JP2010095737A - Oxidation device for surface of solid organic matter - Google Patents

Oxidation device for surface of solid organic matter Download PDF

Info

Publication number
JP2010095737A
JP2010095737A JP2008265559A JP2008265559A JP2010095737A JP 2010095737 A JP2010095737 A JP 2010095737A JP 2008265559 A JP2008265559 A JP 2008265559A JP 2008265559 A JP2008265559 A JP 2008265559A JP 2010095737 A JP2010095737 A JP 2010095737A
Authority
JP
Japan
Prior art keywords
ozone
solid organic
ozone water
organic matter
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008265559A
Other languages
Japanese (ja)
Other versions
JP5430114B2 (en
Inventor
Mamoru Iwasaki
守 岩崎
Hiroshi Morita
博志 森田
Hiroshi Yanagimoto
博 柳本
Takeshi Bessho
毅 別所
Nobuki Shinohara
伸樹 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Toyota Motor Corp
Original Assignee
Kurita Water Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Toyota Motor Corp filed Critical Kurita Water Industries Ltd
Priority to JP2008265559A priority Critical patent/JP5430114B2/en
Publication of JP2010095737A publication Critical patent/JP2010095737A/en
Application granted granted Critical
Publication of JP5430114B2 publication Critical patent/JP5430114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation device for the surfaces of solid organic matters using ozone water, which attains the acceleration of ozone oxidation and the suppression of ozone decomposition in combination. <P>SOLUTION: The device is provided with: a pretreatment tank 1 packed with an ozone oxidation accelerator; and an ozone treatment apparatus 2 having an ozone water treatment tank 3. The pretreatment tank 1 is filled with an ozone oxidation accelerator Q, and workpieces P are held by a plurality of fixing holders 4 capable of reciprocating between the pretreatment tank 1 and the ozone water treatment tank 3 by a driving apparatus not shown in the figure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、合成樹脂等の固体有機物表面の酸化装置に関し、特にオゾン水を用いた促進酸化法によって、オゾンの自己分解による浪費を抑えながら、かつ効率的に固体有機物表面を酸化することの可能な酸化装置に関する。   The present invention relates to an apparatus for oxidizing a surface of a solid organic material such as a synthetic resin, and in particular, by an accelerated oxidation method using ozone water, it is possible to efficiently oxidize the surface of a solid organic material while suppressing waste due to ozone self-decomposition. The present invention relates to an oxidizer.

プラスチック成形品等の固体有機物の無電解めっきの前処理には、硫酸・クロム酸による粗面化処理が行われている。しかしながら、硫酸・クロム酸による粗面化処理を行った後の排水は、有害なクロムを含んでいる。このためクロムを含む排水は、還元、中和、凝集沈殿等の排水処理が必要となる上に、沈殿物もクロムを含むために容易には廃棄できないという問題点があった。   A roughening treatment with sulfuric acid / chromic acid is performed as a pretreatment for the electroless plating of a solid organic material such as a plastic molded article. However, the waste water after the roughening treatment with sulfuric acid / chromic acid contains harmful chromium. For this reason, the wastewater containing chromium has a problem that wastewater treatment such as reduction, neutralization, and coagulation precipitation is required, and the precipitate also contains chromium and cannot be easily discarded.

そこで、クロム酸による粗面化処理の代わりに、オゾンを用いてプラスチック成形品の表面を酸化することで改質する方法が種々検討されている。このオゾンを用いた酸化方法としては、処理対象となる固体有機物によって、オゾン自身を酸化剤として有効に作用させる方法と、オゾンの分解過程で発生する酸化力の高いヒドロキシラジカル(・OH)を始めとするラジカルを酸化剤として有効に作用させる方法とが知られている。   Therefore, various methods for modifying the surface of the plastic molded article by using ozone instead of the roughening treatment with chromic acid have been studied. Oxidation methods using ozone include a method in which ozone itself acts effectively as an oxidizing agent depending on the solid organic matter to be treated, and a hydroxyl radical (.OH) that has a high oxidizing power generated during the ozone decomposition process. And a method for effectively acting a radical as an oxidizing agent.

これらの方法のうち、オゾン自身を酸化剤として有効に作用させる方法では、オゾンの自己分解を抑制し、反応場でのオゾン濃度を高く維持することが酸化反応を促進するには効果的である。具体的には、オゾン濃度を高く維持するためにオゾン水の水素イオン濃度を高め、酸性領域に維持することが行われている。これは、オゾンの自己分解に対してOHイオンやヒドロキシラジカル(・OH)が、オゾンの自己分解を促進する効果を有しているためである。 Among these methods, in the method in which ozone itself acts effectively as an oxidizing agent, it is effective to suppress the self-decomposition of ozone and to keep the ozone concentration in the reaction field high to promote the oxidation reaction. . Specifically, in order to maintain the ozone concentration high, the hydrogen ion concentration of ozone water is increased and maintained in an acidic region. This is because OH ions and hydroxy radicals (.OH) have an effect of promoting the self-decomposition of ozone against the self-decomposition of ozone.

そこで、OHイオンやヒドロキシラジカル(・OH)を抑制することを目的として、オゾンをあらかじめ溶解させた炭酸水素化合物水溶液を用いてプラスチック成形品に酸化処理する方法が提案されている(特許文献1参照)。 Therefore, for the purpose of suppressing OH ions and hydroxy radicals (.OH), a method of oxidizing a plastic molded article using an aqueous hydrogen carbonate compound solution in which ozone is dissolved in advance has been proposed (Patent Document 1). reference).

また、めっき素材を、オゾンを含む第1溶液に接触させた後、アルカリ成分を含む第2溶液と接触させる前処理方法が提案されている(特許文献2,3参照)。   Moreover, after making a plating raw material contact the 1st solution containing ozone, the pre-processing method of making it contact with the 2nd solution containing an alkaline component is proposed (refer patent document 2, 3).

さらに、めっき素材をオゾン溶液に接触させながら紫外線照射処理を行う前処理方法も提案されている(特許文献4,5参照)。
特開2001−131759号公報 特開2004−131805号公報 特開2005−68497号公報 特開2004−315894号公報 特開2005−68495号公報
Furthermore, a pretreatment method has been proposed in which an ultraviolet irradiation treatment is performed while bringing a plating material into contact with an ozone solution (see Patent Documents 4 and 5).
JP 2001-131759 A JP 2004-131805 A JP 2005-68497 A JP 2004-315894 A JP 2005-68495 A

しかしながら、上記特許文献1に開示されたオゾン水を用いたプラスチック成形品表面の酸化処理方法は、炭酸水素化合物水溶液によりラジカルを捕捉することで、オゾンの自己分解を抑制するものであるため、ラジカルを介したオゾンの連鎖分解反応が起こりにくく、プラスチック成形品を効率よく酸化できないという問題がある。   However, the method of oxidizing the surface of a plastic molded article using ozone water disclosed in Patent Document 1 suppresses the self-decomposition of ozone by capturing radicals with an aqueous hydrogen carbonate compound solution. There is a problem that the ozone chain decomposition reaction is difficult to occur, and the plastic molded product cannot be oxidized efficiently.

