JP2018080981A - Peak identification method based on peak area ratio - Google Patents

Peak identification method based on peak area ratio Download PDF

Info

Publication number
JP2018080981A
JP2018080981A JP2016222782A JP2016222782A JP2018080981A JP 2018080981 A JP2018080981 A JP 2018080981A JP 2016222782 A JP2016222782 A JP 2016222782A JP 2016222782 A JP2016222782 A JP 2016222782A JP 2018080981 A JP2018080981 A JP 2018080981A
Authority
JP
Japan
Prior art keywords
peak
area ratio
standard
chromatogram
peak area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016222782A
Other languages
Japanese (ja)
Other versions
JP6862780B2 (en
Inventor
原一 植松
Genichi Uematsu
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016222782A priority Critical patent/JP6862780B2/en
Publication of JP2018080981A publication Critical patent/JP2018080981A/en
Application granted granted Critical
Publication of JP6862780B2 publication Critical patent/JP6862780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a peak identification method which is adaptable to changes of peak shape when analyzing a standard sample for creating a calibration curve when the density range is extremely wide.SOLUTION: The method includes the steps of, with respect to chromatogram of standard sample containing 2 or more quantitative object components: calculating the peak area ratio obtained by dividing a peak area by total sum of peak areas as standard peak area ratio for each quantitative object component; and with respect to a chromatogram of a sample in which the standard sample is diluted at a certain rate, identifying quantitative components of an object on the basis of the standard peak area ratio.SELECTED DRAWING: None

Description

本発明は、クロマトグラフィでの定量計算に使用される検量線を、簡便かつ確実に作成するための方法に関するものである。   The present invention relates to a method for easily and reliably creating a calibration curve used for quantitative calculation in chromatography.

検量線を作成する場合、一般的には定量目的の複数成分を含む混合標準試料原液を希釈液にて多段階で希釈を行い、複数濃度の標準試料溶液を調整する。次に、これらの濃度の異なる複数の標準試料をクロマトグラフに供して、各成分に相当するピークを同定し、出力値(面積、高さ、吸光度等)を算出する。最後に、成分毎に、濃度に対する出力値(面積、高さ、吸光度等)つまり検量線を作成するのが一般的な手順となる。このような一連の検量線作成の操作は、手動で行うことも可能であるが、近年はデータ処理装置により自動で作成されることが多くなっている。   When preparing a calibration curve, generally, a mixed standard sample stock solution containing a plurality of components for quantitative purposes is diluted with a diluent in multiple stages to prepare a standard sample solution having a plurality of concentrations. Next, a plurality of standard samples having different concentrations are subjected to a chromatograph, peaks corresponding to the respective components are identified, and output values (area, height, absorbance, etc.) are calculated. Finally, it is a general procedure to create an output value (area, height, absorbance, etc.), that is, a calibration curve with respect to the concentration for each component. Although such a series of calibration curve creation operations can be performed manually, in recent years, it is often created automatically by a data processing apparatus.

この一連の流れが、正確に実行される前提は、濃度の異なる標準試料であっても、各成分の溶出時間がほぼ一定であることである。図1は濃度による時間変動の影響を模式的に示した図である。図1aは、濃度により溶出時間が変動しない場合、図1bは、濃度により溶出時間が遅れる場合、図1cは、濃度により溶出時間が早まる場合を示している。理想的なクロマトグラフィでは、図1aのように溶出時間は濃度の影響を受けないで一定となる。しかしながら、現実的には図1b、cのように、濃度が高くなるにつれて、程度の差はあれ、ピークがテーリングまたはリーディング現象を起こすことが多々ある。   The premise that this series of flows is accurately executed is that the elution time of each component is substantially constant even for standard samples having different concentrations. FIG. 1 is a diagram schematically showing the influence of time variation due to concentration. FIG. 1a shows a case where the elution time does not vary depending on the concentration, FIG. 1b shows a case where the elution time is delayed depending on the concentration, and FIG. 1c shows a case where the elution time is advanced depending on the concentration. In ideal chromatography, the elution time is constant without being affected by the concentration as shown in FIG. 1a. However, in reality, as shown in FIGS. 1b and 1c, as the concentration increases, the peak often causes a tailing or reading phenomenon to some extent.

