JP2018083403A - Resin coated steel sheet joining method - Google Patents

Resin coated steel sheet joining method Download PDF

Info

Publication number
JP2018083403A
JP2018083403A JP2016229494A JP2016229494A JP2018083403A JP 2018083403 A JP2018083403 A JP 2018083403A JP 2016229494 A JP2016229494 A JP 2016229494A JP 2016229494 A JP2016229494 A JP 2016229494A JP 2018083403 A JP2018083403 A JP 2018083403A
Authority
JP
Japan
Prior art keywords
resin
coated steel
coating layer
induction heating
overlapped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016229494A
Other languages
Japanese (ja)
Inventor
章彦 田中
Akihiko Tanaka
章彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016229494A priority Critical patent/JP2018083403A/en
Publication of JP2018083403A publication Critical patent/JP2018083403A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin coated steel sheet joining method with which resin coated steel sheets are less susceptible to temperature rise variation, it is possible to heat and bond joint surfaces of the resin coated steel sheets in a short time, and it is possible to prevent contamination of impurity into the joint surfaces.SOLUTION: Edge portions of resin coated steel sheets 3a and 3b are overlapped with each other so that a resin coating layer 2 is interposed therebetween. Overlapped portions are subjected to thermal compression bonding by applying pressure to the overlapped portions while heating the overlapped portions by using an induction heating coil 4 to not less than a melting temperature of thermoplastic resin of the resin coating layer 2 in the overlapped portions.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂被覆鋼板の接合方法に関する。   The present invention relates to a method for joining resin-coated steel sheets.

従来より、鋼板等の金属板を芯材とし、表面に熱可塑性樹脂の樹脂被覆層が設けられた樹脂被覆鋼板が、建物の屋根材や壁材、軒樋等の外装材として用いられている。このような従来の樹脂被覆鋼板では、通常、その製品の幅は一般的に1200mm幅である。1200mm以上の幅が必要な場合には、樹脂被覆鋼板の端縁部を相互に重ね合わせて接合することにより、幅広の接合樹脂被覆鋼板を製造している。この場合の樹脂被覆鋼板の接合方法としては、例えば、端縁部を重ね合わせた接合面を貫通固定するように、リベット等の固定具を打ち込む方法が知られている。また、接合面における樹脂被覆層の熱可塑性樹脂を加熱溶融させて溶着接合する方法等も提案されている(例えば、特許文献1参照)。   Conventionally, a resin-coated steel plate having a metal plate such as a steel plate as a core and a resin coating layer of a thermoplastic resin on its surface has been used as an exterior material for building roofing materials, wall materials, eaves, etc. . In such a conventional resin-coated steel sheet, the width of the product is generally 1200 mm. When a width of 1200 mm or more is required, a wide bonded resin-coated steel sheet is manufactured by overlapping and joining the edge portions of the resin-coated steel sheets. As a method for joining the resin-coated steel sheets in this case, for example, a method of driving a fixing tool such as a rivet so as to penetrate and fix the joining surface where the edge portions are overlapped is known. In addition, a method has also been proposed in which a thermoplastic resin of a resin coating layer on a joint surface is melted by heating and welded (for example, see Patent Document 1).

特許文献1の方法では、まず、図4(A)に示したように、2枚の樹脂被覆鋼板51a、51bの各々の端縁部を重ね合わせる。続いて、図4(B)に示したように、樹脂被覆鋼板51a、51bの一方の端縁部、もしくは両方の端縁部に熱風発生装置53を用いて熱風を吹き付けて、端縁部の前記熱可塑性樹脂を溶融させる。最後に、図4(C)に示したように、溶融した樹脂被覆層52aと他方の端縁部の樹脂被覆層52bとをプレス機54を用いて加熱加圧して、熱圧着している。   In the method of Patent Document 1, first, as shown in FIG. 4A, the edge portions of the two resin-coated steel plates 51a and 51b are overlapped. Subsequently, as shown in FIG. 4 (B), hot air is blown to one end edge of the resin-coated steel plates 51a and 51b, or both end edges using a hot air generator 53, and The thermoplastic resin is melted. Finally, as shown in FIG. 4C, the melted resin coating layer 52a and the resin coating layer 52b at the other edge are heated and pressed by a press machine 54 to be thermocompression bonded.

この接合方法では、樹脂被覆鋼板51a、51bに特殊な加工を施す必要がなく、簡単かつ確実に接合することができるとされている。   In this joining method, the resin-coated steel plates 51a and 51b do not need to be specially processed, and can be easily and reliably joined.