一方、オゾンに起因するヒドロキシラジカル(・OH)を始めとするラジカルを酸化剤として有効に作用させる方法においても、長期間効果を持続するためには、オゾンの自己分解を抑制するのが好ましいが、オゾンの自己分解を抑制することは、ラジカルの発生も抑制することになるので、固体有機物表面の酸化の点で必ずしも効果的でない。   On the other hand, it is preferable to suppress the self-decomposition of ozone in order to maintain the effect for a long period of time even in a method in which radicals such as hydroxy radicals (.OH) caused by ozone effectively act as an oxidizing agent. Suppressing the self-decomposition of ozone also suppresses the generation of radicals, and is therefore not necessarily effective in terms of oxidation of the solid organic matter surface.

また、特許文献2及び3に開示されためっき素材の前処理方法では、オゾンを含む第1溶液に接触させた後、アルカリ成分を含む第2溶液と接触させているため、アルカリ成分によるめっき素材表面の脆化層除去の効果は奏するもののオゾン酸化の促進は十分でない場合がある。   Further, in the plating material pretreatment methods disclosed in Patent Documents 2 and 3, since the contact is made with the first solution containing ozone and then the contact with the second solution containing the alkali component, the plating material made of the alkali component is used. Although there is an effect of removing the embrittlement layer on the surface, the promotion of ozone oxidation may not be sufficient.

さらに、特許文献4及び5に開示されためっき素材の前処理方法では、めっき素材をオゾン溶液に接触させながら紫外線照射処理を行っているため、オゾンに起因するヒドロキシラジカル(・OH)を効率的に生成して、めっき素材表面を酸化することができるが、長時間効果を持続するのが困難であり、用途によっては適しない場合がある。   Furthermore, in the pretreatment method of the plating material disclosed in Patent Documents 4 and 5, since the ultraviolet ray irradiation treatment is performed while the plating material is in contact with the ozone solution, hydroxy radicals (.OH) caused by ozone are efficiently removed. However, it may be difficult to maintain the effect for a long time and may not be suitable for some applications.

このように従来は、オゾン酸化の促進とオゾンの分解抑制の両方を兼ね備えたオゾン水を用いた固体有機物表面の酸化装置はなかった。   Thus, conventionally, there has been no oxidation apparatus for the surface of a solid organic substance using ozone water that has both the promotion of ozone oxidation and the suppression of decomposition of ozone.

本発明は、上記従来の課題を解決し、オゾン酸化の促進とオゾンの分解抑制との両方を兼ね備えたオゾン水を用いた固体有機物表面の酸化装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems and to provide a solid organic matter surface oxidation apparatus using ozone water that has both the promotion of ozone oxidation and the suppression of decomposition of ozone.

上記課題を解決するために、本発明は、固体有機物表面をオゾン酸化促進剤で濡らす前処理手段と、オゾン水処理槽を有するオゾン処理装置とを備え、前記固体有機物を前記前処理手段で処理した後、オゾン水処理槽に浸漬することを特徴とする固体有機物表面の酸化装置を提供する(請求項1)。   In order to solve the above problems, the present invention comprises a pretreatment means for wetting the surface of a solid organic substance with an ozone oxidation accelerator, and an ozone treatment apparatus having an ozone water treatment tank, and the solid organic matter is treated with the pretreatment means. Then, a solid organic matter surface oxidizing apparatus is provided, which is immersed in an ozone water treatment tank (claim 1).

上記発明(請求項1)によれば、前処理手段において、固体有機物表面をオゾン酸化促進剤で濡らし、これをオゾン水処理槽に浸漬することで、オソンの自己分解を促進するオゾン酸化促進剤は固体有機物の表面にのみ付着しているため、オゾン水処理槽内の溶媒に存在するオゾンの過剰な自己分解を抑制し、反応槽内のオゾン水のオゾン濃度を充分な値に維持することができる。その一方で、オゾン酸化促進剤により、固体有機物の表面近傍では、活発なオゾンの自己分解反応が開始され、固体有機物の表面で酸化に有効なヒドロキシラジカルが発生するため、固体有機物表面の酸化を効率的に行なうことができる。   According to the above invention (invention 1), in the pretreatment means, the surface of the solid organic substance is wetted with an ozone oxidation accelerator and is immersed in an ozone water treatment tank so as to promote the self-decomposition of the ozone. Is attached only to the surface of the solid organic matter, so that excessive self-decomposition of ozone present in the solvent in the ozone water treatment tank is suppressed, and the ozone concentration of the ozone water in the reaction tank is maintained at a sufficient value. Can do. On the other hand, the ozone oxidation promoter starts active ozone self-decomposition reaction near the surface of the solid organic matter and generates hydroxyl radicals effective for oxidation on the surface of the solid organic matter. It can be done efficiently.

上記発明(請求項1)においては、前記オゾン酸化促進剤が、界面活性剤溶液、過酸化水素溶液及びアルカリ溶液からなる群より選ばれる少なくとも1種であるのが好ましい(請求項2)。   In the said invention (invention 1), it is preferable that the said ozone oxidation promoter is at least 1 sort (s) chosen from the group which consists of surfactant solution, hydrogen peroxide solution, and alkaline solution (invention 2).

上記発明(請求項2)によれば、これらの溶液のヒドロキシイオンの効果によって、固体有機物の表面近傍で、活発なオゾンの自己分解反応を開始することができる。   According to the said invention (invention 2), the active self-decomposition reaction of ozone can be started in the surface vicinity of solid organic substance by the effect of the hydroxy ion of these solutions.

上記発明(請求項1,2)においては、前記前処理手段として、前記オゾン酸化促進剤溶液の浸漬槽、又は前記オゾン酸化促進剤溶液の噴霧装置を用いることができる(請求項3)。かかる発明(請求項3)によれば、固体有機物の表面のみを効果的にオゾン酸化促進剤溶液で濡らすことができる。   In the said invention (invention 1,2), the immersion tank of the said ozone oxidation accelerator solution or the spray apparatus of the said ozone oxidation accelerator solution can be used as the said pre-processing means (invention 3). According to this invention (invention 3), only the surface of the solid organic substance can be effectively wetted with the ozone oxidation accelerator solution.

上記発明(請求項1〜3)においては、前記オゾン処理装置として、オゾン発生装置と、このオゾン発生装置で発生したオゾンガスを原水に溶解させるとオゾン溶解装置と、このオゾン溶解装置で製造されたオゾン水を前記オゾン水処理槽に供給する供給手段とを有するものを用いることができる(請求項4)。   In the said invention (Invention 1-3), when the ozone generator and the ozone gas which generate | occur | produced in this ozone generator were dissolved in raw water as said ozone treatment apparatus, it was manufactured with this ozone dissolver and this ozone dissolver What has a supply means which supplies ozone water to the said ozone water processing tank can be used (Claim 4).

上記発明(請求項4)によれば、高濃度のオゾン水をオゾン水処理槽に供給することができるので、固体有機物の表面の酸化を効率的に行うことができ、しかもかかる効果を長時間保持することができる。   According to the above invention (invention 4), since high-concentration ozone water can be supplied to the ozone water treatment tank, the surface of the solid organic matter can be efficiently oxidized, and such an effect can be obtained for a long time. Can be held.

上記発明(請求項4)においては、前記オゾン溶解装置の前段又は後段に水素イオン濃度調整手段を有するのが好ましい(請求項5)。かかる発明(請求項5)によれば、製造したオゾン水におけるオゾンの自己分解を抑制し、オゾン濃度を長時間高い濃度に維持することができる。   In the said invention (invention 4), it is preferable to have a hydrogen ion concentration adjustment means in the front | former stage or back | latter stage of the said ozone dissolving apparatus (invention 5). According to this invention (invention 5), the self-decomposition of ozone in the produced ozone water can be suppressed, and the ozone concentration can be maintained at a high concentration for a long time.

