実施形態においても、第1実施形態と同様の効果が得られる。
In the vehicle 902 having the configuration shown in FIG. 10C, a clutch 82 is provided on each axle 96 that connects the MG 60 and the left and right rear wheels 98. For example, it is assumed that the vehicle 902 is traveling at a constant speed by driving the engine 70. In this state, vehicle control device 50 slips clutch 82 and reduces MG rotation speed Nm to upper limit value NmH or less. Thereafter, the vehicle control device 50 performs voltage control on the inverter 40 in the inverter control mode.
Thus, also in this embodiment, the same effect as the first embodiment can be obtained.
 (その他の実施形態)
 (1)本開示のMG回転抑制処理は、上記実施形態に例示した内容に限定されない。本開示のMG回転抑制処理には、「車両の動作によってMG回転数Nmが増加する要因」を排除する、あらゆる処理が含まれる。つまり、本開示のMG回転抑制処理には、車両の動作によってMG回転数Nmが増加する要因のうちの少なくとも1つの機能の作動を禁止することで、MG60の回転を抑制する、あらゆる処理が含まれる。
(Other embodiments)
(1) The MG rotation suppression process of the present disclosure is not limited to the content exemplified in the above embodiment. The MG rotation suppression process of the present disclosure includes all processes that exclude “a factor that increases the MG rotation speed Nm due to the operation of the vehicle”. That is, the MG rotation suppression process of the present disclosure includes all processes for suppressing the rotation of the MG 60 by prohibiting the operation of at least one of the factors that increase the MG rotation speed Nm due to the operation of the vehicle. It is.
 (2)本開示の車両制御装置は、1台のモータジェネレータを備える車両制御システムにのみ適用されるものではない。本開示の車両制御装置は、例えば動力分割機構により連結される2台のモータジェネレータを備える車両制御システムに適用してもよい。また、本開示の車両制御装置は、回生電力の一部が燃料電池により供給される車両制御システムにも適用可能である。
 以上、本開示の技術は、上記実施形態の内容に限定されるものではない。本開示の技術は、開示趣旨を逸脱しない範囲において、種々の形態で実施可能である。
(2) The vehicle control device of the present disclosure is not applied only to a vehicle control system including one motor generator. The vehicle control device of the present disclosure may be applied to a vehicle control system including, for example, two motor generators connected by a power split mechanism. Further, the vehicle control device of the present disclosure can be applied to a vehicle control system in which a part of regenerative power is supplied by a fuel cell.
As mentioned above, the technique of this indication is not limited to the content of the said embodiment. The technology of the present disclosure can be implemented in various forms without departing from the spirit of the disclosure.
 10・・・車両制御システム
 20・・・主機バッテリ(主機電源)、
 21・・・電源リレー、
 40・・・インバータ、
 50・・・車両制御装置、
 60・・・MG(モータジェネレータ)、
 70・・・エンジン、
 81,82・・・クラッチ
 84・・・変速機、
 901,902・・・車両、
 96・・・車軸。
10 ... Vehicle control system 20 ... Main machine battery (main machine power supply),
21 ... Power relay,
40: Inverter,
50 ... Vehicle control device,
60 ... MG (motor generator),
70 ... Engine,
81, 82 ... Clutch 84 ... Transmission,
901, 902 ... vehicle,
96 ... Axle.

