JP2018080374A - Surface treatment method of plastic substrate, and production method of metal-clad laminated substrate using the same - Google Patents

Surface treatment method of plastic substrate, and production method of metal-clad laminated substrate using the same Download PDF

Info

Publication number
JP2018080374A
JP2018080374A JP2016225012A JP2016225012A JP2018080374A JP 2018080374 A JP2018080374 A JP 2018080374A JP 2016225012 A JP2016225012 A JP 2016225012A JP 2016225012 A JP2016225012 A JP 2016225012A JP 2018080374 A JP2018080374 A JP 2018080374A
Authority
JP
Japan
Prior art keywords
metal
plastic substrate
film
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225012A
Other languages
Japanese (ja)
Other versions
JP6870292B2 (en
Inventor
浅川 吉幸
Yoshiyuki Asakawa
吉幸 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016225012A priority Critical patent/JP6870292B2/en
Publication of JP2018080374A publication Critical patent/JP2018080374A/en
Application granted granted Critical
Publication of JP6870292B2 publication Critical patent/JP6870292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method of a plastic substrate capable of producing with high yield, a wiring circuit board hardly generating a trouble such as a poor appearance or a performance failure.SOLUTION: A plastic substrate such as a polyimide-based film having preferably an imide bond or a benzene ring in a molecule is brought into contact with process liquid preferably comprising water, containing micro-bubbles having preferably a diameter of 100 μm or less containing both ozone and oxygen.SELECTED DRAWING: None

Description

本発明は、マイクロバブルを含んだ処理液でプラスチック基板の表面を処理する表面処理方法、及び該処理方法で表面処理されたプラスチック基板に接着剤を介することなく金属膜を成膜することで作製する金属張積層基板の製造方法、並びに該製造方法で作製された金属張積層基板をパターニング加工することで作製する配線回路基板の製造方法に関する。   The present invention provides a surface treatment method for treating the surface of a plastic substrate with a treatment liquid containing microbubbles, and a metal film formed on the plastic substrate surface-treated by the treatment method without using an adhesive. The present invention relates to a method for manufacturing a metal-clad laminated substrate, and a method for manufacturing a printed circuit board produced by patterning a metal-clad laminated substrate produced by the production method.

プラスチック基板はその優れた電気絶縁性のため様々な産業分野で広く使用されている。例えばプラスチック基板に金属膜を成膜することで作製されるいわゆる金属張積層基板は、配線回路基板の基材として使用されている。金属膜をプラスチック基板上に成膜する際は、スパッタリング等の乾式めっき法や電気めっき等の湿式めっき法、あるいはこれら両者を併用した成膜法が一般的に採用されており、このようにして成膜した金属膜をパターニング加工することで所望の配線回路を有する配線回路基板を作製することができる。   Plastic substrates are widely used in various industrial fields because of their excellent electrical insulation. For example, a so-called metal-clad laminated substrate produced by forming a metal film on a plastic substrate is used as a base material for a printed circuit board. When a metal film is formed on a plastic substrate, a dry plating method such as sputtering, a wet plating method such as electroplating, or a film formation method using both of them is generally employed. A printed circuit board having a desired wiring circuit can be manufactured by patterning the formed metal film.

上記金属膜のパターニング加工法としては、セミアディテブ法又はサブトラクティブ法が一般的に採用されている。これらパターニング加工法は、いずれも金属膜の表面にフォトレジストを印刷・露光・現像するか、あるいはドライフィルムレジストをラミネート・露光・現像することで所定のパターンを有するレジスト膜を形成する。そして、セミアディテブ法では、レジスト膜で覆われていない露出箇所が配線になるため、該露出箇所の金属膜の表面に更に金属膜を成膜して膜厚化した後、レジスト膜で覆われている不要な金属膜を除去する。一方、サブトラクティブ法では、レジスト膜で覆われている箇所が配線になるため、レジスト膜で覆われていない露出箇所の金属膜をエッチングにより除去する。   As the metal film patterning method, a semi-additive method or a subtractive method is generally employed. In any of these patterning methods, a resist film having a predetermined pattern is formed by printing, exposing, and developing a photoresist on the surface of the metal film, or laminating, exposing, and developing a dry film resist. In the semi-additive method, an exposed portion that is not covered with the resist film becomes a wiring. Therefore, after a metal film is further formed on the surface of the metal film at the exposed portion to increase the film thickness, the exposed portion is covered with the resist film. Remove unnecessary metal film. On the other hand, in the subtractive method, since the portion covered with the resist film becomes the wiring, the exposed metal film not covered with the resist film is removed by etching.

ところで、上記の配線回路基板の製造方法では、出発原料のプラスチック基板の表面に異物が付着していると、この異物が成膜時や配線回路の形成時に障害となり、ピンホールの多発、配線リードの欠け、又は断線等の不良を生じさせたり、エッチング不良のため金属が除去されずに配線間をまたぐように残存して短絡を頻発させたりする。特に、近年は配線ピッチがますます微細化する傾向にあり、従来はあまり問題にならなかった微小な異物でも上記のような不良の原因となり得るため、異物除去の重要度が高まっている。そこで、これら異物を除去する様々な技術が提案されている。例えば特許文献1には、ロールツーロールで搬送される長尺状のフィルム基板に対してその表面に付着している異物をロールツーロール搬送経路に設けた粘着ローラーで除去する技術が提案されている。   By the way, in the above-described method for manufacturing a printed circuit board, if foreign matter adheres to the surface of the starting plastic substrate, the foreign matter becomes an obstacle during film formation or wiring circuit formation, resulting in frequent pinholes and wiring leads. In some cases, defects such as chipping or disconnection occur, or because the etching is defective, the metal is not removed but remains so as to straddle between the wirings, resulting in frequent short circuits. In particular, in recent years, the wiring pitch tends to become increasingly finer, and even a minute foreign matter that has not been a problem in the past can cause the above-described defect, and therefore the importance of removing the foreign matter is increasing. Therefore, various techniques for removing these foreign substances have been proposed. For example, Patent Document 1 proposes a technique for removing foreign matter adhering to the surface of a long film substrate conveyed by roll-to-roll using an adhesive roller provided in the roll-to-roll conveyance path. Yes.

