JP2018078063A - Manufacturing method of lithium ion battery, and lithium ion battery - Google Patents

Manufacturing method of lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP2018078063A
JP2018078063A JP2016220290A JP2016220290A JP2018078063A JP 2018078063 A JP2018078063 A JP 2018078063A JP 2016220290 A JP2016220290 A JP 2016220290A JP 2016220290 A JP2016220290 A JP 2016220290A JP 2018078063 A JP2018078063 A JP 2018078063A
Authority
JP
Japan
Prior art keywords
negative electrode
amorphous carbon
mixture
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016220290A
Other languages
Japanese (ja)
Inventor
剛史 西山
Takashi Nishiyama
剛史 西山
正 芦浦
Tadashi Ashiura
正 芦浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016220290A priority Critical patent/JP2018078063A/en
Publication of JP2018078063A publication Critical patent/JP2018078063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode hard to cause agglomeration of a negative electrode mixture, and a lithium ion battery.SOLUTION: A method for manufacturing a lithium ion battery having a negative electrode mixture including amorphous carbon, a binding agent and an organic solvent comprises a process of producing the negative electrode mixture, which includes: a solid-kneading step (I) of mixing and kneading the amorphous carbon, the binding agent and the solvent together into a mixture; and a dilution step (II) of adding the organic solvent to the mixture obtained by the solid-kneading step to adjust a viscosity thereof. A solid content Z(%) of the mixture (Solid material weight (g)×100/Weight (g) of the mixture) in the solid-kneading step, and an NMP oil absorption Y(ml/100 g) of the amorphous carbon are in the relation given by the following expression (1): Z=-0.268Y+a (where 82.5≤a≤85.5) (1).SELECTED DRAWING: Figure 1

Description

本発明は活物質として非晶質炭素を用いた負極を有するリチウムイオン電池の製造方法及びリチウムイオン電池に関する。   The present invention relates to a method for producing a lithium ion battery having a negative electrode using amorphous carbon as an active material, and a lithium ion battery.

リチウムイオン電池の負極活物質には炭素質材料等が用いられており、結着剤と負極活物質等を共に有機溶剤中に分散させてスラリ状の負極合剤とし、集電体の金属箔上に塗工して、溶剤を乾燥させ、負極合剤を圧延してシート状の負極が製造されている。スラリ状の負極合剤は、負極活物質、導電剤、結着剤、溶媒等を混和、練合する固練工程、前記固練工程で得られた混合物に、所望の固形分比率になるまで溶媒を加えて希釈し、混合物の分散性を均一化させる希釈・分散工程とを経て作製されている。   A carbonaceous material or the like is used for the negative electrode active material of the lithium ion battery, and the binder and the negative electrode active material are both dispersed in an organic solvent to form a slurry-like negative electrode mixture. A sheet-like negative electrode is produced by coating on top, drying the solvent, and rolling the negative electrode mixture. The slurry-like negative electrode mixture is a kneading step in which a negative electrode active material, a conductive agent, a binder, a solvent, and the like are mixed and kneaded, until the mixture obtained in the kneading step has a desired solid content ratio. It is manufactured through a dilution / dispersion step in which a solvent is added to dilute and the dispersibility of the mixture becomes uniform.

固練工程で加える有機溶剤の量が過剰であった場合、投入した電極材料に十分なせん断力が加わらないため、固練工程で得られた混合物中で負極活物質、導電剤、結着剤の粒子の分散が不均一となり、希釈・分散工程を経ても負極合剤中で負極活物質と導電剤の粒子の凝集が生じやすく、集電体に負極合剤を塗布する際に、負極合剤のダマや塗布ムラが発生し、短絡が生じる恐れがある。   If the amount of the organic solvent added in the solidifying step is excessive, sufficient shearing force is not applied to the charged electrode material, so the negative electrode active material, conductive agent, binder in the mixture obtained in the solidifying step The dispersion of the particles of the particles becomes uneven, and the particles of the negative electrode active material and the conductive agent are likely to aggregate in the negative electrode mixture even after the dilution / dispersion step. When the negative electrode mixture is applied to the current collector, the negative electrode mixture There is a possibility that the agent may be lumped or unevenly coated, causing a short circuit.

また、負極合剤中で粒子の凝集が発生すると、膜厚分布の不均一化によって、電池容量のバラつきが生じやすくなる。集電体上に負極合剤を塗工する場合には、塗工装置を用いて連続的に塗工するが、時間の経過と共に合剤中で活物質が沈降し、合剤の密度の分布が塗工初期から変化する。その結果、集電体への活物質の塗工量は塗工時間と共に変化してしまう。特に、負極活物質は正極の活物質と比較して単位重量あたりの充放電容量が大きいため、活物質の塗工量にバラツキがあると電池容量及び入出力特性に与える影響が大きい。   In addition, when the particles aggregate in the negative electrode mixture, the battery capacity tends to vary due to the non-uniform film thickness distribution. When coating a negative electrode mixture on a current collector, it is applied continuously using a coating device, but the active material settles in the mixture over time, and the density distribution of the mixture Changes from the initial coating. As a result, the amount of active material applied to the current collector varies with the coating time. In particular, since the negative electrode active material has a larger charge / discharge capacity per unit weight than the positive electrode active material, variations in the amount of active material applied have a large effect on battery capacity and input / output characteristics.

一方で、固練工程で加える有機溶剤の量が不足であった場合、投入した電極材料に過剰のせん断力が加わり、活物質粒子にひび割れ等が生じやすくなる。活物質にひび割れが生じると活物質粒子の表面積が増加することによって不可逆容量の増加、寿命性能の低下にもつながる。   On the other hand, when the amount of the organic solvent to be added in the solidifying step is insufficient, an excessive shearing force is applied to the input electrode material, and the active material particles are likely to be cracked. When cracks occur in the active material, the surface area of the active material particles increases, leading to an increase in irreversible capacity and a decrease in life performance.

合剤中での凝集を防止する方法として、カーボンブラックの吸油量を規定する方法(例えば特許文献1)、負極活物質の吸油量、及び吸油量測定時の最大トルクでの吸油量と70%トルク時の吸油量の比率を規定する方法(例えば特許文献2、特許文献3)が挙げられる。   As a method for preventing aggregation in the mixture, a method of defining the oil absorption amount of carbon black (for example, Patent Document 1), the oil absorption amount of the negative electrode active material, and the oil absorption amount at the maximum torque when measuring the oil absorption amount are 70%. Examples include a method (for example, Patent Document 2 and Patent Document 3) that defines the ratio of the amount of oil absorption during torque.

特許第4310942号公報Japanese Patent No. 4310942 特開2015−32554号公報JP2015-32554A 特開2014−32922号公報JP 2014-32922 A

しかしながら、これらの従来の手法により、電極の材料物性を規定しても優れた電池特性が得られない場合があることが分かった。本発明の目的は、上記事情に鑑みてなされたものであり、負極合剤の凝集が生じにくいリチウムイオン電池の製造方法及びリチウムイオン電池を提供することである。   However, it has been found that, by these conventional techniques, excellent battery characteristics may not be obtained even if the material properties of the electrode are defined. The object of the present invention is made in view of the above circumstances, and is to provide a method for producing a lithium ion battery and a lithium ion battery in which the aggregation of the negative electrode mixture hardly occurs.