さらに、上記発明(請求項4,5)においては、前記オゾン水処理槽にオゾン水排出機構が設けられており、前記オゾン水排出機構を経由して排出オゾン水が原水側に合流するのが好ましい(請求項6)。   Further, in the above inventions (inventions 4 and 5), the ozone water treatment tank is provided with an ozone water discharge mechanism, and the discharged ozone water joins the raw water side via the ozone water discharge mechanism. Preferred (claim 6).

上記発明(請求項6)によれば、オゾン水処理槽内のオゾン水を回収して再度オゾン水の原水として再利用することで、オゾン溶解装置においてオゾン水を効率よく製造することができる。   According to the said invention (invention 6), ozone water can be efficiently manufactured in an ozone dissolution apparatus by recovering ozone water in an ozone water treatment tank and reusing it as raw water of ozone water again.

上記発明(請求項1〜6)においては、前記オゾン水処理槽が撹拌手段を有しているのが好ましい(請求項7)。かかる発明(請求項7)によれば、固体有機物の表面ではオゾンの自己分解により局部的にオゾン濃度が低下するが、オゾン水処理槽内を撹拌手段により撹拌することで、固体有機物の表面近傍のオゾン水を入れ替え、高い濃度に維持することができ、オゾンの自己分解による酸化反応の減衰を抑制することができる。   In the said invention (invention 1-6), it is preferable that the said ozone water processing tank has a stirring means (invention 7). According to this invention (Invention 7), the ozone concentration locally decreases due to the self-decomposition of ozone on the surface of the solid organic matter, but the vicinity of the surface of the solid organic matter is obtained by stirring the inside of the ozone water treatment tank with the stirring means. The ozone water can be replaced and maintained at a high concentration, and the attenuation of the oxidation reaction due to the self-decomposition of ozone can be suppressed.

上記発明(請求項1〜7)においては、前記オゾン水処理槽に固体有機物表面の脱泡機構を有するのが好ましい(請求項8)。かかる発明(請求項8)によれば、オゾンの酸化過程で発生する気泡が固体有機物の表面に付着残存することによる被処理固体表面の不均一な酸化を防止することができる。   In the said invention (invention 1-7), it is preferable to have the defoaming mechanism of the solid organic substance surface in the said ozone water treatment tank (invention 8). According to this invention (invention 8), it is possible to prevent non-uniform oxidation of the surface of the solid to be treated due to the bubbles generated during the oxidation of ozone remaining on the surface of the solid organic matter.

上記発明(請求項8)においては、前記固体有機物表面の脱泡機構として、水流噴射手段、機械的振動手段及び超音波振動手段からなる群より選ばれる少なくとも1種を用いることができる(請求項9)。かかる発明(請求項9)によれば、固体有機物の表面に付着した気泡を簡単にかつ効率的に除去することができる。   In the above invention (invention 8), at least one selected from the group consisting of water jetting means, mechanical vibration means and ultrasonic vibration means can be used as the defoaming mechanism on the surface of the solid organic matter (invention). 9). According to this invention (invention 9), the bubbles adhering to the surface of the solid organic matter can be easily and efficiently removed.

本発明の固体有機物表面の酸化装置は、固体有機物表面をオゾン酸化促進剤で濡らす前処理手段と、オゾン水処理槽を有するオゾン処理装置とを備え、固体有機物を前処理手段で処理した後、オゾン水処理槽に浸漬するものであるため、前処理手段において、固体有機物表面をオゾン酸化促進剤で濡らし、これをオゾン水処理槽に浸漬することができる。これにより、オゾン水処理槽内のpHをオゾンの自己分解を抑制可能な範囲に維持可能な酸性とすることができるため、オゾン濃度を高く維持できる一方、固体有機物の表面を濡らしたオゾン酸化促進剤により、活発なオゾンの自己分解反応が開始され、固体有機物の表面で酸化に有効なヒドロキシラジカルが発生するため、固体有機物表面の酸化を効率的に行なうことができる。   The solid organic matter surface oxidation apparatus of the present invention comprises pretreatment means for wetting the solid organic matter surface with an ozone oxidation accelerator and an ozone treatment apparatus having an ozone water treatment tank, and after treating the solid organic matter with the pretreatment means, Since it is immersed in the ozone water treatment tank, the surface of the solid organic matter can be wetted with an ozone oxidation accelerator in the pretreatment means, and this can be immersed in the ozone water treatment tank. As a result, the pH in the ozone water treatment tank can be made acidic so that the self-decomposition of ozone can be suppressed, so that the ozone concentration can be kept high, while the oxidation of ozone that wets the surface of solid organic matter is accelerated. By virtue of the active agent, active ozone self-decomposition reaction is initiated, and hydroxyl radicals effective for oxidation are generated on the surface of the solid organic material, so that the surface of the solid organic material can be oxidized efficiently.

以下に図面を参照して本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態に係る固体有機物表面の酸化装置を示すフロー図である。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a flowchart showing an apparatus for oxidizing a solid organic matter surface according to an embodiment of the present invention.

図1において、固体有機物たる合成樹脂製のワークP表面の酸化装置は、前処理手段たるオゾン酸化促進剤Qで満たされた前処理槽1と、オゾン水処理槽3を有するオゾン処理装置2とを備える。   In FIG. 1, an oxidation apparatus for the surface of a workpiece P made of synthetic resin, which is a solid organic substance, includes a pretreatment tank 1 filled with an ozone oxidation accelerator Q as a pretreatment means, and an ozone treatment apparatus 2 having an ozone water treatment tank 3. Is provided.

複数のワークPは、前処理槽1内でそれぞれ固定用保持具4に保持されており、図示しない駆動装置により前処理槽1とオゾン水処理槽3との間を往復動可能となっている。   The plurality of workpieces P are respectively held by the fixing holder 4 in the pretreatment tank 1 and can reciprocate between the pretreatment tank 1 and the ozone water treatment tank 3 by a driving device (not shown). .

この複数の固定用保持具4は、後述するオゾン水処理槽3内でワークPが、隣接するワークPへのオゾン水の撹拌流れを阻害することのないように配列されている。   The plurality of fixing holders 4 are arranged in an ozone water treatment tank 3 to be described later so that the work P does not hinder the stirring flow of ozone water to the adjacent work P.

また、オゾン処理装置2は、空気中の酸素を濃縮するPSA式酸素濃縮装置5と、この酸素濃縮装置5で濃縮された酸素からオゾンを製造するオゾン製造装置6とを有し、このオゾン製造装置6で製造されたオゾンガス(O)は、後述する第1の供給管路7のエジェクタ12に供給される。 The ozone treatment apparatus 2 includes a PSA type oxygen concentrator 5 that concentrates oxygen in the air, and an ozone production apparatus 6 that produces ozone from oxygen concentrated in the oxygen concentrator 5. The ozone gas (O 3 ) produced by the device 6 is supplied to the ejector 12 of the first supply line 7 described later.