また、金属張積層基板には高い剥離強度が求められる場合があり、プラスチック基板に表面改質を行うことでプラスチック基板と金属膜との密着性を高めることが行われている。この表面改質の方法として、例えば特許文献2にはプラスチック基板の表面を酸化剤の存在下で紫外線照射処理した後、過マンガン酸塩等の酸化剤による化学反応でエッチングし、これによりプラスチック基板の表面を粗化してそのアンカー効果により密着性を向上させる表面処理法が開示されている。更に簡易的な改質法として、特許文献3にはオゾンなどの気体状酸化剤の雰囲気下でプラスチック基板の表面に紫外線照射を行って表面改質を行う技術が開示されている。また、減圧雰囲気下でプラスチック基板の表面にプラズマ処理を行い、これにより該プラスチック基板の表面に金属と結合できる反応性の官能基を生成させて密着性を発現する改質法も提案されている。   In addition, a metal-clad laminated substrate may be required to have high peel strength, and the adhesion between the plastic substrate and the metal film is improved by modifying the surface of the plastic substrate. As a method for this surface modification, for example, in Patent Document 2, the surface of a plastic substrate is irradiated with an ultraviolet ray in the presence of an oxidizing agent, and then etched by a chemical reaction with an oxidizing agent such as permanganate. A surface treatment method has been disclosed in which the surface is roughened and the adhesion is improved by the anchor effect. As a simple modification method, Patent Document 3 discloses a technique for performing surface modification by irradiating the surface of a plastic substrate with ultraviolet light in an atmosphere of a gaseous oxidant such as ozone. In addition, a modification method has been proposed in which a plasma treatment is performed on the surface of a plastic substrate in a reduced-pressure atmosphere, thereby generating a reactive functional group capable of binding to a metal on the surface of the plastic substrate to exhibit adhesion. .

特開2004−167688号公報JP 2004-167688 A 特開平9−157417号公報JP-A-9-157417 特開2006−274176号公報JP 2006-274176 A

上記の配線回路基板の不良の原因となる異物としては、プラスチック基板のスリットによるスリット異物(プラスチックくず)、プラスチック基板の原料のモノマー等の有機物、触媒等の低分子量の付着物、プラスチックの未硬化物等のオリゴマー付着物等を挙げることができる。これら異物のうち、プラスチック基板に付着している比較的大きな異物は上記の特許文献1の方法である程度除去できるが、有機物や細かな異物は除去するのが困難であった。   Foreign substances that cause defects in the above printed circuit boards include slit foreign objects (plastic waste) due to plastic substrate slits, organic substances such as monomers of plastic substrate raw materials, low molecular weight deposits such as catalysts, and uncured plastics. Examples include oligomer deposits such as products. Among these foreign substances, relatively large foreign substances adhering to the plastic substrate can be removed to some extent by the method of the above-mentioned Patent Document 1, but it is difficult to remove organic substances and fine foreign substances.

有機物がプラスチック基板に付着したままであると、真空成膜時に当該有機物が揮発し、該真空成膜による被膜層を酸化あるいは炭化してしまい、当該被膜層が良好にエッチングできなくなり、配線加工時に不具合が生ずることがあった。また、プラスチック基板に付着している有機物がオリゴマー付着物の場合は、真空成膜の次工程において電気めっき処理を行う場合、導電性が低下するため電気めっき膜の成長に異常をきたして表面に凹凸が生じさせ、その後の配線加工の際にショートあるいはオープン不良が生ずることがあった。   If the organic substance remains attached to the plastic substrate, the organic substance volatilizes during vacuum film formation, and the film layer formed by the vacuum film formation is oxidized or carbonized, and the film layer cannot be etched well. There was a problem. In addition, when the organic substance adhering to the plastic substrate is an oligomer adhering substance, when electroplating is performed in the next process of vacuum film formation, the conductivity is lowered, and therefore the growth of the electroplated film is caused and the surface is abnormally formed. Concavities and convexities are generated, and short-circuiting or open defects may occur during subsequent wiring processing.

また、金属張積層基板の剥離強度を高めるため、酸化剤でプラスチック基板の表面をエッチングする特許文献2の方法は、溶液中で処理を行うためプラスチック基板を表面改質しながら洗浄することが可能であるが、液状の酸化剤によるプラスチック基板の表面処理では化学反応の制御が難しく、プラスチック基板の表面の分子を寸断するなどの劣化を生じさせるおそれがある。このように表面が劣化したプラスチック基板では、金属膜との密着性が低下することがあった。これに対してオゾンガス雰囲気下での紫外線照射やプラズマ処理による表面改質は、プラスチック基板と金属膜との密着性をある程度確保できるものの、液相中での処理ではないので表面改質と同時に有機物や異物の洗浄を行うことはできない。   In addition, in order to increase the peel strength of the metal-clad laminate substrate, the method of Patent Document 2 in which the surface of the plastic substrate is etched with an oxidizing agent can be cleaned while modifying the surface of the plastic substrate because the treatment is performed in a solution. However, the surface treatment of the plastic substrate with a liquid oxidant makes it difficult to control the chemical reaction, which may cause degradation such as breaking the molecules on the surface of the plastic substrate. In such a plastic substrate having a deteriorated surface, the adhesion to the metal film may be lowered. On the other hand, surface modification by ultraviolet irradiation or plasma treatment in an ozone gas atmosphere can secure a certain degree of adhesion between the plastic substrate and the metal film, but it is not a treatment in the liquid phase. Or cleaning foreign matter.

本発明は、上記の問題点に鑑みてなされたものであり、プラスチック基板の表面に付着している異物や有機物を除去して金属張積層基板の作製時にピンホールの発生等の不良を発生しにくくし、よって外観不良や性能不良等の不具合がほとんどない配線回路基板を高収率で作製することが可能なプラスチック基板の表面処理方法を提供することを目的としている。   The present invention has been made in view of the above problems, and removes foreign matters and organic substances adhering to the surface of a plastic substrate to cause defects such as pinholes during the production of a metal-clad laminated substrate. Accordingly, it is an object of the present invention to provide a surface treatment method for a plastic substrate that can produce a printed circuit board with high yield, which is difficult to cause, and thus has almost no defects such as poor appearance and poor performance.

上記目的を達成するため、本発明のプラスチック基板の表面処理方法は、オゾン及び酸素を両方とも含むマイクロバブルを含んだ処理液にプラスチック基板を接触させることを特徴としている。   In order to achieve the above object, the plastic substrate surface treatment method of the present invention is characterized in that the plastic substrate is brought into contact with a treatment liquid containing microbubbles containing both ozone and oxygen.