<1>非晶質炭素と、結着剤と、有機溶剤とを含む負極合剤を有するリチウムイオン電池の製造方法において、
前記負極合剤の生産工程は、前記非晶質炭素と、前記結着剤とを混和、練合する固練工程と、前記固練工程により固練した混合物に前記有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを有し、
前記非晶質炭素のNMP(N-メチル-2-ピロリドン)吸油量をY(ml/100g)としたときに、
前記固練工程における前記混合物の固形分Z(%)(固形物の重量(g)×100/混合物の重量(g))と前記NMP吸油量Yが、
Z=−0.268Y+a (但し82.5≦a≦85.5)
の式を満たす関係にあることを特徴とするリチウムイオン電池の製造方法。
<1> In a method for producing a lithium ion battery having a negative electrode mixture containing amorphous carbon, a binder, and an organic solvent,
In the production process of the negative electrode mixture, the amorphous carbon and the binder are mixed and kneaded, and the organic solvent is added to the mixture kneaded by the kneading process and diluted. And a dilution step for adjusting the viscosity by
When the amount of NMP (N-methyl-2-pyrrolidone) oil absorption of the amorphous carbon is Y (ml / 100 g),
The solid content Z (%) of the mixture in the kneading step (solid weight (g) × 100 / weight of the mixture (g)) and the NMP oil absorption Y are:
Z = −0.268Y + a (where 82.5 ≦ a ≦ 85.5)
The manufacturing method of the lithium ion battery characterized by satisfy | filling the relationship of these.

<2>前記非晶質炭素の前記NMP吸油量Yが、70ml/100g〜120ml/100gの範囲である<1>記載のリチウムイオン電池の製造方法。   <2> The method for producing a lithium ion battery according to <1>, wherein the NMP oil absorption amount Y of the amorphous carbon is in a range of 70 ml / 100 g to 120 ml / 100 g.

<3>負極合剤に非晶質炭素と、結着剤と、有機溶剤、導電剤を含むリチウムイオン電池の製造方法において、前記負極合剤の生産工程は前記非晶質炭素と、前記結着剤と、前記導電剤とを混和、練合する固練工程と、前記固練工程により固練した混合物に前記有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを有し、前記混合物中の前記非晶質炭素と前記導電剤の混合紛体のNMP(N-メチル-2-ピロリドン)吸油量をX(ml/100g)としたときに、前記固練工程における前記混合物の固形分W(%)(固形物の重量(g)×100/混合物の重量(g))と前記NMP吸油量Xが、
W=−0.28X+b (但し、83.5≦b≦87.0)
の式を満たす関係にあることを特徴とするリチウムイオン電池の製造方法。
<3> In the method of manufacturing a lithium ion battery including the negative electrode mixture containing amorphous carbon, a binder, an organic solvent, and a conductive agent, the negative electrode mixture production step includes the amorphous carbon and the binder. A kneading step of mixing and kneading the adhering agent and the conductive agent; and a dilution step of adjusting the viscosity by adding and diluting the organic solvent to the mixture kneaded by the kneading step, When the NMP (N-methyl-2-pyrrolidone) oil absorption amount of the mixed powder of the amorphous carbon and the conductive agent in the mixture is X (ml / 100 g), the solid state of the mixture in the solidification step Minute W (%) (weight of solid (g) × 100 / weight of mixture (g)) and the NMP oil absorption amount X are:
W = −0.28X + b (however, 83.5 ≦ b ≦ 87.0)
The manufacturing method of the lithium ion battery characterized by satisfy | filling the relationship of these.

<4>前記導電剤は、カーボンブラックである<3>記載のリチウムイオン電池の製造方法。   <4> The method for producing a lithium ion battery according to <3>, wherein the conductive agent is carbon black.

<5>前記非晶質炭素と前記導電剤の混合紛体の前記NMP吸油量Xが、70ml/100g〜120ml/100gの範囲である<3>又は<4>記載のリチウムイオン電池の製造方法。   <5> The method for producing a lithium ion battery according to <3> or <4>, wherein the NMP oil absorption amount X of the mixed powder of the amorphous carbon and the conductive agent is in a range of 70 ml / 100 g to 120 ml / 100 g.

<6>非晶質炭素と、結着剤と、有機溶剤とを含む負極合剤が集電体に保持された負極を有するリチウムイオン電池であって、前記非晶質炭素、前記結着剤及び前記有機溶剤の混合物の固形分Z(%)と、前記非晶質炭素のNMP(N−メチル−2−ピロリドン)吸油量Y(ml/100g)とが
Z=−0.268Y+a (但し82.5≦a≦85.5)
の式を満たす関係にあることを特徴とするリチウムイオン電池。
<6> A lithium ion battery having a negative electrode in which a negative electrode mixture containing amorphous carbon, a binder, and an organic solvent is held in a current collector, the amorphous carbon and the binder And the solid content Z (%) of the mixture of the organic solvent and the NMP (N-methyl-2-pyrrolidone) oil absorption Y (ml / 100 g) of the amorphous carbon is Z = −0.268Y + a ( (82.5 ≦ a ≦ 85.5)
A lithium ion battery characterized by satisfying the following formula:

<7>前記非晶質炭素の前記NMP吸油量Yが、70ml/100g〜120ml/100gの範囲である<6>のリチウムイオン電池。   <7> The lithium ion battery according to <6>, wherein the NMP oil absorption amount Y of the amorphous carbon is in a range of 70 ml / 100 g to 120 ml / 100 g.

<8>非晶質炭素と、導電剤と、結着剤と、有機溶剤とを含む負極合剤が集電体に保持された負極を有するリチウムイオン電池であって、
前記非晶質炭素、前記導電剤、前記結着剤及び前記有機溶剤の混合物の固形分W(%)と、前記非晶質炭素と前記導電剤の混合紛体のNMP吸油量X(ml/100g)とが
W=−0.28X+b (但し、83.5≦b≦87.0)
の式を満たす関係にあることを特徴とするリチウムイオン電池。
<8> A lithium ion battery having a negative electrode in which a negative electrode mixture containing amorphous carbon, a conductive agent, a binder, and an organic solvent is held by a current collector,
Solid content W (%) of the mixture of the amorphous carbon, the conductive agent, the binder and the organic solvent, and the NMP oil absorption X (ml / 100 g) of the mixed powder of the amorphous carbon and the conductive agent. ) And W = −0.28X + b (where 83.5 ≦ b ≦ 87.0)
A lithium ion battery characterized by satisfying the following formula:

<9>前記非晶質炭素と前記導電剤の混合紛体の前記NMP吸油量Xが、70ml/100g〜120ml/100gの範囲である<8>のリチウムイオン電池。   <9> The lithium ion battery according to <8>, wherein the NMP oil absorption amount X of the mixed powder of the amorphous carbon and the conductive agent is in a range of 70 ml / 100 g to 120 ml / 100 g.

本発明によれば、負極合剤の凝集が少ないリチウムイオン電池の製造方法及び、電池特性に優れたリチウムイオン電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a lithium ion battery with little aggregation of negative electrode mixture and the lithium ion battery excellent in the battery characteristic can be provided.

