JP2018083298A - Fuel container - Google Patents

Fuel container Download PDF

Info

Publication number
JP2018083298A
JP2018083298A JP2016225866A JP2016225866A JP2018083298A JP 2018083298 A JP2018083298 A JP 2018083298A JP 2016225866 A JP2016225866 A JP 2016225866A JP 2016225866 A JP2016225866 A JP 2016225866A JP 2018083298 A JP2018083298 A JP 2018083298A
Authority
JP
Japan
Prior art keywords
fuel
evoh
fuel container
evoh resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225866A
Other languages
Japanese (ja)
Other versions
JP6870293B2 (en
Inventor
山本 信行
Nobuyuki Yamamoto
信行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2016225866A priority Critical patent/JP6870293B2/en
Publication of JP2018083298A publication Critical patent/JP2018083298A/en
Application granted granted Critical
Publication of JP6870293B2 publication Critical patent/JP6870293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel container having excellent fuel barrier properties even when a fuel with a high lower-alcohol content, such as ethanol, is used.SOLUTION: The present invention provides a fuel container for storing a fuel with a lower alcohol content of 20 mass% or more. The fuel container is formed from a multilayered structure with a fuel barrier layer disposed between thermoplastic resin layers. The fuel barrier layer contains resin composition containing a saponified ethylene/vinyl ester copolymer and an inorganic laminar compound.SELECTED DRAWING: None

Description

本発明は、低級アルコールの含有量が20質量%以上の燃料を収容するための燃料容器に関するものである。   The present invention relates to a fuel container for containing a fuel having a lower alcohol content of 20% by mass or more.

近年、環境汚染に対する規制強化の実施や、大気汚染防止及びガソリン消費節約の観点から、ガソリンのオクタン価改良や排気ガス中の未燃焼炭化水素量の削減のために、メタノール、エタノール等の低級アルコールをブレンドしたガソリンが米国を中心に使用されている。   In recent years, lower alcohols such as methanol and ethanol have been used to improve the octane number of gasoline and to reduce the amount of unburned hydrocarbons in exhaust gas from the viewpoint of tightening regulations on environmental pollution, preventing air pollution and saving gasoline consumption. Blended gasoline is used mainly in the United States.

また、再生可能な自然エネルギーである点や、その燃焼によって大気中の二酸化炭素量を増やさない点から、ガソリン燃料代替物として、サトウキビやトウモロコシなどのバイオマスを発酵させ、蒸留して生産されるバイオマスエタノールが注目されている。バイオマスエタノールは、ガソリンと混合されることなく用いられるか、混合されて用いられる場合であっても高比率で配合される。   Biomass produced by fermenting and distilling biomass such as sugar cane and corn as a gasoline fuel substitute because it is renewable natural energy and does not increase the amount of carbon dioxide in the atmosphere due to its combustion. Ethanol is attracting attention. Biomass ethanol is used without being mixed with gasoline, or is blended at a high ratio even when mixed and used.

しかし、従来のガソリンに使用されている燃料容器では、上記の様なエタノール等の低級アルコールの含有率が高い燃料を使用する際、容器の燃料バリア性が十分とは言えず、改善の余地があった。   However, in the fuel container used in conventional gasoline, when using a fuel having a high content of lower alcohol such as ethanol as described above, the fuel barrier property of the container is not sufficient, and there is room for improvement. there were.

そこで、上記問題点を解決するため、例えば、特許文献1では、エチレン−ビニルアルコール共重合体(c)層の内外層に接着性樹脂(b)層を介して、高密度ポリエチレン(a)層を有し、かつ(c)層の内側にある各層の厚みの合計をIとし、(c)層の外側にある各層の厚みの合計をOとしたときの厚み比(I/O)が50/50より小さい燃料容器が開示されている。   Therefore, in order to solve the above problems, for example, in Patent Document 1, a high-density polyethylene (a) layer is provided via an adhesive resin (b) layer on the inner and outer layers of an ethylene-vinyl alcohol copolymer (c) layer. And (c) the thickness of each layer inside the layer is I, and (c) the thickness of each layer outside the layer is O, the thickness ratio (I / O) is 50. A fuel container smaller than / 50 is disclosed.

特開平9―29904号公報JP-A-9-29904

しかし、特許文献1では、燃料容器の透過防止性能に関しては、燃料としてエタノールを15重量%配合したガソリンを使用した場合の評価はなされているが、エタノールをそれ以上配合したガソリンの場合、燃料容器の透過防止性能は不明である。   However, in Patent Document 1, the permeation preventing performance of the fuel container is evaluated when gasoline containing 15% by weight of ethanol is used as the fuel, but in the case of gasoline containing more ethanol, the fuel container The permeation prevention performance of is unknown.

本発明は、上記従来の実情を鑑みてなされたものであって、エタノール等の低級アルコールの含有率が高い燃料を使用する際でも、優れた燃料バリア性を有する燃料容器を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and solves the problem of providing a fuel container having an excellent fuel barrier property even when a fuel having a high content of lower alcohol such as ethanol is used. It is an issue that should be done.

本発明者は、鋭意検討を重ねた結果、熱可塑性樹脂層間に燃料バリア層が配置された多層構造体を有し、前記燃料バリア層がエチレン−ビニルエステル系共重合体ケン化物及び無機層状化合物を含む樹脂組成物を有する層である燃料容器によって、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は下記<1>〜<2>に関するものである。
<1>低級アルコールの含有量が20質量%以上の燃料を収容するための燃料容器であって、熱可塑性樹脂層間に燃料バリア層が配置された多層構造体から形成され、前記燃料バリア層が、エチレン−ビニルエステル系共重合体ケン化物及び無機層状化合物を含む樹脂組成物からなることを特徴とする燃料容器。
<2>前記無機層状化合物の平均粒子径が、1〜30μmである<1>に記載の燃料容器。
As a result of intensive studies, the inventor has a multilayer structure in which a fuel barrier layer is disposed between thermoplastic resin layers, and the fuel barrier layer is a saponified ethylene-vinyl ester copolymer and an inorganic layered compound. It has been found that the above-mentioned problems can be solved by a fuel container that is a layer having a resin composition containing, and the present invention has been completed.
That is, the present invention relates to the following <1> to <2>.
<1> A fuel container for containing a fuel having a lower alcohol content of 20% by mass or more, wherein the fuel barrier layer is formed of a multilayer structure in which a fuel barrier layer is disposed between thermoplastic resin layers. A fuel container comprising a resin composition containing a saponified ethylene-vinyl ester copolymer and an inorganic layered compound.
<2> The fuel container according to <1>, wherein the inorganic layered compound has an average particle size of 1 to 30 μm.

本発明によれば、エタノール等の低級アルコールの含有率が高い燃料を使用する際でも、優れた燃料バリア性を有する燃料容器を提供することができる。   According to the present invention, a fuel container having excellent fuel barrier properties can be provided even when a fuel having a high content of lower alcohol such as ethanol is used.

以下、本発明について詳述するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。   Hereinafter, although this invention is explained in full detail, these show an example of a desirable embodiment, and this invention is not specified by these content.