このようは場合、同じ成分であれ、同定条件で指定した同定時間許容範囲に収まらず、同定ができなくなり、検量線用の出力値(面積、高さ、吸光度)に値を受け渡すことができなくなる。また、目的成分の近傍に不純物由来のピークが存在した場合などは、不純物由来のピークを目的の成分として誤同定し、検量線用の出力値(面積、高さ、吸光度)に誤った値を受け渡してしまうことにもなる。解決策として同定の許容幅を広げることも考えられるが、一定程度正確に同定できる確率が高くなるが、不純物由来のピークを目的の成分として誤同定してしまうリスクも同時に高まることになる。   In this case, even if the components are the same, they do not fall within the identification time tolerance specified in the identification conditions, and cannot be identified, and values can be passed to the output values (area, height, absorbance) for the calibration curve. Disappear. In addition, when there is a peak derived from an impurity in the vicinity of the target component, the peak derived from the impurity is misidentified as the target component, and the output value (area, height, absorbance) for the calibration curve is incorrect. It will also be handed over. Although it is conceivable to widen the identification tolerance as a solution, the probability of being able to identify accurately to a certain degree increases, but the risk of misidentifying the peak derived from the impurity as the target component is also increased.

本発明の課題は、濃度範囲が非常に広い検量線作成用の標準試料を分析した際の、ピーク形状変化に対応できるピーク同定方法を提供するものである。   The subject of this invention is providing the peak identification method which can respond to a peak shape change at the time of analyzing the standard sample for calibration curve preparation with a very wide density | concentration range.

上述した通り、一般的な液体クロマトグラフィの検量線作成時には、複数成分を混合した標準試料を順次希釈し、異なる濃度の標準試料を複数調整し、これらをクロマトグラフィに供して行うため、クロマトグラムはほぼ相似形をとることになる。濃度が異なる標準試料でも、それに含まれる複数成分の混合比率は、理論上は一定の値となる。ピーク形状が変化しても、検出器の定量範囲内であれば、ピーク面積比率はほぼ一定の値となる。標準試料中に予期せぬ不純物が含まれていた場合であっても、全体に対する混合比率は、微小であり、目的の標準試料成分の存在比率(面積比率)には大きな影響を与えるものではない。   As described above, when preparing a standard curve for liquid chromatography, a standard sample mixed with multiple components is diluted in sequence, and multiple standard samples with different concentrations are prepared and subjected to chromatography. It will take a similar shape. Even in standard samples having different concentrations, the mixing ratio of a plurality of components contained therein is theoretically a constant value. Even if the peak shape changes, the peak area ratio becomes a substantially constant value within the quantitative range of the detector. Even if the standard sample contains unexpected impurities, the mixing ratio with respect to the whole is very small and does not have a significant effect on the target standard sample component ratio (area ratio). .

そこで、本発明者は、前記の特性を同定方法の少なくとも一部に取り入れることにより、各成分の同定精度を向上させられることを見出した。   Accordingly, the present inventor has found that the identification accuracy of each component can be improved by incorporating the above-described characteristics into at least a part of the identification method.

すなわち、本発明は、2以上の定量対象成分を含有する標準試料のクロマトグラムについて、ピーク面積を全ピーク面積の総和で除したピーク面積比率を、前記定量対象成分ごとに標準ピーク面積比率として算出し、前記標準試料を一定割合で希釈した試料のクロマトグラムについて、前記標準ピーク面積比率を基に前記定量対象成分を同定することを特徴とする。以下に、その詳細について説明する。   That is, the present invention calculates the peak area ratio obtained by dividing the peak area by the sum of all peak areas, as the standard peak area ratio for each quantification target component, for the chromatogram of a standard sample containing two or more quantification target components. In the chromatogram of the sample obtained by diluting the standard sample at a certain ratio, the component to be quantified is identified based on the standard peak area ratio. The details will be described below.

まず、基準となる2以上の定量対象成分を含有する標準試料のクロマトグラムを取得し、ピーク面積を全ピーク面積の総和で除したピーク面積比率を算出する。前記クロマトグラムは本目的のためだけに取得しても良いが、事前にピーク面積比率が既知の場合、その値を使用しても良い。このピーク面積比率を標準ピーク面積比率とする。   First, a chromatogram of a standard sample containing two or more quantitative target components serving as a reference is acquired, and a peak area ratio obtained by dividing the peak area by the sum of all peak areas is calculated. The chromatogram may be acquired only for this purpose, but if the peak area ratio is known in advance, the value may be used. This peak area ratio is defined as a standard peak area ratio.