本発明によれば、プラスチック基板の表面に付着している異物や有機物を効果的に除去することができるので、ピンホール等の不具合がほとんどない金属張積層基板を作製することができ、この金属張積層基板をパターニング加工することで作製される配線回路基板には外見不良や性能不良等の不具合がほとんど生じないようにすることができる。   According to the present invention, foreign substances and organic substances adhering to the surface of the plastic substrate can be effectively removed, so that a metal-clad laminated substrate with almost no defects such as pinholes can be produced. It is possible to prevent defects such as defective appearance and poor performance from occurring in a printed circuit board manufactured by patterning a stretched laminated substrate.

以下、本発明のプラスチック基板の表面処理方法の一具体例について説明する。この本発明の一具体例のプラスチック基板の表面処理方法は、金属張積層基板の基材となるプラスチック基板の少なくとも金属膜を積層する側の面に、酸素及びオゾンを両方とも含んだマイクロバブルを含む好適には水からなる処理液を接触させるものである。なお、後工程の真空成膜においてプラスチック基板の成膜側の面に活性な金属膜が形成されるため、金属膜を積層しない側の面にも処理液を接触させるのが好ましい。その理由は、該成膜側の面とは反対側の面に細かな異物が付着していると成膜後の巻き取り時に活性な金属膜に当該異物が接触して転写するおそれがあるが、処理液の接触により異物を除去することが可能になるからである。   Hereinafter, a specific example of the surface treatment method for a plastic substrate according to the present invention will be described. The surface treatment method for a plastic substrate according to an embodiment of the present invention includes a microbubble containing both oxygen and ozone on a surface on which at least a metal film is laminated on a plastic substrate which is a base material of a metal-clad laminated substrate. Preferably, the treatment liquid containing water is brought into contact. In addition, since an active metal film is formed on the surface of the plastic substrate on the film formation side in vacuum film formation in a later step, it is preferable that the treatment liquid is also brought into contact with the surface on which the metal film is not laminated. The reason for this is that if there is a fine foreign material on the surface opposite to the surface on which the film is formed, the foreign material may contact and transfer to the active metal film during winding after film formation. This is because foreign matters can be removed by contact with the treatment liquid.

この表面処理方法で使用するオゾン及び酸素を含むマイクロバブルを含んだ処理液は、好適には純水からなる水の中にノズルを介して例えばオゾナイザからオゾン及び酸素の混合ガスを導入することで生成することができる。ここでマイクロバブルとは気泡の直径が約1μmから数百μm程度の気泡のことである。この処理液(オゾン液とも称する)を、プラスチック基板の少なくとも金属膜が積層される側の表面に接触させることで、該表面に付着している有機物等を分解することができる。また、オゾンを含有したマイクロバブルを用いることで、プラスチック基板の表面改質も可能となる。   The treatment liquid containing microbubbles containing ozone and oxygen used in this surface treatment method is preferably obtained by introducing a mixed gas of ozone and oxygen from water, for example, from an ozonizer into water consisting of pure water. Can be generated. Here, the microbubble is a bubble having a diameter of about 1 μm to several hundred μm. By bringing this treatment liquid (also referred to as ozone liquid) into contact with at least the surface of the plastic substrate on which the metal film is laminated, the organic matter adhering to the surface can be decomposed. In addition, by using microbubbles containing ozone, it is possible to modify the surface of the plastic substrate.

プラスチック基板の表面に処理液を接触させる方法としては、例えばプラスチック基板の表面に処理液を吹き付ける方法や、プラスチック基板を処理液に浸漬させる方法を挙げることができる。その際、処理液とプラスチック基板との接触時間は5秒以上60秒以下が望ましい。この接触時間が5秒未満では表面処理の効果が得られないおそれがあり、逆に60秒を超えてもそれ以上効果が向上することは期待できないので経済的でない。なお、上記接触時の処理液の温度は特に制約はないが、10〜90℃が好ましく、20〜60℃がより好ましい。この温度が10℃未満では有機物の分解反応の効率の低下が顕著になり、逆に90℃を超えるとマイクロバブルの液面からの放散量が多くなるので効果が得られにくくなる。   Examples of the method of bringing the treatment liquid into contact with the surface of the plastic substrate include a method of spraying the treatment liquid on the surface of the plastic substrate and a method of immersing the plastic substrate in the treatment liquid. At that time, the contact time between the treatment liquid and the plastic substrate is preferably 5 seconds or more and 60 seconds or less. If the contact time is less than 5 seconds, the effect of the surface treatment may not be obtained. Conversely, if the contact time exceeds 60 seconds, no further improvement in the effect can be expected. The temperature of the treatment liquid at the time of contact is not particularly limited, but is preferably 10 to 90 ° C and more preferably 20 to 60 ° C. If this temperature is less than 10 ° C., the efficiency of the decomposition reaction of the organic matter is remarkably reduced. Conversely, if it exceeds 90 ° C., the amount of microbubbles diffused from the liquid surface increases, making it difficult to obtain the effect.

上記マイクロバブルを構成する混合ガス中のオゾン濃度は、酸素ガスからオゾンを発生させるオゾナイザの性能にもよるが3体積%以上20体積%以下が好ましい。このオゾン濃度が3体積%未満では後述するプラスチック基板の密着性の向上が図れないことがある。逆にオゾン濃度が20体積%を超えてもそれ以上効果が向上することは期待できないので経済的でない。オゾナイザに供給する酸素は、酸素ボンベから供給される純酸素でもよいし、吸着材を利用したPSA(Pressure Swing Adsorption:圧力スイング吸着)方式の酸素濃縮装置によって大気中の空気から取り出した酸素ガスでもよい。オゾナイザのオゾン発生法には特に制約はなく、酸素ガスへの水銀灯等による紫外線照射や放電等の公知の方法を用いることができる。   The ozone concentration in the mixed gas constituting the microbubbles is preferably 3% by volume or more and 20% by volume or less, depending on the performance of an ozonizer that generates ozone from oxygen gas. If the ozone concentration is less than 3% by volume, the adhesion of the plastic substrate described later may not be improved. Conversely, even if the ozone concentration exceeds 20% by volume, it is not economical because it cannot be expected that the effect is further improved. The oxygen supplied to the ozonizer may be pure oxygen supplied from an oxygen cylinder, or oxygen gas extracted from air in the atmosphere by a PSA (Pressure Swing Adsorption) type oxygen concentrator using an adsorbent. Good. The ozone generation method of the ozonizer is not particularly limited, and a known method such as ultraviolet ray irradiation or discharge with a mercury lamp or the like to oxygen gas can be used.