本発明の一つの実施の形態のリチウムイオン電池を示す斜視図である。It is a perspective view which shows the lithium ion battery of one embodiment of this invention.

以下、本発明の実施形態について、図面等を参照して説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。   Embodiments of the present invention will be described below with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.

(リチウムイオン二次電池)
リチウム二次電池20は、帯状の正極集電体に正極活物質が塗工された正極と帯状の負極集電体に負極活物質が塗工された負極が、帯状セパレータW5を介して積層されて構成された帯状の積層体が長手方向に捲回されて構成された電極群6を用いている。電極群6は電池容器5に収容され、併せて電解液が電池容器5に収容されている。正極端子に正極集電タブが接続され、負極端子には負極集電タブがされ、電池容器5を密閉する電池蓋4には安全弁10が装着されている。
(Lithium ion secondary battery)
The lithium secondary battery 20 includes a strip-shaped positive electrode current collector coated with a positive electrode active material and a strip-shaped negative electrode current collector coated with a negative electrode active material on a strip separator W5. An electrode group 6 is used, which is formed by winding a belt-shaped laminated body configured in the longitudinal direction. The electrode group 6 is accommodated in the battery container 5, and the electrolytic solution is also accommodated in the battery container 5. A positive electrode current collecting tab is connected to the positive electrode terminal, a negative electrode current collecting tab is connected to the negative electrode terminal, and a safety valve 10 is attached to the battery lid 4 that seals the battery container 5.

電池容器5は、電解液による腐食やリチウムイオンとの合金化による材料の変質が起こらないように材料の選定を行う。アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等の材料から選択される。電池容器5は、電気的に中立の状態に置かれる。   The material of the battery container 5 is selected so that the material does not deteriorate due to corrosion by the electrolytic solution or alloying with lithium ions. It is selected from materials such as aluminum, stainless steel, and nickel-plated steel. The battery case 5 is placed in an electrically neutral state.

軸芯11は、電極群6を支持できるものであれば、公知の任意のものを用いることができる。軸芯11がなくとも、電極群の形状保持が可能であれば、軸芯11を用いなくてもよい。   As the shaft core 11, any known one can be used as long as it can support the electrode group 6. Even if the shaft core 11 is not provided, the shaft core 11 may not be used as long as the shape of the electrode group can be maintained.

電極群6は、図1に示した円筒形状の他に扁平形状等、捲回した形状であれば適用することができる。電池容器5の形状は、電極群6の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状等の形状を選択してもよい。   The electrode group 6 can be applied as long as it is a wound shape such as a flat shape in addition to the cylindrical shape shown in FIG. The shape of the battery case 5 may be selected from shapes such as a cylindrical shape, a flat oval shape, and a flat oval shape according to the shape of the electrode group 6.

正極から導出されているリード片を変形させ、その全てを正極側の鍔部7の底部付近に集めて接触させた。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片を鍔部7の底部に接続し固定した。負極から導出されているリード片と負極側の鍔部7の底部も同様に接続し固定した。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すように一体成形されており、底部と側部とを有する。電極群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆の厚さ(粘着テープの巻き数)を調整し、電極群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。   The lead pieces led out from the positive electrode were deformed, and all of them were collected near the bottom of the flange 7 on the positive electrode side and brought into contact with each other. The positive electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion. Thereafter, the lead piece was connected and fixed to the bottom of the flange 7 by ultrasonic welding. Similarly, the lead piece led out from the negative electrode and the bottom of the flange 7 on the negative electrode side were connected and fixed. The negative electrode side flange portion 7 is integrally formed so as to protrude from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the wound group 6, and has a bottom portion and a side portion. . The thickness of the insulating coating (the number of turns of the adhesive tape) was adjusted so that the maximum diameter portion of the electrode group 6 was slightly smaller than the inner diameter of the stainless steel battery container 5, and the electrode group 6 was inserted into the battery container 5. . The battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.

次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱および先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。   Next, as shown in FIG. 1, the ceramic washer 3 ′ is fitted into a pole column whose tip constitutes the positive electrode external terminal 1 and a pole column whose tip constitutes the negative electrode external terminal 1 ′.

その後、電池蓋4の周囲の端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。 次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2間で締め付けることにより固定する。このときの締め付けトルク値は7N・mとした。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリングの圧縮により電池容器5の内部の発電要素は外気から遮断されている。   Then, the end surface around the battery lid 4 is fitted into the opening of the battery container 5, and the entire area of both contact portions is laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ protrude through the hole (hole) in the center of the battery cover 4 and protrude outside the battery cover 4. The battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. Next, the metal nut 2 is screwed to the positive external terminal 1 and the negative external terminal 1 ′, and the battery cover 4 is tightened between the flange 7 and the nut 2 via the ceramic washer 3 and the ceramic washer 3 ′. Fix it. The tightening torque value at this time was 7 N · m. In this state, the power generation element inside the battery container 5 is shielded from the outside air by compression of a rubber (EPDM) O-ring interposed between the back surface of the battery lid 4 and the flange 7.

その後、電池蓋4に設けられた注液口15から電解液を電池容器5内に注入し、その後、注液口15を封止することにより円筒形リチウムイオン電池20を完成させた。   Thereafter, an electrolytic solution was injected into the battery container 5 from the injection port 15 provided in the battery lid 4, and then the injection port 15 was sealed to complete the cylindrical lithium ion battery 20.

(負極)
本実施の形態の負極(負極板)は、集電体及びその両面に形成された負極合材よりなる。負極合材の形成方法は特に制限されないが、正極合材と同様に、乾式法や湿式法を用いて形成される。また、上記負極合材は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
(Negative electrode)
The negative electrode (negative electrode plate) of the present embodiment is composed of a current collector and a negative electrode mixture formed on both surfaces thereof. Although the formation method in particular of a negative electrode compound material is not restrict | limited, It forms using a dry method and a wet method similarly to a positive electrode compound material. The negative electrode mixture contains a negative electrode active material capable of electrochemically occluding and releasing lithium ions.

上記負極活物質としては、易黒鉛化炭素を用いる。易黒鉛化炭素は、800℃以上の熱処理によって黒鉛化する易黒鉛化性を有する。これに対し、難黒鉛化炭素は、2800℃以上の熱処理によっても黒鉛化が進みにくい難黒鉛化性を有する。これは、易黒鉛化炭素が、層状構造を形成しやすい原子配列構成であり、難黒鉛化炭素と比較して、比較的低温の熱処理によって容易に黒鉛構造に変化する性質を有するためである。   As the negative electrode active material, graphitizable carbon is used. Graphitizable carbon has graphitization properties that graphitize by heat treatment at 800 ° C. or higher. On the other hand, non-graphitizable carbon has non-graphitization property that hardly graphitizes even by heat treatment at 2800 ° C. or higher. This is because graphitizable carbon has an atomic arrangement structure that easily forms a layered structure, and has a property of easily changing to a graphite structure by heat treatment at a relatively low temperature as compared with non-graphitizable carbon.