次に、前記標準試料を一定割合で希釈した試料のクロマトグラムについて、前記標準ピーク面積比率を基に前記定量対象成分を同定する。同定の可否を判断する基準としては、閾値を設けて単純に判定する方法や、全ての成分に対する面積差比率を比較して判断する方法や、あるいは、両者を組み合わせて判断する方法があるが、特に限定するものではない。例えば、面積差比率の計算方法としては
面積差比率=絶対値(1−ピーク面積比率/標準ピーク面積比率)
が挙げられるが、面積の差の大小が判別できる式であれば良い。前記式を用いた場合、面積差比率がゼロに近いほど、比較対象の項目が似ていることを意味する。
Next, the component to be quantified is identified based on the standard peak area ratio in a chromatogram of a sample obtained by diluting the standard sample at a certain ratio. As a criterion for determining whether or not identification is possible, there is a method of simply determining by setting a threshold, a method of determining by comparing the area difference ratios for all components, or a method of determining by combining both, There is no particular limitation. For example, the area difference ratio is calculated as follows: Area difference ratio = absolute value (1-peak area ratio / standard peak area ratio)
However, any expression can be used as long as the difference in area can be determined. When the above formula is used, the closer the area difference ratio is to zero, the more similar items to be compared are.

本発明の効果を分かりやすく説明するために、濃度の異なる複数の正規関数による疑似クロマトグラムを基にして行う。図2bは同定の基準となるクロマトグラム、図2aは濃度の異なる検証クロマトグラムである。図中の破線は同定の対象となる3つのピーク(AAAA、BBBB、CCCC)の溶出時間に対する±5%の範囲を示している。   In order to explain the effect of the present invention in an easy-to-understand manner, it is performed based on pseudo-chromatograms using a plurality of normal functions having different concentrations. FIG. 2b is a chromatogram serving as a reference for identification, and FIG. 2a is a verification chromatogram having different concentrations. The broken line in the figure indicates a range of ± 5% with respect to the elution time of three peaks (AAAA, BBBB, CCCC) to be identified.

図3は図2aの濃度の異なる検証クロマトを拡大した図である。各検証用のクロマトグラムには、同定対象の3つのピーク(#2、#4、#6)以外に不純物成分4つ(#1、#3、#5、#7)を故意に加えている。   FIG. 3 is an enlarged view of the verification chromatogram with different concentrations in FIG. 2a. In addition to the three peaks (# 2, # 4, # 6) to be identified, four impurity components (# 1, # 3, # 5, # 7) are intentionally added to each verification chromatogram. .

同定の流れは以下の通りである。
(ステップ1)
基準となるクロマトグラムから、同定の目的成分のピーク面積を取得し、全ピーク面積の総和に対するピーク面積比率を算出する。
(ステップ2)
一定割合で希釈した試料についてクロマトグラフィで一般的に用いられる手法により、ピーク検出を行い、最低限、ピーク面積を取得し、全ピーク面積の総和に対するピーク面積比率を計算する。以降の説明を分かりやすくするため、ここでは、各ピークの溶出時間も併せて表記する。
(ステップ3)
検出されたピークに対して、得られた面積比率に対する同定条件のすべてのピーク面積比率との面積差比率(上述の方法で算出)を計算し、最も近いピーク面積比率を有する成分を特定する。すなわち、テーブル化された標準ピーク面積比率を、各ピーク面積比率と比較し、最も値が近しい成分を特定の定量対象成分と同定する。
The flow of identification is as follows.
(Step 1)
The peak area of the target component for identification is obtained from the reference chromatogram, and the ratio of the peak area to the sum of all peak areas is calculated.
(Step 2)
For a sample diluted at a fixed ratio, peak detection is performed by a method generally used in chromatography, and at least the peak area is obtained, and the peak area ratio with respect to the sum of all peak areas is calculated. In order to make the following explanation easy to understand, the elution time of each peak is also described here.
(Step 3)
For the detected peak, an area difference ratio (calculated by the above-described method) with all peak area ratios of the identification conditions with respect to the obtained area ratio is calculated, and a component having the closest peak area ratio is specified. That is, the tabulated standard peak area ratio is compared with each peak area ratio, and the component with the closest value is identified as a specific quantitative target component.

上述した方法で、検証クロマトグラム1、4を同定した。同定条件を表1、検証クロマトグラム1、4の同定結果をそれぞれ表2、3に示す。   Verification chromatograms 1 and 4 were identified by the method described above. Identification conditions are shown in Table 1, and identification results of verification chromatograms 1 and 4 are shown in Tables 2 and 3, respectively.

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
一方、従来の溶出時間の許容幅により同定した。同定条件を表4、検証クロマトグラム1、4の同定結果をそれぞれ表5、6に示す。なお、溶出時間の許容幅は基準となる溶出時間の±2.0%とした。
Figure 2018080981
On the other hand, it identified by the tolerance | permissible_range of the conventional elution time. Identification conditions are shown in Table 4, and identification results of verification chromatograms 1 and 4 are shown in Tables 5 and 6, respectively. The allowable range of elution time was ± 2.0% of the standard elution time.