[燃料容器]
本発明の燃料容器は、熱可塑性樹脂層間に燃料バリア層が配置された多層構造体から形成される。また、前記燃料バリア層が、エチレン−ビニルエステル系共重合体ケン化物(以下、「EVOH樹脂」と称することがある。)及び無機層状化合物を含む樹脂組成物からなることを特徴とする。
[Fuel container]
The fuel container of the present invention is formed from a multilayer structure in which a fuel barrier layer is disposed between thermoplastic resin layers. Further, the fuel barrier layer is made of a resin composition containing an ethylene-vinyl ester copolymer saponified product (hereinafter sometimes referred to as “EVOH resin”) and an inorganic stratiform compound.

[熱可塑性樹脂層]
本発明の燃料容器の熱可塑性樹脂層で用いる熱可塑性樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したものなどの広義のポリオレフィン系樹脂、ポリエステル、ポリアミド、共重合ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族または脂肪族ポリケトン、更にこれらを還元して得られるポリアルコール類等が挙げられる。
[Thermoplastic resin layer]
As the thermoplastic resin used in the thermoplastic resin layer of the fuel container of the present invention, linear low density polyethylene, low density polyethylene, ultra-low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, Ionomer, ethylene-propylene copolymer, ethylene-acrylic acid ester copolymer, polypropylene, propylene-α-olefin (α-olefin having 4 to 20 carbon atoms) copolymer, olefin such as polybutene and polypentene Polymers, or polyolefin resins such as those obtained by graft-modifying these olefins alone or copolymers with unsaturated carboxylic acids or esters thereof, polyesters, polyamides, copolymerized polyamides, polyvinyl chloride, polyvinylidene chloride, Acrylic resin, polystyrene, Examples thereof include vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylene, chlorinated polypropylene, aromatic or aliphatic polyketones, and polyalcohols obtained by reducing these.

これらの中でも、燃料容器の成形性や強度等の実用性の点から、ポリオレフィン系樹脂が好ましく、その中でも特に高密度ポリエチレン(HDPE)が好ましい。   Among these, polyolefin resins are preferable from the viewpoint of practicality such as moldability and strength of the fuel container, and among these, high density polyethylene (HDPE) is particularly preferable.

また、熱可塑性樹脂には、本発明の目的を阻害しない範囲において、各種添加剤、改質剤、他樹脂等を配合しても良い。   In addition, various additives, modifiers, other resins, and the like may be blended with the thermoplastic resin as long as the object of the present invention is not impaired.

[燃料バリア層]
本発明の燃料容器の燃料バリア層は、エチレン−ビニルエステル系共重合体ケン化物(「EVOH樹脂」)及び無機層状化合物を含む樹脂組成物からなることを特徴とする。
[Fuel barrier layer]
The fuel barrier layer of the fuel container of the present invention is characterized by comprising a resin composition containing a saponified ethylene-vinyl ester copolymer (“EVOH resin”) and an inorganic layered compound.

(EVOH樹脂)
本発明で用いるEVOH樹脂は、通常、エチレンとビニルエステル系モノマーとの共重合体(エチレン−ビニルエステル系共重合体)をケン化させることにより得られる樹脂であり、非水溶性の熱可塑性樹脂である。
(EVOH resin)
The EVOH resin used in the present invention is usually a resin obtained by saponifying a copolymer of ethylene and a vinyl ester monomer (ethylene-vinyl ester copolymer), and is a water-insoluble thermoplastic resin. It is.

重合法としては、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合を用いて行うことができるが、一般的には、メタノールを溶媒とする溶液重合が用いられる。
得られたエチレン−ビニルエステル系共重合体のケン化も、公知の方法を用いて行うことができる。
このようにして製造されるEVOH樹脂は、エチレン由来の構造単位とビニルアルコール構造単位を主とし、ケン化されずに残存した若干量のビニルエステル構造単位を含む。
As the polymerization method, any known polymerization method such as solution polymerization, suspension polymerization, and emulsion polymerization can be used. Generally, solution polymerization using methanol as a solvent is used.
Saponification of the obtained ethylene-vinyl ester copolymer can also be performed using a known method.
The EVOH resin produced in this way is mainly composed of ethylene-derived structural units and vinyl alcohol structural units, and contains a slight amount of vinyl ester structural units remaining without saponification.

上記ビニルエステル系モノマーとしては、市場入手性や製造時の不純物処理効率がよい観点から、代表的には、酢酸ビニルが用いられる。
他のビニルエステル系モノマーとしては、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等が挙げられ、通常炭素数3〜20、好ましくは炭素数4〜10、さらに好ましくは炭素数4〜7の脂肪族ビニルエステルを用いることができる。
これらのビニルエステル系モノマーは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。
As the vinyl ester monomer, vinyl acetate is typically used from the viewpoint of market availability and good impurity treatment efficiency during production.
Examples of other vinyl ester monomers include vinyl formate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl versatate, etc. Examples include aliphatic vinyl esters and aromatic vinyl esters such as vinyl benzoate, and usually use aliphatic vinyl esters having 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, and more preferably 4 to 7 carbon atoms. Can do.
These vinyl ester monomers are usually used alone, but a plurality of them may be used simultaneously if necessary.

EVOH樹脂におけるエチレン構造単位の含有量は、ISO 14663に基づいて測定した値で、通常10〜50モル%、好ましくは15〜40モル%、さらに好ましくは20〜30モル%である。
かかる含有量が低すぎる場合は、溶融成形性が低下する傾向があり、高すぎる場合は、ガソリン透過性が不足する傾向がある。
The content of the ethylene structural unit in the EVOH resin is a value measured based on ISO 14663, and is usually 10 to 50 mol%, preferably 15 to 40 mol%, and more preferably 20 to 30 mol%.
When the content is too low, melt moldability tends to be reduced, and when it is too high, gasoline permeability tends to be insufficient.

EVOH樹脂におけるビニルエステル成分のケン化度は、JIS K6726(ただし、EVOH樹脂は水/メタノール溶媒に均一に溶解した溶液にて)に基づいて測定した値で、通常90〜100モル%、好ましくは95〜100モル%、さらに好ましくは99〜100モル%である。
かかるケン化度が低すぎる場合は、ガスバリア性、熱安定性、耐湿性等が低下する傾向がある。
The saponification degree of the vinyl ester component in the EVOH resin is a value measured based on JIS K6726 (however, the EVOH resin is a solution uniformly dissolved in water / methanol solvent) and is usually 90 to 100 mol%, preferably It is 95-100 mol%, More preferably, it is 99-100 mol%.
If the degree of saponification is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to be reduced.

EVOH樹脂のメルトフローレート(MFR)(210℃、荷重2,160g)は、通常0.5〜100g/10分であり、好ましくは1〜50g/10分、さらに好ましくは3〜35g/10分である。
かかるMFRが大きすぎる場合は、製膜性が不安定となる傾向があり、小さすぎる場合は、粘度が高くなり過ぎて溶融押出しが困難となる傾向がある。
The melt flow rate (MFR) (210 ° C., load 2,160 g) of EVOH resin is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, more preferably 3 to 35 g / 10 minutes. It is.
When the MFR is too large, the film forming property tends to be unstable, and when it is too small, the viscosity becomes too high and melt extrusion tends to be difficult.

EVOH樹脂には、エチレン構造単位、ビニルアルコール構造単位(未ケン化のビニルエステル構造単位を含む。)の他、以下に示すコモノマーに由来する構造単位が、さらに含まれていてもよい。   In addition to ethylene structural units and vinyl alcohol structural units (including unsaponified vinyl ester structural units), EVOH resins may further contain structural units derived from the following comonomer.