特開平7−34618号公報Japanese Patent Laid-Open No. 7-34618

しかしながら、特許文献1に記載された樹脂被覆鋼板の接合方法においては、樹脂被覆層の熱可塑性樹脂を溶融させるために、樹脂被覆鋼板の長手方向の全長に亘って300℃以上の熱風を吹き付ける必要があった。このような熱風による加熱昇温は、周囲の空気中への放熱が大きく、エネルギー効率が悪いことから、均一に昇温させることが困難であった。さらに、熱風発生装置の吹き出し口に不純物が付着堆積したり、樹脂被覆層の端縁部に塵埃が付着することがあり、これらの不純物や塵埃の除去清掃が必要である。そのため、単位時間あたりの接合樹脂被覆鋼板の生産量が限られてしまい、生産効率に改善の余地が残されていた。   However, in the method for joining resin-coated steel sheets described in Patent Document 1, in order to melt the thermoplastic resin of the resin-coated layer, it is necessary to blow hot air of 300 ° C. or more over the entire length in the longitudinal direction of the resin-coated steel sheet. was there. Such heating and heating with hot air is difficult to raise the temperature uniformly because heat radiation to the surrounding air is large and energy efficiency is low. Furthermore, impurities may adhere and accumulate on the outlet of the hot air generator, or dust may adhere to the edge of the resin coating layer, and it is necessary to remove and clean these impurities and dust. For this reason, the production amount of the bonded resin-coated steel sheet per unit time is limited, leaving room for improvement in production efficiency.

本発明は、以上のとおりの従来の問題点を解消し、樹脂被覆鋼板の昇温ばらつきが少なく、短時間で複数枚の樹脂被覆鋼板を熱圧着することができ、しかも接合面への不純物の混入を抑制することができる樹脂被覆鋼板の接合方法を提供することを課題とする。   The present invention solves the conventional problems as described above, has a small temperature rise variation of the resin-coated steel sheet, can thermocompression bond a plurality of resin-coated steel sheets in a short time, and is free of impurities on the joint surface. It is an object of the present invention to provide a method for joining resin-coated steel sheets that can suppress mixing.

上記の課題を解決するために、本発明の樹脂被覆鋼板の接合方法は、芯材としての鋼板の表面に熱可塑性樹脂の樹脂被覆層を有する樹脂被覆鋼板の複数枚を相互に接合する方法であって、前記樹脂被覆鋼板の各端縁部を、前記樹脂被覆層が介在するように重ね合わせ、誘導加熱コイルを用いて前記重ね合わせた部分の前記樹脂被覆層の熱可塑性樹脂が溶融する温度以上に加熱しつつ、加圧して、前記重ね合わせた部分を熱圧着することを特徴とする。   In order to solve the above problems, the resin-coated steel sheet joining method of the present invention is a method in which a plurality of resin-coated steel sheets having a thermoplastic resin coating layer on the surface of a steel sheet as a core material are joined together. Each of the edge portions of the resin-coated steel sheet is overlapped so that the resin coating layer is interposed, and an induction heating coil is used to melt the thermoplastic resin in the overlapped portion of the resin coating layer. The above-mentioned overlapped portion is thermocompression-bonded by applying pressure while heating as described above.

本発明の樹脂被覆鋼板の接合方法によれば、樹脂被覆鋼板の昇温ばらつきが少なく、短時間で複数枚の樹脂被覆鋼板の接合面を熱圧着することができ、しかも接合面への不純物の混入を抑制することができる。   According to the method for joining resin-coated steel sheets of the present invention, there is little variation in the temperature rise of the resin-coated steel sheets, the joining surfaces of a plurality of resin-coated steel sheets can be thermocompression bonded in a short time, and impurities on the joining surfaces can be reduced. Mixing can be suppressed.

本発明の樹脂被覆鋼板の接合方法の一実施形態について示した概略断面図である。It is the schematic sectional drawing shown about one Embodiment of the joining method of the resin-coated steel plate of this invention. 図1のA−A’断面図である。It is A-A 'sectional drawing of FIG. (A)(B)(C)(D)は、樹脂被覆鋼板の様々な実施形態を示した要部拡大断面図である。(A) (B) (C) (D) is the principal part expanded sectional view which showed various embodiment of the resin-coated steel plate. (A)(B)(C)は、従来の樹脂被覆鋼板の接合方法を示した概略工程断面図である。(A), (B), and (C) are schematic process cross-sectional views showing a conventional method for joining resin-coated steel sheets.

以下に、本発明の樹脂被覆鋼板の接合方法について詳細に説明する。   Below, the joining method of the resin coated steel plate of this invention is demonstrated in detail.

なお、本明細書中において、「表面」の用語は、単に、表面と裏面の対応関係のうちの一面である表面のみを意味するものではなく、芯材である鋼板の表裏面のうちのいずれか、もしくは両方の表面を意味している。   In the present specification, the term “front surface” does not simply mean a surface that is one surface of the correspondence relationship between the front surface and the back surface, but any of the front and back surfaces of the steel sheet that is the core material. Or both surfaces.

図1は、本発明の樹脂被覆鋼板の接合方法の一実施形態について示した概略断面図である。   FIG. 1 is a schematic cross-sectional view illustrating an embodiment of a method for joining resin-coated steel sheets according to the present invention.