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
このように、従来の溶出時間を基にした同定法では、溶出時間が大きく変化する場合は正確に同定することができない。これを回避するため、同定条件の溶出時間許容幅を広げる方策もあるが、許容幅を広げた場合、ピーク#1、3、5、7のような目的外のピークを同定対象のピークと誤判定するリスクが高くなり、最善の方策ではない。
Figure 2018080981
Thus, the identification method based on the conventional elution time cannot be accurately identified when the elution time changes greatly. In order to avoid this, there is a measure to widen the elution time tolerance of the identification conditions. However, when the tolerance is widened, peaks other than the target such as peaks # 1, 3, 5, and 7 are mistakenly identified as peaks to be identified. Judgment risk increases and is not the best policy.

上述した通り、本発明の面積比率を基にした同定法であれば、溶出時間が濃度等により変動する場合であっても、正確に同定することが可能であり、本発明の優位性が明らかである。   As described above, the identification method based on the area ratio of the present invention enables accurate identification even when the elution time varies depending on the concentration and the like, and the superiority of the present invention is clear. It is.

また、本発明では、上述したピーク面積比率の比較による同定以外に、前記標準試料の基準溶出時間と希釈した試料のクロマトグラムの溶出時間とを比較することを更に行っても良い。上述した検証クロマトの場合、同定対象の成分の面積比率がそれぞれ大きく乖離しているため、面積比率だけでの同定が精度良く行えているが、同定対象の成分の面積比率が近しい場合は、面積比率だけでは同定を精度良く行うことが困難となる。そこで、従来の同定方法である溶出時間の許容幅と、本発明の面積比率による同定法を組み合わせることで、簡便に同定を行うことが可能となる。   In the present invention, in addition to the above identification by comparison of peak area ratios, the reference elution time of the standard sample may be further compared with the elution time of the diluted sample chromatogram. In the case of the verification chromatogram described above, the area ratios of the identification target components are greatly different from each other, so that the identification can be performed with high accuracy only by the area ratio. It becomes difficult to identify with high accuracy only by the ratio. Therefore, it is possible to easily perform identification by combining the allowable range of elution time, which is a conventional identification method, and the identification method based on the area ratio of the present invention.

具体的には、まず溶出時間により対象成分の絞り込みを行う。この際、試料濃度による溶出時間の変動を考慮し、一般的な許容幅より大きくしておくことが好ましい。一般的な溶出時間のみによる同定の場合、許容幅は±2〜5%程度であるが、本発明では±5〜20%の値を設定しておくことが好ましい。これにより、条件を満たす成分を複数に絞り込む。次に、溶出時間により絞り込まれた複数の成分に対して、上述した面積比率による同定法を施し、最終同定を行う。   Specifically, the target component is first narrowed down by the elution time. At this time, it is preferable to set it to be larger than a general allowable range in consideration of variation in elution time depending on the sample concentration. In the case of identification based only on a general elution time, the allowable range is about ± 2 to 5%, but in the present invention, it is preferable to set a value of ± 5 to 20%. Thereby, the component which satisfy | fills conditions is narrowed down to multiple. Next, the identification method based on the area ratio described above is applied to the plurality of components narrowed down by the elution time, and final identification is performed.

上述した通り、本発明は標準試料を一定割合で希釈した試料のクロマトグラムについて、前記標準ピーク面積比率を基に前記定量対象成分を同定することが可能であるため、複数濃度となるように前記標準試料を希釈した試料群に本発明を適用することで、検量線を好適に作成することが可能である。   As described above, the present invention can identify the component to be quantified based on the standard peak area ratio for a chromatogram of a sample obtained by diluting a standard sample at a certain ratio. By applying the present invention to a sample group obtained by diluting a standard sample, it is possible to suitably create a calibration curve.