前記コモノマーとしては、プロピレン、イソブテン、α−オクテン、α−ドデセン、α−オクタデセン等のα−オレフィン;3−ブテン−1−オール、4−ペンテン−1−オール、3−ブテン−1、2−ジオール等のヒドロキシ基含有α−オレフィン類やそのエステル化物、アシル化物などのヒドロキシ基含有α−オレフィン誘導体;2−メチレンプロパン−1,3−ジオール、3−メチレンペンタン−1,5−ジオール等のヒドロキシアルキルビニリデン類;1,3−ジアセトキシ−2−メチレンプロパン、1,3−ジプロピオニルオキシ−2−メチレンプロパン、1,3−ジブチロニルオキシ−2−メチレンプロパン等のヒドロキシアルキルビニリデンジアセテート類;不飽和カルボン酸又はその塩、部分アルキルエステル、完全アルキルエステル、ニトリル、アミド若しくは無水物;不飽和スルホン酸又はその塩;ビニルシラン化合物;塩化ビニル;スチレン等が挙げられる。   Examples of the comonomer include α-olefins such as propylene, isobutene, α-octene, α-dodecene, α-octadecene; 3-buten-1-ol, 4-penten-1-ol, 3-butene-1, 2- Hydroxyl group-containing α-olefins such as diols and hydroxy group-containing α-olefin derivatives such as esterified products and acylated products thereof; 2-methylenepropane-1,3-diol, 3-methylenepentane-1,5-diol, etc. Hydroxyalkylvinylidenes; hydroxyalkylvinylidene diacetates such as 1,3-diacetoxy-2-methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, 1,3-dibutyronyloxy-2-methylenepropane Unsaturated carboxylic acid or salt thereof, partial alkyl ester, complete alkyl ester Ether, nitrile, amide or anhydride; unsaturated sulfonic acids or salts thereof; vinylsilane compounds; vinyl chloride; styrene.

さらに、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の後変性されたEVOH系樹脂を用いることもできる。上記変性物の中でも、共重合によって一級水酸基が側鎖に導入されたEVOH樹脂は、延伸処理や真空・圧空成形などの二次成形性が良好になる点で好ましく、特に、1,2−ジオール構造を側鎖に有するEVOH樹脂が好ましい。   Further, post-modified EVOH resins such as urethanization, acetalization, cyanoethylation, oxyalkyleneation and the like can also be used. Among the above modified products, EVOH resin in which a primary hydroxyl group is introduced into the side chain by copolymerization is preferable in terms of good secondary formability such as stretching treatment and vacuum / pressure forming, and in particular, 1,2-diol. EVOH resin having a structure in the side chain is preferred.

EVOH樹脂には、本発明の効果を阻害しない範囲において、一般にEVOH樹脂に配合する配合剤、例えば、熱安定剤、酸化防止剤、帯電防止剤、着色剤、紫外線吸収剤、滑剤、可塑剤、光安定剤、界面活性剤、抗菌剤、乾燥剤、アンチブロッキング剤、難燃剤、架橋剤、硬化剤、発泡剤、結晶核剤、防曇剤、生分解用添加剤、シランカップリング剤、酸素吸収剤などが配合されていてもよい。   In the EVOH resin, as long as the effects of the present invention are not impaired, a compounding agent generally incorporated into the EVOH resin, for example, a heat stabilizer, an antioxidant, an antistatic agent, a colorant, an ultraviolet absorber, a lubricant, a plasticizer, Light stabilizer, surfactant, antibacterial agent, drying agent, antiblocking agent, flame retardant, crosslinking agent, curing agent, foaming agent, crystal nucleating agent, antifogging agent, biodegradation additive, silane coupling agent, oxygen An absorbent or the like may be blended.

また、EVOH樹脂は、異なる他のEVOH樹脂との混合物であってもよく、他のEVOH樹脂としては、エチレン含有率が異なるもの、ケン化度が異なるもの、重合度が異なるもの、他の共重合成分が異なるもの、1,2−ジオール構造単位の含有量が異なるものなどを挙げることができる。   The EVOH resin may be a mixture with other different EVOH resins. Examples of other EVOH resins include those having different ethylene contents, those having different saponification degrees, those having different polymerization degrees, and other common resins. Examples include those having different polymerization components and those having different contents of 1,2-diol structural units.

(無機層状化合物)
本発明で用いる無機層状化合物は、原子が共有結合などによって強く結合して密に配列したシート状物を形成し、例えば、酸化ケイ素等の四面体シート状物や、アルミ等の金属水酸化物等の八面体シート状物が挙げられ、これらシート状物がファンデルワールス力、静電気力などによってほぼ平行に積み重なった構造を有する無機化合物をいう。一般的には、層状ケイ酸塩とも呼ばれる。
(Inorganic layered compound)
The inorganic layered compound used in the present invention forms a sheet-like material in which atoms are strongly bonded by a covalent bond or the like to form a dense arrangement, for example, a tetrahedral sheet-like material such as silicon oxide, or a metal hydroxide such as aluminum An octahedral sheet-like material such as, etc., which is an inorganic compound having a structure in which these sheet-like materials are stacked almost in parallel by van der Waals force, electrostatic force or the like. Generally, it is also called layered silicate.

かかる無機層状化合物は、例えば1枚の四面体シートの頂点酸素を1枚の八面体シートが共有する結晶構造を持った1:1型、1枚の四面体シートの頂点酸素を2枚の八面体シートが共有する結晶構造を持った2:1型が挙げられる。
例えば、1:1型の具体例としてはカオリナイト、蛇紋岩、ディッカイト、ナクライト、ハロイサイト、クリソタイル、リザルタイト、ハロイサイト等のカオリナイト類が挙げられ、2:1型の具体例としてはタルク、パイロフィライト等のタルク類、イライト、白雲母、黒雲母などの雲母類、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチブンサイト等のスメクタイト類、バーミキュライト類などが挙げられる。
無機層状化合物は、天然品であっても合成品であってもよい。
Such an inorganic layered compound is, for example, a 1: 1 type having a crystal structure in which one octahedral sheet shares the apex oxygen of one tetrahedral sheet, and the two apexes of one tetrahedral sheet. A 2: 1 type having a crystal structure shared by the face sheet is exemplified.
For example, specific examples of the 1: 1 type include kaolinites such as kaolinite, serpentine, dickite, nacrite, halloysite, chrysotile, lizarite, halloysite, and the like, and the 2: 1 type specific examples include talc and pyrophyll. Examples include talc such as light, mica such as illite, muscovite, biotite, smectite such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, and vermiculite.
The inorganic layered compound may be a natural product or a synthetic product.

上記無機層状化合物の中でも、入手の容易さの観点から、好ましくはカオリナイト類、スメクタイト類、特に好ましくはカオリナイト、モンモリロナイトを使用することが望ましい。   Among the inorganic layered compounds, kaolinites and smectites are preferably used, and kaolinite and montmorillonite are particularly preferably used from the viewpoint of availability.

無機層状化合物の平均粒子径(μm)は、通常1〜30μm、好ましくは2〜20μm、さらに好ましくは3〜10μmである。
かかる平均粒子径が大きすぎると、水分散液における分散安定性が悪化するとともに、成形品の外観が悪くなる傾向がある。
The average particle diameter (μm) of the inorganic layered compound is usually 1 to 30 μm, preferably 2 to 20 μm, and more preferably 3 to 10 μm.
When the average particle size is too large, the dispersion stability in the aqueous dispersion deteriorates and the appearance of the molded product tends to deteriorate.