本実施形態においては、図1の部分拡大図にも示したように、樹脂被覆鋼板3a、3bは、芯材としての鋼板1の表面に熱可塑性樹脂の樹脂被覆層2を有する。樹脂被覆鋼板3a、3bの複数枚の各端縁部を、樹脂被覆層2が介在するように重ね合わせ、誘導加熱コイル4を用いて重ね合わせた部分の樹脂被覆層2の熱可塑性樹脂が溶融する温度以上に加熱しつつ、加圧して、重ね合わせた部分を熱圧着している。   In this embodiment, as shown also in the partial enlarged view of FIG. 1, the resin-coated steel plates 3a and 3b have a resin coating layer 2 of a thermoplastic resin on the surface of the steel plate 1 as a core material. The edge portions of the plurality of resin-coated steel plates 3a and 3b are overlapped so that the resin coating layer 2 is interposed therebetween, and the thermoplastic resin of the resin coating layer 2 in the overlapped portion is melted by using the induction heating coil 4. The pressure is applied while heating to a temperature higher than the heating temperature, and the overlapped portion is thermocompression bonded.

そして、図1に示した実施形態においては、誘導加熱コイル4を有する誘導加熱部と、複数のローラー5aとローラー加圧部5bとを備えたローラープレス5に、樹脂被覆鋼板3a、3bの複数枚を搬送する。樹脂被覆鋼板3a、3bを搬送した後、前記誘導加熱部で加熱しつつ、ローラー加圧部5bで加圧して、前記重ね合わせた部分を熱圧着する。   In the embodiment shown in FIG. 1, a plurality of resin-coated steel plates 3 a and 3 b are provided on a roller press 5 including an induction heating unit having an induction heating coil 4 and a plurality of rollers 5 a and a roller pressing unit 5 b. Transport the sheet. After the resin-coated steel plates 3a and 3b are conveyed, the superposed portions are thermocompression-bonded by being pressed by the roller pressurizing unit 5b while being heated by the induction heating unit.

この実施形態では、ローラー5aを樹脂被覆鋼板3a、3bとの当接面の反対側から加圧するローラー加圧部5bを備えるローラープレス5と、その外側に配置されたプレス機6により、樹脂被覆鋼板3a、3bを挟み込んで加圧し、熱圧着している。   In this embodiment, the resin coating is performed by a roller press 5 including a roller pressurization unit 5b that pressurizes the roller 5a from the opposite side of the contact surface with the resin-coated steel plates 3a and 3b, and a press machine 6 disposed on the outer side. The steel plates 3a and 3b are sandwiched and pressurized and thermocompression bonded.

図2は、図1のA−A’断面を示しているが、ローラー加圧部5bは、複数対のローラー5aを樹脂被覆鋼板3a、3bの裏面側に押圧しながら回転させることにより、樹脂被覆鋼板3a、3bの前記接合面を熱圧着させることができるようにしている。また、上記の熱圧着と同時に、前記接合樹脂被覆鋼板を図3中の矢印α方向へと運搬、搬送可能としている、これにより、原材料である樹脂被覆鋼板3a、3bを連続的に供給したり、前記接合樹脂被覆鋼板を連続的に製造することができる。   FIG. 2 shows the AA ′ cross section of FIG. 1, but the roller pressurizing unit 5 b rotates the resin while rotating a plurality of pairs of rollers 5 a against the back side of the resin-coated steel plates 3 a and 3 b. The joint surfaces of the coated steel plates 3a and 3b can be thermocompression bonded. In addition, simultaneously with the above-described thermocompression bonding, the bonded resin-coated steel plates can be transported and transported in the direction of arrow α in FIG. 3, whereby the resin-coated steel plates 3a and 3b as raw materials can be continuously supplied. The bonded resin-coated steel sheet can be manufactured continuously.

鋼板1としては、電磁誘導加熱が可能な磁性体である限り特に制限されることはない。例えば、亜鉛メッキ鋼板、溶融亜鉛メッキ鋼板、亜鉛、アルミニウム、マグネシウム等の合金を被覆した鋼板等が例示される。また、亜鉛メッキに5%アルミニウムが含有されているもの(ガルファン)、亜鉛メッキにアルミニウム6%、マグネシウム3%が含有されているもの(ZAM)、亜鉛に対してアルミニウム55%が含有されているもの(ガルバニウム鋼板)、ステンレス等の鋼材が例示される。これらの中でも、溶融亜鉛メッキ鋼板は、亜鉛メッキの厚膜化が可能であるため、塗装鋼板と比較して防食性が優れており、実用上好ましい。   The steel plate 1 is not particularly limited as long as it is a magnetic material capable of electromagnetic induction heating. For example, a galvanized steel sheet, a hot dip galvanized steel sheet, a steel sheet coated with an alloy such as zinc, aluminum, and magnesium is exemplified. Also, the zinc plating contains 5% aluminum (Galfan), the zinc plating contains 6% aluminum and 3% magnesium (ZAM), and contains 55% aluminum relative to zinc. Examples include steel (galvanium steel plate) and stainless steel. Among these, the hot dip galvanized steel sheet can be made thicker by galvanization, and therefore has better anticorrosion properties than the coated steel sheet, and is practically preferable.