非晶質炭素は易黒鉛化炭素であることが好ましい。易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.34nm以上、0.36nm未満であることが好ましく、0.341nm以上、0.355nm以下であることがより好ましく、0.342nm以上、0.35nm以下であることが更に好ましい。易黒鉛化炭素の平均粒子径(d50)は、2〜50μmであることが好ましく、5〜30μmであることがより好ましく、10〜20μmであることがさらに好ましい。なお、例えば、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD−3000J)で測定することができ、平均粒子径はメジアン径(d50)として算出される。   The amorphous carbon is preferably graphitizable carbon. The graphitizable carbon preferably has a C-axis direction plane d002 value of 0.34 nm or more and less than 0.36 nm obtained by the X-ray wide angle diffraction method, and is 0.341 nm or more and 0.355 nm or less. More preferably, it is 0.342 nm or more and 0.35 nm or less. The average particle diameter (d50) of graphitizable carbon is preferably 2 to 50 μm, more preferably 5 to 30 μm, and still more preferably 10 to 20 μm. For example, the particle size distribution can be measured with a laser diffraction particle size distribution measuring device (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant, and the average particle size Is calculated as the median diameter (d50).

易黒鉛化炭素は、熱重量測定(TG)により求められる空気気流中550℃の重量が25℃の重量に対して75%以上を有し、650℃の重量が25℃の重量に対して20%以下である。   The graphitizable carbon has a weight of 550 ° C. of 75% or more with respect to the weight of 25 ° C. in the air stream determined by thermogravimetry (TG), and the weight of 650 ° C. is 20% of the weight of 25 ° C. % Or less.

電池性能上の観点から、空気気流中550℃の重量が25℃の重量に対して85%以上を有し、650℃の重量が25℃の重量に対して10%以下であることがより好ましい。更には、空気気流中550℃の重量が25℃の重量に対して95%以上を有し、650℃の重量が25℃の重量に対して5%未満であることが好ましい。    From the viewpoint of battery performance, the weight of 550 ° C. in the air stream is 85% or more with respect to the weight of 25 ° C., and the weight of 650 ° C. is more preferably 10% or less with respect to the weight of 25 ° C. . Furthermore, it is preferable that the weight at 550 ° C. in the air stream is 95% or more with respect to the weight at 25 ° C., and the weight at 650 ° C. is less than 5% with respect to the weight at 25 ° C.

空気気流中550℃の重量が25℃の重量に対して75%未満の場合、入出力特性が低下し、650℃の重量が25℃の重量に対して20%を超える場合、寿命特性が低下する。ここでの熱重量測定装置は、TG分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、TG/DTA6200)で測定することができる。測定条件は、10mgの試料を採取し、乾燥空気300ml/分の流通下でアルミナをリファレンスとして、昇温速度を1℃/分により測定を行うことができる。   When the weight at 550 ° C in the air stream is less than 75% with respect to the weight at 25 ° C, the input / output characteristics deteriorate, and when the weight at 650 ° C exceeds 20% with respect to the weight at 25 ° C, the life characteristics deteriorate. To do. Here, the thermogravimetric measurement device can be measured with a TG analyzer (for example, TG / DTA6200, manufactured by SII Nano Technology Co., Ltd.). The measurement condition is that a sample of 10 mg is taken and measurement can be performed at a heating rate of 1 ° C./min using alumina as a reference under a flow of dry air of 300 ml / min.

本実施の形態では、非晶質炭素のNMP(N-メチル-2-ピロリドン)吸油量をY(ml/100g)としたときに、固練工程における混合物の固形分Z(%)(固形物の重量(g)×100/混合物の重量(g))とNMP吸油量Yが、
Z=−0.268Y+a (但し82.5≦a≦85.5) 〔式1〕
を満たす関係にある。特に、非晶質炭素のNMP吸油量Yは、70ml/100g〜120ml/100gの範囲であるのが好ましい。非晶質炭素のNMP(N-メチル-2-ピロリドン)吸油量は、例えば「JIS K5101-13-1に準拠した方法で測定されたNMPに対する吸油量」である。
In this embodiment, when the amount of NMP (N-methyl-2-pyrrolidone) oil absorption of amorphous carbon is Y (ml / 100 g), the solid content Z (%) of the mixture in the solidification step (solid matter) Weight (g) × 100 / weight of the mixture (g)) and NMP oil absorption Y are
Z = −0.268Y + a (where 82.5 ≦ a ≦ 85.5) [Formula 1]
There is a relationship that satisfies. In particular, the NMP oil absorption Y of amorphous carbon is preferably in the range of 70 ml / 100 g to 120 ml / 100 g. The NMP (N-methyl-2-pyrrolidone) oil absorption amount of amorphous carbon is, for example, “oil absorption amount with respect to NMP measured by a method based on JIS K5101-13-1”.

固練工程における混合物の固形分Z(%)(固形物の重量(g)×100/混合物の重量(g))が、非晶質炭素のNMP吸油量Y(ml/100g)と(式1)の関係になるように設定することで分散状態が良好な負極合剤を得ることができる。   The solid content Z (%) (solid weight (g) × 100 / weight of the mixture (g)) of the mixture in the kneading step is the NMP oil absorption Y (ml / 100 g) of amorphous carbon (formula 1 ), A negative electrode mixture having a good dispersion state can be obtained.

また負極合剤に導電剤(本実施の形態ではカーボンブラック)を加える場合には、負極合剤の生産工程では、非晶質炭素と、結着剤と、導電剤とを混和、練合する固練工程と、固練工程により固練した混合物に有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを実施する。そして混合物中の非晶質炭素と導電剤の混合粉体のNMP(N−メチル−2−ピロリドン)吸油量をX(ml/100g)としたときに、固練工程における混合物の固形分W(%)(固形物の重量(g)×100/混合物の重量(g))とNMP吸油量Xが、
W=−0.28X+b (但し、83.5≦b≦87.0) 〔式2〕
の式を充たす関係にある。
When a conductive agent (carbon black in this embodiment) is added to the negative electrode mixture, amorphous carbon, a binder, and a conductive agent are mixed and kneaded in the production process of the negative electrode mixture. A solidifying step and a diluting step of adjusting the viscosity by adding an organic solvent to the mixture kneaded in the solidifying step and diluting are performed. Then, when the NMP (N-methyl-2-pyrrolidone) oil absorption of the mixed powder of amorphous carbon and conductive agent in the mixture is X (ml / 100 g), the solid content W ( %) (Weight of solid (g) × 100 / weight of mixture (g)) and NMP oil absorption X are
W = −0.28X + b (where 83.5 ≦ b ≦ 87.0) [Formula 2]
There is a relationship satisfying the following formula.

固練工程における混合物の固形分W(%)(固形物の重量(g)×100/混合物の重量(g))は、負極合剤中での配合比で非晶質炭素と導電剤とを混合した紛体のNMP吸油量X(ml/100g)と(式 2)の関係となるように設定することで、分散状態が良好な負極合剤が得られる。導電剤はカーボンブラックであることが好ましい。   The solid content W (%) of the mixture in the solidification step (solid weight (g) × 100 / weight of the mixture (g)) is obtained by combining the amorphous carbon and the conductive agent in the compounding ratio in the negative electrode mixture. By setting the mixed powder to have an NMP oil absorption amount X (ml / 100 g) of (Formula 2), a negative electrode mixture having a good dispersion state can be obtained. The conductive agent is preferably carbon black.