かかる平均粒子径は、レーザー散乱法により得ることができ、例えば、蒸留水を用いて0.1質量%濃度の無機層状化合物水分散液を作成し、かかる分散液を、レーザー散乱粒度分布アナライザー(HORIBA製のLA―950)を用いて分析することにより得られる。   Such an average particle diameter can be obtained by a laser scattering method. For example, an inorganic layered compound aqueous dispersion having a concentration of 0.1% by mass is prepared using distilled water, and the dispersion is analyzed by a laser scattering particle size distribution analyzer ( It is obtained by analyzing using LA-950) manufactured by HORIBA.

無機層状化合物のBET比表面積(m/g)は、特に限定されないが、通常1m/g以上、好ましくは3m/g以上、さらに好ましくは5m/g以上である。
かかるBET比表面積が小さすぎると、水分散液における分散安定性が悪化する傾向がある。
The BET specific surface area (m 2 / g) of the inorganic layered compound is not particularly limited, but is usually 1 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more.
When the BET specific surface area is too small, the dispersion stability in the aqueous dispersion tends to deteriorate.

無機層状化合物は、シランカップリング剤などの反応剤によって表面処理されていてもよい。
シランカップリング剤としては、従来公知のものを使用することが可能である。シランカップリング剤は、一般式RSiXで表され、Rはビニル基、スチリル基、エポキシ基、グリシジル基、グリシドキシ基、メタクリル基、アミノ基、メルカプト基などの有機官能性基であり、Xは主に塩素およびアルコキシ基である。
The inorganic layered compound may be surface-treated with a reactive agent such as a silane coupling agent.
A conventionally known silane coupling agent can be used. The silane coupling agent is represented by the general formula RSiX 3 , where R is an organic functional group such as vinyl group, styryl group, epoxy group, glycidyl group, glycidoxy group, methacryl group, amino group, mercapto group, and X is Mainly chlorine and alkoxy groups.

具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシランなどが挙げられる。   Specifically, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycid Xylpropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, etc. Can be mentioned.

(混合方法)
本発明の燃料容器の燃料バリア層は、EVOH樹脂及び無機層状化合物を含む樹脂組成物(以下、「EVOH樹脂組成物」と称することがある。)からなる。
(Mixing method)
The fuel barrier layer of the fuel container of the present invention is composed of a resin composition containing an EVOH resin and an inorganic layered compound (hereinafter sometimes referred to as “EVOH resin composition”).

本発明において、EVOH樹脂及び無機層状化合物を溶融混練または溶液混合することで、EVOH樹脂組成物を得ることができる。中でも生産性の点から溶融混練が好ましい。以下、溶融混練について説明する。   In the present invention, the EVOH resin composition can be obtained by melt-kneading or solution mixing the EVOH resin and the inorganic layered compound. Among these, melt kneading is preferable from the viewpoint of productivity. Hereinafter, melt kneading will be described.

混練に供されるEVOH樹脂と無機層状化合物の配合割合は、EVOH樹脂100質量部(固形分)に対して、無機層状化合物が0.1〜100質量部(固形分)であることが好ましく、より好ましくは0.1〜50質量部(固形分)、さらに好ましくは1〜20質量部(固形分)、特に好ましくは5〜15質量部(固形分)である。
かかる配合割合が低すぎると、ガソリン透過性の改善効果が少ない傾向があり、配合割合が高すぎると、成形物の外観が悪化するおそれがあり好ましくない傾向がある。
The blending ratio of the EVOH resin and inorganic layered compound used for kneading is preferably 0.1 to 100 parts by weight (solid content) of the inorganic layered compound with respect to 100 parts by weight (solid content) of the EVOH resin, More preferably, it is 0.1-50 mass parts (solid content), More preferably, it is 1-20 mass parts (solid content), Most preferably, it is 5-15 mass parts (solid content).
If the blending ratio is too low, the gasoline permeability improving effect tends to be small, and if the blending ratio is too high, the appearance of the molded product may be deteriorated, which tends to be undesirable.

EVOH樹脂及び無機層状化合物を混練するに当たっては、用いる装置や方法等に特に制限はなく、例えば、押出機、ニーダー、ミキシングロール、バンバリーミキサー、プラストミル、ブラベンダーなどの公知の混練装置を使用して公知の方法を用いることができる。これらの混練装置は単独で使用してもよいが、2種類以上の装置を組み合わせて使用してもよい。   In kneading the EVOH resin and the inorganic layered compound, there are no particular limitations on the apparatus and method used, and for example, using a known kneading apparatus such as an extruder, kneader, mixing roll, Banbury mixer, plast mill, Brabender, etc. A known method can be used. These kneading apparatuses may be used alone or in combination of two or more apparatuses.

また、用いる装置は、EVOH樹脂及び無機層状化合物の種類、性質、形状等によって適宜選択すればよく、通常は工業的に広く用いられている一軸押出機または二軸押出機等の押出機が好適に用いられ、特に樹脂中の無機化合物の分散性の観点から、二軸押出機が好ましい。   Moreover, the apparatus to be used may be appropriately selected depending on the type, nature, shape, etc. of the EVOH resin and the inorganic layered compound, and usually an extruder such as a single screw extruder or a twin screw extruder which is widely used industrially is suitable. From the viewpoint of dispersibility of the inorganic compound in the resin, a twin screw extruder is preferred.

二軸押出機としては、特に限定されないが、そのスクリュー内径は好ましくは20mm以上、より好ましくは30〜150mmである。
かかるスクリュー内径が小さすぎると、生産性に乏しいため好ましくない。
Although it does not specifically limit as a twin-screw extruder, Preferably the screw internal diameter is 20 mm or more, More preferably, it is 30-150 mm.
When the screw inner diameter is too small, productivity is poor, which is not preferable.

二軸押出機のL/D{二軸押出機のスクリューの有効長(L)とスクリュー内径(D)の比}は、好ましくは20以上、より好ましくは30以上である。
かかるL/Dが小さすぎると、混練時間が短く、EVOH樹脂中の無機化合物の分散性が低下するため好ましくない。
The L / D of the twin screw extruder {ratio of the effective length (L) of the screw of the twin screw extruder to the screw inner diameter (D)} is preferably 20 or more, more preferably 30 or more.
When the L / D is too small, the kneading time is short, and the dispersibility of the inorganic compound in the EVOH resin is lowered, which is not preferable.

EVOH樹脂及び無機層状化合物を二軸押出機に供給する際に、特に制限はないが、EVOH樹脂中への無機層状化合物の均一分散の観点から、事前に無機層状化合物の水分散液を作製してから、EVOH樹脂へ配合することが好ましい。   When the EVOH resin and the inorganic layered compound are supplied to the twin screw extruder, there is no particular limitation, but from the viewpoint of uniform dispersion of the inorganic layered compound in the EVOH resin, an aqueous dispersion of the inorganic layered compound is prepared in advance. Then, it is preferable to blend into EVOH resin.