一方、第1の供給管路7には、水素イオン濃度調整手段としての酸添加装置9と、入口ポンプ11と、オゾン溶解装置たるエジェクタ12とが順次設けられており、第1の供給管路7は、このエジェクタ12の下流側で気液分離装置13に接続されている。原水Wは、第1の供給管路7を介してエジェクタ12に供給され、エジェクタ12にてオゾン製造装置6から供給されるオゾンを溶解したオゾン水が製造される。そして、この気液分離装置13には第2の供給管路8が接続さており、これらによりオゾン水W0の供給手段が構成されている。   On the other hand, an acid addition device 9 as a hydrogen ion concentration adjusting means, an inlet pump 11, and an ejector 12 as an ozone dissolving device are sequentially provided in the first supply pipeline 7, and the first supply pipeline 7 7 is connected to the gas-liquid separator 13 on the downstream side of the ejector 12. The raw water W is supplied to the ejector 12 via the first supply pipe 7, and ozone water in which ozone supplied from the ozone manufacturing apparatus 6 is dissolved is manufactured by the ejector 12. A second supply pipe 8 is connected to the gas-liquid separator 13, and these constitute a supply means for the ozone water W0.

また、気液分離装置13には、オゾンガス排出管14が接続されている。なお、15A、15Bはそれぞれ開閉バルブであり、23は排オゾンガス分解処理装置である。   In addition, an ozone gas discharge pipe 14 is connected to the gas-liquid separator 13. In addition, 15A and 15B are open / close valves, respectively, and 23 is an exhaust ozone gas decomposition treatment apparatus.

さらに、オゾン水処理槽3の上縁には、第1のオーバーフロー受部16と、第2のオーバーフロー受部17とが設けられていて、第1のオーバーフロー受部16に流入したオゾン水W1は、環流管路18を経て第1の供給管路7の酸添加装置9の上流側に環流され、これら第1のオーバーフロー受部16及び環流管路18によりオゾン水排出機構が構成される。   Furthermore, the upper edge of the ozone water treatment tank 3 is provided with a first overflow receiving part 16 and a second overflow receiving part 17, and the ozone water W1 flowing into the first overflow receiving part 16 is Then, the water is returned to the upstream side of the acid addition device 9 in the first supply line 7 through the reflux line 18, and the first overflow receiving portion 16 and the reflux line 18 constitute an ozone water discharge mechanism.

一方、第2のオーバーフロー受部17に流入したオゾン水W2は、循環管路19及び循環ポンプ20を経由して熱交換器21で熱交換された後、オゾン水処理槽3間を循環し、一部はブローする。   On the other hand, the ozone water W2 that has flowed into the second overflow receiver 17 is heat-exchanged by the heat exchanger 21 via the circulation line 19 and the circulation pump 20, and then circulates between the ozone water treatment tanks 3. Some blow.

また、オゾン水処理槽3には、その底部に、攪拌手段としてのインペラ22が回動可能に設けられているとともに、脱泡機構として、ワークPを振動させ得る機械的振動手段(図示せず)が設けられている。さらに、オゾン水処理槽3には、図示しないオゾン濃度計とpHセンサとが付設されている。   The ozone water treatment tank 3 is provided with a rotating impeller 22 as a stirring means at the bottom, and mechanical vibration means (not shown) that can vibrate the workpiece P as a defoaming mechanism. ) Is provided. Further, the ozone water treatment tank 3 is provided with an ozone concentration meter and a pH sensor (not shown).

上述したような装置において、前処理槽1に充填されるオゾン酸化促進剤Qとしては、ヒドロキシイオンが存するアルカリ溶液及び界面活性剤溶液を用いることができる。   In the apparatus as described above, as the ozone oxidation accelerator Q filled in the pretreatment tank 1, an alkaline solution and a surfactant solution in which hydroxy ions exist can be used.

上記アルカリとしては、例えば、NaOH、KOH、NaCO、KCO等が挙げられる。このアルカリ溶液は、pH7〜12で、オゾン水処理槽3に微量に混入してもオゾン水処理槽3のpHが容易に6を超えない程度の濃度に調整されたものであるのが好ましい。 As the alkali, for example, NaOH, KOH, Na 2 CO 3, K 2 CO 3 and the like. This alkaline solution preferably has a pH of 7 to 12 and is adjusted to a concentration such that the pH of the ozone water treatment tank 3 does not easily exceed 6, even if a small amount is mixed in the ozone water treatment tank 3.

上記界面活性剤としては、炭素数4〜12の飽和炭化水素骨格を有し、水溶液にした場合にアルカリ性を示す構造を持つものが好ましい。このようなアルカリ性の界面活性剤を用いれば、別途、上述した無機アルカリを添加する必要はない。このような界面活性剤として、具体的には、脂肪族モノカルボン酸塩等が挙げられる。また、界面活性剤の炭化水素骨格は、直鎖状であってもよいし、分枝状であってもよい。   As the surfactant, those having a saturated hydrocarbon skeleton having 4 to 12 carbon atoms and having a structure showing alkalinity when made into an aqueous solution are preferable. If such an alkaline surfactant is used, it is not necessary to add the inorganic alkali described above separately. Specific examples of such surfactants include aliphatic monocarboxylates. Further, the hydrocarbon skeleton of the surfactant may be linear or branched.

さらに、オゾン酸化促進剤Qとして過酸化水素水を用いることもできる。オゾン酸化促進剤Qとして過酸化水素水を用いる場合には、上述したような無機アルカリと併用してもよいし、過酸化水素水単独で用いてもよい。   Furthermore, hydrogen peroxide water can also be used as the ozone oxidation accelerator Q. When hydrogen peroxide water is used as the ozone oxidation accelerator Q, it may be used in combination with the inorganic alkali as described above, or hydrogen peroxide water alone.

また、オゾン水処理槽3におけるオゾン水W0のオゾン濃度は20mg−O/L(pH5)〜50mg−O/L(pH2)に保つのが好ましい。オゾン濃度が20mg−O/L未満では、合成樹脂製のワークPの表面の酸化が十分でなく、例えば、その後に行なわれるめっき工程等におけるめっきの密着性が低下するおそれがあるため好ましくない。なお、上限については、オゾンの飽和濃度を超えることはできない。 Further, the ozone concentration of ozone water W0 in the ozone water treatment tank 3 is preferably kept 20mg-O 3 / L (pH5 ) ~50mg-O 3 / L (pH2). If the ozone concentration is less than 20 mg-O 3 / L, the surface of the synthetic resin workpiece P is not sufficiently oxidized, and, for example, the adhesion of plating in a subsequent plating step or the like may be reduced, which is not preferable. . As for the upper limit, the saturated concentration of ozone cannot be exceeded.

次に、このような構成を有する固体有機物表面の酸化装置の動作について説明する。まず、原水Wを入口ポンプ11により第1の供給管路7に供給し、酸添加装置9により酸性に調整する。このとき使用する酸としては、硫酸、塩酸、硝酸、有機酸等を用いることができる。具体的には、原水WのpHを2〜5に調整するのが好ましい。これにより、エジェクタ12で製造されたオゾン水W0の自己分解が抑制され、オゾン水処理槽3におけるオゾン水W0のオゾン濃度を20mg−O/L(pH5)〜50mg−O/L(pH2)に保つことが可能となる。 Next, the operation of the solid organic matter surface oxidation apparatus having such a configuration will be described. First, the raw water W is supplied to the first supply pipe 7 by the inlet pump 11 and is adjusted to be acidic by the acid addition device 9. As the acid used at this time, sulfuric acid, hydrochloric acid, nitric acid, organic acid, or the like can be used. Specifically, it is preferable to adjust the pH of the raw water W to 2-5. Thus, self-decomposition of ozone water W0 produced in the ejector 12 is suppressed, 20mg-O 3 / L ( pH5) the ozone concentration of ozone water W0 in the ozone water treatment tank 3 ~50mg-O 3 / L ( pH2 ) Can be maintained.