上記処理液に用いる水には純水を用いるのが好ましく、導電率1μS/cm以下の純水を用いるのがより好ましい。この導電率が1μS/cmを超えると不純物が多く含まれることになるので、プラスチック基板を汚染する恐れがある。このような不純物の少ない純水の製造方法は特に制約はなく、例えばイオン交換樹脂を用いた公知の純水製造装置で製造することができる。なお、導電率は公知の導電率計で測定することができる。   It is preferable to use pure water as the water used for the treatment liquid, and it is more preferable to use pure water having a conductivity of 1 μS / cm or less. If this electrical conductivity exceeds 1 μS / cm, a large amount of impurities are contained, which may contaminate the plastic substrate. Such a method for producing pure water with few impurities is not particularly limited, and can be produced by, for example, a known pure water production apparatus using an ion exchange resin. The conductivity can be measured with a known conductivity meter.

上記処理液に含まれるマイクロバブルの直径の上限は100μm以下が好ましく、50μm以下がより好ましい。マイクロバブルの直径が100μmを超えるとプラスチック基板の接触面積が狭くなるので好ましくない。一方、マイクロバブルの直径の下限は小さければ小さいほど好ましく、ナノレベルの超微細な気泡が含まれていても構わないが、気泡の直径が小さくになるに従ってその生成が困難になり、直径の測定も容易ではないので、通常は数μm〜数十μm程度が下限となる。ここで、マイクロバブルの直径は体積積算のメジアン値で表したものであり、これは例えばマイクロトラック(登録商標)等のレーザー光散乱式の粒度分布測定装置で瞬間的に測定することができる。なお、マイクロバブルの直径は、マイクロバブルを発生させる際のオゾン及び酸素の混合ガスの供給圧力やこの混合ガスの水中への吹き込みに用いる後述するノズルの形状により定まる。   The upper limit of the diameter of the microbubbles contained in the treatment liquid is preferably 100 μm or less, and more preferably 50 μm or less. If the diameter of the microbubbles exceeds 100 μm, the contact area of the plastic substrate becomes narrow, which is not preferable. On the other hand, the lower limit of the diameter of the microbubbles is preferably as small as possible, and nano-sized ultrafine bubbles may be included, but the generation becomes difficult as the diameter of the bubbles becomes smaller, and the measurement of the diameter However, the lower limit is usually about several μm to several tens of μm. Here, the diameter of the microbubble is expressed by a median value of volume integration, and this can be instantaneously measured by a laser light scattering type particle size distribution measuring apparatus such as Microtrac (registered trademark). Note that the diameter of the microbubble is determined by the supply pressure of the mixed gas of ozone and oxygen when generating the microbubble and the shape of a nozzle described later used for blowing the mixed gas into the water.

上記混合ガスからなるマイクロバブルを水中で発生させる方法は、純水などの液中に上記混合ガスを放出するノズルの先端部を浸漬させ、このノズルに加圧した混合ガスを導入すればよい。この場合のノズルには公知のノズルを用いることができ、例えば気体と液体の旋回流を発生するノズル、ベンチュリー型発生器を具備するノズル、キャビテーション型ノズル等を用いることができる。   As a method of generating the microbubbles made of the mixed gas in water, the tip of the nozzle that discharges the mixed gas may be immersed in a liquid such as pure water, and the pressurized mixed gas may be introduced into the nozzle. A known nozzle can be used as the nozzle in this case. For example, a nozzle that generates a swirling flow of gas and liquid, a nozzle that includes a venturi-type generator, a cavitation type nozzle, and the like can be used.

上記した処理液をプラスチック基板の表面に接触させることによって、プラスチック基板の表面に付着しているモノマーやオリゴマーなどの有機物などの分解除去と、金属膜との密着性の向上に寄与する官能基をプラスチック基板の表面に導入する等の表面改質とを同時に行うことが可能になる。すなわち、マイクロバブルを含んだ処理水との接触によりプラスチック基板の表面に付着しているプラスチックくずや有機物等の異物が物理的に除去されて該表面の清浄が行われると共に、当該マイクロバブルを構成する酸素やオゾンにより金属膜との密着性の向上に寄与する官能基がプラスチック基板を構成する分子に導入される。その結果、後工程においてプラスチック基板の表面に内部に欠陥のない金属膜を成膜することができ、よってピンホール等の不具合のない高品質の金属張積層基板を作製することができる。かかる高品質の金属張積層基板は、これをパターニング加工することで得られる配線回路基板においても外観不良や性能不良が生じにくいので、高品質の配線回路基板を高い収率で作製することができる。   By bringing the above-mentioned treatment liquid into contact with the surface of the plastic substrate, functional groups that contribute to the decomposition and removal of organic substances such as monomers and oligomers adhering to the surface of the plastic substrate and the adhesion to the metal film are improved. Surface modification such as introduction into the surface of the plastic substrate can be performed simultaneously. That is, foreign matters such as plastic scraps and organic substances adhering to the surface of the plastic substrate by contact with the treated water containing microbubbles are physically removed to clean the surface, and the microbubbles are configured. Functional groups that contribute to improving the adhesion to the metal film are introduced into the molecules constituting the plastic substrate by oxygen or ozone. As a result, a metal film having no defects can be formed on the surface of the plastic substrate in a later step, and thus a high-quality metal-clad laminated substrate free from defects such as pinholes can be manufactured. Such a high-quality metal-clad laminated substrate is less likely to cause poor appearance and poor performance even in a printed circuit board obtained by patterning it, so that a high-quality wired circuit board can be produced with a high yield. .

上記した本発明の一具体例の表面処理方法で好適に処理できるプラスチック基板の材質としては、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムなどの樹脂フィルムを挙げることができる。上記表面処理方法は、更にエポキシ樹脂、ガラスエポキシ基板、その他樹脂ボード等のプラスチック基板にも使用可能である。上記のプラスチック基板の中では、プラスチック基板の分子に官能基を導入できるものがより好ましく、このようなプラスチックとしては例えばポリイミド系フィルム、ポリアミド系フィルム、ポリフェニレンサルファイド系フィルム、液晶ポリマー系フィルム、及びガラスエポキシ基板を挙げることができる。これらプラスチック基板は、その分子内にイミド結合やベンゼン環等を有しているので、オゾンにより官能基を導入しやすいからである。   Examples of the material of the plastic substrate that can be suitably treated by the surface treatment method of the above-described specific example of the present invention include a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, and a polyethylene film. Examples thereof include resin films such as phthalate film and liquid crystal polymer film. The surface treatment method can also be used for plastic substrates such as epoxy resins, glass epoxy substrates, and other resin boards. Among the above plastic substrates, those capable of introducing functional groups into the molecules of the plastic substrate are more preferable. Examples of such plastics include polyimide films, polyamide films, polyphenylene sulfide films, liquid crystal polymer films, and glass. An epoxy substrate can be mentioned. This is because these plastic substrates have an imide bond, a benzene ring, or the like in the molecule, so that functional groups can be easily introduced by ozone.