例えば、(1)EVOH樹脂と無機化合物水分散液を予めブレンドした混合物を該押出機のホッパーに供給する方法、(2)EVOH樹脂と無機化合物水分散液を直接該押出機のホッパーに供給する方法、(3)EVOH樹脂を該押出機のホッパーに供給し、無機化合物水分散液を該押出機のバレルの一部から供給する(すなわち、サイドフィードする)方法等が挙げられる。
(3)の方法を行うにあたっては、無機層状化合物の水分散液をベント口から重力を利用して供給したり、或いは圧力をかけて供給したりすることも可能である。
これらの中でも生産性の点から、(3)の方法が好ましい。
For example, (1) a method in which a mixture obtained by previously blending an EVOH resin and an inorganic compound aqueous dispersion is supplied to the hopper of the extruder, and (2) an EVOH resin and an inorganic compound aqueous dispersion are directly supplied to the hopper of the extruder. And (3) a method of supplying EVOH resin to the hopper of the extruder and supplying an inorganic compound aqueous dispersion from a part of the barrel of the extruder (that is, side-feeding).
In carrying out the method (3), the aqueous dispersion of the inorganic stratiform compound can be supplied from the vent port using gravity, or can be supplied under pressure.
Among these, the method (3) is preferable from the viewpoint of productivity.

上記で得られるEVOH樹脂組成物には、その目的に応じて、原材料の混合時又は混練時に、もしくは成形時に、従来公知の可塑剤、熱安定剤、光安定剤、紫外線吸収剤、老化防止剤、顔料、着色剤、天然繊維、各種無機粒子、各種フィラー、帯電防止剤、離型剤、可塑剤、香料、滑剤、架橋(加硫)剤、架橋(加硫)促進剤、結晶核剤、結晶化促進剤、難燃剤、発泡剤、軟化剤、防腐剤、抗菌・抗力ビ剤等の各種漆加剤を配合しても良い。   The EVOH resin composition obtained as described above has a conventionally known plasticizer, heat stabilizer, light stabilizer, ultraviolet absorber, anti-aging agent at the time of mixing or kneading raw materials or at the time of molding depending on the purpose. , Pigments, colorants, natural fibers, various inorganic particles, various fillers, antistatic agents, mold release agents, plasticizers, fragrances, lubricants, crosslinking (vulcanizing) agents, crosslinking (vulcanizing) accelerators, crystal nucleating agents, Various lacquering agents such as a crystallization accelerator, a flame retardant, a foaming agent, a softening agent, an antiseptic, an antibacterial / drug resistance agent, and the like may be blended.

なお、EVOH樹脂組成物を製造するにあたって、EVOH樹脂の含水率は通常60質量%以下、好ましくは40質量%以下、より好ましくは20質量%以下、さらに好ましくは5質量%以下、特に好ましくは0.5質量%以下である。
かかる含水率の下限は、特に限定されないが、含水率が高すぎると、脱水が不十分となり、発泡による押出機のホッパー部への蒸気の逆流が起こり、ホッパー内で樹脂が固着し、供給不良が発生する傾向がある。
In producing the EVOH resin composition, the moisture content of the EVOH resin is usually 60% by mass or less, preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 5% by mass or less, and particularly preferably 0%. .5% by mass or less.
The lower limit of the moisture content is not particularly limited, but if the moisture content is too high, the dehydration becomes insufficient, the backflow of steam to the hopper part of the extruder occurs due to foaming, the resin adheres in the hopper, and the supply is poor. Tend to occur.

EVOH樹脂に水を含有させる方法としては、特に制限されないが、EVOH樹脂の溶液を水中で析出させ充分に水洗して溶剤を除去し水を含有させる方法、加圧熱水中でEVOH樹脂を1〜3時間程度処理する方法、EVOH樹脂の製造時にケン化後のペーストを水中で析出させて水を含有させる方法等の公知の方法が挙げられる(例えば、特開2002−003611号公報参照)。
上記の中でも、特に、EVOH樹脂製造時にケン化後のペーストを水中で析出させる方法が好ましく用いられる。
The method of adding water to the EVOH resin is not particularly limited. However, the method of precipitating the EVOH resin solution in water, washing it thoroughly with water to remove the solvent and containing water, and adding EVOH resin in pressurized hot water 1 There are known methods such as a method of treating for about 3 hours, a method of precipitating a paste after saponification in the production of EVOH resin in water and containing water (see, for example, JP-A-2002-003611).
Among these, the method of precipitating the paste after saponification in water during EVOH resin production is particularly preferably used.

[燃料容器の製造方法]
本発明の燃料容器、即ち、熱可塑性樹脂層/EVOH樹脂組成物層/熱可塑性樹脂層等の層構成を有する燃料容器を製造するに当たっては、EVOH樹脂組成物及び熱可塑性樹脂を、射出成形機、ダイレクトブロー成形機(連続式、アキュムレーター式)、射出ブロー成形機等に供して直接本発明の燃料容器を得る方法の他、EVOH樹脂組成物及び熱可塑性樹脂を共押出して得られた多層シートを真空成形する方法、熱可塑性樹脂フィルムにEVOH樹脂組成物/熱可塑性樹脂を共押出ラミネートして得た積層シートを真空成形する方法、熱可塑性樹脂フィルムとEVOH樹脂組成物フィルムを接着剤にてドライラミネートして得られた多層シートを真空成形する方法等を挙げることができ、好適には、ダイレクトブロー、射出ブロー等のブロー成形方法が採用される。
例えば、EVOH樹脂組成物と熱可塑性樹脂を共押出して得られたパリソンを金型で挟んで空気を吹き込んでブロー成形することにより、本発明の燃料容器が得られる。
[Fuel container manufacturing method]
In manufacturing the fuel container of the present invention, that is, the fuel container having a layer structure such as thermoplastic resin layer / EVOH resin composition layer / thermoplastic resin layer, the EVOH resin composition and the thermoplastic resin are injected into an injection molding machine. In addition to the direct blow molding machine (continuous type, accumulator type), injection blow molding machine, etc., in addition to the method of directly obtaining the fuel container of the present invention, multilayer obtained by co-extrusion of EVOH resin composition and thermoplastic resin A method of vacuum forming a sheet, a method of vacuum forming a laminated sheet obtained by co-extrusion lamination of an EVOH resin composition / thermoplastic resin to a thermoplastic resin film, and using a thermoplastic resin film and an EVOH resin composition film as an adhesive And a method of vacuum forming a multilayer sheet obtained by dry laminating, preferably direct blow, injection blow, etc. Low molding method is adopted.
For example, the fuel container of the present invention can be obtained by blow-molding a parison obtained by co-extrusion of an EVOH resin composition and a thermoplastic resin with a mold and blowing air.

なお、本発明においては、EVOH樹脂組成物層をa、熱可塑性樹脂層をbとするとき、上記b/a/bの層構成だけでなく、b/b/a/b/b、b/a/b/a/b等や、さらには少なくともEVOH樹脂組成物と熱可塑性樹脂の混合物(スクラップ再生品)からなるリグラインド層をRとするとき、b/R/a/b、b/R/a/R/b、b/a/R/a/b、b/R/a/R/a/R/b等とすることも可能である。   In the present invention, when the EVOH resin composition layer is a and the thermoplastic resin layer is b, not only the layer configuration of b / a / b but also b / b / a / b / b, b / b / R / a / b, b / R, where R is a regrind layer made of a / b / a / b or the like, or at least a mixture of EVOH resin composition and thermoplastic resin (recycled product). / A / R / b, b / a / R / a / b, b / R / a / R / a / R / b, etc. are also possible.