濃度変化によるピーク形状の変化を模式的に示した図である。図1aは理想的な場合、図1bは濃度によりリーディングを生じる場合、図1cは濃度によりテーリングを生じる場合を示している。It is the figure which showed typically the change of the peak shape by a density | concentration change. FIG. 1a shows an ideal case, FIG. 1b shows a case where reading is caused by concentration, and FIG. 1c shows a case where tailing is caused by concentration. 疑似クロマトグラムである。図2aは濃度の異なる検量線作成用の検証クロマトグラム2種、図2bは同定の基準となるクロマトグラムを示している。It is a pseudo-chromatogram. FIG. 2a shows two types of verification chromatograms for preparing calibration curves having different concentrations, and FIG. 2b shows a chromatogram serving as a reference for identification. 図2の検証クロマトグラムをぞれぞれ拡大した図である。FIG. 3 is an enlarged view of each verification chromatogram in FIG. 2. 実施例で使用したシステム構成を示した図である。It is the figure which showed the system configuration used in the Example. 実施例1を説明するためのクロマトグラムである。2 is a chromatogram for explaining Example 1. FIG. 実施例1での検量線作成用の検証クロマトグラムである。図中の#はデータ処理によりピーク検出を実行し、検出されたピークの番号を示している。2 is a verification chromatogram for preparing a calibration curve in Example 1. FIG. # In the figure indicates the peak number detected by executing peak detection by data processing. 実施例2を説明するためのクロマトグラムである。2 is a chromatogram for explaining Example 2. FIG. 実施例2での検量線作成用の検証クロマトグラムの一例である。図中の#はデータ処理によりピーク検出を実行し、検出されたピークの番号を示している。図中の←→範囲は同定目的成分の溶出時間の許容範囲を示している。6 is an example of a verification chromatogram for creating a calibration curve in Example 2. FIG. # In the figure indicates the peak number detected by executing peak detection by data processing. The ← → range in the figure indicates the allowable range of the elution time of the identification target component.

本発明の効果を、実際のクロマトグラムを用いて検証を行った。   The effect of the present invention was verified using an actual chromatogram.

図4に示す、液体クロマトグラムシステムを使用し、実際の測定を行った。システムは、溶媒脱気装置(SD−8020)2、送液ポンプ(DP−8020)3、試料注入装置(AS−8020)4、カラムオーブン(CO−8020)6、紫外可視検出器(UV−8020)7、およびデータ処理装置(LC−8020II)9で構成した(いずれも、東ソー株)製)。分析カラム5としては、東ソー(株)製 TSKgel ODS−100Z(5μm、4.6 mmI.D.×15 cm)を使用し、p−ヒドロキシ安息香酸類の分離を行った。その他の条件は下記の通りである。
注入量:30uL、カラム温度:40℃、流速:1.0 mL/min
溶離液:CHCN/H2O 混合液
サンプル:Methyl p−Hydroxybenzoate(2.50ug/1mL)Ethyl p−Hydroxybenzoate(1.67ug/1mL)Propyl p−Hydroxybenzoate(0.33ug/1mL)Butyl p−Hydroxybenzoate(0.83ug/1mL)Hexyl p−Hydroxybenzoate(1.33ug/1mL)Heptyl p−Hydroxybenzoate(3.33ug/1mL) 混合物
上記混合物を標準試料1とし、1/2希釈した試料を標準試料2、更に1/2希釈した試料を標準試料3、更に1/2希釈した試料を標準試料4、更に1/2希釈した試料を標準試料5とした。溶離液組成は、溶出時間を故意に変動させるため、CHCN:65.0%、64.5%、64.0%、63.5%、63.0%と変化させて測定を行った。
The actual measurement was performed using the liquid chromatogram system shown in FIG. The system includes a solvent degassing device (SD-8020) 2, a liquid feed pump (DP-8020) 3, a sample injection device (AS-8020) 4, a column oven (CO-8020) 6, an ultraviolet-visible detector (UV- 8020) 7 and a data processing device (LC-8020II) 9 (both manufactured by Tosoh Corporation). As the analytical column 5, TSKgel ODS-100Z (5 μm, 4.6 mm ID × 15 cm) manufactured by Tosoh Corporation was used, and p-hydroxybenzoic acids were separated. Other conditions are as follows.
Injection volume: 30 uL, column temperature: 40 ° C., flow rate: 1.0 mL / min
Eluent: CH 3 CN / H 2 O Mixture sample: Methyl p-Hydroxybenzoate (2.50 ug / 1 mL) Ethyl p-Hydroxybenzoate (1.67 ug / 1 mL) 0.83 ug / 1 mL) Hexyl p-Hydroxybenzoate (1.33 ug / 1 mL) Heptyl p-Hydroxybenzoate (3.33 ug / 1 mL) Mixture The above mixture was designated as Standard Sample 1, a 1/2 diluted sample was Standard Sample 2, and 1 more The sample diluted 1/2 was designated as standard sample 3, the sample further diluted 1/2 was designated as standard sample 4, and the sample further diluted 1/2 was designated as standard sample 5. The eluent composition was measured by changing CH 3 CN: 65.0%, 64.5%, 64.0%, 63.5%, 63.0% in order to intentionally change the elution time. .