Claims (12)

  1.  動力源であるエンジン(70)及びモータジェネレータ(60)、並びに、インバータ(40)を介して前記モータジェネレータと電力を授受可能な主機電源(20)を備えた車両(901,902)に適用され、前記エンジン及び前記モータジェネレータの動作を制御し、且つ、前記エンジンと前記モータジェネレータとの間の動力伝達と、前記モータジェネレータと車軸(96)との間の動力伝達と、のうちの少なくとも一方を制御可能な車両制御装置であって、
     前記主機電源の異常が検出されたとき、前記主機電源と前記インバータとの間に設けられた電源リレー(21)を遮断して、前記モータジェネレータの力行動作を停止する電源制御部(52)と、
     前記エンジンによる車両走行を維持しつつ、前記車両の動作によって前記モータジェネレータの回転数(Nm)が増加する要因のうちの少なくとも1つを排除して、前記モータジェネレータの回転を抑制する回転抑制処理の実行を、他の制御部(54,57,58)に指示する主制御部(51)と、を備える、車両制御装置。
    It is applied to a vehicle (901, 902) equipped with an engine (70) and a motor generator (60), which are power sources, and a main power source (20) capable of transferring power to and from the motor generator via an inverter (40). , Controlling the operation of the engine and the motor generator, and at least one of power transmission between the engine and the motor generator and power transmission between the motor generator and the axle (96). A vehicle control device capable of controlling
    A power control unit (52) for shutting off a power running operation of the motor generator by shutting off a power relay (21) provided between the main power source and the inverter when an abnormality of the main power source is detected; ,
    A rotation suppression process that suppresses rotation of the motor generator by eliminating at least one of the factors that increase the rotation speed (Nm) of the motor generator due to the operation of the vehicle while maintaining vehicle traveling by the engine. A vehicle control device comprising: a main control unit (51) that instructs the other control units (54, 57, 58) to execute the above.
  2.  前記回転抑制処理において、
     前記モータジェネレータに直接的に伝達される、もしくは、前記車両の走行に伴って間接的に伝達される、前記エンジンの回転を抑制する、又は、
     前記モータジェネレータの回転を直接抑制する、請求項1に記載の車両制御装置。
    In the rotation suppression process,
    Directly transmitted to the motor generator, or indirectly transmitted as the vehicle travels, suppressing rotation of the engine, or
    The vehicle control device according to claim 1, wherein rotation of the motor generator is directly suppressed.
  3.  回転速度が相対的に速い車輪の回転を抑制するトラクションコントロールを実行可能な車両に適用され、
     前記回転抑制処理において、
     主制御部は、運転者による前記トラクションコントロールの停止を禁止する、請求項1又は2に記載の車両制御装置。
    It is applied to vehicles that can execute traction control that suppresses the rotation of relatively fast wheels,
    In the rotation suppression process,
    The vehicle control device according to claim 1, wherein the main control unit prohibits the driver from stopping the traction control.
  4.  オートマチックトランスミッションモードと、マニュアルトランスミッションモードと、を切替可能な車両に適用され、
     前記他の制御部は、トランスミッション制御部(58)を含み、
     前記回転抑制処理において、
     当該トランスミッション制御部は、前記マニュアルトランスミッションモードの作動を禁止する、請求項1乃至3のいずれか一項に記載の車両制御装置。
    Applies to vehicles that can switch between automatic transmission mode and manual transmission mode,
    The other control unit includes a transmission control unit (58),
    In the rotation suppression process,
    The vehicle control device according to any one of claims 1 to 3, wherein the transmission control unit prohibits the operation in the manual transmission mode.
  5.  前記他の制御部は、エンジン制御部(57)を含み、
     前記回転抑制処理において、
     前記エンジン制御部は、前記車両の減速時に、前記エンジンの回転数(Ne)を増加させる減速ブリッピングの作動を禁止する、請求項1乃至4のいずれか一項に記載の車両制御装置。
    The other control unit includes an engine control unit (57),
    In the rotation suppression process,
    The vehicle control device according to any one of claims 1 to 4, wherein the engine control unit prohibits an operation of deceleration blipping that increases a rotation speed (Ne) of the engine when the vehicle is decelerated.