好適には、b/a/b、b/b/a/b/b、b/R/a/b、b/R/a/R/bの層構成が採用され、また、これらの層構成のbには必要に応じて、該リグラインド層に用いられる該混合物や後述の接着性樹脂を配合することも可能である。
さらに、これらの積層体においては、必要に応じて各層間には接着性樹脂が使用される。
Preferably, layer configurations of b / a / b, b / b / a / b / b, b / R / a / b, b / R / a / R / b are adopted, and these layer configurations are also used. If necessary, the mixture used in the regrind layer and an adhesive resin described later can be blended in b.
Further, in these laminates, an adhesive resin is used between the layers as necessary.

接着性樹脂としては、不飽和カルボン酸またはその無水物をオレフィン系重合体(上述の広義のポリオレフィン系樹脂)に、付加反応やグラフト反応等により化学的に結合させて得られたカルボキシル基を含有する変性オレフィン系重合体を挙げることができる。   The adhesive resin contains a carboxyl group obtained by chemically bonding an unsaturated carboxylic acid or its anhydride to an olefin polymer (the above-mentioned polyolefin resin in the broad sense) by an addition reaction or a graft reaction. And modified olefin polymers.

具体的には、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン−プロピレン(ブロックまたはランダム)共重合体、無水マレイン酸グラフト変性エチレン−エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン−酢酸ビニル共重合体等から選ばれた1種または2種以上の混合物が好適なものとして挙げられる。   Specifically, maleic anhydride graft-modified polyethylene, maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block or random) copolymer, maleic anhydride graft-modified ethylene-ethyl acrylate copolymer, anhydrous One type or a mixture of two or more types selected from maleic acid graft-modified ethylene-vinyl acetate copolymer and the like are preferable.

このときの、変性オレフィン系重合体に含有される不飽和カルボン酸又はその無水物の含有量は、好ましくは0.001〜3質量%、より好ましくは0.01〜1質量%、さらに好ましくは0.03〜0.5質量%である。
変性オレフィン系重合体中の変性量が少なすぎると、層間接着性や成形性、耐衝撃性が不充分となることがあり、多すぎると、架橋反応を起こし、成形性が悪くなることがあり好ましくない。
At this time, the content of the unsaturated carboxylic acid or anhydride thereof contained in the modified olefin polymer is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and still more preferably. It is 0.03-0.5 mass%.
If the amount of modification in the modified olefin polymer is too small, the interlaminar adhesion, moldability and impact resistance may be insufficient, and if too large, a crosslinking reaction may occur and the moldability may deteriorate. It is not preferable.

これらの変性オレフィン系重合体には、EVOH樹脂組成物や他のEVOH、ポリイソブチレン、エチレン−プロピレンゴム等のゴム・エラストマー成分、さらには他の熱可塑性樹脂等を配合することも可能である。
特に、変性オレフィン系重合体の母体のオレフィン系重合体とは異なるオレフィン系重合体を配合することにより、接着性が向上することがあり有用である。
These modified olefin polymers can be blended with EVOH resin compositions, other EVOH, polyisobutylene, rubber / elastomer components such as ethylene-propylene rubber, and other thermoplastic resins.
In particular, the incorporation of an olefin polymer different from the base olefin polymer of the modified olefin polymer is useful because the adhesiveness may be improved.

また、各層の厚みとしては、用途・容器形態や要求される物性などにより一概には言えないが、例えば、自動車の燃料用タンクに用いられる場合は、EVOH樹脂組成物層の厚みは、好ましくは30〜500μm、より好ましくは50〜400μm、さらに好ましくは80〜300μmである。   In addition, the thickness of each layer cannot be generally specified depending on the application, container form, required physical properties, etc., but for example, when used for a fuel tank of an automobile, the thickness of the EVOH resin composition layer is preferably It is 30-500 micrometers, More preferably, it is 50-400 micrometers, More preferably, it is 80-300 micrometers.

熱可塑性樹脂層の厚みは、好ましくは100〜10000μm、より好ましくは200〜5000μm、さらに好ましくは300〜3000μmである。
リグラインド層の厚みは、好ましくは100〜10000μm、より好ましくは200〜5000μm、さらに好ましくは300〜3000μmである。
接着性樹脂層の厚みは、好ましくは30〜500μm、より好ましくは50〜400μm、さらに好ましくは80〜300μmである。
燃料容器全体の厚みは、好ましくは300〜10000μm、より好ましくは1000〜8000μm、さらに好ましくは2000〜6000μmである。
The thickness of the thermoplastic resin layer is preferably 100 to 10,000 μm, more preferably 200 to 5000 μm, and still more preferably 300 to 3000 μm.
The thickness of the regrind layer is preferably 100 to 10,000 μm, more preferably 200 to 5000 μm, and still more preferably 300 to 3000 μm.
The thickness of the adhesive resin layer is preferably 30 to 500 μm, more preferably 50 to 400 μm, and still more preferably 80 to 300 μm.
The thickness of the entire fuel container is preferably 300 to 10,000 μm, more preferably 1000 to 8000 μm, and still more preferably 2000 to 6000 μm.

[燃料]
上記で得られた本発明の燃料容器は、低級アルコールの含有量が20質量%以上の燃料を収容するためのものであり、該燃料に対するバリア性に優れている。
ここで、低級アルコールとは、メタノール、エタノール、プロパノール、ブタノール等の炭素数1〜4のアルコール及びそれらの混合物のことをいい、これらの中でも危険性や環境負荷の観点から、エタノールが好ましい。
[fuel]
The fuel container of the present invention obtained above is for containing a fuel having a lower alcohol content of 20% by mass or more, and has excellent barrier properties against the fuel.
Here, the lower alcohol refers to alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, and butanol, and mixtures thereof. Among these, ethanol is preferable from the viewpoint of danger and environmental load.

また、本発明の燃料容器に使用される燃料の低級アルコールの含有量は20質量%以上であるが、好ましくは50質量%以上、より好ましくは80質量%以上である。
低級アルコールの含有量が20質量%未満の燃料を使用すると、本発明の燃料容器のような燃料バリア性の顕著な向上は見られない。
The content of the lower alcohol in the fuel used in the fuel container of the present invention is 20% by mass or more, preferably 50% by mass or more, more preferably 80% by mass or more.
When a fuel having a lower alcohol content of less than 20% by mass is used, no significant improvement in fuel barrier properties as in the fuel container of the present invention is observed.

通常、EVOHは上記低級アルコールに対して親和性を有するため、上記低級アルコールはEVOHと相互作用を示し、EVOHの非晶部分の運動性が上がり、非晶部分の運動性が上がることで燃料バリア性が低下する。   Usually, since EVOH has an affinity for the lower alcohol, the lower alcohol interacts with EVOH, the mobility of the amorphous portion of EVOH is increased, and the mobility of the amorphous portion is increased, thereby increasing the fuel barrier. Sex is reduced.

本発明の燃料容器は、無機層状化合物とEVOHを配合することで、無機層状化合物とEVOHとが相互作用し、EVOHと上記低級アルコールとの相互作用を弱めて非晶部分の運動性の向上を抑制できるものと推測される。このことにより、本発明の燃料容器では、低級アルコールの含有量が多い燃料における燃料バリア性が、特に顕著に得られるものと推測される。   In the fuel container of the present invention, by mixing the inorganic layered compound and EVOH, the inorganic layered compound and EVOH interact with each other, weakening the interaction between EVOH and the lower alcohol and improving the mobility of the amorphous portion. It is estimated that it can be suppressed. Thus, in the fuel container of the present invention, it is presumed that the fuel barrier property in the fuel having a high content of lower alcohol can be obtained particularly remarkably.