(実施例1)
本発明の効果を明確にするため、下記のように、標準試料の濃度ごとに溶離液のアセトニトリルの濃度をわずかに変化させて取得したクロマトグラムを元に本発明の効果を検証した。
Example 1
In order to clarify the effect of the present invention, as described below, the effect of the present invention was verified based on a chromatogram obtained by slightly changing the concentration of acetonitrile in the eluent for each standard sample concentration.

基準クロマトグラム、検量線作成用の標準試料1〜5のクロマトグラムを図5に示す。   The reference chromatogram and the chromatograms of standard samples 1 to 5 for preparing a calibration curve are shown in FIG.

まず、図5の基準クロマトグラムを一般的なピーク検出法により、同定の対象となる6成分に対して、ピーク面積を取得し、総面積に対する面積比率を算出し、表7のように、同定の基本となる同定条件を決定した。簡易的に、溶出時間の早い順に、Peak_1からPeak_6とした。   First, the standard chromatogram of FIG. 5 is obtained by a general peak detection method, peak areas are obtained for six components to be identified, the area ratio to the total area is calculated, and identification is performed as shown in Table 7. The basic identification conditions were determined. For simplicity, Peak_1 to Peak_6 were used in order of elution time.

Figure 2018080981
表8〜12に検量線作成用の標準試料1から5の計算結果および同定結果を示す。面積差比率は、基準クロマトグラムでの各成分の面積比率(標準ピーク面積比率)と、それぞれのピークの面積比率の差の割合を示している。
面積差比率=絶対値(1−ピーク面積比率/標準ピーク面積比率)
つまり面積差比率が小さい成分が、基準のクロマトグラムの成分と類似性が高いと判断できる。ここでは、面積差比率が最も小さい成分を合致する成分と判定する。また、面積差比率が1.0に近いピークは、面積値が極端に小さいことを意味するため、面積差比率が0.5を超えるピークは同定対象でないと判断した(unknown 表記)。
Figure 2018080981
Tables 8 to 12 show the calculation results and identification results of standard samples 1 to 5 for preparing a calibration curve. The area difference ratio indicates the ratio of the area ratio (standard peak area ratio) of each component in the reference chromatogram and the area ratio of each peak.
Area difference ratio = absolute value (1-peak area ratio / standard peak area ratio)
That is, it can be determined that a component having a small area difference ratio is highly similar to a component of the reference chromatogram. Here, the component with the smallest area difference ratio is determined as the matching component. Moreover, since the peak whose area difference ratio is close to 1.0 means that the area value is extremely small, the peak whose area difference ratio exceeds 0.5 was determined not to be an identification target (unknown notation).

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
以上のように、本発明の同定方法では、クロマトグラムで溶出時間が大きく変動する場合であっても、何の障害もなく確実に同定することができる。
Figure 2018080981
As described above, according to the identification method of the present invention, even when the elution time varies greatly in the chromatogram, it can be reliably identified without any obstacles.

(実施例2)
同定の基準となるクロマトグラムおよび標準試料1から5のクロマトグラムは、実施例1で使用したものを使用し、溶出時間と面積比率を組み合わせた同定法を行った。
(Example 2)
The chromatogram used as the reference for identification and the chromatograms of the standard samples 1 to 5 were the same as those used in Example 1, and an identification method combining the elution time and the area ratio was performed.

図7に、基準クロマトグラム、標準試料1〜5のクロマトグラムおよび同定対象のピークの溶出時間許容幅を示す。図中の破線は各ピークの基準溶出時間、←→は溶出時間許容幅を示している。   FIG. 7 shows the reference chromatogram, the chromatograms of the standard samples 1 to 5, and the elution time tolerance of the peak to be identified. The broken line in the figure indicates the standard elution time of each peak, and ← → indicates the allowable elution time width.

まず、表13のように、同定の基本となる同定条件を作成する。第一の判断基準となる溶出時間の許容幅を設定し、更に、第二の判断基準となる総面積に対する面積比率を算出する。同定の許容幅は、基準となるクロマトグラムの各ピークの溶出時間に対して±14%と規定した。例としてPeak_1では、基準となる溶出時間2.327min±2.327*14/100の範囲に入るピークが「Peak_1」の候補として仮同定される。   First, as shown in Table 13, identification conditions that are the basis of identification are created. An allowable range of elution time as a first criterion is set, and an area ratio to the total area as a second criterion is calculated. The tolerance of identification was defined as ± 14% with respect to the elution time of each peak of the reference chromatogram. As an example, in Peak_1, a peak that falls within the reference elution time range of 2.327 min ± 2.327 * 14/100 is provisionally identified as a candidate for “Peak_1”.