例えば、プラスチック基板にポリイミド系フィルムを用いる例で説明すると、ポリイミド系フィルムの表面にはイミド化が不十分な未硬化物が残留している。このポリイミド系フィルムの表面に残留する未硬化物は、ポリイミド系フィルムの脆弱層となり、金属膜とポリイミド系フィルムの密着性を低下させる。そこで、オゾン及び酸素を含むマイクロバブルを含む処理液で処理することによってこの未硬化物を分解除去することができる上、当該未硬化物が除去された表面のポリイミド分子に酸素原子等を導入することができる。   For example, in an example in which a polyimide film is used for a plastic substrate, an uncured material with insufficient imidization remains on the surface of the polyimide film. The uncured material remaining on the surface of the polyimide film becomes a fragile layer of the polyimide film and reduces the adhesion between the metal film and the polyimide film. Therefore, this uncured product can be decomposed and removed by processing with a treatment liquid containing microbubbles containing ozone and oxygen, and oxygen atoms are introduced into the polyimide molecules on the surface from which the uncured product has been removed. be able to.

更に、ポリイミド分子のイミド結合がマイクロバブルのオゾンや酸素と反応し、これにより金属膜との結合に寄与するカルボキシル基等の官能基も生じる。また、通常市販されているポリイミド系フィルムには、ジメチルアセトアミド等の有機溶剤や酢酸等の触媒などが数百ppm程度含まれているが、上記の処理液によってこれらの不純物を分解して除去することが可能となる。なお、プラスチック基板の表面に未硬化物のオリゴマーが残留している場合であっても、上記処理液による表面処理で除去できるので、金属膜との密着性の向上が期待できる。   Furthermore, the imide bond of the polyimide molecule reacts with ozone and oxygen in the microbubbles, thereby generating a functional group such as a carboxyl group that contributes to the bond with the metal film. In addition, a commercially available polyimide film contains about several hundred ppm of an organic solvent such as dimethylacetamide and a catalyst such as acetic acid. The impurities are decomposed and removed by the above treatment liquid. It becomes possible. Even when an uncured oligomer remains on the surface of the plastic substrate, it can be removed by the surface treatment with the treatment liquid, so that an improvement in adhesion to the metal film can be expected.

上記の処理液による表面処理後は、プラスチック基板を過熱水蒸気に晒す処理を施すことが望ましい。これにより、プラスチック基板の洗浄と乾燥とを同時に行うことができる。すなわち、上記マイクロバブルを含む処理液による処理と過熱水蒸気による処理とを併用することで、プラスチック基板の清浄度をより一層向上させることができるので、より欠陥の少ない金属被膜を有する金属張積層基板を作製することが可能となる。   After the surface treatment with the above treatment liquid, it is desirable to perform a treatment of exposing the plastic substrate to superheated steam. Thereby, washing | cleaning and drying of a plastic substrate can be performed simultaneously. That is, since the cleanliness of the plastic substrate can be further improved by using both the treatment with the treatment liquid containing the microbubbles and the treatment with superheated steam, the metal-clad laminate having a metal film with fewer defects Can be produced.

上記のプラスチック基板の処理に使用する過熱水蒸気の温度は、200℃以上500℃以下が好ましい。この温度が200℃未満ではプラスチック基板を良好に洗浄することが期待できず、逆に500℃を超えるとプラスチック基板が変形するおそれがあるので望ましくない。比較的高い耐熱温度を有するポリイミド系フィルムを用いる場合でも、500℃を超える過熱水蒸気に晒されるとポリイミド系フィルムが変形することがある。上記過熱水蒸気にプラスチック基板を晒す時間は5〜20分間が望ましい。この時間が5分未満では過熱水蒸気による洗浄の効果が十分に得られないことがあり、逆に20分を超えてもそれ以上効果が向上することは期待できないので経済的でない。上記過熱水蒸気にプラスチック基板を晒す際は、雰囲気ガスの酸素濃度に留意するのが好ましく、その酸素濃度を0.3体積%以下にすることが好ましい。   The temperature of the superheated steam used for processing the plastic substrate is preferably 200 ° C. or higher and 500 ° C. or lower. If this temperature is less than 200 ° C., it cannot be expected that the plastic substrate will be washed well. Conversely, if it exceeds 500 ° C., the plastic substrate may be deformed, which is undesirable. Even when a polyimide film having a relatively high heat resistance temperature is used, the polyimide film may be deformed when exposed to superheated steam exceeding 500 ° C. The time for exposing the plastic substrate to the superheated steam is preferably 5 to 20 minutes. If this time is less than 5 minutes, the effect of cleaning with superheated steam may not be sufficiently obtained, and conversely, if it exceeds 20 minutes, it cannot be expected that the effect will be further improved, which is not economical. When the plastic substrate is exposed to the superheated steam, it is preferable to pay attention to the oxygen concentration of the atmospheric gas, and the oxygen concentration is preferably 0.3% by volume or less.

過熱水蒸気にプラスチック基板を晒す方法としては、例えば処理容器内にプラスチック基板を装入し、この処理容器内に過熱水蒸気を導入すればよい。この場合の処理容器は、枚葉式のプラスチック基板をバッチ処理できるような密閉型の処理容器でも良いし、長尺プラスチック基板(長尺プラスチックフィルム)をロールツーロールで連続的に処理できるように、搬送経路の途中に処理容器を設けてもよい。後者の方法ではプラスチック基板が処理容器内を連続的に通過することになるので、処理容器に設けたプラスチック基板の入口及び出口から過熱水蒸気が漏れないように、これら入口及び出口にスリットを設けたり、プラスチック基板を両面から挟み込む一対のロールを設けたりするのが好ましい。これにより処理容器から漏れた過熱水蒸気が凝縮してプラスチック基板に付着するのを避けることができる。過熱水蒸気が導入されている時の処理容器内の雰囲気圧力は大気圧以上が保持されていればよく、処理容器はかかる圧力と温度に耐える構造にする必要がある。なお、過熱水蒸気は誘導加熱など公知の手段により製造することができる。   As a method for exposing the plastic substrate to the superheated steam, for example, the plastic substrate may be inserted into the processing container and the superheated steam may be introduced into the processing container. The processing container in this case may be a sealed processing container that can batch-process single-wafer type plastic substrates, or a long plastic substrate (long plastic film) can be continuously processed by roll-to-roll. A processing container may be provided in the middle of the conveyance path. In the latter method, since the plastic substrate continuously passes through the processing container, slits are provided at the inlet and the outlet so that the superheated steam does not leak from the inlet and outlet of the plastic substrate provided in the processing container. It is preferable to provide a pair of rolls that sandwich the plastic substrate from both sides. Thereby, it is possible to avoid the superheated steam leaking from the processing container from condensing and adhering to the plastic substrate. The atmospheric pressure in the processing container when superheated steam is introduced is only required to be maintained at atmospheric pressure or higher, and the processing container needs to have a structure that can withstand such pressure and temperature. The superheated steam can be produced by a known means such as induction heating.