  6.  前記エンジンと前記モータジェネレータとの間、又は、前記モータジェネレータと車軸との間に、伝達される動力を変速可能な変速機(83,84)を備える車両に適用され、
     前記他の制御部は、トランスミッション制御部(58)を含み、
     前記回転抑制処理において、
     当該トランスミッション制御部は、車速が速度閾値より大きい場合、前記変速機のダウンシフトを禁止する、請求項1乃至5のいずれか一項に記載の車両制御装置。
    Applied to a vehicle including a transmission (83, 84) capable of shifting the power transmitted between the engine and the motor generator or between the motor generator and an axle;
    The other control unit includes a transmission control unit (58),
    In the rotation suppression process,
    The vehicle control device according to any one of claims 1 to 5, wherein the transmission control unit prohibits a downshift of the transmission when a vehicle speed is greater than a speed threshold value.
  7.  前記エンジンと前記モータジェネレータとの間の動力伝達を断続するエンジン側クラッチ(81)を備える車両に適用され、
     前記他の制御部は、トランスミッション制御部(58)を含み、
     前記回転抑制処理の実行後に
     当該トランスミッション制御部は、
     前記モータジェネレータの回転数が所定の上限値(NmH)を上回っているとき、前記エンジン側クラッチを半係合状態とし、
     前記モータジェネレータの回転数が所定の上限値(NmL)を下回っているとき、前記エンジン側クラッチを係合状態とし、
     前記エンジン側クラッチを、前記係合状態と前記半係合状態とを繰り返すように制御する、請求項1乃至6のいずれか一項に記載の車両制御装置。
    Applied to a vehicle including an engine side clutch (81) for intermittently transmitting power between the engine and the motor generator;
    The other control unit includes a transmission control unit (58),
    After execution of the rotation suppression process, the transmission control unit
    When the rotational speed of the motor generator exceeds a predetermined upper limit (NmH), the engine-side clutch is brought into a half-engaged state,
    When the rotational speed of the motor generator is below a predetermined upper limit (NmL), the engine side clutch is engaged,
    The vehicle control device according to any one of claims 1 to 6, wherein the engine-side clutch is controlled to repeat the engagement state and the half-engagement state.
  8.  前記他の制御部は、検出又は推定された前記モータジェネレータの回転数に基づいて、前記インバータの動作を制御するインバータ制御部(54)を含み、
     前記インバータ制御部は、
     前記主機電源の異常が検出され、前記電源リレーを遮断した後に、所定の電圧制御実行条件の成否を判定し、
     前記電圧制御実行条件が成立した場合に、前記インバータの複数のスイッチング素子(41-46)の動作を操作して、前記インバータの前記主機電源側に設けられたコンデンサ(25)の両端電圧であるコンデンサ電圧(Vc)を制御する電圧制御を実行し、
     前記電圧制御実行条件が成立しない場合に、前記インバータの前記複数のスイッチング素子を、全てオフ状態とするゲート遮断を実行する、請求項1乃至7のいずれか一項に記載の車両制御装置。
    The other control unit includes an inverter control unit (54) for controlling the operation of the inverter based on the detected or estimated rotation speed of the motor generator,
    The inverter control unit
    After the abnormality of the main engine power supply is detected and the power supply relay is cut off, it is determined whether or not a predetermined voltage control execution condition is satisfied,
    The voltage across the capacitor (25) provided on the main power supply side of the inverter by operating the operations of the plurality of switching elements (41-46) of the inverter when the voltage control execution condition is satisfied Execute voltage control to control the capacitor voltage (Vc),
    The vehicle control device according to any one of claims 1 to 7, wherein when the voltage control execution condition is not satisfied, gate cutoff is performed to turn off the plurality of switching elements of the inverter.
  9.  前記インバータ制御部は、
     前記モータジェネレータの回転数が所定の回転数範囲内にあり、且つ、前記コンデンサ電圧が所定の電圧範囲内にあるかを、前記電圧制御実行条件として判定する、請求項8に記載の車両制御装置。
    The inverter control unit