Figure 2018080981
表14〜18に標準試料1から5の計算結果および同定結果を示す。なお、同定結果は溶出時間による第一の同定法で絞り込まれた成分から、面積比率による第二の同定法により決定した成分(最終同定結果)を記している。
Figure 2018080981
Tables 14 to 18 show the calculation results and identification results of standard samples 1 to 5. In addition, the identification result has described the component (final identification result) determined by the 2nd identification method by area ratio from the component narrowed down by the 1st identification method by elution time.

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
以上のように、実施例1と同様の結果が得られた。
Figure 2018080981
As described above, the same result as in Example 1 was obtained.

(比較例)
従来の方法である溶出時間を基にした同定法を行った。 同定の許容幅は、基準となるクロマトグラムの各ピークの溶出時間に対して±2%と規定した。例としてPeak_1では、基準となる溶出時間2.327min±2.327*2/100の範囲に入るピークが「Peak_1」として同定される。詳細は表19に示すとおりである。
(Comparative example)
The identification method based on the elution time which is a conventional method was performed. The tolerance of identification was defined as ± 2% with respect to the elution time of each peak of the reference chromatogram. For example, in Peak_1, a peak that falls within the reference elution time range of 2.327 min ± 2.327 * 2/100 is identified as “Peak_1”. Details are as shown in Table 19.

Figure 2018080981
表20〜24に標準試料1から5の同定結果を示す。
Figure 2018080981
Tables 20 to 24 show the identification results of standard samples 1 to 5.

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
Figure 2018080981

Figure 2018080981
このように、検量線作成時において、溶出時間に大きな変動がある場合、溶出時間を基にした従来の同定方法では確実な同定ができないことが分かる。
Figure 2018080981
As described above, when the elution time varies greatly during the calibration curve creation, it can be seen that the conventional identification method based on the elution time cannot be reliably identified.

1.溶離液
2.脱気装置
3.送液ポンプ(サンプル側)
4.試料注入バルブ
5.分析カラム
6.カラム恒温槽
7.紫外可視検出器
8.廃液
9.システム制御およびデータ処理装置
1. 1. Eluent 2. Deaeration device Liquid feed pump (sample side)
4). 4. Sample injection valve Analysis column 6. 6. Column constant temperature bath UV-visible detector 8. Waste liquid9. System control and data processing equipment

Claims (4)

2以上の定量対象成分を含有する標準試料のクロマトグラムについて、ピーク面積を全ピーク面積の総和で除したピーク面積比率を、前記定量対象成分ごとに標準ピーク面積比率として算出し、前記標準試料を一定割合で希釈した試料のクロマトグラムについて、前記標準ピーク面積比率を基に前記定量対象成分を同定することを特徴とする方法。   For a chromatogram of a standard sample containing two or more quantification target components, the peak area ratio obtained by dividing the peak area by the sum of all peak areas is calculated as the standard peak area ratio for each quantification target component, and the standard sample is A method for identifying a component to be quantified based on the standard peak area ratio in a chromatogram of a sample diluted at a constant ratio. テーブル化された前記標準ピーク面積比率を、希釈した試料のクロマトグラムの各ピーク面積比率と比較し、最も値が近しい成分を特定の前記定量対象成分と同定することを特徴とする請求項1に記載の方法。   The standard peak area ratio tabulated is compared with each peak area ratio of a chromatogram of a diluted sample, and the component having the closest value is identified as the specific component to be quantified. The method described. 前記標準試料の基準溶出時間と希釈した試料のクロマトグラムの溶出時間とを比較することを更に行うことを特徴とする請求項1又は2に記載の方法。   The method according to claim 1, further comprising comparing a reference elution time of the standard sample with an elution time of a chromatogram of a diluted sample. 複数濃度となるように前記標準試料を希釈した試料群を、請求項1〜3のいずれかに記載の方法で定量対象成分を同定し、検量線を作成する方法。   A method for preparing a calibration curve by identifying a component to be quantified by a method according to any one of claims 1 to 3 in a sample group in which the standard sample is diluted so as to have a plurality of concentrations.
JP2016222782A 2016-11-15 2016-11-15 Peak identification method based on peak area ratio Active JP6862780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222782A JP6862780B2 (en) 2016-11-15 2016-11-15 Peak identification method based on peak area ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222782A JP6862780B2 (en) 2016-11-15 2016-11-15 Peak identification method based on peak area ratio

Publications (2)

Publication Number Publication Date
JP2018080981A true JP2018080981A (en) 2018-05-24
JP6862780B2 JP6862780B2 (en) 2021-04-21