この場合でも、非晶質炭素と導電剤の混合粉体のNMP吸油量Xが、70ml/100g〜120ml/100gの範囲であるのが好ましい。   Even in this case, the NMP oil absorption amount X of the mixed powder of amorphous carbon and conductive agent is preferably in the range of 70 ml / 100 g to 120 ml / 100 g.

(正極)
本実施形態の正極(正極板)は、集電体およびその上部に形成された正極合剤よりなる。正極合剤は、集電体の上部に設けられた少なくとも正極活物質を含む層であり、本実施形態においては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物を含む。また、この正極合剤は、正極活物質に加え、平均粒子径又はDBP給油量が異なる導電材を2種類以上含む。この正極合剤は、例えば、集電体の両面に形成(塗布)されていてもよい。
(Positive electrode)
The positive electrode (positive electrode plate) of this embodiment consists of a current collector and a positive electrode mixture formed on the current collector. The positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector. In the present embodiment, the positive electrode mixture includes a layered lithium-nickel-manganese-cobalt composite oxide. In addition to the positive electrode active material, the positive electrode mixture includes two or more kinds of conductive materials having different average particle diameters or DBP oil supply amounts. This positive electrode mixture may be formed (coated) on both surfaces of the current collector, for example.

また、正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下NMC)に加え、スピネル型リチウム・マンガン酸化物を含むリチウム含有複合金属酸化物、オリビン型リチウム酸化物、カルコゲン化合物、二酸化マンガン等を含んでいてもよい。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物または該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、たとえば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bなどが挙げられ、Mn、Al、Co、Ni、Mgなどが好ましい。異種元素は1種でもよくまたは2種以上でもよい。これらの中でも、リチウム含有複合金属酸化物が好ましい。リチウム含有複合金属酸化物としては、例えば、LixCoO2、LixNiO2、LixCoyNi1−yO2、LixCoyM1−yOz、LixNi1−yMyOz、LiMPO4、Li2MPO4F(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、VおよびBよりなる群から選ばれる少なくとも1種の元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)等が挙げられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。また、オリビン型リチウム酸化物としては、例えば、LiFePO4等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用できまたは2種以上を併用できる。 In addition to the layered lithium-nickel-manganese-cobalt composite oxide (hereinafter referred to as NMC), the positive electrode active material includes lithium-containing composite metal oxides including spinel lithium-manganese oxide, olivine-type lithium oxide, chalcogen It may contain a compound, manganese dioxide and the like. The lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. Mn, Al, Co, Ni, Mg and the like are preferable. One kind or two or more kinds of different elements may be used. Among these, lithium-containing composite metal oxides are preferable. The lithium-containing composite metal oxide, for example, LixCoO 2, LixNiO 2, LixCoyNi 1 -yO 2, LixCoyM 1 -yOz, LixNi 1 -yMyOz, LiMPO 4, Li 2 MPO 4 F ( in the respective formulas, M is Na , Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. x = 0 to 1. 2, y = 0 to 0.9, z = 2.0 to 2.3). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging. Examples of the olivine type lithium oxide include LiFePO 4 . Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. A positive electrode active material can be used individually by 1 type, or can use 2 or more types together.

(電解液)
本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
(Electrolyte)
The electrolytic solution of the present embodiment includes a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.

リチウム塩としては、リチウムイオン電池用の電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。   The lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of an electrolyte solution for a lithium ion battery, and examples thereof include the following inorganic lithium salts, fluorine-containing organic lithium salts, and oxalatoborate salts. .

無機リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩や、LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩や、LiAlCl4等の無機塩化物塩等が挙げられる。含フッ素有機リチウム塩やフルオロアルキルフッ化リン酸塩等を用いてもよい。オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。 Examples of the inorganic lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiSbF inorganic fluoride salts and the like 6, LiClO 4, Libro 4, LiIO and perhalogenate such as 4, an inorganic chloride salts such as LiAlCl 4, etc. Is mentioned. A fluorine-containing organic lithium salt, a fluoroalkyl fluorophosphate, or the like may be used. Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.

これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF6)が好ましい。 These lithium salts may be used alone or in combination of two or more. Among them, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a solvent, charge / discharge characteristics in the case of a battery, output characteristics, cycle characteristics, and the like.

電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は0.5mol/L〜2mol/Lであることが好ましく、0.6mol/L〜1.8mol/Lであることがより好ましく、0.7mol/L〜1.8mol/Lであることが更に好ましい。   The concentration of the electrolyte in the electrolytic solution is not particularly limited, but the concentration range of the electrolyte is preferably 0.5 mol / L to 2 mol / L, more preferably 0.6 mol / L to 1.8 mol / L. Preferably, it is 0.7 mol / L-1.8 mol / L.

濃度が0.5mol/L以上であると、充分な電解液の電気伝導率が得られる。また、濃度が2mol/L以下であると、粘度が高くなりすぎないため、電気伝導度の低下を抑制できる。   When the concentration is 0.5 mol / L or more, sufficient electric conductivity of the electrolytic solution can be obtained. Moreover, since a viscosity does not become high too much that a density | concentration is 2 mol / L or less, the fall of electrical conductivity can be suppressed.

非水系溶媒としては、リチウムイオン電池用の電解質の溶媒として使用可能な非水系溶媒であれば特に制限はないが、次の環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル及び鎖状エーテル等が挙げられる。   The non-aqueous solvent is not particularly limited as long as it is a non-aqueous solvent that can be used as an electrolyte solvent for a lithium ion battery, but the following cyclic carbonate, chain carbonate, chain ester, cyclic ether, chain ether, etc. Is mentioned.

例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジアルキルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、酢酸メチル、テトラヒドロフラン、ジメトキシエタン、ジメトキシメタン等が挙げられる。   For example, ethylene carbonate, propylene carbonate, butylene carbonate, dialkyl carbonate, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl acetate, tetrahydrofuran, Examples include dimethoxyethane and dimethoxymethane.

(セパレータ)
セパレータは、ポリプロピレンやポリエチレンなどよりなるオレフィン系樹脂の多孔質膜、ポリテトラフルオロエチレンなどからなるフッ素系樹脂の多孔質膜、セルロース製多孔質膜、アラミド製多孔質膜であり、これらの2種以上の多孔質膜を積層した構造としてもよく、或いはこれらの多孔質膜の表面にセラミック、バインダの混合物やアクリル系粘着剤などを塗布しても良い。
(Separator)
The separator is a porous film of an olefin resin made of polypropylene or polyethylene, a porous film of a fluorine resin made of polytetrafluoroethylene, a porous film made of cellulose, or a porous film made of aramid. A structure in which the above porous films are laminated may be used, or a mixture of ceramic and binder, an acrylic adhesive, or the like may be applied to the surface of these porous films.