    9. The vehicle control device according to claim 8, wherein whether or not the rotation speed of the motor generator is within a predetermined rotation speed range and the capacitor voltage is within a predetermined voltage range is determined as the voltage control execution condition. .
  10.  前記モータジェネレータの回転数の変化に応じた、前記電圧制御及び前記ゲート遮断の制御モードの切り替えにおいて、
     前記モータジェネレータの回転数が増加するときに前記制御モードが切り替えられる増速切替の回転数(Nx+)は、前記モータジェネレータの回転数の上限値以下の値に設定されており、
     前記モータジェネレータの回転数が減少するときに前記制御モードが切り替えられる減速切替の回転数(Nx-)は、前記増速切替の回転数よりも小さい値に設定されている、請求項8又は9に記載の車両制御装置。
    In switching between the voltage control and the gate cutoff control mode according to the change in the rotation speed of the motor generator,
    The speed change speed (Nx +) at which the control mode is switched when the motor generator speed increases is set to a value equal to or lower than the upper limit value of the motor generator speed,
    10. The rotation speed (Nx−) of deceleration switching at which the control mode is switched when the rotation speed of the motor generator decreases is set to a value smaller than the rotation speed of the acceleration switching. The vehicle control device described in 1.
  11.  動力源であるエンジン(70)及びモータジェネレータ(60)、並びに、インバータ(40)を介して前記モータジェネレータと電力を授受可能な主機電源(20)を備えた車両(901,902)に適用され、前記エンジン及び前記モータジェネレータの動作を制御し、且つ、前記エンジンと前記モータジェネレータとの間の動力伝達と、前記モータジェネレータと車軸(96)との間の動力伝達と、のうちの少なくとも一方を制御可能な車両制御装置による車両制御方法であって、
     前記主機電源の異常が検出されたとき、前記主機電源と前記インバータとの間に設けられた電源リレー(21)を遮断して、前記モータジェネレータの力行動作を停止するステップ(S5,S6)と、
     前記エンジンによる車両走行を維持しつつ、前記車両の動作によって前記モータジェネレータの回転数(Nm)が増加する要因のうちの少なくとも1つを排除して、前記モータジェネレータの回転を抑制するステップ(S10)と、を含む、車両制御方法。
    It is applied to a vehicle (901, 902) equipped with an engine (70) and a motor generator (60), which are power sources, and a main power source (20) capable of transferring power to and from the motor generator via an inverter (40). , Controlling the operation of the engine and the motor generator, and at least one of power transmission between the engine and the motor generator and power transmission between the motor generator and the axle (96). A vehicle control method by a vehicle control device capable of controlling
    A step (S5, S6) of stopping a power running operation of the motor generator by shutting off a power supply relay (21) provided between the main power supply and the inverter when an abnormality of the main power supply is detected; ,
    Suppressing the rotation of the motor generator by eliminating at least one of the factors that increase the rotational speed (Nm) of the motor generator by the operation of the vehicle while maintaining the vehicle running by the engine (S10) And a vehicle control method.
  12.  コンピュータが読み取り可能な記録媒体であって、
     請求項11に記載の車両制御方法のステップを、コンピュータで実行させるための車両制御プログラムを記憶した、記録媒体。
    A computer-readable recording medium,
    A recording medium storing a vehicle control program for causing a computer to execute the steps of the vehicle control method according to claim 11.
PCT/JP2017/041985 2016-11-22 2017-11-22 Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon WO2018097170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780071860.6A CN109996712B (en) 2016-11-22 2017-11-22 Vehicle control device, vehicle control method, and storage medium storing vehicle control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226777 2016-11-22
JP2016226777A JP6597567B2 (en) 2016-11-22 2016-11-22 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2018097170A1 true WO2018097170A1 (en) 2018-05-31