また、鋼板1の厚みとしては、例えば、0.1〜1.2mm程度であることが例示される。鋼板1の厚みが上記範囲内であれば、加工のしやすさと強度を両立することが可能となる。   Moreover, as thickness of the steel plate 1, it is illustrated that it is about 0.1-1.2 mm, for example. If the thickness of the steel plate 1 is within the above range, it is possible to achieve both ease of processing and strength.

鋼板1の表面は樹脂被覆層2により被覆されているが、これを構成する前記熱可塑性樹脂としては、例えば、塩化ビニル樹脂、ポリスチレン樹脂、ABS樹脂、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂等が例示される。また、ポリエチレン樹脂、ポリプロピレン樹脂等が例示される。これらの熱可塑性樹脂は、一種単独または2種類以上を混合して用いることができる。   The surface of the steel plate 1 is covered with a resin coating layer 2. Examples of the thermoplastic resin constituting the steel plate 1 include acrylic resins such as vinyl chloride resin, polystyrene resin, ABS resin, and polymethyl methacrylate (PMMA). Etc. are exemplified. Moreover, a polyethylene resin, a polypropylene resin, etc. are illustrated. These thermoplastic resins can be used individually by 1 type or in mixture of 2 or more types.

なかでも、塩化ビニル樹脂は、耐水性や耐候性に優れ、可塑剤などで加工性や柔軟性を自由にコントロールできるために、本実施形態において好適に用いることができる。   Especially, since a vinyl chloride resin is excellent in water resistance and a weather resistance, and can control processability and a softness | flexibility freely with a plasticizer etc., it can be used suitably in this embodiment.

前記熱可塑性樹脂には、必要に応じて他の成分が配合されてよい。他の成分としては、例えば、無機充填材、可塑剤、希釈溶剤、顔料成分、界面活性剤、抗菌剤、防黴剤、艶消し剤、消泡剤、増粘剤、沈降防止剤、レベリング剤、分散剤、熱安定剤、紫外線吸収剤、ワックス成分等が例示される。   The thermoplastic resin may be mixed with other components as necessary. Examples of other components include inorganic fillers, plasticizers, diluent solvents, pigment components, surfactants, antibacterial agents, antifungal agents, matting agents, antifoaming agents, thickeners, antisettling agents, and leveling agents. And dispersants, heat stabilizers, ultraviolet absorbers, wax components and the like.

このような他の成分をも配合した熱可塑性樹脂においては、前記熱可塑性樹脂そのものの配合量は、特に限定されることはなく、例えば、前記熱可塑性樹脂組成物全体の質量に対して、20質量部〜95質量部の範囲が例示される。前記熱可塑性樹脂の配合量が上記範囲内であれば、鋼板1への密着性が良好なものとなる。   In the thermoplastic resin also containing such other components, the amount of the thermoplastic resin itself is not particularly limited. For example, 20% of the total mass of the thermoplastic resin composition is 20%. The range of mass part-95 mass parts is illustrated. When the blending amount of the thermoplastic resin is within the above range, the adhesion to the steel sheet 1 is good.

このような熱可塑性樹脂を鋼板1の表面に塗布し、硬化させることにより、樹脂被覆層2が形成される。樹脂被覆層2の厚みは、片面あたり200μm以上800μm以下であることが好ましく考慮される。樹脂被覆層2の厚みが上記の範囲内であれば、断熱性、耐水性および耐候性に優れた樹脂被覆鋼板3a、3bが得られる。しかも、樹脂被覆鋼板3a、3bの製造コストを抑制し、生産性を向上させることも可能である。   The resin coating layer 2 is formed by applying such a thermoplastic resin to the surface of the steel plate 1 and curing it. The thickness of the resin coating layer 2 is preferably considered to be 200 μm or more and 800 μm or less per side. If the thickness of the resin coating layer 2 is within the above range, resin-coated steel plates 3a and 3b having excellent heat insulation, water resistance and weather resistance can be obtained. Moreover, it is possible to suppress the manufacturing cost of the resin-coated steel plates 3a and 3b and improve the productivity.

鋼板1の表面への前記熱可塑性樹脂組成物の塗布方法としては、従来公知の方法を適用することができる。例えば、液状の前記熱可塑性樹脂組成物をスプレーコーター、ロールコーター等を用いて塗布する方法や、押出成形による樹脂被覆鋼板3a、3bの一体成形等が例示される。また、あらかじめ、前記熱可塑性樹脂組成物を用いて熱可塑性樹脂フィルムを作製し、このフィルムを鋼板1の表面に貼着する方法等も例示される。   As a method for applying the thermoplastic resin composition to the surface of the steel plate 1, a conventionally known method can be applied. For example, a method of applying the liquid thermoplastic resin composition using a spray coater, a roll coater, or the like, or integral molding of the resin-coated steel plates 3a and 3b by extrusion molding, etc. are exemplified. Moreover, the method etc. which produce a thermoplastic resin film previously using the said thermoplastic resin composition and stick this film on the surface of the steel plate 1 are illustrated.