また、原水Wの温度が低いほど、オゾンを高濃度で溶解してこれを維持するために有利である一方、酸化反応速度は温度が高いほど速いため、両者の均衡を考慮して、原水Wの温度は20〜40℃であるのが好ましい。   In addition, the lower the temperature of the raw water W, the more advantageous it is to dissolve and maintain ozone at a high concentration. On the other hand, the higher the temperature, the faster the oxidation reaction rate. The temperature is preferably 20 to 40 ° C.

これと並行して空気中の酸素をPSA式酸素濃縮装置5で濃縮し、続いて濃縮された酸素からオゾン製造装置6でオゾンを製造し、この製造されたオゾンガス(O)をエジェクタ12に供給する。 In parallel with this, oxygen in the air is concentrated by the PSA type oxygen concentrating device 5, ozone is then produced from the concentrated oxygen by the ozone producing device 6, and the produced ozone gas (O 3 ) is supplied to the ejector 12. Supply.

これによりエジェクタ12で原水Wにオゾンガスが溶解し、気液分離装置13でオゾン水W0と排出オゾンガスとに気液分離した後、オゾン水Wを第2の供給管路8からオゾン水処理槽3に供給する一方、排出オゾンガスは、オゾンガス排出管14を経て排オゾンガス分解処理装置23で分解された後、排気される。   As a result, the ozone gas is dissolved in the raw water W by the ejector 12 and gas-liquid separation is performed by the gas-liquid separator 13 into the ozone water W0 and the exhausted ozone gas, and then the ozone water W is supplied from the second supply pipe 8 to the ozone water treatment tank 3. On the other hand, the exhausted ozone gas is decomposed by the exhausted ozone gas decomposition processing device 23 through the ozone gas exhaust pipe 14 and then exhausted.

そして、オゾン水処理槽3に所定量のオゾン水W0が満たされたら、合成樹脂製のワークPをオゾン酸化促進剤Qで満たされた前処理槽1に浸漬して、表面をオゾン酸化促進剤Qで濡らし、続いて固定用保持具4を引き上げてワークPをオゾン水処理槽3に浸漬する。そうすると、ワークPの表面はオゾン酸化促進剤Qで濡れているので、そのヒドロキシイオンの効果によって、オゾン水処理槽3内のオゾン水W0中のオゾンの活発な自己分解反応が開始される。その結果、ワークPの表面で酸化に有効なヒドロキシラジカルが発生するため、ワークPの表面を効率的に酸化することができる。   When the ozone water treatment tank 3 is filled with a predetermined amount of ozone water W0, the synthetic resin work P is immersed in the pretreatment tank 1 filled with the ozone oxidation accelerator Q, and the surface is exposed to the ozone oxidation accelerator. Wet with Q, then pull up the holding fixture 4 and immerse the workpiece P in the ozone water treatment tank 3. Then, since the surface of the work P is wet with the ozone oxidation accelerator Q, active self-decomposition reaction of ozone in the ozone water W0 in the ozone water treatment tank 3 is started by the effect of the hydroxy ions. As a result, since a hydroxyl radical effective for oxidation is generated on the surface of the work P, the surface of the work P can be efficiently oxidized.

なお、オゾンの分解に伴うヒドロキシラジカルによる酸化処理においては、ワークPの表面にてオゾンが迅速に消費されるため、層流境界層内にラジカルを供給する物質移動を速やかに行なう必要がある。したがって、ワークPの表面におけるオゾン水のスリップ速度を高く維持する必要がある。そこで、本実施形態では、オゾン水処理槽3の底部にインペラ22を設けてオゾン水処理槽3内のオゾン水を攪拌して循環流を形成することにより、ワークPに接触するオゾン水を連続的に交換することにより、ヒドロキシラジカルによる酸化を維持している。   In addition, in the oxidation treatment with hydroxy radicals accompanying the decomposition of ozone, ozone is rapidly consumed on the surface of the workpiece P. Therefore, it is necessary to promptly perform mass transfer for supplying radicals into the laminar boundary layer. Therefore, it is necessary to keep the slip speed of the ozone water on the surface of the workpiece P high. Therefore, in the present embodiment, the impeller 22 is provided at the bottom of the ozone water treatment tank 3 and the ozone water in the ozone water treatment tank 3 is stirred to form a circulation flow, thereby continuously supplying ozone water in contact with the workpiece P. Thus, the oxidation by the hydroxy radical is maintained.

さらに、あらかじめ調製されたオゾン水W0が開放系であるオゾン水処理槽3に入ると気液平衡関係が崩れるため、一部オゾンの放散による気泡生成が起こる。また、ヒドロキシラジカルによる酸化反応に作用したオゾンは溶解度の低い酸素となるため、酸素の気泡生成も起こる。その結果、ワークPの表面で発生したこれらの気泡の一部がワークPの表面に付着して脱離しないことがある。このように気泡が付着した部分は、ヒドロキシラジカルによる表面の均一な酸化処理を妨げるおそれがある。そこで、本実施形態では、オゾン水処理槽3に脱泡機構としてワークPを振動させ得る機械的振動手段を設けることで、このような気泡の付着を回避している。   Further, when the ozone water W0 prepared in advance enters the ozone water treatment tank 3 which is an open system, the gas-liquid equilibrium relationship is lost, and bubbles are generated due to the partial diffusion of ozone. In addition, since ozone that has acted on the oxidation reaction by the hydroxyl radical becomes oxygen with low solubility, oxygen bubbles are also generated. As a result, some of these bubbles generated on the surface of the workpiece P may adhere to the surface of the workpiece P and not be detached. Thus, there is a possibility that the part where the bubbles are attached may hinder the uniform oxidation treatment of the surface by the hydroxyl radical. Therefore, in the present embodiment, by providing the ozone water treatment tank 3 with mechanical vibration means that can vibrate the workpiece P as a defoaming mechanism, such bubble adhesion is avoided.

上述したようなオゾン水処理槽3へのワークPの浸漬時間は、オゾン水のオゾン濃度にもよるが、2〜30分程度でよい。このようにしてワークPの表面の酸化を行ったら、固定用保持具4を引き上げてワークPを取り外して乾燥し、無電解めっき等の所望の工程を行えばよい。   The immersion time of the workpiece P in the ozone water treatment tank 3 as described above may be about 2 to 30 minutes although it depends on the ozone concentration of ozone water. When the surface of the workpiece P is oxidized in this way, the fixing holder 4 is pulled up, the workpiece P is removed and dried, and a desired process such as electroless plating may be performed.