上記の方法で表面処理が施されたプラスチック基板に対して必要に応じて発塵のない環境下で液状の付着成分を乾燥させる処理を行った後、その片面又は両面に接着剤を介さずに乾式めっき法で金属膜を成膜する。これにより金属張積層基板を作製することができる。この金属張積層基板の一例である銅張積層基板(プラスチック銅積層体)は、プラスチック基板の表面に先ず乾式めっき法で下地金属層を形成した後、該下地金属層の上に銅被覆層を形成することで作製される。乾式めっき法ではプラスチック基板の表面に金属膜を直接成膜できるので、プラスチック基板と下地金属層との間に接着剤を介在させる必要はない。   After performing the treatment to dry the liquid adhering component in a dust-free environment as necessary on the plastic substrate surface-treated by the above method, without using an adhesive on one or both sides A metal film is formed by dry plating. Thereby, a metal-clad laminated substrate can be produced. A copper-clad laminate (plastic copper laminate), which is an example of this metal-clad laminate, is formed by first forming a base metal layer on the surface of the plastic substrate by a dry plating method, and then forming a copper coating layer on the base metal layer. It is produced by forming. In the dry plating method, since a metal film can be directly formed on the surface of the plastic substrate, it is not necessary to interpose an adhesive between the plastic substrate and the base metal layer.

特に、上記した本発明の一具体例の表面処理方法により処理されたプラスチック基板は表面が清浄化されている上、金属膜との密着性の向上に寄与する官能基が導入されているので、例えばスパッタリング法で乾式成膜すると、プラスチック基板の表面に下地金属層として堆積するスパッタ粒子の原子と当該プラスチック基板とがより強固に結合するので、結果的にプラスチック基板と金属膜との密着性が向上する。上記の下地金属層は、例えば膜厚3〜40nmであってニッケルの割合が50〜95質量%のニッケル系合金からなり、上記銅被膜層は例えば膜厚10nm〜35μmの銅から成る。これら下地金属層及びその上の被膜層の組成や膜厚を変更することで、プラスチック銅積層体以外の金属張層積層板を作製することができる。下地金属層は一般的にスパッタリング法、蒸着法等の公知の真空成膜法による乾式めっき法で成膜されるため、例えば所定の合金組成を有する下地金属層を成膜する場合は、その合金組成を有する合金ターゲットを用いてスパッタリングすればよい。   In particular, since the surface of the plastic substrate treated by the surface treatment method of one specific example of the present invention described above is cleaned, a functional group that contributes to improving the adhesion with the metal film is introduced. For example, when a dry film is formed by a sputtering method, atoms of sputtered particles deposited as a base metal layer on the surface of the plastic substrate and the plastic substrate are more firmly bonded, and as a result, the adhesion between the plastic substrate and the metal film is improved. improves. The base metal layer is made of, for example, a nickel-based alloy having a thickness of 3 to 40 nm and a nickel ratio of 50 to 95 mass%, and the copper coating layer is made of copper having a thickness of 10 nm to 35 μm, for example. By changing the composition and film thickness of the underlying metal layer and the coating layer thereon, a metal-clad laminate other than the plastic copper laminate can be produced. Since the base metal layer is generally formed by a dry plating method using a known vacuum film formation method such as a sputtering method or a vapor deposition method, for example, when forming a base metal layer having a predetermined alloy composition, the alloy Sputtering may be performed using an alloy target having a composition.

上記の下地金属層の上に形成する銅被膜層は、スパッタリング法、蒸着法等の公知の真空成膜方法からなる乾式めっき法や電気めっき法などの湿式めっき法により成膜することができる。これら乾式めっき法及び湿式めっき法を併用してもよく、例えば下地金属層の表面に乾式めっき法で銅薄膜層を形成し、この銅薄膜層の上に更に電気めっき法で銅厚膜層を成膜することができる。電気めっき法は乾式めっき法より成膜速度が速いので全体としての成膜時間を短縮することができる。このようにして作製した金属張積層基板を前述したサブトラクティブ法やセミアディテブ法でパターニング加工することで配線回路基板を作製することができる。   The copper coating layer formed on the base metal layer can be formed by a wet plating method such as a dry plating method or an electroplating method, which is a known vacuum film formation method such as a sputtering method or a vapor deposition method. These dry plating methods and wet plating methods may be used in combination. For example, a copper thin film layer is formed on the surface of the underlying metal layer by a dry plating method, and a copper thick film layer is further formed on the copper thin film layer by an electroplating method. A film can be formed. Since the electroplating method has a higher film formation rate than the dry plating method, the entire film formation time can be shortened. A printed circuit board can be produced by patterning the metal-clad laminate produced in this way by the subtractive method or semi-additive method described above.