図1に示した実施形態においては、樹脂被覆鋼板3a、3bは、鋼板1の表裏面および端面も含めた全ての表面が熱可塑性樹脂からなる樹脂被覆層2により被覆されているが、このような実施形態に限定されるものではない。例えば、鋼板1の表裏面のいずれか一方の表面にのみ樹脂被覆層2が設けられた樹脂被覆鋼板3a、3bを用いて、図3(A)に示したように、樹脂被覆鋼板3aの樹脂被覆層2が設けられた面とは反対側の面である裏面に、樹脂被覆鋼板3bの端縁部の樹脂被覆層2が介在するように樹脂被覆鋼板3bを重ね合わせて接合することが例示される。また、図3(B)に示したように、樹脂被覆鋼板3a、3bの端縁部を樹脂被覆層2が相互に当接するように対向させて重ね合わせ、接合することが例示される。   In the embodiment shown in FIG. 1, the resin-coated steel plates 3 a and 3 b are all covered with the resin coating layer 2 made of a thermoplastic resin, including the front and back surfaces and end surfaces of the steel plate 1. However, the present invention is not limited to such an embodiment. For example, using resin-coated steel plates 3a and 3b in which the resin coating layer 2 is provided only on one of the front and back surfaces of the steel plate 1, as shown in FIG. It is exemplified that the resin-coated steel plate 3b is overlapped and joined to the back surface, which is the surface opposite to the surface on which the coating layer 2 is provided, so that the resin coating layer 2 at the edge of the resin-coated steel plate 3b is interposed. Is done. Further, as shown in FIG. 3B, the edge portions of the resin-coated steel plates 3a and 3b are overlapped with each other so that the resin coating layers 2 come into contact with each other, and are joined.

さらにまた、図3(C)に示したように、鋼板1の端面を除く表裏面に樹脂被覆層2が設けられた樹脂被覆鋼板3a、3bの端縁部を、樹脂被覆層2が相互に当接するように対向させて重ね合わせ、接合することが例示される。   Furthermore, as shown in FIG. 3C, the edge portions of the resin-coated steel plates 3a and 3b in which the resin coating layer 2 is provided on the front and back surfaces excluding the end surface of the steel plate 1 are connected to each other. It is exemplified that they are overlapped and joined so as to face each other.

図3(D)では、図1に示した実施形態に相当するが、鋼板1の表裏面および端面を含む全ての表面が前記熱可塑性樹脂の樹脂被覆層2で被覆されている。この場合の樹脂被覆鋼板3a、3bでは熱伝導性の高い金属部分が露出することがなく接合される。接合した樹脂被覆鋼板を屋根材として用いた場合に、屋根裏、小屋裏に熱がこもりにくくなる。また、熱可塑性樹脂の樹脂被覆層2による水密化が図られるため、鋼板1の前記端面や、接合面の隙間等からの雨水の浸入を抑制し、前記接合した樹脂被覆鋼板を雨樋として用いた場合の耐水性および耐候性、ひいては耐久性を向上させることができる。   In FIG. 3 (D), which corresponds to the embodiment shown in FIG. 1, all surfaces including the front and back surfaces and the end surface of the steel plate 1 are covered with the resin coating layer 2 of the thermoplastic resin. In the resin-coated steel plates 3a and 3b in this case, the metal portions having high thermal conductivity are joined without being exposed. When the bonded resin-coated steel sheet is used as a roofing material, heat is less likely to be trapped in the attic and shed. Further, since the water-tightness is achieved by the resin coating layer 2 of the thermoplastic resin, infiltration of rainwater from the end surface of the steel plate 1 or a gap between the joint surfaces is suppressed, and the joined resin-coated steel plate is used as a rain gutter. In this case, the water resistance and weather resistance, and the durability can be improved.

以上のような樹脂被覆鋼板3a、3bを重ね合わせて形成する接合面の幅は、接合後に充分な接合強度を発揮する限り特に制限されることはない。例えば、樹脂被覆鋼板3a、3bの前記端縁部を樹脂被覆層2が介在するように、それぞれ10mm以上50mm以下の範囲で重ね合わせて、両端縁部間に前記接合面を形成させることが例示される。   The width of the joining surface formed by overlapping the resin-coated steel plates 3a and 3b as described above is not particularly limited as long as sufficient joining strength is exhibited after joining. For example, the edge portions of the resin-coated steel plates 3a and 3b are overlapped in a range of 10 mm or more and 50 mm or less so that the resin coating layer 2 is interposed, and the joining surface is formed between both edge portions. Is done.