本発明の燃料容器は、上記燃料を使用する限り、自動車のガソリン等の燃料用タンクをはじめ、オートバイ、船舶、航空機、発電機および工業用や農業用機器に搭載される燃料容器や、これら燃料の補給用の携帯用容器、さらにこれら燃料の輸送・保管・貯蔵用のボトル、タンク、ドラム等各種の容器として有用である。   As long as the above fuel is used, the fuel container of the present invention includes fuel tanks for automobiles such as gasoline for automobiles, motorcycles, ships, aircraft, generators, fuel containers mounted on industrial and agricultural equipment, and these fuels. It is useful as a portable container for replenishment of fuel, and various containers such as bottles, tanks and drums for transporting, storing and storing these fuels.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。なお、実施例中「部」とあるのは特に断りのない限り質量基準を示す。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “part” refers to a mass standard unless otherwise specified.

[多層フィルム1の作製]
EVOH樹脂(エチレン含有量25モル%、ケン化度99.7 モル%、MFR4.0g/10分)100部を、分散液圧入部、サイドフィーダー及び真空ベントが付属した二軸押出機(L/D=56、スクリュー内径=32mm)の原料供給部より投入し、温度230℃にてEVOH樹脂を溶融状態にした後、カオリナイト{Imerys社製、(Al・SiO・2HO、平均粒子径6.0μm)の水分散液(固形分濃度:73質量%)}16部を分散液圧入部より連続的に圧入し、混練した。
[Preparation of multilayer film 1]
EVOH resin (ethylene content 25 mol%, saponification degree 99.7 mol%, MFR 4.0 g / 10 min) 100 parts was added to a twin screw extruder (L / L) equipped with a dispersion press-fitting part, side feeder and vacuum vent. D = 56, screw inner diameter = 32 mm) was charged from the raw material supply unit, and the EVOH resin was melted at a temperature of 230 ° C., and then kaolinite (manufactured by Imerys, (Al 2 O 3 .SiO 2 .2H 2 O 16 parts of an aqueous dispersion (solid content concentration: 73% by mass)} having an average particle diameter of 6.0 μm was continuously pressed from the dispersion press-fitting part and kneaded.

なお、かかるカオリナイトの平均粒子径は、蒸留水を用いてカオリナイト0.1質量%濃度の水分散液を作成し、かかる分散液を、レーザー散乱粒度分布アナライザー(HORIBA製のLA―950)を用いて分析することにより得られた値である。   The average particle size of the kaolinite is such that a water dispersion having a concentration of 0.1% by weight of kaolinite is prepared using distilled water, and this dispersion is subjected to a laser scattering particle size distribution analyzer (LA-950 manufactured by HORIBA). It is the value obtained by analyzing using.

混練後のEVOH樹脂組成物をストランド状に水槽中に押出し、ペレタイザーで切断することによって、EVOH樹脂組成物ペレットを作製した。
なお、サイドフィーダーはL/D=8.3、スクリュー内径=28mmのものを、25℃の下、大気解放状態で使用した。サイドフィーダースクリューの回転数は、100rpmであった。
The EVOH resin composition after kneading was extruded into a water tank in a strand shape and cut with a pelletizer to produce EVOH resin composition pellets.
A side feeder with L / D = 8.3 and screw inner diameter = 28 mm was used at 25 ° C. in an open air state. The rotation speed of the side feeder screw was 100 rpm.

得られたEVOH樹脂組成物ペレットを、3種5層キャスト製膜機(押出機:L/D=28、スクリュー内径=40mm、フルフライトタイプスクリュー、押出温度:220℃)に導入し、高密度ポリエチレン/ポリオレフィン系接着性樹脂/EVOH樹脂組成物/ポリオレフィン系接着性樹脂/高密度ポリエチレン(80/10/20/10/80μm)の多層フィルム1を作製した。   The obtained EVOH resin composition pellets are introduced into a three-kind five-layer cast film forming machine (extruder: L / D = 28, screw inner diameter = 40 mm, full flight type screw, extrusion temperature: 220 ° C.), and high density A multilayer film 1 of polyethylene / polyolefin adhesive resin / EVOH resin composition / polyolefin adhesive resin / high density polyethylene (80/10/20/10/80 μm) was produced.

高密度ポリエチレンとしては、日本ポリエチレン株式会社製「NOVATEC HD HB431」を使用した。また、ポリオレフィン系接着性樹脂としては、三菱化学株式会社製「MODIC−AP H511V」を使用した。
引き取り速度は2.5m/minであった。
As high-density polyethylene, “NOVATEC HD HB431” manufactured by Nippon Polyethylene Co., Ltd. was used. In addition, “MODIC-AP H511V” manufactured by Mitsubishi Chemical Corporation was used as the polyolefin-based adhesive resin.
The take-up speed was 2.5 m / min.

[多層フィルム2の作製]
上記多層フィルム1の作製時にカオリナイトを使用しなかった以外は、多層フィルム1と同様にして、多層フィルム2を作製した。
[Preparation of multilayer film 2]
A multilayer film 2 was produced in the same manner as the multilayer film 1 except that kaolinite was not used when the multilayer film 1 was produced.

[実施例1]
得られた多層フィルム1及び2を、それぞれ11cm×11cmに2枚切り出し、エタノール100%燃料を15cc封入された二つのパウチを得た。該パウチを端から5mmをヒートシールし、10cm角とした。該パウチを40℃、0%Rh条件下で20日間静置した。
[Example 1]
The obtained multilayer films 1 and 2 were each cut into two pieces of 11 cm × 11 cm to obtain two pouches containing 15 cc of 100% ethanol fuel. The pouch was heat-sealed 5 mm from the end to make a 10 cm square. The pouch was allowed to stand for 20 days at 40 ° C. and 0% Rh.

多層フィルム1及び2を使用した際の、エタノール100%燃料の燃料透過度(g・20μm/m・day)をそれぞれ測定した。結果を表1に示す。 When the multilayer films 1 and 2 were used, the fuel permeability (g · 20 μm / m 2 · day) of 100% ethanol fuel was measured. The results are shown in Table 1.

なお、かかる燃料透過度は、パウチを20日間静置後、(前日のパウチ重量−当日のパウチ重量)を21日目から63日目まで計算し、21日目から63日目までの燃料透過量の平均値を1日あたりの燃料透過量とし、かかる値を単位面積で除することにより得た。   The fuel permeability is calculated by calculating from the 21st day to the 63rd day after the pouch is allowed to stand for 20 days, and the fuel permeation from the 21st day to the 63rd day. The average value was obtained by dividing the fuel permeation amount per day by the unit area.

また、燃料バリア層にカオリナイトを有する多層フィルム1を使用することによるエタノール100%燃料の質量減少改善率(1−多層フィルム1の燃料透過度/多層フィルム2の燃料透過度×100)を計算した。結果を表1に示す。   Also, the mass reduction improvement rate of 100% ethanol fuel by using the multilayer film 1 having kaolinite in the fuel barrier layer (1-fuel permeability of multilayer film 1 / fuel permeability of multilayer film 2 × 100) is calculated. did. The results are shown in Table 1.