厚さ38μmのポリイミドフィルム(東レ・デユポン社製、製品名「カプトン150EN」)から縦12cm×横12cmのフィルム基板を9枚切り出し、マイクロバルブを含む25℃の処理液に60秒浸漬させる処理、及び超音波振動がかけられた25℃の純水に60秒浸漬させる処理で各々3枚ずつ処理し、残る3枚にはこれらの処理を施さなかった。なお、上記のマイクロバルブを含む処理液は、導電率0.1μS/cmの純水に、オゾン濃度5体積%の酸素ガスを旋回型ノズル(ナノプラネット社製、型番M2−LM/SUS)を用いて吹き込むことで生成した。この生成した処理液に含まれるマイクロバブルの直径をレーザー光散乱式の粒度分布測定装置(Sympatec社製レーザー回折式粒度分布測定装置HELOS&RODOS)を用いて測定したところメジアン値で15μmであった。   9 pieces of 12 cm long x 12 cm wide film substrates are cut out from a 38 μm thick polyimide film (product name “Kapton 150EN” manufactured by Toray Deyupon Co., Ltd.) and immersed in a treatment liquid at 25 ° C. containing a microvalve for 60 seconds. In addition, each of the three sheets was treated by immersing in pure water at 25 ° C. subjected to ultrasonic vibration for 60 seconds, and the remaining three sheets were not subjected to these treatments. In addition, the treatment liquid including the above-described microvalve is a pure water having an electrical conductivity of 0.1 μS / cm and oxygen gas having an ozone concentration of 5% by volume using a swivel nozzle (manufactured by Nano Planet, model number M2-LM / SUS). Generated by using and blowing. The diameter of the microbubbles contained in the generated treatment liquid was measured using a laser light scattering particle size distribution measuring device (laser diffraction particle size distribution measuring device HELOS & RODOS manufactured by Sympatec), and the median value was 15 μm.

次に、上記の9枚のフィルム基板の各々の片面側に、第1層目として7質量%Cr−Ni合金ターゲット(住友金属鉱山株式会社製)を用いて直流スパッタリング法により7質量%Cr−Ni合金からなる下地金属層を成膜した。これら成膜後の9枚のうち、表面処理が異なるものを1枚ずつ3枚抜き出して透過電子顕微鏡(TEM:日立製作所株式会社製)を用いて金属層の層厚を測定したところ全て10nmであった。次に、残る6枚の各々に対して第2層目としてCuターゲット(住友金属鉱山株式会社製)を用いて直流スパッタリング法により膜厚8μmの銅被膜層を成膜した。このようにして表面処理が異なる試料1〜3の金属張積層基板(銅張積層基板)を各試料2枚ずつ作製した。   Next, on one side of each of the above nine film substrates, a 7% by mass Cr— by a DC sputtering method using a 7% by mass Cr—Ni alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.) as the first layer. A base metal layer made of a Ni alloy was formed. Of these nine films after film formation, three sheets with different surface treatments were extracted one by one and the thickness of the metal layer was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.). there were. Next, a copper coating layer having a thickness of 8 μm was formed on each of the remaining six sheets by a direct current sputtering method using a Cu target (manufactured by Sumitomo Metal Mining Co., Ltd.) as a second layer. Thus, two samples of metal-clad laminates (copper-clad laminates) of Samples 1 to 3 having different surface treatments were produced.

得られた各試料の銅張積層基板のうちの一方に対して、銅被膜層の上にフォトレジストで20μmピッチ(線幅10μm、隣接する線間の間隔10μm)の回路パターンを形成し、塩化第二鉄の水溶液でエッチング処理を行い、上記回路パターンを有する銅からなる配線が形成された3枚の試験片を作製した。これら3枚の試験片に対して外観観察を行って断線している箇所、配線欠けが生じている箇所、10μmの線幅から銅層がはみ出している箇所、良好にエッチングされずに銅層が配線間をまたいで残留する短絡箇所の個数をそれぞれカウントした。更に、各試料の銅張積層基板のうちのもう一方に対して、金属膜に線幅1mmのライン状の回路パターンが形成されるように該金属膜をエッチング加工し、その室温での密着強度をIPC−TM−650、Number:2.4.9、Revision:E、Method:Aに従い測定した。その測定結果を上記の不具合箇所の数と共に下記表1に示す。   A circuit pattern having a pitch of 20 μm (line width: 10 μm, interval between adjacent lines: 10 μm) is formed on the copper coating layer with a photoresist on one of the obtained copper-clad laminates of each sample, Etching was carried out with an aqueous solution of ferric iron to produce three test pieces on which wirings made of copper having the circuit pattern were formed. Locations where the appearance of these three test specimens is broken, locations where the wiring is missing, locations where the copper layer protrudes from the line width of 10 μm, and the copper layer is not etched well. The number of short-circuited portions remaining across the wirings was counted. Further, the metal film is etched so that a line-shaped circuit pattern having a line width of 1 mm is formed on the other of the copper-clad laminated substrates of each sample, and the adhesion strength at room temperature is obtained. Was measured according to IPC-TM-650, Number: 2.4.9, Revision: E, Method: A. The measurement results are shown in Table 1 below together with the number of the above-mentioned defective portions.

Figure 2018080374
Figure 2018080374

上記表1から分かるように、マイクロバブルを含む処理液で処理したフィルム基板を用いて作製した銅張積層基板及びこれをパターニング加工して得た回路基板は、超音波洗浄で処理した場合や未処理の場合に比べて全ての検査項目において優れていた。その理由は、超音波洗浄は未処理の場合に比べて不具合箇所が減っているのでフィルムに付着している異物はある程度除去できると考えられるが、超音波洗浄による処理や未処理の場合は、ポリイミドフィルムの分子に密着性の向上に寄与する官能基は導入できないことやポリイミドフィルム表面の脆弱層の除去が不十分になるので、マイクロバブルを含む処理液で処理した場合に比べて特に密着強度が顕著に低下したと考えられる。


As can be seen from Table 1 above, the copper-clad laminate produced using the film substrate treated with the treatment liquid containing microbubbles and the circuit board obtained by patterning the same were treated with ultrasonic cleaning or not. Compared to the case of processing, all inspection items were superior. The reason is that ultrasonic cleaning is less likely to remove foreign matter compared to the case of untreated, so it can be removed to some extent, but in the case of ultrasonic cleaning or untreated, The functional group that contributes to improving adhesion to the polyimide film molecules cannot be introduced and the fragile layer on the surface of the polyimide film is not sufficiently removed, so that the adhesion strength is particularly greater than when treated with a treatment liquid containing microbubbles. Is considered to have decreased significantly.