樹脂被覆層2の熱可塑性樹脂が溶融する温度以上に加熱するための前記誘導加熱コイル4は、高周波誘導加熱により、導電性材料、磁性体、誘電体等を極めて短時間で誘導加熱することができる装置である。高周波誘導加熱は、前記加熱対象の内部において自己発熱させることが可能であり、エネルギー効率に極めて優れた加熱方法である。図1に示した実施形態においては、樹脂被覆鋼板3a、3bの前記接合面は密着しているため、周囲の空気中への放熱も少なく抑えられている。このため、樹脂被覆鋼板3a、3bの前記接合面における昇温ばらつきが少なく、短時間で前記接合面を樹脂被覆層2の熱可塑性樹脂の溶融温度以上まで加熱することができる。さらにまた、樹脂被覆鋼板3a、3bの前記接合面は密着しているため、前記接合面への塵埃の付着も抑制される。   The induction heating coil 4 for heating above the temperature at which the thermoplastic resin of the resin coating layer 2 melts can inductively heat conductive materials, magnetic bodies, dielectrics, etc. in a very short time by high frequency induction heating. It is a device that can. High-frequency induction heating is a heating method that is capable of self-heating within the heating target and is extremely excellent in energy efficiency. In the embodiment shown in FIG. 1, since the joint surfaces of the resin-coated steel plates 3a and 3b are in close contact with each other, heat radiation to the surrounding air is also reduced. For this reason, there are few temperature rising dispersion | variations in the said joint surface of the resin-coated steel plates 3a and 3b, and the said joint surface can be heated more than the melting temperature of the thermoplastic resin of the resin coating layer 2 in a short time. Furthermore, since the joint surfaces of the resin-coated steel plates 3a and 3b are in close contact with each other, adhesion of dust to the joint surfaces is also suppressed.

誘導加熱コイル4は、例えば、図1、図2のように、樹脂被覆鋼板3aの前記接合面とは反対側と、樹脂被覆鋼板3bの前記接合面とは反対側に対向するように、それぞれ配置される。また、誘導加熱コイル4を、樹脂被覆鋼板3aの重ね合わせた部分と、その隣接する部分が加熱されるように配置することが好ましく考慮される。   The induction heating coil 4 is, for example, as shown in FIGS. 1 and 2, facing the opposite side of the joint surface of the resin-coated steel plate 3 a and the opposite side of the joint surface of the resin-coated steel plate 3 b, respectively. Be placed. In addition, it is preferable to arrange the induction heating coil 4 so that the overlapped portion of the resin-coated steel plate 3a and the adjacent portion are heated.

誘導加熱コイル4は、特に制限されることはないが、その幅が樹脂被覆鋼板3a、3bの前記端縁部を重ね合わせた前記接合部の幅以上であることが好ましく考慮される。このように誘導加熱コイル4が接合部の幅以上である場合、図1のように、前記接合部からはみ出す部分を上下の誘導加熱コイル4でずらして配置することが好ましい。すなわち、上側の樹脂被覆鋼板3aに近い上側の誘導加熱コイル4は、上側の樹脂被覆鋼板3aの重ね合わせた部分と、その隣接する部分が加熱されるように配置する。また、下側の樹脂被覆鋼板3bに近い下側の誘導加熱コイル4は、下側の樹脂被覆鋼板3bの重ね合わせた部分と、その隣接する部分が加熱されるように配置する。この場合、隣接する部分も重ね合わせた部分と同様に加熱されるため、重ね合わせた部分の温度が安定し、より確実に接合することができる。また、誘導加熱コイル4の長手方向の長さについては、必ずしも、樹脂被覆鋼板3a、3bの長手方向の長さを必要とするものではない。例えば、一対の短尺の誘導加熱コイル4間に、樹脂被覆鋼板3a、3bを重ね合わせたものを搬送、導入することにより、誘導加熱コイル4の長手方向の長さが樹脂被覆鋼板3a、3bの全長以下であったとしても、前記接合面全体を所望の温度まで昇温させることが可能である。このため、図4に示した従来の樹脂被覆鋼板の接合装置と比較して、接合装置全体としてのサイズの小型化、設置スペースの省スペース化も可能である。   The induction heating coil 4 is not particularly limited, but it is preferably considered that the width is equal to or greater than the width of the joint portion where the end edge portions of the resin-coated steel plates 3a and 3b are overlapped. As described above, when the induction heating coil 4 is equal to or larger than the width of the joint, it is preferable that the portions protruding from the joint are shifted by the upper and lower induction heating coils 4 as shown in FIG. That is, the upper induction heating coil 4 close to the upper resin-coated steel plate 3a is arranged so that the overlapped portion of the upper resin-coated steel plate 3a and the adjacent portion are heated. Further, the lower induction heating coil 4 close to the lower resin-coated steel plate 3b is arranged so that the overlapped portion of the lower resin-coated steel plate 3b and the adjacent portion are heated. In this case, since the adjacent portion is heated in the same manner as the overlapped portion, the temperature of the overlapped portion is stabilized, and bonding can be performed more reliably. Moreover, about the length of the longitudinal direction of the induction heating coil 4, the length of the longitudinal direction of the resin-coated steel plates 3a and 3b is not necessarily required. For example, by conveying and introducing a superposition of resin-coated steel plates 3a and 3b between a pair of short induction heating coils 4, the length of the induction heating coil 4 in the longitudinal direction is equal to that of the resin-coated steel plates 3a and 3b. Even if it is less than the total length, it is possible to raise the temperature of the entire joining surface to a desired temperature. Therefore, as compared with the conventional resin-coated steel plate joining apparatus shown in FIG. 4, the size of the entire joining apparatus can be reduced and the installation space can be saved.