(実施例の電池の作製)
負極は、負極活物質として非晶質炭素として前述の易黒鉛化炭素を用いた。結着剤としてポリフッ化ビニリデン(PVDF)を用い、非晶質炭素と結着剤の重量比を92:8の配合比とした。有機溶剤としてNMP(N−メチル−2−ピロリドン)を添加した。
(Production of battery of example)
The negative electrode used the graphitizable carbon described above as amorphous carbon as the negative electrode active material. Polyvinylidene fluoride (PVDF) was used as the binder, and the weight ratio of amorphous carbon to the binder was 92: 8. NMP (N-methyl-2-pyrrolidone) was added as an organic solvent.

(負極の作製)
非晶質炭素と、結着剤とを混和、練合する固練工程と、固練工程により固練した混合物に有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを実施する。固練工程では、負極活物質として非晶質炭素と、結着剤としてポリフッ化ビニリデン(PVDF)を重量比92:8の配合比で配合した。希釈工程では、これに有機溶剤としてNMP(N−メチル−2−ピロリドン)を添加した後、プラネタリーミキサーで混練して、スラリ状の負極合剤を得た。この負極合剤を厚さ10μmの圧延銅箔の両面に、負極合剤の固形分の塗工量が200g/m2以下になるように塗工し、その後乾燥させて圧縮し、裁断して負極を得た。
(Preparation of negative electrode)
A kneading step in which amorphous carbon and a binder are mixed and kneaded, and a diluting step in which the viscosity is adjusted by adding an organic solvent to the mixture kneaded in the kneading step and diluting the mixture. In the solidifying step, amorphous carbon as a negative electrode active material and polyvinylidene fluoride (PVDF) as a binder were blended in a weight ratio of 92: 8. In the dilution step, NMP (N-methyl-2-pyrrolidone) as an organic solvent was added thereto, and then kneaded with a planetary mixer to obtain a slurry-like negative electrode mixture. This negative electrode mixture was coated on both sides of a rolled copper foil having a thickness of 10 μm so that the solid content of the negative electrode mixture was 200 g / m 2 or less, then dried, compressed, and cut. A negative electrode was obtained.

(正極の作製)
正極活物質としてマンガン酸リチウムと、導電剤としてカーボンブラック、結着剤としてポリフッ化ビニリデンと、を重量比90:5:5の割合で混合し、溶剤としてN−メチルピロリドンを添加し、混練してスラリ状の正極合剤を得た。この合剤を厚さ20μmのアルミニウム箔の両面に塗工し、その後乾燥させて圧縮し、裁断して正極を得た。
(Preparation of positive electrode)
Lithium manganate as a positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90: 5: 5, and N-methylpyrrolidone is added as a solvent and kneaded. Thus, a slurry-like positive electrode mixture was obtained. This mixture was applied to both surfaces of an aluminum foil having a thickness of 20 μm, then dried, compressed, and cut to obtain a positive electrode.

(セパレータ)
セパレータは、厚さ30μmのポリプロピレン製セパレータを用いた。電解液は、エチレンカーボネー(EC)と、エチルメチルカーボネー(EMC)と、ジメチルカーボネー(DMC)の混合溶液に六フッ化リン酸リチウム(LiPF6)を1.2モル/リットル溶解したものに、ビニレンカーボネート(VC)を添加したものを用いた。
(Separator)
As the separator, a polypropylene separator having a thickness of 30 μm was used. The electrolyte was 1.2 mol / liter of lithium hexafluorophosphate (LiPF 6 ) dissolved in a mixed solution of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). What added vinylene carbonate (VC) to the thing was used.

(リチウムイオン二次電池の作製)
作製した正極及び負極を、厚さ30μmのポリプロピレン製セパレータを介して捲回し、円筒状容器に挿入した。注液口から所定量の電解液を注入した後内部のガスを外部に放出するガス排出弁を有する蓋と電池缶を溶接して円筒型のリチウムイオン電池を得た。
(Production of lithium ion secondary battery)
The produced positive electrode and negative electrode were wound through a polypropylene separator having a thickness of 30 μm and inserted into a cylindrical container. After injecting a predetermined amount of electrolyte from the injection port, a lid having a gas discharge valve for discharging the internal gas to the outside and the battery can were welded to obtain a cylindrical lithium ion battery.

以下、実施例につき更に詳細に説明する。尚、本発明は以下の実施例によって限定されるものではない。   Hereinafter, the examples will be described in more detail. The present invention is not limited to the following examples.

(実施例A1)
表1に示すように、実施例A1では、負極活物質としてNMP吸油量が85ml/100gの易黒鉛化炭素(非晶質炭素)を用いた。負極合剤の圧延銅箔の両面への塗工量は、160g/m2とした。
(Example A1)
As shown in Table 1, in Example A1, graphitizable carbon (amorphous carbon) having an NMP oil absorption of 85 ml / 100 g was used as the negative electrode active material. The coating amount of the negative electrode mixture on both sides of the rolled copper foil was 160 g / m 2 .

(実施例A2〜A5,比較例a1〜a2)
表1に示すように実施例A2〜A5、比較例a1〜a2では、負極スラリ作製時の固練固形分を変えたこと以外は実施例1と同様に電池を作製した。
(Examples A2 to A5, Comparative Examples a1 to a2)
As shown in Table 1, in Examples A2 to A5 and Comparative Examples a1 to a2, batteries were produced in the same manner as in Example 1 except that the solidified solid content during the production of the negative electrode slurry was changed.

(実施例B1〜B3)
表2に示すように実施例B1〜B3では負極活物質のNMP吸油量が異なる易黒鉛化炭素(非晶質炭素)を用い、固練固形分を負極活物質のNMP吸油量に応じて変えたこと以外は実施例1と同様に電池を作製した。
(Examples B1 to B3)
As shown in Table 2, in Examples B1 to B3, graphitizable carbon (amorphous carbon) having a different NMP oil absorption amount of the negative electrode active material was used, and the solidified solid content was changed according to the NMP oil absorption amount of the negative electrode active material. A battery was fabricated in the same manner as in Example 1 except that.

(実施例C1〜C4,比較例c1〜c4)
表3に示すように実施例C1〜C4、比較例c1〜c4では、活物質とカーボンブラックの配合比、及び固練固形分を変え、負極塗工量に合わせて正極と負極の容量比が同じになるように(負極容量/正極容量≒1.1)正極の塗工量を変更したこと以外は実施例1と同様に電池を作製した。
(Examples C1 to C4, Comparative Examples c1 to c4)
As shown in Table 3, in Examples C1 to C4 and Comparative Examples c1 to c4, the mixing ratio of the active material and carbon black and the solidified solid content were changed. A battery was fabricated in the same manner as in Example 1 except that the coating amount of the positive electrode was changed so as to be the same (negative electrode capacity / positive electrode capacity≈1.1).