Family

ID=62198813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222782A Active JP6862780B2 (en) 2016-11-15 2016-11-15 Peak identification method based on peak area ratio

Country Status (1)

Country Link
JP (1) JP6862780B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484758A (en) * 1990-07-27 1992-03-18 Shimadzu Corp Peak identification method for chromatography
JPH04331369A (en) * 1991-02-18 1992-11-19 Hitachi Ltd Chromatography automatically determining analysis conditions
JPH0518951A (en) * 1991-07-11 1993-01-26 Shimadzu Corp Data processing device
JPH09269319A (en) * 1996-03-29 1997-10-14 Shimadzu Corp Data processor for quantitative analysis
JP2005114381A (en) * 2003-10-03 2005-04-28 Asahi Breweries Ltd Method of determining actein quantitatively
JP2011027429A (en) * 2009-07-21 2011-02-10 Kirin Holdings Co Ltd Method for refining and analyzing glycoalkaloid using liquid chromatography
JP2014125437A (en) * 2012-12-25 2014-07-07 Tosoh Corp METHODS FOR PURIFYING AND QUANTITATIVELY DETERMINING Fc-BINDING PROTEIN
US20140260509A1 (en) * 2013-03-15 2014-09-18 Christopher A. Pohl Method of calibrating a chromatography system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484758A (en) * 1990-07-27 1992-03-18 Shimadzu Corp Peak identification method for chromatography
JPH04331369A (en) * 1991-02-18 1992-11-19 Hitachi Ltd Chromatography automatically determining analysis conditions
US5436166A (en) * 1991-02-18 1995-07-25 Hitachi, Ltd. Method of and apparatus for performing chromatography analysis of unknown sample
JPH0518951A (en) * 1991-07-11 1993-01-26 Shimadzu Corp Data processing device
JPH09269319A (en) * 1996-03-29 1997-10-14 Shimadzu Corp Data processor for quantitative analysis
JP2005114381A (en) * 2003-10-03 2005-04-28 Asahi Breweries Ltd Method of determining actein quantitatively
JP2011027429A (en) * 2009-07-21 2011-02-10 Kirin Holdings Co Ltd Method for refining and analyzing glycoalkaloid using liquid chromatography
JP2014125437A (en) * 2012-12-25 2014-07-07 Tosoh Corp METHODS FOR PURIFYING AND QUANTITATIVELY DETERMINING Fc-BINDING PROTEIN
US20140260509A1 (en) * 2013-03-15 2014-09-18 Christopher A. Pohl Method of calibrating a chromatography system
JP2016510900A (en) * 2013-03-15 2016-04-11 ダイオネックス コーポレイション Chromatography system calibration method

Also Published As

Publication number Publication date
JP6862780B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6094684B2 (en) Method and apparatus for detecting peak end point in waveform
CN108603867B (en) Peak detection method and data processing apparatus
JP7070014B2 (en) Peak signal processing method in chromatogram
US10935526B2 (en) Liquid chromatograph and method for correcting detector output value fluctuation of liquid chromatograph
US10605793B2 (en) Automated method of calibrating a chromatography system and analysis of a sample
US10488376B2 (en) Data processing system and program for chromatograph mass spectrometer
Johnsen et al. An automated method for baseline correction, peak finding and peak grouping in chromatographic data
JP2019056620A (en) Data processor of chromatograph
JP6862780B2 (en) Peak identification method based on peak area ratio
JP7119602B2 (en) How to calculate chromatogram similarity
US10416133B2 (en) Chromatographic data processing device, data processing method, and chromatographic analysis system
JP6226823B2 (en) Chromatograph mass spectrometer and control method thereof
JP7081385B2 (en) How to calculate the similarity of chromatograms
JP7067189B2 (en) Data processing method in glycohemoglobin analysis
JP6953989B2 (en) Peak identification method using peak width inclusion method
JP6237510B2 (en) Chromatograph data processing apparatus, data processing method, and chromatographic analysis system
JP7135689B2 (en) Peak detection method that is immune to negative peaks
JP6862813B2 (en) Quantification and correction method using polynomial calibration curve
JP6904059B2 (en) Automatic method for determining the peak detection sensitivity of the chromatogram
US20140303904A1 (en) Data processing system and method for chromatograph
JP2018185158A (en) Automatic determination method of peak detection sensitivity of chromatogram
JP6938901B2 (en) Peak identification method based on the peak center of gravity
JP7070137B2 (en) How to calculate the similarity of chromatograms
JP2024089816A (en) Chromatogram data processing method, data processing device, chromatograph device, data processing program, and recording medium
JP6911543B2 (en) Baseline determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151