誘導加熱コイル4の出力については、特に制限されることはないものの、例えば、1.0kW以上の出力を有するものであることが好ましく考慮される。   The output of the induction heating coil 4 is not particularly limited, but for example, it is preferably considered to have an output of 1.0 kW or more.

誘導加熱コイル4による樹脂被覆鋼板3a、3bの加熱温度(昇温温度)としては、少なくとも樹脂被覆層2の熱可塑性樹脂が溶融する温度以上であれば制限されることはなく、例えば、塩化ビニル樹脂の場合、200℃以上350℃以下の範囲が例示される。加熱温度が上記範囲内であれば、樹脂被覆層2の過剰昇温が極小に抑えられるため、熱可塑性樹脂の気化、燃焼によって生じるおそれのある有害ガスが発生しにくくなる。   The heating temperature (temperature rise temperature) of the resin-coated steel plates 3a and 3b by the induction heating coil 4 is not limited as long as it is at least the temperature at which the thermoplastic resin of the resin coating layer 2 melts. For example, vinyl chloride In the case of resin, a range of 200 ° C. or higher and 350 ° C. or lower is exemplified. If the heating temperature is within the above range, the excessive temperature rise of the resin coating layer 2 is suppressed to a minimum, so that it is difficult to generate harmful gases that may be generated by vaporization and combustion of the thermoplastic resin.

このような誘導加熱コイル4による前記接合面の加熱と同時に、樹脂被覆鋼板3a、3bは加圧される。   Simultaneously with the heating of the joint surface by the induction heating coil 4, the resin-coated steel plates 3a and 3b are pressurized.

樹脂被覆鋼板3a、3bの加圧方法については、各種であってよいが、図1、図2の実施形態では前記のとおりの複数のローラー5aを備えたローラープレス5、そしてプレス機6による加圧方式としている。前記接合面における溶融した前記熱可塑性樹脂を融着、接合可能な程度に加圧することができれば、特に制限されることはない。樹脂被覆鋼板3a、3bの熱圧着による接合は、図1、図2のようなローラープレス5による搬送を可能とする連続式あるいは半連続式だけでなく、各種プレス機を用いてのバッチ式であってもよい。   Various methods may be used for pressing the resin-coated steel plates 3a and 3b. In the embodiment shown in FIGS. 1 and 2, the press with the roller press 5 having the plurality of rollers 5a as described above and the press machine 6 is used. Pressure system. There is no particular limitation as long as the molten thermoplastic resin on the joint surface can be pressurized to such an extent that it can be fused and joined. Joining of the resin-coated steel plates 3a and 3b by thermocompression bonding is not only a continuous type or semi-continuous type that enables conveyance by the roller press 5 as shown in FIGS. 1 and 2, but also a batch type using various press machines. There may be.

なお、複数対のローラー5aの材料としては、誘電体であれば特に制限されることはなく、例えば、セラミック、硬質プラスチック等が例示される。   The material of the plurality of pairs of rollers 5a is not particularly limited as long as it is a dielectric, and examples thereof include ceramics and hard plastics.

本実施形態の樹脂被覆鋼板の製造方法によれば、樹脂被覆鋼板の昇温ばらつきが少なく、短時間で複数枚の樹脂被覆鋼板の接合面を加熱、接着することができ、しかも接合面への不純物の混入を抑制することができる。   According to the method for producing a resin-coated steel sheet of the present embodiment, there is little variation in temperature rise of the resin-coated steel sheet, the bonded surfaces of a plurality of resin-coated steel sheets can be heated and bonded in a short time, and Mixing of impurities can be suppressed.

このようにして得られる前記接合樹脂被覆鋼板は、屋根材や壁材、雨樋等の建材として好適に用いることができる。   The bonded resin-coated steel sheet thus obtained can be suitably used as a building material such as a roofing material, a wall material, and a rain gutter.