一方、上記操作の間、オゾン水処理槽3中のオゾン水の溶存オゾン濃度が低下しないように、第2の供給管路8からオゾン水を連続的に供給する。このため、オゾン水W0は、オゾン水処理槽3をオーバーフローする。そこで、第1のオーバーフロー受部16に流入したオゾン水W1は、環流管路18を経て第1の供給管路7の酸添加装置9の上流側に環流させて再利用する一方、第2のオーバーフロー受部17に流入したオゾン水W2は、循環管路19及び循環ポンプ20を経由して熱交換器21で熱交換された後、オゾン水処理槽3間を循環させ一部はブローすることで、オゾン水の有効利用を図るのが好ましい。   On the other hand, during the above operation, ozone water is continuously supplied from the second supply pipe 8 so that the dissolved ozone concentration of the ozone water in the ozone water treatment tank 3 does not decrease. For this reason, the ozone water W0 overflows the ozone water treatment tank 3. Therefore, the ozone water W1 that has flowed into the first overflow receiving portion 16 is recirculated to the upstream side of the acid addition device 9 of the first supply line 7 via the recirculation line 18 and reused. The ozone water W2 flowing into the overflow receiving part 17 is heat-exchanged by the heat exchanger 21 via the circulation line 19 and the circulation pump 20, and then circulated between the ozone water treatment tanks 3 and partially blown. Therefore, it is preferable to make effective use of ozone water.

なお、ワークPとなる固体有機物としては、合成樹脂が一般的であり、このような合成樹脂としては、オゾンにより酸化されるものであれば、特に限定されるものではなく、例えば、ABS樹脂、ポリプロピレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリエステル、ノリル等が挙げられる。さらには、オゾンにより酸化されるものであれば、合成樹脂以外の固体有機物にも適用可能である。このようにして表面を酸化された固体有機物は、表面に被膜を形成した場合にその密着性が向上するので、無電解めっき等のめっき処理を施す成形品として好適である。特にABS樹脂は、引張強さ、曲げ強さ、耐衝撃強度等に優れており、無電解めっきされることが最も多い合成樹脂である。   In addition, as solid organic substance used as the workpiece | work P, a synthetic resin is common, and as such a synthetic resin, if it oxidizes with ozone, it will not specifically limit, For example, ABS resin, Examples include polypropylene, polyamide, polycarbonate, polyacetal, polyester, noryl and the like. Furthermore, as long as it is oxidized by ozone, it is applicable also to solid organic substances other than a synthetic resin. The solid organic matter whose surface has been oxidized in this way is suitable as a molded article to be subjected to a plating treatment such as electroless plating because its adhesion improves when a film is formed on the surface. In particular, ABS resin is excellent in tensile strength, bending strength, impact strength, and the like, and is a synthetic resin that is most often electrolessly plated.

以上、本発明の一実施形態について添付図面を参照して詳細に説明してきたが、本発明は上記実施形態に何ら限定されず、種々の変更実施が可能である。   As mentioned above, although one Embodiment of this invention was described in detail with reference to the accompanying drawing, this invention is not limited to the said embodiment at all, A various change implementation is possible.

例えば、ワークPの表面をオゾン酸化促進剤Qで濡らす手段として、本実施形態では、前処理槽1に浸漬したが、オゾン酸化促進剤Q液をスプレー等の噴霧装置で噴霧してワークPの表面をオゾン酸化促進剤Qで濡らしてもよい。   For example, as a means for wetting the surface of the workpiece P with the ozone oxidation accelerator Q, in this embodiment, it is immersed in the pretreatment tank 1, but the ozone oxidation accelerator Q liquid is sprayed with a spraying device such as a spray to The surface may be wetted with the ozone oxidation promoter Q.

また、ワークPの脱泡機構としては、ワークPを振動させ得る機械的振動手段に限らず、超音波振動手段や水流噴射手段であってもよい。水流噴射手段の場合、用いる水は脱気水であるとさらに好ましい。   Further, the defoaming mechanism of the work P is not limited to the mechanical vibration means that can vibrate the work P, and may be an ultrasonic vibration means or a water jet means. In the case of the water jet means, the water used is more preferably deaerated water.

以下、実施例及び比較例に基づき、本発明をさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to the following Example at all.

<試験装置及び条件>
図1に示すオゾン水供給システムを備えた試験装置を用意した。試験装置の仕様は以下の通りであった。
・オゾン水処理槽3:容量46L(幅470mm×奥行210mm×高さ470mm)
・前処理槽(アルカリ処理水槽)1:オゾン水処理槽3と同じものに、アルカリ性界面活性剤(50g/LのNaOH水溶液にラウリル酸ナトリウムを1g/L溶解させたもの)を充填
・オゾン製造装置6:発生オゾン濃度は、オゾン水処理槽3内のオゾン水濃度が20mg/Lとなるように電流を任意に調整
・熱交換器21:オゾン水処理槽3内の水温が30℃となるように熱交換器21へ供給する冷却水量を調整
・酸添加装置9:オゾン水処理槽3内がpH3.0となるように制御しながら硫酸を添加
・ワークP:試験用に縦50mm、横100mm、厚さ3mmのABS樹脂製のテストピースを用意した
<Test equipment and conditions>
A test apparatus equipped with the ozone water supply system shown in FIG. 1 was prepared. The specifications of the test apparatus were as follows.
・ Ozone water treatment tank 3: Capacity 46L (width 470mm x depth 210mm x height 470mm)
・ Pretreatment tank (alkaline treated water tank) 1: Filled with the same ozone water treatment tank 3 as alkaline surfactant (1 g / L sodium laurate dissolved in 50 g / L NaOH aqueous solution) ・ Ozone production Device 6: The generated ozone concentration is arbitrarily adjusted so that the ozone water concentration in the ozone water treatment tank 3 is 20 mg / L. Heat exchanger 21: The water temperature in the ozone water treatment tank 3 is 30 ° C. The amount of cooling water supplied to the heat exchanger 21 is adjusted as described above. ・ Acid addition device 9: Add sulfuric acid while controlling the inside of the ozone water treatment tank 3 to be pH 3.0. Work P: Vertical 50 mm for test, horizontal A test piece made of ABS resin having a thickness of 100 mm and a thickness of 3 mm was prepared.

〔実施例1〕
ワークPを前処理槽1に浸漬した後、オゾン水処理槽3に6分間浸漬して酸化処理を行った。この際、オゾン水処理槽3内のオゾン水をインペラ22により攪拌し、ワークPはオゾン水の流れに対して平行に設置し、単軸ロボットを起動させてワークPを振幅10cm、速度20cm/秒で上下に振動させた。
[Example 1]
After the workpiece P was immersed in the pretreatment tank 1, it was immersed in the ozone water treatment tank 3 for 6 minutes for oxidation treatment. At this time, the ozone water in the ozone water treatment tank 3 is agitated by the impeller 22, the work P is installed in parallel to the flow of the ozone water, the single axis robot is activated, and the work P is set at an amplitude of 10 cm and a speed of 20 cm / Vibrated up and down in seconds.

このようにして処理したワークPを水洗した後、ラウリル硫酸ナトリウム(濃度;50g/L)とNaOH(濃度;1g/L)とを含む50℃に設定された混合水溶液に2分間浸漬し、ワークPを取り出して水洗を行った。   The workpiece P thus treated was washed with water and then immersed in a mixed aqueous solution set at 50 ° C. containing sodium lauryl sulfate (concentration: 50 g / L) and NaOH (concentration: 1 g / L) for 2 minutes. P was taken out and washed with water.