(評価試験)
(付加逆容量率)
上記のように作製した実施例及び比較例の各電池について、1回目〜5回充放電を繰り返した際の充電容量の総和と放電容量の総和である不可逆容量を初回充電容量で除し、それを百分率で表した不可逆容量率を求めた。
付加逆容量率(%)=(5回分の放電容量の総和/5回分の充電容量の総和)×100
(塗工量標準偏差)
塗工量のバラつきは、実施例、及び比較例の条件で作製した電極100mについて、長さ方向10mごとに直径40mmの大きさで圧延銅箔の軸方向に三点打ち抜いて、打ち抜いた部分の重量を測定し、測定値から負極合剤の固形分の塗工量の標準偏差(以下、塗工量標準偏差と記す。)により評価した。
(Evaluation test)
(Additional reverse capacity ratio)
For each of the batteries of Examples and Comparative Examples produced as described above, the total charge capacity when the first to fifth charge / discharge cycles are repeated and the irreversible capacity, which is the sum of the discharge capacities, are divided by the initial charge capacity, Was determined as a percentage.
Additional reverse capacity ratio (%) = (total discharge capacity for 5 times / total charge capacity for 5 times) × 100
(Coating standard deviation)
The variation in the coating amount was obtained by punching three points in the axial direction of the rolled copper foil with a diameter of 40 mm every 10 m in the length direction for the electrode 100 m produced under the conditions of the example and the comparative example. The weight was measured and evaluated from the measured value by the standard deviation of the coating amount of the solid content of the negative electrode mixture (hereinafter referred to as the coating amount standard deviation).

(容量維持率)
寿命性能の評価として、25℃環境下にて、1ItA(一時間で定格容量を放電できる電流量)の電流値で充放電を繰り返した際の、1000サイクル目の容量維持率を以下の式で求めた。
(Capacity maintenance rate)
As an evaluation of the life performance, the capacity maintenance rate at the 1000th cycle when charging / discharging is repeated at a current value of 1 ItA (current amount capable of discharging the rated capacity in one hour) in an environment of 25 ° C. is as follows: Asked.

容量維持率(%)=(1000サイクル目の放電容量/1サイクル目の放電容量)×100   Capacity retention rate (%) = (discharge capacity at the 1000th cycle / discharge capacity at the first cycle) × 100

NMP吸油量85.0ml/100gの非晶質炭素を用いた電極合剤作製で、固練固形分60.0%〜62.7%の範囲での実施例A1〜A5では、塗工量標準偏差は、2g/m2以内、不可逆容量率は18%程度、容量維持率は90%前後でほぼ同程度であるが、発明の範囲よりも固練り固形分が小さい比較例a1では、塗工量標準偏差が2倍以上となり、不可逆容量の増大、容量維持率の低下が起こっており、負極合剤の仕上がり状態が適切でないことが示唆される。 In Examples A1 to A5 in which an electrode mixture was prepared using amorphous carbon having an NMP oil absorption of 85.0 ml / 100 g, and in the range of solid solid content of 60.0% to 62.7%, the coating amount standard The deviation is within 2 g / m 2 , the irreversible capacity ratio is about 18%, and the capacity retention ratio is about the same at around 90%, but in Comparative Example a1 where the solid content is smaller than the range of the invention, The quantity standard deviation is twice or more, and an increase in irreversible capacity and a decrease in capacity retention rate occur, suggesting that the finished state of the negative electrode mixture is not appropriate.

また、本発明の範囲よりも固練り固形分が大きい比較例a2は、塗工量標準偏差の増加は比較例a1よりも軽微であるが、容量維持率の低下は顕著で、負極合剤の作製時に負極活物質粒子が砕けていることが懸念される。   Further, in Comparative Example a2 in which the solid content of the kneading is larger than the range of the present invention, the increase in the standard deviation of the coating amount is smaller than that in Comparative Example a1, but the decrease in the capacity retention rate is remarkable, and the negative electrode mixture There is a concern that the negative electrode active material particles are crushed during production.

表3より、導電剤としてのカーボンブラックの配合比を変えた場合でも、固練固形分の適正範囲が負極活物質(非晶質炭素)単独の実施例A1〜A5、B1〜B3とやや異なるものの、材料のNMP吸油量に応じた適正な固練り固形分で負極合剤を生産することで、塗工量標準偏差、不可逆容量、及び容量維持率を一定水準に保つことができる。   From Table 3, even when the blending ratio of carbon black as the conductive agent is changed, the appropriate range of the solidified solid content is slightly different from Examples A1 to A5 and B1 to B3 of the negative electrode active material (amorphous carbon) alone. However, by producing the negative electrode mixture with an appropriate kneaded solid content corresponding to the NMP oil absorption amount of the material, the coating amount standard deviation, the irreversible capacity, and the capacity retention rate can be maintained at a constant level.

本発明の方法で、負極を作成することで、負極活物質及び導電剤で多少の変動が生じても、性能が安定したリチウムイオン電池を製造することが可能である。   By producing a negative electrode by the method of the present invention, it is possible to produce a lithium ion battery with stable performance even if there are some fluctuations in the negative electrode active material and the conductive agent.

1 正極外部端子
1’ 負極外部端子
2 金属ナット
3 セラミックワッシャ
3’ セラミックワッシャ
4 電池蓋(電池容器の一部)
5 電池容器
6 捲回群
7 外部端子鍔部
10 開裂弁
11 軸芯
15 注液口
20 円筒型リチウム二次電池
W1 正極集電体(正極の一部)
W2 正極活物質層(正極の一部)
W3 負極集電体(負極の一部)
W4 負極活物質層(負極の一部)
W5 セパレータ
DESCRIPTION OF SYMBOLS 1 Positive external terminal 1 'Negative external terminal 2 Metal nut 3 Ceramic washer 3' Ceramic washer 4 Battery cover (a part of battery container)
5 Battery container 6 Winding group 7 External terminal collar 10 Cleavage valve 11 Shaft core 15 Injection port 20 Cylindrical lithium secondary battery W1 Positive electrode current collector (part of positive electrode)
W2 Positive electrode active material layer (part of positive electrode)
W3 Negative electrode current collector (part of negative electrode)
W4 Negative electrode active material layer (part of negative electrode)
W5 separator

Claims (9)