1 鋼板
2 樹脂被覆層
3a、3b 樹脂被覆鋼板
4 誘導加熱コイル
5 ローラープレス
5a ローラー
5b ローラー加圧部
6 プレス機
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Resin coating layer 3a, 3b Resin coating steel plate 4 Induction heating coil 5 Roller press 5a Roller 5b Roller pressurization part 6 Press machine

Claims (3)

芯材としての鋼板の表面に熱可塑性樹脂の樹脂被覆層を有する樹脂被覆鋼板の複数枚を相互に接合する方法であって、
前記樹脂被覆鋼板の各端縁部を、前記樹脂被覆層が介在するように重ね合わせ、誘導加熱コイルを用いて前記重ね合わせた部分の前記樹脂被覆層の熱可塑性樹脂が溶融する温度以上に加熱しつつ、加圧して、前記重ね合わせた部分を熱圧着することを特徴とする樹脂被覆鋼板の接合方法。
A method of joining together a plurality of resin-coated steel sheets having a resin coating layer of a thermoplastic resin on the surface of a steel sheet as a core material,
The respective edge portions of the resin-coated steel sheet are overlapped so that the resin coating layer is interposed, and heated using an induction heating coil to a temperature equal to or higher than the temperature at which the thermoplastic resin of the resin coating layer of the overlapped portion is melted. However, pressurizing and thermocompression-bonding the overlapped portion, a method for joining resin-coated steel sheets.
前記誘導加熱コイルを、前記樹脂被覆鋼板の前記重ね合わせた部分と、その隣接する部分が加熱されるように配置することを特徴とする請求項1に記載の樹脂被覆鋼板の接合方法。   2. The method for joining resin-coated steel sheets according to claim 1, wherein the induction heating coil is arranged so that the overlapped part of the resin-coated steel sheet and the adjacent part thereof are heated. 前記誘導加熱コイルを有する誘導加熱部と、複数のローラーとローラー加圧部とを備えたローラープレスに、前記樹脂被覆鋼板の複数枚を搬送した後、前記誘導加熱部で加熱しつつ、前記ローラー加圧部で加圧して、前記重ね合わせた部分を熱圧着することを特徴とする請求項1または2に記載の樹脂被覆鋼板の接合方法。   After the plurality of the resin-coated steel sheets are conveyed to a roller press provided with an induction heating unit having the induction heating coil, a plurality of rollers and a roller pressurizing unit, the rollers are heated while being heated by the induction heating unit. The method for joining resin-coated steel sheets according to claim 1 or 2, wherein the pressure is applied by a pressurizing unit, and the overlapped portion is thermocompression bonded.
JP2016229494A 2016-11-25 2016-11-25 Resin coated steel sheet joining method Pending JP2018083403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229494A JP2018083403A (en) 2016-11-25 2016-11-25 Resin coated steel sheet joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229494A JP2018083403A (en) 2016-11-25 2016-11-25 Resin coated steel sheet joining method

Publications (1)

Publication Number Publication Date
JP2018083403A true JP2018083403A (en) 2018-05-31

Family

ID=62238023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229494A Pending JP2018083403A (en) 2016-11-25 2016-11-25 Resin coated steel sheet joining method

Country Status (1)

Country Link
JP (1) JP2018083403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266490B1 (en) * 2020-10-22 2021-06-16 김정오 Press apaaratus and system of fixing adhesion part using air suctioning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266490B1 (en) * 2020-10-22 2021-06-16 김정오 Press apaaratus and system of fixing adhesion part using air suctioning

Similar Documents

Publication Publication Date Title
CN102689458B (en) Cellular board and manufacturing method thereof
US20110214774A1 (en) Aluminum tube and method for manufacturing same
CN102378654B (en) Extrusion-coated strap for rigid packagings
JP2016528074A (en) Method and apparatus for manufacturing composite materials
JP2018083403A (en) Resin coated steel sheet joining method
KR101627255B1 (en) Method of manufacturing wall panel for water tank
CN103753935A (en) Composite metal plate process
KR101448066B1 (en) Film laminating apparatus of both side film laminated goods
KR100312859B1 (en) Method and apparatus for polyethylene sheet coating steel by high-frequency induction heating
CN104827723A (en) Asphalt composite tire flexible waterproof coil
JP2018103442A (en) Joining method of resin coated steel sheet
KR20060116976A (en) Induction heat type double faced tape
SE9600645A0 (en) Multilayer building elements as well as process for its manufacture
US20160009063A1 (en) Foam and plastic bonding process for protective insulation system
US8426009B2 (en) Composite sheet structure
KR101533284B1 (en) Method of manufacturing wall panel for water tank
KR102644796B1 (en) Composites of dissimilar metal plates and manufacturing method thereof
CN109233676A (en) Vertical conduction is pyrolyzed adhesive tape
JP6022184B2 (en) Method for producing hollow structure plate
JP2004098394A (en) Manufacturing method for thick resin panel to which metal sheet is bonded
EP3231783B1 (en) Process for obtaining a multilayer plate of composite material
JP4391220B2 (en) Hot air blowing nozzle and hot air fusion method for waterproof sheet
KR100356909B1 (en) Manufacturing method of coated steel sheet for coated corrugated steel pipe
JP4396570B2 (en) Building material and building material manufacturing method
JP2013202868A (en) Method of manufacturing hollow structure plate and manufacturing device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171226