[比較例1、2]
比較例1ではFuelC(トルエン/イソオクタン=50/50容積比)をパウチに封入し、比較例2ではE10(FluelC/エタノール=90/10容積比)をパウチに封入した以外は、実施例1と同様にして評価を行った。結果を表1に示す。
[Comparative Examples 1 and 2]
In Comparative Example 1, Fuel C (toluene / isooctane = 50/50 volume ratio) was sealed in the pouch, and in Comparative Example 2, E10 (Fluel C / ethanol = 90/10 volume ratio) was sealed in the pouch. Evaluation was performed in the same manner. The results are shown in Table 1.

Figure 2018083298
Figure 2018083298

上記結果より、従来のEVOHを燃料バリア層に用いた多層フィルム2を使用したパウチに比べ、EVOHにカオリナイトを配合した燃料バリア層を用いた多層フィルム1を使用した場合は、エタノール100%燃料を使用した実施例1では、質量減少改善率は58%であった。   From the above results, when the multilayer film 1 using the fuel barrier layer in which EVOH is mixed with kaolinite is used compared to the conventional pouch using the multilayer film 2 using EVOH as the fuel barrier layer, the ethanol 100% fuel In Example 1 which used No., the mass reduction improvement rate was 58%.

一方、燃料としてFluelC及びE10を用いた場合(比較例1及び2)は、質量減少改善率は33%及び43%に留まり、いずれも燃料透過度の値に大きな差は見られなかった。   On the other hand, when Fluor C and E10 were used as fuels (Comparative Examples 1 and 2), the mass reduction improvement rate remained at 33% and 43%, and no significant difference was observed in the value of fuel permeability.

かかる結果より、熱可塑性樹脂層間に燃料バリア層が配置された多層構造体から形成され、前記燃料バリア層が、EVOH及び無機層状化合物を含む樹脂組成物からなることを特徴とする燃料容器は、低級アルコールを豊富に有する燃料に対する燃料バリア性に顕著に優れることがわかる。
したがって、本発明の燃料容器は、特に低級アルコールを豊富に有する燃料用の容器として有用である。
From this result, a fuel container is formed of a multilayer structure in which a fuel barrier layer is disposed between thermoplastic resin layers, and the fuel barrier layer is made of a resin composition containing EVOH and an inorganic layered compound. It can be seen that the fuel barrier property with respect to the fuel rich in lower alcohol is remarkably excellent.
Therefore, the fuel container of the present invention is particularly useful as a fuel container having abundant lower alcohols.

Claims (2)

低級アルコールの含有量が20質量%以上の燃料を収容するための燃料容器であって、
熱可塑性樹脂層間に燃料バリア層が配置された多層構造体から形成され、
前記燃料バリア層が、エチレン−ビニルエステル系共重合体ケン化物及び無機層状化合物を含む樹脂組成物からなることを特徴とする燃料容器。
A fuel container for containing a fuel having a lower alcohol content of 20% by mass or more,
Formed from a multilayer structure in which a fuel barrier layer is disposed between thermoplastic resin layers,
The fuel barrier layer is made of a resin composition containing a saponified ethylene-vinyl ester copolymer and an inorganic layered compound.
前記無機層状化合物の平均粒子径が、1〜30μmである請求項1に記載の燃料容器。   The fuel container according to claim 1, wherein the inorganic layered compound has an average particle size of 1 to 30 μm.
JP2016225866A 2016-11-21 2016-11-21 Fuel container Active JP6870293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225866A JP6870293B2 (en) 2016-11-21 2016-11-21 Fuel container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225866A JP6870293B2 (en) 2016-11-21 2016-11-21 Fuel container

Publications (2)

Publication Number Publication Date
JP2018083298A true JP2018083298A (en) 2018-05-31
JP6870293B2 JP6870293B2 (en) 2021-05-12

Family

ID=62236835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225866A Active JP6870293B2 (en) 2016-11-21 2016-11-21 Fuel container

Country Status (1)

Country Link
JP (1) JP6870293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158643A (en) * 2019-03-27 2020-10-01 三菱ケミカル株式会社 Resin composition and molding including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245345A (en) * 1998-03-02 1999-09-14 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure and its application
JP2001522320A (en) * 1996-12-31 2001-11-13 ザ・ダウ・ケミカル・カンパニー Laminated structure for fuel container
JP2001341244A (en) * 2000-06-02 2001-12-11 Nippon Synthetic Chem Ind Co Ltd:The Fuel container
WO2016088862A1 (en) * 2014-12-05 2016-06-09 日本合成化学工業株式会社 Ethylene - vinyl ester-based copolymer saponification product composition and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522320A (en) * 1996-12-31 2001-11-13 ザ・ダウ・ケミカル・カンパニー Laminated structure for fuel container
JPH11245345A (en) * 1998-03-02 1999-09-14 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure and its application
JP2001341244A (en) * 2000-06-02 2001-12-11 Nippon Synthetic Chem Ind Co Ltd:The Fuel container
WO2016088862A1 (en) * 2014-12-05 2016-06-09 日本合成化学工業株式会社 Ethylene - vinyl ester-based copolymer saponification product composition and production method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDERSON, V.F. ET AL.: "Vapor Pressures of Alcohol-Gasoline Blends.", ENERGY FUELS, vol. 24, no. 6, JPN6020037081, pages 3647 - 3654, ISSN: 0004356440 *
WEST, B.: "Mid-Level Ethanol Blends Test Program.", [ONLINE], JPN6020037083, 9 June 2010 (2010-06-09), ISSN: 0004356441 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158643A (en) * 2019-03-27 2020-10-01 三菱ケミカル株式会社 Resin composition and molding including the same

Also Published As

Publication number Publication date
JP6870293B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US10570266B2 (en) Saponified ethylene-vinyl ester copolymer composition pellet, and production method therefor
WO2009128411A1 (en) Resin composition and multi-layered construct using the resin composition
TWI761470B (en) Resin composition, method for producing same and molded article using same
JP6498925B2 (en) Melt molding material using EVOH resin
JP5497673B2 (en) Resin composition and method for producing the same
JP6977499B2 (en) Resin composition and laminate
WO2015100211A1 (en) Composite composition for use in forming barrier constructions
WO2015141610A1 (en) Resin composition, multi-layer structure, and bag-in-box inner container
JP2018058943A (en) Resin composition, and multilayered structure and liquid container prepared therewith
JP5748489B2 (en) Method for producing resin composition
JP5629310B2 (en) Multilayer structure and manufacturing method thereof
JP2012036341A (en) Resin composition and multilayer structure using the same
JP6870293B2 (en) Fuel container
JP2020158643A (en) Resin composition and molding including the same
TW201925247A (en) Ethylene-vinyl alcohol copolymer composition, melt-molding material, multilayer structure, and material for thermoformed containers
US11091603B2 (en) Resin composition, and molding material and multilayer structure comprising same
JP5185182B2 (en) Resin composition and multilayer structure using the resin composition
WO2019103076A1 (en) Resin composition, material for melt molding, multilayered structure, and film for agriculture
JP2005068414A (en) Resin composition and process for producing the same
JPH1199594A (en) Multilayer structure for thermoforming and thermoformed container prepared by molding it
JP6686835B2 (en) Silage film and method of manufacturing silage film
JP4749602B2 (en) Fuel container
JP2023154456A (en) Resin composition and method for producing the same, and multilayer structure and recovery aid each used in the production method
TW201925310A (en) Ethylene vinyl alcohol-based copolymer composition, material for melt molding, and multilayered structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R151 Written notification of patent or utility model registration

Ref document number: 6870293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151