Family

ID=62195048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041985 WO2018097170A1 (en) 2016-11-22 2017-11-22 Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon

Country Status (3)

Country Link
JP (1) JP6597567B2 (en)
CN (1) CN109996712B (en)
WO (1) WO2018097170A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230150366A1 (en) * 2020-04-27 2023-05-18 Nissan Motor Co., Ltd. Power Supply Control Method and Power Supply Control Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082206A (en) * 1999-09-16 2001-03-27 Toyota Motor Corp Control device for vehicle with regenerative mechanism
JP2009225500A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Motor driving unit and its control method
EP2184212A2 (en) * 2008-11-05 2010-05-12 Delphi Technologies, Inc. Fast response failure mode control methodology for a hybrid vehicle having an AC electric machine
JP2013180635A (en) * 2012-03-01 2013-09-12 Honda Motor Co Ltd Hybrid vehicle
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594100B2 (en) * 1995-07-31 2004-11-24 富士電機システムズ株式会社 Electric vehicle electric system
JP3333814B2 (en) * 1996-12-24 2002-10-15 トヨタ自動車株式会社 Hybrid vehicle control device
JP4048787B2 (en) * 2002-01-30 2008-02-20 トヨタ自動車株式会社 Load drive device
JP5152085B2 (en) * 2009-04-17 2013-02-27 トヨタ自動車株式会社 Electric vehicle power supply control device
CN103754116B (en) * 2014-01-26 2016-07-13 北京智行鸿远汽车技术有限公司 The lower short circuit protection system of inverter and method during new-energy automobile unusual service condition
JP2015214187A (en) * 2014-05-08 2015-12-03 株式会社豊田自動織機 Engine control device in limp mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082206A (en) * 1999-09-16 2001-03-27 Toyota Motor Corp Control device for vehicle with regenerative mechanism
JP2009225500A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Motor driving unit and its control method
EP2184212A2 (en) * 2008-11-05 2010-05-12 Delphi Technologies, Inc. Fast response failure mode control methodology for a hybrid vehicle having an AC electric machine
JP2013180635A (en) * 2012-03-01 2013-09-12 Honda Motor Co Ltd Hybrid vehicle
JP2016005421A (en) * 2014-06-19 2016-01-12 本田技研工業株式会社 Motor control system

Also Published As

Publication number Publication date
CN109996712A (en) 2019-07-09
JP6597567B2 (en) 2019-10-30
JP2018083486A (en) 2018-05-31
CN109996712B (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US10160441B2 (en) Power controller of hybrid vehicle
JP2013071551A (en) Control apparatus of hybrid vehicle
JP2009208567A (en) Hybrid car
JP2005098301A (en) Method and system of requesting engine on/off state in hybrid electric vehicle
KR101490922B1 (en) Method and system for changing drive mode when battery power of hybrid vehicle is limited
JP5706274B2 (en) Control device for hybrid vehicle
JP2011031659A (en) Hybrid vehicle
WO2015019165A1 (en) Control apparatus and control method for hybrid vehicle
JP2014218243A (en) Control device for hybrid vehicle
JP2010143418A (en) Starting controller for hybrid vehicle
KR101509702B1 (en) Shift control method and system of hybrid vehicle
JP2018102074A (en) Vehicle control device
WO2014103571A1 (en) Hybrid vehicle control device
JP2007261415A (en) Control device for hybrid vehicle
JP2012091770A (en) Method and device for protecting battery of hybrid vehicle
US20210291661A1 (en) Electric vehicle
KR101241215B1 (en) Control system and method of hybrid vehicle
JP6056627B2 (en) Hybrid vehicle travel control device
WO2018097170A1 (en) Vehicle control apparatus, vehicle control method, and recording medium having vehicle control program recorded thereon
KR101234657B1 (en) Apparatus for estimation motor speed of hybrid vehicle and method thereof
JP2004210028A (en) Hybrid vehicle
JP4449825B2 (en) Hybrid vehicle travel mode control device
JP6614088B2 (en) Power system controller
JP7200747B2 (en) power supply
JP2017047846A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874420

Country of ref document: EP

Kind code of ref document: A1