次に塩酸水溶液(3N)中に塩化パラジウム(0.1質量%)及び塩化スズ(5質量%)をそれぞれ溶解して、触媒溶液を調製した。そして、この触媒溶液中にワークPを4分間浸漬した。この際、触媒溶液の温度は40℃に設定した。その後、パラジウムを活性化するために、50℃に設定した塩酸水溶液(1N)中にワークPを2分間浸漬した。この工程によりワークPに触媒を吸着させ、塩酸水溶液からワークPを取り出して水洗を行った。   Next, palladium chloride (0.1% by mass) and tin chloride (5% by mass) were dissolved in an aqueous hydrochloric acid solution (3N) to prepare a catalyst solution. And the workpiece | work P was immersed in this catalyst solution for 4 minutes. At this time, the temperature of the catalyst solution was set to 40 ° C. Then, in order to activate palladium, the workpiece | work P was immersed for 2 minutes in hydrochloric acid aqueous solution (1N) set to 50 degreeC. In this step, the catalyst was adsorbed on the workpiece P, and the workpiece P was taken out from the hydrochloric acid aqueous solution and washed with water.

続いて、30℃に保温されたNi−P化学めっき浴(めっき液)中に、ワークPを10分間浸漬して、ワークPの樹脂基材表面にNi−Pめっき被膜を形成した。このようにして処理したワークPには均一なめっきの析出が確認された。この際のめっき被膜の厚みは0.5μmであった。   Subsequently, the workpiece P was immersed in a Ni-P chemical plating bath (plating solution) kept at 30 ° C. for 10 minutes to form a Ni—P plating film on the surface of the resin substrate of the workpiece P. Uniform deposition was confirmed on the workpiece P thus treated. At this time, the thickness of the plating film was 0.5 μm.

さらに、このめっき後のワークPを硫酸銅系電気めっき浴(25℃)に40分間浸漬することで、Ni−Pめっき被膜上に銅めっき被膜を形成した被めっき樹脂部材を得た。なお、Ni−Pめっき被膜と銅めっき被膜とを併せた被膜の厚みは、約30μmであった。   Furthermore, the to-be-plated resin member which formed the copper plating film on the Ni-P plating film was obtained by immersing this plated work P in a copper sulfate electroplating bath (25 ° C.) for 40 minutes. In addition, the thickness of the film which combined the Ni-P plating film and the copper plating film was about 30 μm.

上記のようにして得られたワークP(被めっき樹脂部材)のめっき被膜の密着強度を評価するために、引っ張り試験を行った。引っ張り試験は、ワークP上のめっき被膜に幅10mmの短冊状に切れ込みを入れたものを試験片とし、この試験片を用いて、JIS H8630(密着性試験方法)に準じてめっき被膜の密着強度(kg/cm)を測定した。   A tensile test was performed in order to evaluate the adhesion strength of the plated film of the workpiece P (resin member to be plated) obtained as described above. In the tensile test, a test piece obtained by cutting a plating film on the workpiece P into a strip having a width of 10 mm is used as a test piece, and using this test piece, the adhesion strength of the plating film according to JIS H8630 (adhesion test method). (Kg / cm) was measured.

〔比較例1〕
実施例1において、前処理槽1に浸漬しない以外は同様にして酸化処理を行ったワークPを水洗した後、同様にして無電解めっきを行ったところ、ワークPには均一なめっき析出は観察されず、全表面の約30%が未析出であった。
[Comparative Example 1]
In Example 1, the workpiece P, which was oxidized in the same manner except that it was not immersed in the pretreatment tank 1, was washed with water and electroless plated in the same manner, and uniform plating deposition was observed on the workpiece P. About 30% of the entire surface was not precipitated.

〔比較例2〕
実施例1において、前処理槽1に浸漬せず、さらに単軸ロボットを起動させずにワークPに機械的振動を付与しない以外は同様にして酸化処理を行ったワークPを水洗した後、同様にして無電解めっきを行ったところ、ワークPには均一なめっき析出は観察されず、全表面の約50%が未析出であった。
これら実施例1及び比較例1,2の結果を表1に示す。
[Comparative Example 2]
In Example 1, the workpiece P that was subjected to oxidation treatment in the same manner except that the workpiece P was not immersed in the pretreatment tank 1 and the mechanical vibration was not applied to the workpiece P without starting the single-axis robot was similarly washed. When electroless plating was performed, uniform plating deposition was not observed on the workpiece P, and about 50% of the entire surface was not deposited.
The results of Example 1 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2010095737
Figure 2010095737

表1に示すように、オゾン水処理槽3に浸漬する前にアルカリ処理を行うことで、効率的にワークPの表面を酸化することができ、均一なめっき処理が可能であることが確認された。また、めっきの密着性も良好であることが確認された。   As shown in Table 1, it is confirmed that the surface of the workpiece P can be oxidized efficiently by performing the alkali treatment before being immersed in the ozone water treatment tank 3, and the uniform plating treatment is possible. It was. It was also confirmed that the adhesion of the plating was good.

本発明の一実施形態に係る固体有機物表面の酸化装置を示すフロー図である。It is a flowchart which shows the oxidation apparatus of the solid organic matter surface which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1…前処理槽
2…オゾン処理装置
3…オゾン水処理槽
6…オゾン製造装置
7…第1の供給管路(オゾン水供給装置)
8…第2の供給管路(オゾン水供給装置)
9…酸添加装置(水素イオン濃度調整手段)
11…入口ポンプ(オゾン水供給装置)
12…エジェクタ(オゾン溶解装置)
13…気液分離装置(オゾン水供給装置)
16…第1のオーバーフロー受部(オゾン水排出機構)
18…環流管路(オゾン水排出機構)
22…インペラ(攪拌手段)
P…ワーク(固体有機物)
W…原水
W0,W1,W2…オゾン水
Q…オゾン酸化促進剤
DESCRIPTION OF SYMBOLS 1 ... Pretreatment tank 2 ... Ozone treatment apparatus 3 ... Ozone water treatment tank 6 ... Ozone production apparatus 7 ... 1st supply line (ozone water supply apparatus)
8 ... Second supply pipe (ozone water supply device)
9 ... Acid addition device (hydrogen ion concentration adjusting means)
11 ... Inlet pump (ozone water supply device)
12 ... Ejector (ozone dissolving device)
13. Gas-liquid separation device (ozone water supply device)
16 ... 1st overflow receiving part (ozone water discharge mechanism)
18 ... Circulation pipe (ozone water discharge mechanism)
22 ... Impeller (stirring means)
P ... Work (solid organic matter)
W ... Raw water W0, W1, W2 ... Ozone water Q ... Ozone oxidation accelerator

Claims (9)