Claims (7)

オゾン及び酸素を両方とも含むマイクロバブルを含んだ処理液にプラスチック基板を接触させることを特徴とするプラスチック基板の表面処理方法。   A plastic substrate surface treatment method comprising contacting a plastic substrate with a treatment liquid containing microbubbles containing both ozone and oxygen. 前記処理液が水であることを特徴とする、請求項1に記載のプラスチック基板の表面処理方法。   The surface treatment method for a plastic substrate according to claim 1, wherein the treatment liquid is water. 請求項1又は2に記載の表面処理方法で処理されたプラスチック基板の表面に接着剤を介さずに金属膜を成膜することを特徴とする金属張積層基板の製造方法。   A method for producing a metal-clad laminate, comprising forming a metal film on the surface of a plastic substrate treated by the surface treatment method according to claim 1 without using an adhesive. 前記金属膜の成膜が、前記プラスチック基板の表面に乾式めっき法で下地金属層を成膜する工程と、該下地金属層の表面に金属被膜層を成膜する工程とからなることを特徴とする、請求項3に記載の金属張積層基板の製造方法。   The metal film is formed by a step of forming a base metal layer on the surface of the plastic substrate by a dry plating method and a step of forming a metal film layer on the surface of the base metal layer. The manufacturing method of the metal-clad laminated substrate of Claim 3. 前記金属被膜層を成膜する工程が、乾式めっき法で金属薄膜層を成膜する工程と、該金属薄膜層の表面に湿式めっき法で金属厚膜層を成膜する工程とからなることを特徴とする、請求項4に記載の金属張積層基板の製造方法。   The step of forming the metal coating layer includes a step of forming a metal thin film layer by a dry plating method and a step of forming a metal thick film layer by a wet plating method on the surface of the metal thin film layer. The method for producing a metal-clad laminated substrate according to claim 4, wherein the method is characterized in that: 前記金属被膜層が銅からなることを特徴とする、請求項4又は5に記載の金属張積層基板の製造方法。   6. The method for producing a metal-clad laminate according to claim 4, wherein the metal coating layer is made of copper. 請求項3〜6のいずれか1項に記載の製造方法で作製した金属張積層基板の前記金属膜をパターニング加工することで配線回路を形成することを特徴とする配線回路基板の製造方法。


A method for manufacturing a wired circuit board, wherein a wiring circuit is formed by patterning the metal film of a metal-clad laminated substrate produced by the manufacturing method according to claim 3.


JP2016225012A 2016-11-18 2016-11-18 Surface treatment method for plastic substrates and manufacturing method for metal-clad laminated substrates using them Active JP6870292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225012A JP6870292B2 (en) 2016-11-18 2016-11-18 Surface treatment method for plastic substrates and manufacturing method for metal-clad laminated substrates using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225012A JP6870292B2 (en) 2016-11-18 2016-11-18 Surface treatment method for plastic substrates and manufacturing method for metal-clad laminated substrates using them

Publications (2)

Publication Number Publication Date
JP2018080374A true JP2018080374A (en) 2018-05-24
JP6870292B2 JP6870292B2 (en) 2021-05-12

Family

ID=62197994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225012A Active JP6870292B2 (en) 2016-11-18 2016-11-18 Surface treatment method for plastic substrates and manufacturing method for metal-clad laminated substrates using them

Country Status (1)

Country Link
JP (1) JP6870292B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148995A (en) * 2007-12-21 2009-07-09 Sumitomo Metal Mining Co Ltd Metal-clad polyethylene naphthalate substrate and method for manufacturing it
JP2010095737A (en) * 2008-10-14 2010-04-30 Kurita Water Ind Ltd Oxidation device for surface of solid organic matter
JP2011127152A (en) * 2009-12-16 2011-06-30 Kakihara Kogyo Kk Electroless plating method to polystyrene-based resin
JP2013166107A (en) * 2012-02-15 2013-08-29 Nakajima Kogyo:Kk System for producing water containing superfine high pressure ozone gas bubbles and method for treating polymer material surface by using produced water containing superfine high pressure ozone gas bubbles
JP2013189667A (en) * 2012-03-13 2013-09-26 Kanto Gakuin Electroless plating method, and metallic film forming method
JP2014214365A (en) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 Method for surface-treating resin film, method for depositing film on resin film and method for manufacturing metalized resin film substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148995A (en) * 2007-12-21 2009-07-09 Sumitomo Metal Mining Co Ltd Metal-clad polyethylene naphthalate substrate and method for manufacturing it
JP2010095737A (en) * 2008-10-14 2010-04-30 Kurita Water Ind Ltd Oxidation device for surface of solid organic matter
JP2011127152A (en) * 2009-12-16 2011-06-30 Kakihara Kogyo Kk Electroless plating method to polystyrene-based resin
JP2013166107A (en) * 2012-02-15 2013-08-29 Nakajima Kogyo:Kk System for producing water containing superfine high pressure ozone gas bubbles and method for treating polymer material surface by using produced water containing superfine high pressure ozone gas bubbles
JP2013189667A (en) * 2012-03-13 2013-09-26 Kanto Gakuin Electroless plating method, and metallic film forming method
JP2014214365A (en) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 Method for surface-treating resin film, method for depositing film on resin film and method for manufacturing metalized resin film substrate

Also Published As

Publication number Publication date
JP6870292B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
KR102032624B1 (en) Preparation method of polyamide glue free flexible printed circuit board
JPH07299883A (en) Metal-clad polyimide film containing hydrocarbyl tin compound and its production
JPH0667596B2 (en) Interlayer adhesion method for polymer laminated structure
JP2005116674A (en) Conductive sheet, product using it and manufacturing method for product
WO2009034764A1 (en) Process for producing printed wiring board and printed wiring board produced by the production process
Ohkubo et al. Open-air-type Ar+ H2O plasma treatment of polytetrafluoroethylene for improving Ag/PTFE adhesion strength: application to highly adhesive Ag direct wiring patterns
WO2014132961A1 (en) Method of producing conductive coating film, and conductive coating film
TWI439500B (en) Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
JP6870292B2 (en) Surface treatment method for plastic substrates and manufacturing method for metal-clad laminated substrates using them
JP2006054357A (en) Laminate for flexible printed-wiring board, and its manufacturing method
WO2009008273A1 (en) Process for producing printed wiring board and printed wiring board produced by the production process
US20060131700A1 (en) Flexible electronic circuit articles and methods of making thereof
JP5291008B2 (en) Method for manufacturing circuit wiring board
TW200913031A (en) Method for the treatment of flat substrates and use of the method
JP4900036B2 (en) Resin substrate ozone solution processing method and wiring substrate manufacturing method
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
JP2004128365A (en) Flexible copper clad circuit board
JP2009283528A (en) Polyimide base printed wiring board and method of manufacturing the same
JP2015035331A (en) Method for producing conductive coating film and conductive coating film
JP2006303206A (en) Substrate for flexible print circuit
WO2020050338A1 (en) Multilayer body
JP3562699B2 (en) Surface modification method for polyimide resin
JP2003340964A (en) Copper-clad laminate board
CN107211542A (en) The manufacture method of desmearing processing method and multilayer printed-wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150