非晶質炭素と、結着剤と、有機溶剤とを含む負極合剤を有するリチウムイオン電池の製造方法において、
前記負極合剤の生産工程は、前記非晶質炭素と、前記結着剤とを混和、練合する固練工程と、前記固練工程により固練した混合物に前記有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを有し、
前記非晶質炭素のNMP(N-メチル-2-ピロリドン)吸油量をY(ml/100g)としたときに、
前記固練工程における前記混合物の固形分Z(%)(固形物の重量(g)×100/混合物の重量(g))と前記NMP吸油量Yが、
Z=−0.268Y+a (但し82.5≦a≦85.5)
の式を満たす関係にあることを特徴とするリチウムイオン電池の製造方法。
In a method for producing a lithium ion battery having a negative electrode mixture containing amorphous carbon, a binder, and an organic solvent,
In the production process of the negative electrode mixture, the amorphous carbon and the binder are mixed and kneaded, and the organic solvent is added to the mixture kneaded by the kneading process and diluted. And a dilution step for adjusting the viscosity by
When the amount of NMP (N-methyl-2-pyrrolidone) oil absorption of the amorphous carbon is Y (ml / 100 g),
The solid content Z (%) of the mixture in the kneading step (solid weight (g) × 100 / weight of the mixture (g)) and the NMP oil absorption Y are:
Z = −0.268Y + a (where 82.5 ≦ a ≦ 85.5)
The manufacturing method of the lithium ion battery characterized by satisfy | filling the relationship of these.
前記非晶質炭素の前記NMP吸油量Yが、70ml/100g〜120ml/100gの範囲である請求項1に記載のリチウムイオン電池の製造方法。   2. The method for producing a lithium ion battery according to claim 1, wherein the NMP oil absorption amount Y of the amorphous carbon is in a range of 70 ml / 100 g to 120 ml / 100 g. 負極合剤に非晶質炭素と、結着剤と、有機溶剤、導電剤を含むリチウムイオン電池の製造方法において、前記負極合剤の生産工程は前記非晶質炭素と、前記結着剤と、前記導電剤とを混和、練合する固練工程と、前記固練工程により固練した混合物に前記有機溶剤を加えて希釈することにより粘度を調整する希釈工程とを有し、
前記混合物中の前記非晶質炭素と前記導電剤の混合紛体のNMP(N-メチル-2-ピロリドン)吸油量をX(ml/100g)としたときに、
前記固練工程における前記混合物の固形分W(%)(固形物の重量(g)×100/混合物の重量(g))と前記NMP吸油量Xが、
W=−0.28X+b (但し、83.5≦b≦87.0)
の式を満たす関係にあることを特徴とするリチウムイオン電池の製造方法。
In the method of manufacturing a lithium ion battery including amorphous carbon, a binder, an organic solvent, and a conductive agent in the negative electrode mixture, the production process of the negative electrode mixture includes the amorphous carbon, the binder, and A kneading step for mixing and kneading the conductive agent, and a diluting step for adjusting the viscosity by adding and diluting the organic solvent to the mixture kneaded by the kneading step,
When the NMP (N-methyl-2-pyrrolidone) oil absorption of the mixed powder of the amorphous carbon and the conductive agent in the mixture is X (ml / 100 g),
The solid content W (%) of the mixture in the kneading step (solid weight (g) × 100 / weight of the mixture (g)) and the NMP oil absorption amount X are:
W = −0.28X + b (however, 83.5 ≦ b ≦ 87.0)
The manufacturing method of the lithium ion battery characterized by satisfy | filling the relationship of these.
前記導電剤は、カーボンブラックである請求項3に記載のリチウムイオン電池の製造方法。   The method for manufacturing a lithium ion battery according to claim 3, wherein the conductive agent is carbon black. 前記非晶質炭素と前記導電剤の混合紛体の前記NMP吸油量Xが、70ml/100g〜120ml/100gの範囲である請求項3または4に記載のリチウムイオン電池の製造方法。   5. The method for producing a lithium ion battery according to claim 3, wherein the NMP oil absorption amount X of the mixed powder of the amorphous carbon and the conductive agent is in a range of 70 ml / 100 g to 120 ml / 100 g. 非晶質炭素と、結着剤と、有機溶剤とを含む負極合剤が集電体に保持された負極を有するリチウムイオン電池であって、
前記非晶質炭素、前記結着剤及び前記有機溶剤の混合物の固形分Z(%)と、前記非晶質炭素のNMP(N−メチル−2−ピロリドン)吸油量Y(ml/100g)とが
Z=−0.268Y+a (但し82.5≦a≦85.5)
の式を満たす関係にあることを特徴とするリチウムイオン電池。
A lithium ion battery having a negative electrode in which a negative electrode mixture containing amorphous carbon, a binder, and an organic solvent is held by a current collector,
Solid content Z (%) of a mixture of the amorphous carbon, the binder and the organic solvent, and an NMP (N-methyl-2-pyrrolidone) oil absorption Y (ml / 100 g) of the amorphous carbon Z = −0.268Y + a (where 82.5 ≦ a ≦ 85.5)
A lithium ion battery characterized by satisfying the following formula:
前記非晶質炭素の前記NMP吸油量Yが、70ml/100g〜120ml/100gの範囲である請求項6も記載のリチウムイオン電池。   The lithium ion battery according to claim 6, wherein the NMP oil absorption Y of the amorphous carbon is in the range of 70 ml / 100 g to 120 ml / 100 g. 非晶質炭素と、導電剤と、結着剤と、有機溶剤とを含む負極合剤が集電体に保持された負極を有するリチウムイオン電池であって、
前記非晶質炭素、前記導電剤、前記結着剤及び前記有機溶剤の混合物の固形分W(%)と、前記非晶質炭素と前記導電剤の混合紛体のNMP吸油量X(ml/100g)とが
W=−0.28X+b (但し、83.5≦b≦87.0)
の式を満たす関係にあることを特徴とするリチウムイオン電池。
A lithium ion battery having a negative electrode in which a negative electrode mixture containing amorphous carbon, a conductive agent, a binder, and an organic solvent is held by a current collector,
Solid content W (%) of the mixture of the amorphous carbon, the conductive agent, the binder and the organic solvent, and the NMP oil absorption X (ml / 100 g) of the mixed powder of the amorphous carbon and the conductive agent. ) And W = −0.28X + b (where 83.5 ≦ b ≦ 87.0)
A lithium ion battery characterized by satisfying the following formula:
前記非晶質炭素と前記導電剤の混合紛体の前記NMP吸油量Xが、70ml/100g〜120ml/100gの範囲である請求項8に記載のリチウムイオン電池。   9. The lithium ion battery according to claim 8, wherein the NMP oil absorption amount X of the mixed powder of the amorphous carbon and the conductive agent is in a range of 70 ml / 100 g to 120 ml / 100 g.
JP2016220290A 2016-11-11 2016-11-11 Manufacturing method of lithium ion battery, and lithium ion battery Pending JP2018078063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220290A JP2018078063A (en) 2016-11-11 2016-11-11 Manufacturing method of lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220290A JP2018078063A (en) 2016-11-11 2016-11-11 Manufacturing method of lithium ion battery, and lithium ion battery

Publications (1)

Publication Number Publication Date
JP2018078063A true JP2018078063A (en) 2018-05-17

Family

ID=62150607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220290A Pending JP2018078063A (en) 2016-11-11 2016-11-11 Manufacturing method of lithium ion battery, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP2018078063A (en)

Similar Documents

Publication Publication Date Title
KR100962857B1 (en) Lithium ion secondary battery
JP4519685B2 (en) Non-aqueous electrolyte battery
JP5582587B2 (en) Lithium ion secondary battery
JP6588079B2 (en) Nonaqueous electrolyte secondary battery
JP5692174B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6115361B2 (en) Nonaqueous electrolyte secondary battery
JP2015060767A (en) Positive electrode material for lithium secondary battery, and lithium secondary battery
JP5258499B2 (en) Non-aqueous secondary battery
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP2017103024A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP6229333B2 (en) Nonaqueous electrolyte secondary battery
KR101895670B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
WO2017022731A1 (en) Lithium ion secondary battery
JP2017152223A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP2018078063A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2007087841A (en) Non-aqueous electrolyte secondary battery
JPWO2019053861A1 (en) Electrode and non-aqueous electrolyte battery
WO2023281960A1 (en) Positive electrode, power storage element and power storage device
WO2024101231A1 (en) Secondary battery, positive electrode, and composition for positive electrode mixture layer
WO2023276526A1 (en) Nonaqueous electrolyte secondary battery