固体有機物表面をオゾン酸化促進剤で濡らす前処理手段と、オゾン水処理槽を有するオゾン処理装置とを備え、
前記固体有機物を前記前処理手段で処理した後、オゾン水処理槽に浸漬することを特徴とする固体有機物表面の酸化装置。
A pretreatment means for wetting the surface of a solid organic substance with an ozone oxidation accelerator; and an ozone treatment apparatus having an ozone water treatment tank,
An apparatus for oxidizing a surface of a solid organic matter, wherein the solid organic matter is treated by the pretreatment means and then immersed in an ozone water treatment tank.
前記オゾン酸化促進剤が、界面活性剤溶液、過酸化水素溶液及びアルカリ溶液からなる群より選ばれる少なくとも1種であることを特徴とする請求項1に記載の固体有機物表面の酸化装置。   2. The solid organic matter surface oxidizing apparatus according to claim 1, wherein the ozone oxidation accelerator is at least one selected from the group consisting of a surfactant solution, a hydrogen peroxide solution, and an alkaline solution. 前記前処理手段が、前記オゾン酸化促進剤溶液の浸漬槽、又は前記オゾン酸化促進剤溶液の噴霧装置であることを特徴とする請求項1又は2に記載の固体有機物表面の酸化装置。   3. The solid organic matter surface oxidizing apparatus according to claim 1, wherein the pretreatment means is a dipping tank for the ozone oxidation accelerator solution or a spraying apparatus for the ozone oxidation accelerator solution. 4. 前記オゾン処理装置が、オゾン発生装置と、このオゾン発生装置で発生したオゾンガスを原水に溶解させるオゾン溶解装置と、このオゾン溶解装置で製造されたオゾン水を前記オゾン水処理槽に供給する供給手段とを有することを特徴とする請求項1〜3のいずれかに記載の固体有機物表面の酸化装置。   The ozone treatment device includes an ozone generator, an ozone dissolver that dissolves ozone gas generated by the ozone generator in raw water, and a supply unit that supplies ozone water produced by the ozone dissolver to the ozone water treatment tank. The oxidation apparatus for the surface of a solid organic matter according to any one of claims 1 to 3, wherein 前記オゾン溶解装置の前段又は後段に水素イオン濃度調整手段を有することを特徴とする請求項4に記載の固体有機物表面の酸化装置。   5. The solid organic matter surface oxidizing apparatus according to claim 4, further comprising a hydrogen ion concentration adjusting unit in a front stage or a rear stage of the ozone dissolving apparatus. 前記オゾン水処理槽にオゾン水排出機構が設けられており、
前記オゾン水排出機構を経由して排出オゾン水が原水側に合流することを特徴とする請求項4又は5に記載の固体有機物表面の酸化装置。
The ozone water treatment tank is provided with an ozone water discharge mechanism,
6. The apparatus for oxidizing a solid organic matter surface according to claim 4, wherein the discharged ozone water joins to the raw water side via the ozone water discharge mechanism.
前記オゾン水処理槽が、撹拌手段を有することを特徴とする請求項1〜6のいずれかに記載の固体有機物表面の酸化装置。   The said organic water treatment tank has a stirring means, The solid organic substance surface oxidation apparatus in any one of Claims 1-6 characterized by the above-mentioned. 前記オゾン水処理槽に固体有機物表面の脱泡機構を有することを特徴とする請求項1〜7のいずれかに記載の固体有機物表面の酸化装置。   The solid organic matter surface oxidation apparatus according to any one of claims 1 to 7, wherein the ozone water treatment tank has a defoaming mechanism on the surface of the solid organic matter. 前記固体有機物表面の脱泡機構が、水流噴射手段、機械的振動手段及び超音波振動手段からなる群より選ばれる少なくとも1種であることを特徴とする請求項8に記載の固体有機物表面の酸化装置。   9. The oxidation of the surface of the solid organic material according to claim 8, wherein the defoaming mechanism on the surface of the solid organic material is at least one selected from the group consisting of water jetting means, mechanical vibration means, and ultrasonic vibration means. apparatus.
JP2008265559A 2008-10-14 2008-10-14 Solid organic matter surface oxidation equipment Expired - Fee Related JP5430114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265559A JP5430114B2 (en) 2008-10-14 2008-10-14 Solid organic matter surface oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265559A JP5430114B2 (en) 2008-10-14 2008-10-14 Solid organic matter surface oxidation equipment

Publications (2)

Publication Number Publication Date
JP2010095737A true JP2010095737A (en) 2010-04-30
JP5430114B2 JP5430114B2 (en) 2014-02-26

Family

ID=42257622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265559A Expired - Fee Related JP5430114B2 (en) 2008-10-14 2008-10-14 Solid organic matter surface oxidation equipment

Country Status (1)

Country Link
JP (1) JP5430114B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029462A (en) * 2012-04-27 2014-02-13 Mitsubishi Chemicals Corp Method for manufacturing end member, method for manufacturing photoreceptor drum unit, end member, and photoreceptor drum unit
JP2018080374A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Surface treatment method of plastic substrate, and production method of metal-clad laminated substrate using the same
WO2022136377A1 (en) 2020-12-21 2022-06-30 Delta Engineering & Chemistry Gmbh Ozone pickle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211384A (en) * 1991-11-20 1993-08-20 Nec Corp Plating method of printed wiring board
JP2002121678A (en) * 2000-10-18 2002-04-26 Mitsubishi Electric Corp Method and apparatus for pretreatment for plating onto polycarbonate
JP2005068495A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Pretreatment method of substrate for electroless plating and apparatus therefor
JP2005294377A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method and apparatus for supplying ozone water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211384A (en) * 1991-11-20 1993-08-20 Nec Corp Plating method of printed wiring board
JP2002121678A (en) * 2000-10-18 2002-04-26 Mitsubishi Electric Corp Method and apparatus for pretreatment for plating onto polycarbonate
JP2005068495A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Pretreatment method of substrate for electroless plating and apparatus therefor
JP2005294377A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method and apparatus for supplying ozone water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029462A (en) * 2012-04-27 2014-02-13 Mitsubishi Chemicals Corp Method for manufacturing end member, method for manufacturing photoreceptor drum unit, end member, and photoreceptor drum unit
JP2018080374A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Surface treatment method of plastic substrate, and production method of metal-clad laminated substrate using the same
WO2022136377A1 (en) 2020-12-21 2022-06-30 Delta Engineering & Chemistry Gmbh Ozone pickle

Also Published As

Publication number Publication date
JP5430114B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
KR101146853B1 (en) Steel sheet rinsing method, and steel sheet continuous rinsing apparatus
WO2009113682A1 (en) Gas-dissolved water supply system
CN102459092A (en) Method for supplying hydroxyl radical-containing water and apparatus for supplying hydroxyl radical-containing water
JPH08187474A (en) Washing method
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
KR101022687B1 (en) Drainage water-treating method and drainage water-treating apparatus
CN101452824A (en) Wet-chemistry semiconductor-chip treatment method
KR20090007701A (en) Process and equipment for production of wash water containing dissolved gas, and cleaning equipment
JP5430114B2 (en) Solid organic matter surface oxidation equipment
CN109862710B (en) Copper deposition process and device for PCB with uniform thickness
JP5373354B2 (en) Solid organic matter surface oxidation equipment
JP5127257B2 (en) Ultrasonic cleaning method
US6626196B2 (en) Arrangement and method for degassing small-high aspect ratio drilled holes prior to wet chemical processing
TW498110B (en) Fluid delivery systems for electronic device manufacture
CN101838802A (en) Activating solution for chemical plating and non-metallic surface activation method
CN101605729A (en) The method of treatment liq refuse
JPH0416549B2 (en)
JP5393214B2 (en) Pickling method for copper-based materials
CN101671819A (en) Non-noble metal activating solution of polyimide film and surface activating process thereof
JP2006278838A (en) Sulfuric acid recycling type cleaning system
JPWO2005084831A1 (en) Method for removing alkali-soluble photosensitive resin
JP2002121678A (en) Method and apparatus for pretreatment for plating onto polycarbonate
CN106835225B (en) A kind of effective continuous copper-plating of steel strip technique of Bandaid
WO2013058023A1 (en) Cleaning device and cleaning method
JPH0697632A (en) Method for oxygen feeding to electroless plating solution and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees