JP2018076798A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2018076798A
JP2018076798A JP2016218220A JP2016218220A JP2018076798A JP 2018076798 A JP2018076798 A JP 2018076798A JP 2016218220 A JP2016218220 A JP 2016218220A JP 2016218220 A JP2016218220 A JP 2016218220A JP 2018076798 A JP2018076798 A JP 2018076798A
Authority
JP
Japan
Prior art keywords
temperature
heat
air
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016218220A
Other languages
Japanese (ja)
Inventor
藤原 清
Kiyoshi Fujiwara
清 藤原
寛真 西岡
Hiromasa Nishioka
寛真 西岡
竹島 伸一
Shinichi Takeshima
伸一 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016218220A priority Critical patent/JP2018076798A/en
Publication of JP2018076798A publication Critical patent/JP2018076798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent inflow of HC from a heat and hydrogen generation device into an exhaust treatment catalyst.SOLUTION: An exhaust emission control device for an internal combustion engine includes an exhaust treatment catalyst (13) arranged in an engine exhaust passage, a heat and hydrogen generation device (50) capable of supplying heat only or heat and hydrogen into the exhaust treatment catalyst (13) for warming up the exhaust treatment catalyst (13), and a hydrocarbon adsorption device (82) capable of adsorbing hydrocarbon in combustion gas to be supplied from the heat and hydrogen generation device (50) into the exhaust treatment catalyst (13). At the time of the combustion of the hydrocarbon adsorbed to the hydrocarbon adsorption device (82), the combustion gas generated in the heat and hydrogen generation device (50) by complete oxidation reaction based on a lean air-fuel ratio is supplied to the hydrocarbon adsorption device (82).SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

燃料ガス供給装置と、燃料ガス供給装置から供給された燃料ガスを改質する改質触媒と、改質触媒から流出した改質ガスを排気管内に供給するための改質ガス通路とを具備しており、機関始動時に、排気管内に供給された改質ガスにより排気処理触媒を暖機するようにした燃料改質装置が公知である(特許文献1を参照)。ところが、このような燃料改質装置では、改質触媒が活性化するまでは、改質ガス中に多量の未燃HCが含まれており、これら多量の未燃HCが大気中に放出される危険性がある。そこで、この燃料改質装置では、HC吸着剤を配置した吸着通路を改質ガス通路に併設し、改質触媒が活性化するまでは、改質触媒から流出した改質ガスを吸着通路に送り込んで、改質ガス中に含まれる未燃HCをHC吸着剤に吸着させるようにしている。   A fuel gas supply device, a reforming catalyst for reforming the fuel gas supplied from the fuel gas supply device, and a reformed gas passage for supplying the reformed gas flowing out from the reforming catalyst into the exhaust pipe. A fuel reforming apparatus is known in which the exhaust treatment catalyst is warmed up by the reformed gas supplied into the exhaust pipe when the engine is started (see Patent Document 1). However, in such a fuel reformer, a large amount of unburned HC is contained in the reformed gas until the reforming catalyst is activated, and this large amount of unburned HC is released into the atmosphere. There is a risk. Therefore, in this fuel reformer, an adsorption passage in which the HC adsorbent is arranged is provided in the reformed gas passage, and the reformed gas flowing out from the reforming catalyst is sent into the adsorption passage until the reforming catalyst is activated. Thus, unburned HC contained in the reformed gas is adsorbed on the HC adsorbent.

特開2009−137818号公報JP 2009-137818 A

一方、このHC吸着剤では、HC吸着剤の温度が吸着HCの離脱温度になると、HC吸着剤から吸着HCが離脱する。従って、この燃料改質装置では、HC吸着剤の温度が吸着HCの離脱温度になると、改質触媒から流出して改質ガス通路内を流れている改質ガスの一部が、HC吸着時とは逆向きにHC吸着剤内を流通せしめられ、離脱HCを含んだ改質ガスが、還流通路および負圧制御弁を介して改質触媒の上流に還流せしめられる。次いで、この改質ガスに含まれる離脱HCは、改質触媒において燃焼せしめられ、燃料として再利用される。このように、この燃料改質装置は、HC吸着剤から離脱したHCを、燃料として再利用できるという利点はあるが、HC吸着剤から離脱したHCを再利用するための配管や流路制御装置が複雑であり、実用に適さないという問題がある。   On the other hand, in this HC adsorbent, when the temperature of the HC adsorbent reaches the adsorption HC desorption temperature, the adsorbed HC desorbs from the HC adsorbent. Therefore, in this fuel reformer, when the temperature of the HC adsorbent reaches the desorption temperature of the adsorbed HC, a part of the reformed gas flowing out of the reforming catalyst and flowing in the reformed gas passage is The reformed gas containing the separated HC is recirculated upstream of the reforming catalyst through the recirculation passage and the negative pressure control valve. Next, the detached HC contained in the reformed gas is combusted in the reforming catalyst and reused as fuel. As described above, this fuel reformer has an advantage that the HC released from the HC adsorbent can be reused as fuel, but the piping and flow path control device for reusing the HC released from the HC adsorbent. Is complicated and unsuitable for practical use.

上記問題を解決するために、本発明によれば、機関排気通路内に配置された排気処理触媒と、排気処理触媒を暖機するために排気処理触媒に熱のみ、又は熱および水素を供給可能な熱、水素生成装置とを具備しており、熱、水素生成装置が、燃料および空気の燃焼ガスが送り込まれる改質用触媒を備えており、熱、水素生成装置では、部分酸化反応を行うことにより水素を含む燃焼ガス、又はリーン空燃比のもとで完全酸化反応装置を行うことにより水素を含まない燃焼ガスが生成され、更に、熱、水素生成装置から該排気処理触媒に供給される燃焼ガス中の炭化水素を吸着可能な炭化水素吸着装置を具備しており、炭化水素吸着装置に吸着され、又は堆積した炭化水素を燃焼させるときには、熱、水素生成装置において、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスを炭化水素吸着装置に供給する。   In order to solve the above problems, according to the present invention, it is possible to supply only heat or heat and hydrogen to the exhaust treatment catalyst disposed in the engine exhaust passage and to warm up the exhaust treatment catalyst. A heat and hydrogen generator, and the heat and hydrogen generator includes a reforming catalyst into which fuel and air combustion gas is sent. The heat and hydrogen generator performs a partial oxidation reaction. As a result, combustion gas containing hydrogen or combustion gas not containing hydrogen is generated by performing a complete oxidation reaction device under a lean air-fuel ratio, and further supplied from the hydrogen generator to the exhaust treatment catalyst. A hydrocarbon adsorbing device capable of adsorbing hydrocarbons in the combustion gas is provided, and when the hydrocarbon adsorbed or deposited on the hydrocarbon adsorbing device is burned, in the heat and hydrogen generating device, the lean air-fuel ratio is reduced. Supplying the generated combustion gas to hydrocarbon adsorber by complete oxidation reaction at.

炭化水素吸着装置に吸着され、又は堆積した炭化水素を離脱させ、燃焼させるときには、熱、水素生成装置において、リーン空燃比による完全酸化反応を行えばよいので、複雑な配管や流路制御装置を用いることなく、炭化水素吸着装置から炭化水素を離脱させ、燃焼させることができる。   When the hydrocarbon adsorbed or deposited on the hydrocarbon adsorbing device is separated and burned, the heat and hydrogen generator need only perform a complete oxidation reaction with a lean air-fuel ratio. Without use, hydrocarbons can be released from the hydrocarbon adsorber and burned.

図1は内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine. 図2は熱、水素生成装置の全体図である。FIG. 2 is an overall view of the heat and hydrogen generator. 図3は軽油の改質反応を説明するための図である。FIG. 3 is a diagram for explaining a light oil reforming reaction. 図4は、反応平衡温度TBと、O/Cモル比との関係を示す図である。FIG. 4 is a graph showing the relationship between the reaction equilibrium temperature TB and the O 2 / C molar ratio. 図5は、炭素原子1個当りの生成分子個数と、O/Cモル比との関係を示す図である。FIG. 5 is a graph showing the relationship between the number of generated molecules per carbon atom and the O 2 / C molar ratio. 図6は、改質用触媒内の温度分布を示す図である。FIG. 6 is a view showing a temperature distribution in the reforming catalyst. 図7は、供給される空気温TAが変化したときの反応平衡温度TBと、O/Cモル比との関係を示す図である。FIG. 7 is a diagram showing the relationship between the reaction equilibrium temperature TB and the O 2 / C molar ratio when the supplied air temperature TA changes. 図8Aおよび8Bは、排気処理触媒の温度TDの変化を示す図である。8A and 8B are diagrams showing changes in the temperature TD of the exhaust treatment catalyst. 図9は、熱、水素生成制御を示すタイムチャートである。FIG. 9 is a time chart showing heat and hydrogen generation control. 図10Aおよび10Bは、2次暖機を行う運転領域を示す図である。10A and 10B are diagrams showing an operation region in which secondary warm-up is performed. 図11は、熱、水素生成制御を示すタイムチャートである。FIG. 11 is a time chart showing heat and hydrogen generation control. 図12は、HC堆積量の変化を示す図である。FIG. 12 is a diagram showing a change in the HC accumulation amount. 図13は、発生HC量を示す図である。FIG. 13 is a diagram showing the amount of generated HC. 図14は、燃焼HC量を示す図である。FIG. 14 is a diagram showing the combustion HC amount. 図15は、堆積HC燃焼制御を行うためのフローチャートである。FIG. 15 is a flowchart for performing the deposited HC combustion control. 図16は、堆積HC燃焼制御を行うためのフローチャートである。FIG. 16 is a flowchart for performing the deposited HC combustion control. 図17は、熱、水素生成制御を行うためのフローチャートである。FIG. 17 is a flowchart for performing heat and hydrogen generation control. 図18は、熱、水素生成制御を行うためのフローチャートである。FIG. 18 is a flowchart for performing heat and hydrogen generation control. 図19は、熱、水素生成制御を行うためのフローチャートである。FIG. 19 is a flowchart for performing heat and hydrogen generation control. 図20は、熱、水素生成制御を行うためのフローチャートである。FIG. 20 is a flowchart for performing heat and hydrogen generation control. 図21は、触媒温度の上昇規制制御を行うためのフローチャートである。FIG. 21 is a flowchart for performing catalyst temperature increase restriction control.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはアクチュエータにより駆動されるスロットル弁10が配置され、吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by an actuator is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.

一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気管12を介して排気処理触媒13の入口に連結される。図1に示される例では、この排気処理触媒13はNO吸蔵触媒からなる。排気処理触媒13の出口は、NO選択還元触媒を担持したパティキュレートフィルタ14に連結され、パティキュレートフィルタ14の下流には、例えば酸化触媒からなるスイーパ触媒15が配置される。排気処理触媒13上流の排気管12内には、例えば軽油を供給するための燃料供給弁16が配置されており、排気処理触媒13とパティキュレートフィルタ14との間には、尿素水を供給するための尿素供給弁17が配置されている。 On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the exhaust treatment catalyst 13 via the exhaust pipe 12. In the example shown in FIG. 1, the exhaust treatment catalyst 13 is composed of a NO X storage catalyst. The outlet of the exhaust treatment catalyst 13 is connected to a particulate filter 14 carrying a NO X selective reduction catalyst, and a sweeper catalyst 15 made of, for example, an oxidation catalyst is disposed downstream of the particulate filter 14. A fuel supply valve 16 for supplying light oil, for example, is arranged in the exhaust pipe 12 upstream of the exhaust treatment catalyst 13, and urea water is supplied between the exhaust treatment catalyst 13 and the particulate filter 14. A urea supply valve 17 is arranged for this purpose.

一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路18を介して互いに連結され、EGR通路18内には電子制御式EGR制御弁19が配置される。また、EGR通路18の周りにはEGR通路18内を流れるEGRガスを冷却するための冷却装置20が配置される。図1に示される実施例では機関冷却水が冷却装置20内に導かれ、機関冷却水によってEGRガスが冷却される。各燃料噴射弁3は燃料供給管21を介してコモンレール22に連結され、このコモンレール22は電子制御式の吐出量可変な燃料ポンプ23を介して燃料タンク24に連結される。燃料タンク24内に貯蔵されている燃料は燃料ポンプ23によってコモンレール22内に供給され、コモンレール22内に供給された燃料は各燃料供給管21を介して燃料噴射弁3に供給される。   On the other hand, the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 18, and an electronically controlled EGR control valve 19 is disposed in the EGR passage 18. A cooling device 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed around the EGR passage 18. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 20, and the EGR gas is cooled by the engine cooling water. Each fuel injection valve 3 is connected to a common rail 22 via a fuel supply pipe 21, and this common rail 22 is connected to a fuel tank 24 via an electronically controlled fuel pump 23 having a variable discharge amount. The fuel stored in the fuel tank 24 is supplied into the common rail 22 by the fuel pump 23, and the fuel supplied into the common rail 22 is supplied to the fuel injection valve 3 through each fuel supply pipe 21.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。図1に示されるように、排気処理触媒13の上流側および排気処理触媒13の下流側、およびパティキュレートフィルタ14の下流側には夫々温度センサ25a、25b、25cが配置されており、排気処理触媒13の上流側および排気処理触媒13の下流側には夫々NOセンサ26a、26bが配置されている。更に、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後差圧を検出するための差圧センサ27が取り付けられており、パティキュレートフィルタ14の下流側には空燃比センサ28が配置されている。これら温度センサ25a、25b、25c、NOセンサ26a、26b、差圧センサ27、空燃比センサ28および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。 The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. As shown in FIG. 1, temperature sensors 25a, 25b, and 25c are arranged on the upstream side of the exhaust treatment catalyst 13, the downstream side of the exhaust treatment catalyst 13, and the downstream side of the particulate filter 14, respectively. upstream and exhaust treatment respectively NO X sensor 26a on the downstream side of the catalyst 13 of the catalyst 13, 26b are arranged. Further, a differential pressure sensor 27 for detecting the differential pressure across the particulate filter 14 is attached to the particulate filter 14, and an air-fuel ratio sensor 28 is disposed downstream of the particulate filter 14. These temperature sensors 25a, 25b, 25c, NO X sensor 26a, 26b, a differential pressure sensor 27, the air-fuel ratio sensor 28 and the output signal is the input port 35 via an AD converter 37 respectively corresponding to the intake air amount detector 8 Entered.

また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続されており、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。また、入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。更に入力ポート35には機関のスタータスイッチ43の作動信号が入力される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用アクチュエータ、燃料供給弁16、尿素供給弁17、EGR制御弁19および燃料ポンプ23に接続される。   A load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is connected to the input port 35 via the corresponding AD converter 37. Entered. The input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. Further, the operation signal of the engine starter switch 43 is input to the input port 35. On the other hand, the output port 36 is connected to the fuel injection valve 3, the actuator for driving the throttle valve 10, the fuel supply valve 16, the urea supply valve 17, the EGR control valve 19, and the fuel pump 23 through corresponding drive circuits 38.

図1を参照すると、熱および水素、又は熱のみを生成可能な熱、水素生成装置50が設けられており、この熱、水素生成装置50は、通路切換装置51を介して、排気管12内に連結されている。この熱、水素生成装置50は、例えば、機関始動時に始動され、熱、水素生成装置50において生成された熱および水素、又は熱は、通路切換装置51を介して、排気処理触媒13、或いは、NO選択還元触媒を担持したパティキュレートフィルタ14に供給される。それにより、これら熱および水素、又は熱によって排気処理触媒13の暖機作用等が行われる。この熱、水素生成装置50は、例えば、車両のエンジンルーム内に配置される。 Referring to FIG. 1, heat and hydrogen, or heat that can generate only heat, a hydrogen generator 50 is provided, and this heat and hydrogen generator 50 is disposed in the exhaust pipe 12 via a passage switching device 51. It is connected to. The heat and hydrogen generation device 50 is started, for example, when the engine is started, and the heat, the heat and hydrogen generated in the hydrogen generation device 50, or the heat is passed through the passage switching device 51, or the exhaust treatment catalyst 13 or It is supplied to the particulate filter 14 carrying the NO X selective reduction catalyst. Thereby, the warming-up action of the exhaust treatment catalyst 13 is performed by these heat and hydrogen, or heat. This heat and hydrogen generator 50 is disposed, for example, in an engine room of a vehicle.

図2にこの熱、水素生成装置50の全体図を示す。この熱、水素生成装置50は全体的に円筒状をなす。
図2を参照すると、52は熱、水素生成装置50の円筒状ハウジング、53はハウジング52内に形成されたバーナー燃焼室、54はハウジング52内に配置された改質用触媒、55はハウジング52内に形成されたガス流出室を夫々示す。図2に示される実施例では、ハウジング52の長手方向中央部に改質用触媒54が配置されており、ハウジング52の長手方向一端部にバーナー燃焼室53か配置されており、ハウジング52の長手方向他端部にガス流出室55か配置されている。図2に示されるように、この実施例では、ハウジング52の外周全体が断熱材56により覆われている。
FIG. 2 shows an overall view of the heat and hydrogen generator 50. The heat and hydrogen generator 50 is generally cylindrical.
Referring to FIG. 2, 52 is heat, a cylindrical housing of the hydrogen generator 50, 53 is a burner combustion chamber formed in the housing 52, 54 is a reforming catalyst disposed in the housing 52, and 55 is a housing 52. The gas outflow chamber formed in each is shown. In the embodiment shown in FIG. 2, the reforming catalyst 54 is disposed at the longitudinal center of the housing 52, and the burner combustion chamber 53 is disposed at one longitudinal end of the housing 52. A gas outflow chamber 55 is disposed at the other end in the direction. As shown in FIG. 2, in this embodiment, the entire outer periphery of the housing 52 is covered with a heat insulating material 56.

図2に示されるように、バーナー燃焼室53の一端部には、燃料噴射弁58を備えたバーナー57が配置されている。燃料噴射弁58の先端はバーナー燃焼室53内に配置されており、この燃料噴射弁58の先端には燃料噴射口59が形成されている。また、燃料噴射弁58周りには空気室60が形成されており、燃料噴射弁58の先端周りには空気室60内の空気をバーナー燃焼室53内に向けて噴出させるための空気供給口61が形成されている。図2に示される実施例では、燃料噴射弁58は、図1に示されるように、燃料タンク24に接続されており、燃料タンク24内の燃料が燃料噴射弁58の燃料噴射口59から噴射される。図1および図2に示される実施例では、この燃料は軽油からなる。   As shown in FIG. 2, a burner 57 having a fuel injection valve 58 is disposed at one end of the burner combustion chamber 53. The tip of the fuel injection valve 58 is disposed in the burner combustion chamber 53, and a fuel injection port 59 is formed at the tip of the fuel injection valve 58. An air chamber 60 is formed around the fuel injection valve 58, and an air supply port 61 for ejecting air in the air chamber 60 toward the burner combustion chamber 53 around the tip of the fuel injection valve 58. Is formed. In the embodiment shown in FIG. 2, the fuel injection valve 58 is connected to the fuel tank 24 as shown in FIG. 1, and the fuel in the fuel tank 24 is injected from the fuel injection port 59 of the fuel injection valve 58. Is done. In the embodiment shown in FIGS. 1 and 2, this fuel consists of light oil.

一方、空気室60は、一方では高温空気流通路62を介して吐出量の制御可能な空気ポンプ64に接続され、他方では低温空気流通路63を介して吐出量の制御可能な空気ポンプ64に接続されている。図2に示されるように、これらの高温空気流通路62および低温空気流通路63内には、夫々高温空気弁65および低温空気弁66が配置されている。また、図2に示されるように、高温空気流通路62は、ガス流出室55内に配置された熱交換部を具備しており、この熱交換部が図2に、符号62aでもって図解的に示されている。なお、この熱交換部62aは、改質用触媒54の下流であってガス流出室55を画定するハウジング52の周囲に形成することもできる。即ち、この熱交換部62aは、ガス流出室55から流出した高温ガス熱を用いて熱交換作用が行われる場所に配置、又は形成することが好ましい。一方、低温空気流通路63は、このようにガス流出室55から流出した高温ガス熱を用いて熱交換作用の行われる熱交換部を有していない。   On the other hand, the air chamber 60 is connected to an air pump 64 whose discharge amount can be controlled via a high-temperature air flow passage 62 on the one hand and to an air pump 64 whose discharge amount can be controlled via a low-temperature air flow passage 63 on the other hand. It is connected. As shown in FIG. 2, a hot air valve 65 and a cold air valve 66 are disposed in the hot air flow passage 62 and the cold air flow passage 63, respectively. Further, as shown in FIG. 2, the high-temperature air flow passage 62 includes a heat exchanging portion disposed in the gas outflow chamber 55, and this heat exchanging portion is schematically shown in FIG. Is shown in The heat exchanging portion 62 a can also be formed around the housing 52 that defines the gas outflow chamber 55 downstream of the reforming catalyst 54. That is, the heat exchanging portion 62a is preferably arranged or formed in a place where the heat exchanging action is performed using the high-temperature gas heat flowing out from the gas outflow chamber 55. On the other hand, the low-temperature air flow passage 63 does not have a heat exchanging portion that performs heat exchange using the high-temperature gas heat that has flowed out of the gas outflow chamber 55 in this way.

高温空気弁65が開弁し、低温空気弁66が閉弁せしめられると外気は、エアクリーナ67、空気ポンプ64、高温空気流通路62および空気室60を介して空気供給口61からバーナー燃焼室53内に供給される。このとき外気、即ち、空気は熱交換部62a内を流通せしめられる。これに対し、低温空気弁66が開弁し、高温空気弁65が閉弁せしめられると外気、即ち、空気は、エアクリーナ67、空気ポンプ64、低温空気流通路63および空気室60を介して空気供給口61から供給される。従って、高温空気弁65および低温空気弁66は、空気室60を介して空気供給口61に空気を供給する空気流通路を、高温空気流通路62と低温空気流通路63との間で切換え可能な切換え装置を形成している。   When the high-temperature air valve 65 is opened and the low-temperature air valve 66 is closed, the outside air passes through the air cleaner 67, the air pump 64, the high-temperature air flow passage 62, and the air chamber 60 from the air supply port 61 to the burner combustion chamber 53. Supplied in. At this time, outside air, that is, air is circulated in the heat exchanging portion 62a. On the other hand, when the low-temperature air valve 66 is opened and the high-temperature air valve 65 is closed, the outside air, that is, the air is passed through the air cleaner 67, the air pump 64, the low-temperature air flow passage 63 and the air chamber 60. Supplied from the supply port 61. Therefore, the high temperature air valve 65 and the low temperature air valve 66 can switch the air flow path for supplying air to the air supply port 61 via the air chamber 60 between the high temperature air flow path 62 and the low temperature air flow path 63. A simple switching device.

一方、バーナー燃焼室53内には点火装置68が配置されており、図2に示される実施例では、この点火装置68はグロープラグからなる。このグロープラグ68はスイッチ69を介して電源70に接続されている。一方、図2に示される実施例では、改質用触媒54が、酸化部54aと改質部54bからなる。図2に示される実施例では、改質用触媒54の基体はゼオライトからなり、この基体上に、酸化部54aでは主にパラジウムPdが担持されており、改質部54bでは主にロジウムRhが担持されている。また、バーナー燃焼室53内には、改質用触媒54の酸化部54aの上流側端面の温度を検出するための温度センサ71が配置されており、ガス流出室55内には、改質用触媒54の改質部54bの下流側端面の温度を検出するための温度センサ72が配置されている。更に、断熱材56の外部に位置する低温空気流通路63には、低温空気流通路63内を流通する空気の温度を検出するための温度センサ73が配置されている。   On the other hand, an ignition device 68 is disposed in the burner combustion chamber 53. In the embodiment shown in FIG. 2, the ignition device 68 is formed of a glow plug. The glow plug 68 is connected to a power source 70 via a switch 69. On the other hand, in the embodiment shown in FIG. 2, the reforming catalyst 54 is composed of an oxidizing portion 54a and a reforming portion 54b. In the embodiment shown in FIG. 2, the base of the reforming catalyst 54 is made of zeolite, and palladium Pd is mainly supported in the oxidation part 54a on this base, and rhodium Rh is mainly supported in the reforming part 54b. It is supported. In the burner combustion chamber 53, a temperature sensor 71 for detecting the temperature of the upstream end surface of the oxidation portion 54a of the reforming catalyst 54 is disposed. A temperature sensor 72 for detecting the temperature of the downstream end face of the reforming portion 54b of the catalyst 54 is disposed. Furthermore, a temperature sensor 73 for detecting the temperature of the air flowing through the low temperature air flow passage 63 is disposed in the low temperature air flow passage 63 located outside the heat insulating material 56.

これらの温度センサ71、72および73の出力信号は、図1に示される夫々対応するAD変換器37を介して入力ポート35に入力される。また、グロープラグ68の抵抗値を示す出力信号も、図1に示される対応するAD変換器37を介して入力ポート35に入力される。一方、図1に示される出力ポート36は、対応する駆動回路38を介して夫々燃料噴射弁58、高温空気弁65、低温空気弁66、およびスイッチ69に接続される。更に、図1に示されるように、出力ポート36は、空気ポンプ64の吐出量を制御するポンプ駆動回路44に接続され、空気ポンプ64の吐出量は、このポンプ駆動回路44により、出力ポート36に出力された吐出量の指令値となるように駆動制御される。   The output signals of these temperature sensors 71, 72 and 73 are input to the input port 35 via the corresponding AD converters 37 shown in FIG. An output signal indicating the resistance value of the glow plug 68 is also input to the input port 35 via the corresponding AD converter 37 shown in FIG. On the other hand, the output port 36 shown in FIG. 1 is connected to a fuel injection valve 58, a high temperature air valve 65, a low temperature air valve 66, and a switch 69 via corresponding drive circuits 38. Further, as shown in FIG. 1, the output port 36 is connected to a pump drive circuit 44 that controls the discharge amount of the air pump 64, and the discharge amount of the air pump 64 is output by the pump drive circuit 44. The drive is controlled so as to be the command value of the discharge amount output to

熱、水素生成装置50の運転開始時には、バーナー57から噴射された燃料がグロープラグ68により着火され、それにより、バーナー燃焼室53内において、バーナー57から供給された燃料および空気が反応することによりバーナー燃焼が開始される。バーナー燃焼が開始されると、改質用触媒54の温度が次第に上昇する。このとき、バーナー燃焼はリーン空燃比のもとで行われている。次いで、改質用触媒44の温度が、燃料を改質可能な温度に到達すると、通常は、空燃比がリーン空燃比からリッチ空燃比に切換えられ、改質用触媒44における燃料の改質作用が開始される。燃料の改質作用が開始されると、水素が生成され、生成された水素を含む高温のガスが、ガス流出室55のガス流出口74から流出せしめられる。ガス流出口74から流出した高温のガスは、図1に示されるように、通路切換装置51を介して、排気管12内に供給される。   At the start of operation of the heat and hydrogen generator 50, the fuel injected from the burner 57 is ignited by the glow plug 68, whereby the fuel and air supplied from the burner 57 react in the burner combustion chamber 53. Burner combustion is started. When the burner combustion is started, the temperature of the reforming catalyst 54 gradually increases. At this time, burner combustion is performed under a lean air-fuel ratio. Next, when the temperature of the reforming catalyst 44 reaches a temperature at which the fuel can be reformed, the air-fuel ratio is normally switched from the lean air-fuel ratio to the rich air-fuel ratio, and the fuel reforming action in the reforming catalyst 44 is achieved. Is started. When the reforming action of the fuel is started, hydrogen is generated, and a high-temperature gas containing the generated hydrogen is caused to flow out from the gas outlet 74 of the gas outlet chamber 55. The hot gas flowing out from the gas outlet 74 is supplied into the exhaust pipe 12 via the passage switching device 51 as shown in FIG.

このように、本発明の実施例では、熱、水素生成装置50は、バーナー燃焼室53と、バーナー燃焼を行うためにバーナー燃焼室53内に配置されたバーナー57と、バーナー57からバーナー燃焼室53内に供給される燃料の供給量を制御可能な燃料供給装置と、バーナー57からバーナー燃焼室53内に供給される空気の温度および供給量を制御可能な空気供給装置と、燃料を着火させるための着火装置68と、バーナー燃焼ガスが送り込まれる改質用触媒54とを具備しており、空気供給装置が、バーナー57からバーナー燃焼室53内に供給される空気をバーナー燃焼ガスにより加熱するための熱交換部62aを具備している。この場合、本発明の実施例では、燃料噴射弁58が上述の燃料供給装置を構成しており、空気室60、空気供給口61、高温空気流通路62、熱交換部62a、低温空気流通路63、空気ポンプ64、高温空気弁65および低温空気弁66が上述の空気供給装置を構成している。   Thus, in the embodiment of the present invention, the heat and hydrogen generator 50 includes the burner combustion chamber 53, the burner 57 disposed in the burner combustion chamber 53 for performing the burner combustion, and the burner 57 to the burner combustion chamber. The fuel supply device that can control the supply amount of the fuel supplied into 53, the air supply device that can control the temperature and supply amount of the air supplied from the burner 57 into the burner combustion chamber 53, and the fuel are ignited. And a reforming catalyst 54 into which the burner combustion gas is sent. The air supply device heats the air supplied from the burner 57 into the burner combustion chamber 53 with the burner combustion gas. The heat exchange part 62a for this is comprised. In this case, in the embodiment of the present invention, the fuel injection valve 58 constitutes the above-described fuel supply device, and the air chamber 60, the air supply port 61, the high temperature air flow passage 62, the heat exchange section 62a, and the low temperature air flow passage. 63, the air pump 64, the high temperature air valve 65, and the low temperature air valve 66 constitute the above-described air supply device.

次に、図1を参照しつつ、通路切換装置51について説明する。図1を参照すると、通路切換装置51は、熱、水素生成装置50のガス流出口74(図2)に連結された主流通路80と、主流通路80内に配置された主流通路弁81および炭化水素吸着装置82(以下、HC吸着装置82と称す)と、主流通路80に併設されて主流通路弁81上流の主流通路80とHC吸着装置82下流の主流通路80とを連結する、即ち、主流通路弁81およびHC吸着装置82を迂回するバイパス通路83と、バイパス通路83内に配置されたバイパス弁84とを具備する。なお、HC吸着装置82は、例えば、ゼオライトからなるHC吸着剤を内臓している。   Next, the passage switching device 51 will be described with reference to FIG. Referring to FIG. 1, the passage switching device 51 includes a main flow passage 80 connected to a heat and gas outlet 74 (FIG. 2) of the hydrogen generator 50, a main flow passage valve 81 disposed in the main flow passage 80, and a carbonization. A hydrogen adsorption device 82 (hereinafter referred to as HC adsorption device 82) is connected to the main flow passage 80 upstream of the main flow passage valve 81 and the main flow passage 80 downstream of the HC adsorption device 82. A bypass passage 83 that bypasses the passage valve 81 and the HC adsorption device 82 and a bypass valve 84 disposed in the bypass passage 83 are provided. Note that the HC adsorption device 82 has a built-in HC adsorbent made of zeolite, for example.

更に、通路切換装置51は、主流通路80の下流端に配置された流路切換弁85と、流路切換弁85から、排気処理触媒13上流の排気管12内に連結された第1通路86と、流路切換弁85から、NO選択還元触媒を担持したパティキュレートフィルタ14上流の排気管12内に連結された第2通路87とを具備する。主流通路80の出口は、流路切換弁85によって、第1通路86と第1通路87とのいずれか一方に連結される。機関暖機運転時には、主流通路80の出口は、通常、流路切換弁85を介して第1通路86に連結されており、従って、以下、主流通路80の出口が、流路切換弁85を介して第1通路86に連結されている場合を例にとって説明する。 Further, the passage switching device 51 includes a flow passage switching valve 85 disposed at the downstream end of the main flow passage 80 and a first passage 86 connected from the flow passage switching valve 85 into the exhaust pipe 12 upstream of the exhaust treatment catalyst 13. And a second passage 87 connected from the flow path switching valve 85 to the exhaust pipe 12 upstream of the particulate filter 14 carrying the NO X selective reduction catalyst. The outlet of the main flow passage 80 is connected to one of the first passage 86 and the first passage 87 by a flow path switching valve 85. During the engine warm-up operation, the outlet of the main flow passage 80 is normally connected to the first passage 86 via the flow path switching valve 85. Therefore, hereinafter, the outlet of the main flow path 80 is connected to the flow path switching valve 85. A case where the first passage 86 is connected to the first passage 86 will be described as an example.

さて、本発明の実施例では、熱、水素生成装置1において、燃料を改質することにより水素を生成するようにしている。そこでまず初めに、図3を参照しつつ、燃料として軽油を用いた場合の改質反応について説明する。   In the embodiment of the present invention, the heat and hydrogen generator 1 generates hydrogen by reforming the fuel. First, the reforming reaction when light oil is used as the fuel will be described with reference to FIG.

図3の(a)から(c)には、燃料として一般的に使用されている軽油を用いた場合を例にとって、完全酸化反応が行われたときの反応式、部分酸化改質反応が行われたときの反応式、および水蒸気改質反応が行われたときの反応式が示されている。なお、各反応式における発熱量ΔHは低位発熱量(LHV)で示されている。さて、図3の(b)および(c)からわかるように、軽油から水素を発生させるには、部分酸化改質反応を行わせる方法と、水蒸気改質反応を行わせる方法との二つの方法がある。水蒸気改質反応は、軽油に水蒸気を添加する方法であり、図3(c)からわかるように、この水蒸気改質反応は吸熱反応である。従って、水蒸気改質反応を生じさせるには外部から熱を加える必要がある。大型の水素生成プラントでは、通常、部分酸化改質反応に加え、水素の生成効率を高めるために、発生した熱を捨てずに、発生した熱を水素の生成のために使用する水蒸気改質反応が用いられている。 3 (a) to 3 (c) show a reaction formula and a partial oxidation reforming reaction when a complete oxidation reaction is performed, taking an example of using light oil generally used as a fuel. The reaction equation when the steam is reformed and the reaction equation when the steam reforming reaction is performed are shown. In addition, the calorific value ΔH 0 in each reaction formula is indicated by the lower calorific value (LHV). As can be seen from FIGS. 3B and 3C, in order to generate hydrogen from light oil, there are two methods: a method of performing a partial oxidation reforming reaction and a method of performing a steam reforming reaction. There is. The steam reforming reaction is a method of adding steam to light oil. As can be seen from FIG. 3C, the steam reforming reaction is an endothermic reaction. Therefore, it is necessary to apply heat from the outside in order to cause the steam reforming reaction. In large hydrogen generation plants, in addition to the partial oxidation reforming reaction, a steam reforming reaction that uses the generated heat to generate hydrogen without increasing the generated heat in order to increase the efficiency of hydrogen generation. Is used.

これに対し、本発明では、水素と熱の両方を生成するために、発生した熱を水素の生成のために使用する水蒸気改質反応は用いておらず、本発明では、部分酸化改質反応のみを用いて水素を生成している。この部分酸化改質反応は、図3(b)からわかるように、発熱反応であり、従って外部から熱を加えなくても自分の発生した熱でもって改質反応が進行し、水素が生成される。さて、図3(b)の部分酸化改質反応の反応式に示されるように、部分酸化改質反応は、反応せしめられる空気と燃料との比を示すO/Cモル比が0.5のリッチ空燃比でもって行われ、このときCOとHとが生成される。 On the other hand, in the present invention, in order to generate both hydrogen and heat, the steam reforming reaction using the generated heat for generating hydrogen is not used. In the present invention, the partial oxidation reforming reaction is not used. Hydrogen is generated using only. As can be seen from FIG. 3B, this partial oxidation reforming reaction is an exothermic reaction, and therefore the reforming reaction proceeds with the heat generated by itself without applying heat from the outside, and hydrogen is generated. The As shown in the reaction formula of the partial oxidation reforming reaction in FIG. 3B, the partial oxidation reforming reaction has an O 2 / C molar ratio indicating the ratio of air to fuel to be reacted is 0.5. At a rich air / fuel ratio, CO and H 2 are produced at this time.

図4は、空気と燃料とを改質触媒において反応させて平衡に達したときの反応平衡温度TBと、空気と燃料のO/Cモル比との関係を示している。なお、図4の実線は、空気温が25℃のときの理論値を示している。図4の実線に示されるように、O/Cモル比=0.5のリッチ空燃比でもって部分酸化改質反応が行われたときには、平衡反応温度TBはほぼ830℃となる。なお、このときの実際の平衡反応温度TBは830℃よりも若干低くなるが、以下、平衡反応温度TBは図4の実線に示す値になるものとして、本発明による実施例について説明する。 FIG. 4 shows the relationship between the reaction equilibrium temperature TB when air and fuel are reacted in the reforming catalyst to reach equilibrium, and the O 2 / C molar ratio of air and fuel. In addition, the continuous line of FIG. 4 has shown the theoretical value when air temperature is 25 degreeC. As shown by the solid line in FIG. 4, when the partial oxidation reforming reaction is performed with a rich air-fuel ratio of O 2 / C molar ratio = 0.5, the equilibrium reaction temperature TB is approximately 830 ° C. Note that the actual equilibrium reaction temperature TB at this time is slightly lower than 830 ° C., but the embodiment according to the present invention will be described below assuming that the equilibrium reaction temperature TB is a value shown by the solid line in FIG.

一方、図3(a)の完全酸化反応の反応式からわかるように、O/Cモル比=1.4575のときに空気と燃料との比が理論空燃比となり、図4に示されるように、反応平衡温度TBは、空気と燃料との比が理論空燃比になったときに最も高くなる。O/Cモル比が0.5と1.4575との間では、一部では部分酸化改質反応が行われ、一部では完全酸化反応が行われる。この場合、O/Cモル比が大きくなるほど、部分酸化改質反応が行われる割合に比べて完全酸化反応が行われる割合が大きくなるので、O/Cモル比が大きくなるほど、反応平衡温度TBが高くなる。 On the other hand, as can be seen from the reaction formula of the complete oxidation reaction in FIG. 3A, the ratio of air to fuel becomes the stoichiometric air-fuel ratio when the O 2 / C molar ratio = 1.4575, as shown in FIG. Moreover, the reaction equilibrium temperature TB becomes the highest when the ratio of air to fuel becomes the stoichiometric air-fuel ratio. When the O 2 / C molar ratio is between 0.5 and 1.4575, a partial oxidation reforming reaction is performed in part, and a complete oxidation reaction is performed in part. In this case, as the O 2 / C molar ratio increases, the rate at which the complete oxidation reaction is performed is higher than the rate at which the partial oxidation reforming reaction is performed. Therefore, the reaction equilibrium temperature increases as the O 2 / C molar ratio increases. TB becomes high.

一方、図5は、炭素原子1個当りの生成分子(HおよびCO)の個数とO/Cモル比との関係を示している。上述したように、O/Cモル比が0.5よりも大きくなるほど、部分酸化改質反応が行われる割合が減少する。従って、図5に示されるように、O/Cモル比が0.5よりも大きくなるほど、HおよびCOの生成量が減少する。なお、図5には記載していないが、O/Cモル比が0.5よりも大きくなると、図3(a)に示される完全酸化反応によって、COとHOの生成量は増大する。ところで、図5は、図3(d)に示される水性ガスシフト反応が生じないと仮定した場合のHおよびCOの生成量を示している。しかしながら、実際には部分酸化改質反応によって生成されたCOと完全酸化反応にとって生成されたHOとにより図3(d)に示される水性ガスシフト反応が生じ、この水性ガスシフト反応によっても、水素が生成される。 On the other hand, FIG. 5 shows the relationship between the number of generated molecules (H 2 and CO) per carbon atom and the O 2 / C molar ratio. As described above, as the O 2 / C molar ratio becomes larger than 0.5, the rate at which the partial oxidation reforming reaction is performed decreases. Therefore, as shown in FIG. 5, the amount of H 2 and CO generated decreases as the O 2 / C molar ratio is greater than 0.5. Although not shown in FIG. 5, when the O 2 / C molar ratio is larger than 0.5, the production amounts of CO 2 and H 2 O are increased by the complete oxidation reaction shown in FIG. Increase. Incidentally, FIG. 5 shows the production amounts of H 2 and CO when it is assumed that the water gas shift reaction shown in FIG. However, in reality, the water gas shift reaction shown in FIG. 3D is caused by CO generated by the partial oxidation reforming reaction and H 2 O generated for the complete oxidation reaction. Is generated.

さて、上述したように、O/Cモル比が0.5よりも大きくなるほど、HおよびCOの生成量が減少する。一方、図5に示されるように、O/Cモル比が0.5よりも小さくなると、反応し得ない余剰の炭素Cが増大する。この余剰の炭素Cは改質用触媒の基体の細孔内に付積し、いわゆる、コーキングを起こす。コーキングを起こすと改質用触媒の改質能力が著しく低下する。従って、コーキングを起こすのを回避するために、O/Cモル比は0.5よりも小さくさせないようにする必要がある。また、図5からわかるように、余剰の炭素Cが生じない範囲で、水素の生成量が最大となるのは、O/Cモル比が0.5のときである。従って、本発明の実施例では、水素を生成するために部分酸化改質反応が行われるときには、コーキングを起こすのを回避しつつ、水素を最も効率よく生成しうるように、O/Cモル比が、原則0.5とされる。 As described above, the amount of H 2 and CO produced decreases as the O 2 / C molar ratio is greater than 0.5. On the other hand, as shown in FIG. 5, when the O 2 / C molar ratio is smaller than 0.5, surplus carbon C that cannot be reacted increases. This surplus carbon C accumulates in the pores of the base of the reforming catalyst and causes so-called coking. When coking occurs, the reforming ability of the reforming catalyst is significantly reduced. Therefore, in order to avoid causing coking, the O 2 / C molar ratio should not be made smaller than 0.5. Further, as can be seen from FIG. 5, the generation amount of hydrogen is maximized when the O 2 / C molar ratio is 0.5 within the range where no surplus carbon C is generated. Therefore, in the embodiment of the present invention, when a partial oxidation reforming reaction is performed to generate hydrogen, O 2 / C mole is generated so that hydrogen can be generated most efficiently while avoiding coking. The ratio is in principle 0.5.

一方、O/Cモル比が、理論空燃比であるO/Cモル比=1.4575よりも大きくされても完全酸化反応が行われるが、O/Cモル比が大きくなるほど昇温すべき空気量が増大する。従って、図4に示されるように、O/Cモル比が、理論空燃比を示すO/Cモル比=1.4575よりも大きくされると、O/Cモル比が大きくなるほど、反応平衡温度TBが低下する。この場合、例えば、O/Cモル比が2.6のリーン空燃比にされると、空気温が25℃である場合には、反応平衡温度TBはほぼ920℃となる。 Meanwhile, O 2 / C molar ratio, is a stoichiometric air-fuel ratio O 2 / C molar ratio = 1.4575 even complete oxidation reaction is greater than can be performed, O 2 / C as the molar ratio increases heating The amount of air that should be increased. Therefore, as shown in FIG. 4, when the O 2 / C molar ratio is greater than the O 2 / C molar ratio indicating the theoretical air-fuel ratio = 1.4575, the larger the O 2 / C molar ratio is, The reaction equilibrium temperature TB decreases. In this case, for example, when the lean air-fuel ratio is 2.6 with an O 2 / C molar ratio, the reaction equilibrium temperature TB is approximately 920 ° C. when the air temperature is 25 ° C.

さて、前述したように、図1に示される熱、水素生成装置50の運転が開始されると、リーン空燃比のもとでバーナー燃焼が行われ、それにより改質用触媒54の温度が次第に上昇する。次いで、改質用触媒54の温度が、燃料を改質可能な温度に到達すると、通常は、空燃比がリーン空燃比からリッチ空燃比に切換えられ、改質用触媒54における燃料の改質作用が開始される。燃料の改質作用が開始されると、水素が生成される。図6には、改質用触媒54における反応が平衡状態になったときの改質用触媒54の酸化部54aおよび改質部54b内の温度分布を示している。なお、この図6は、外気温が25℃のときに、この外気が図2に示される低温空気流通路63を介して、バーナー57からバーナー燃焼室53内に供給された場合の温度分布を示している。   Now, as described above, when the operation of the heat and hydrogen generator 50 shown in FIG. 1 is started, burner combustion is performed under a lean air-fuel ratio, whereby the temperature of the reforming catalyst 54 gradually increases. To rise. Next, when the temperature of the reforming catalyst 54 reaches a temperature at which the fuel can be reformed, the air-fuel ratio is normally switched from the lean air-fuel ratio to the rich air-fuel ratio, and the fuel reforming action in the reforming catalyst 54 is achieved. Is started. When the reforming action of the fuel is started, hydrogen is generated. FIG. 6 shows the temperature distribution in the oxidizing portion 54a and the reforming portion 54b of the reforming catalyst 54 when the reaction in the reforming catalyst 54 reaches an equilibrium state. 6 shows the temperature distribution when the outside air is supplied from the burner 57 into the burner combustion chamber 53 via the low-temperature air flow passage 63 shown in FIG. 2 when the outside air temperature is 25 ° C. Show.

図6の実線は、バーナー57から供給される空気と燃料のO/Cモル比が0.5のときの改質用触媒54内の温度分布を示している。図6に示されるように、この場合には、改質用触媒54の酸化部54aでは、改質用触媒54内の温度は、残存酸素による酸化反応熱により下流側に向けて上昇する。燃焼ガスが改質用触媒54の酸化部54a内から改質部54b内に進む頃には、燃焼ガス中の残存酸素は消滅し、改質用触媒54の改質部54bでは燃料の改質作用が行われる。この改質反応は吸熱反応であり、従って改質用触媒54内の温度は、改質作用が進むに従って、即ち、改質用触媒54の下流側に向けて低下する。このときの改質用触媒54の下流側端面の温度は830℃であり、図4に示されるO/Cモル比=0.5のときの反応平衡温度TBに一致する。 The solid line in FIG. 6 shows the temperature distribution in the reforming catalyst 54 when the O 2 / C molar ratio of air and fuel supplied from the burner 57 is 0.5. As shown in FIG. 6, in this case, in the oxidation portion 54a of the reforming catalyst 54, the temperature in the reforming catalyst 54 rises toward the downstream side due to the heat of oxidation reaction due to residual oxygen. When the combustion gas advances from the oxidizing portion 54a of the reforming catalyst 54 into the reforming portion 54b, the remaining oxygen in the combustion gas disappears, and the reforming portion 54b of the reforming catalyst 54 reforms the fuel. The action is performed. This reforming reaction is an endothermic reaction, and therefore the temperature in the reforming catalyst 54 decreases as the reforming action proceeds, that is, toward the downstream side of the reforming catalyst 54. At this time, the temperature of the downstream end face of the reforming catalyst 54 is 830 ° C., which corresponds to the reaction equilibrium temperature TB when the O 2 / C molar ratio = 0.5 shown in FIG.

一方、図6には、バーナー57から供給される空気と燃料のO/Cモル比が2.6のリーン空燃比であるときの改質用触媒54内の温度分布が、破線で示されている。この場合も、改質用触媒54内の温度は、改質用触媒54の酸化部54a内では、燃料の酸化反応熱によって下流側に向けて上昇する。一方、この場合には、改質用触媒54の改質部54b内において改質作用は行われないので、改質用触媒54内の温度は、改質部54b内では一定に保持される。このときの改質用触媒54の下流側端面の温度は920℃であり、図4に示されるO/Cモル比=2.6のときの反応平衡温度TBに一致する。即ち、図4の反応平衡温度TBは、外気温が25℃のときにこの外気が図2に示される低温空気流通路63を介して、バーナー57からバーナー燃焼室53内に供給されたときの改質用触媒54の下流側端面の温度を示していることになる。 On the other hand, in FIG. 6, the temperature distribution in the reforming catalyst 54 when the O 2 / C molar ratio of the air and fuel supplied from the burner 57 is 2.6 is indicated by a broken line. ing. Also in this case, the temperature in the reforming catalyst 54 rises toward the downstream side in the oxidation portion 54a of the reforming catalyst 54 due to the oxidation reaction heat of the fuel. On the other hand, in this case, since the reforming action is not performed in the reforming part 54b of the reforming catalyst 54, the temperature in the reforming catalyst 54 is kept constant in the reforming part 54b. At this time, the temperature of the downstream end face of the reforming catalyst 54 is 920 ° C., which matches the reaction equilibrium temperature TB when the O 2 / C molar ratio shown in FIG. 4 is 2.6. That is, the reaction equilibrium temperature TB in FIG. 4 is obtained when the outside air is supplied from the burner 57 into the burner combustion chamber 53 via the low temperature air flow passage 63 shown in FIG. This indicates the temperature of the downstream end face of the reforming catalyst 54.

次に、図7を参照しつつ、改質触媒において燃料と反応する空気の温度を変化させたときの反応平衡温度TBについて説明する。図7は、図4と同様に、空気と燃料とを改質触媒において反応させて平衡に達したときの反応平衡温度TBと、空気と燃料のO/Cモル比との関係を示している。なお、図7においてTAは空気温を示しており、この図7には、図4において実線で示される反応平衡温度TBとO/Cモル比との関係が再度実線で示されている。図7には更に、空気温TAを225℃、425℃、625℃に変化させたときの反応平衡温度TBとO/Cモル比との関係が破線で示されている。図7から、空気温TAが上昇すると、O/Cモル比にかかわらず反応平衡温度TBが全体的に高くなることがわかる。 Next, the reaction equilibrium temperature TB when the temperature of the air that reacts with the fuel in the reforming catalyst is changed will be described with reference to FIG. FIG. 7 shows the relationship between the reaction equilibrium temperature TB when air and fuel are reacted in the reforming catalyst to reach equilibrium, and the O 2 / C molar ratio of air and fuel, as in FIG. Yes. In FIG. 7, TA indicates the air temperature. In FIG. 7, the relationship between the reaction equilibrium temperature TB and the O 2 / C molar ratio indicated by the solid line in FIG. 4 is again shown by the solid line. Further, in FIG. 7, the relationship between the reaction equilibrium temperature TB and the O 2 / C molar ratio when the air temperature TA is changed to 225 ° C., 425 ° C., and 625 ° C. is indicated by a broken line. FIG. 7 shows that when the air temperature TA rises, the reaction equilibrium temperature TB increases as a whole regardless of the O 2 / C molar ratio.

一方、本発明の実施例において用いられている改質用触媒54は、触媒温度が950℃以下であれば、大きな熱劣化を生じないことが確認されている。従って、本発明の実施例では、950℃が、改質用触媒54の熱劣化を回避しうる許容触媒温度TXとされており、この許容触媒温度TXが図4、図6および図7に示されている。図6からわかるように、空気温TAが25℃のときには、O/Cモル比が0.5のときでも、O/Cモル比が2.6のときでも、改質用触媒54における反応が平衡状態になったときの改質用触媒54の温度は、改質用触媒54のいずれの場所でも、許容触媒温度TX以下となる。従って、この場合には、実用上、熱劣化を問題とすることなく、改質用触媒54を使用し続けることができる。 On the other hand, it has been confirmed that the reforming catalyst 54 used in the examples of the present invention does not cause large thermal degradation when the catalyst temperature is 950 ° C. or lower. Therefore, in the embodiment of the present invention, 950 ° C. is the allowable catalyst temperature TX that can avoid the thermal deterioration of the reforming catalyst 54, and this allowable catalyst temperature TX is shown in FIGS. 4, 6, and 7. Has been. As can be seen from FIG. 6, when the air temperature TA is 25 ° C., even when the O 2 / C molar ratio is 0.5 or when the O 2 / C molar ratio is 2.6, The temperature of the reforming catalyst 54 when the reaction reaches an equilibrium state is equal to or lower than the allowable catalyst temperature TX at any location of the reforming catalyst 54. Therefore, in this case, the reforming catalyst 54 can be continuously used without causing a problem of thermal degradation in practice.

一方、図4からわかるように、空気温TAが25℃のときでも、O/Cモル比が0.5よりも少し大きくなると、改質用触媒54における反応が平衡状態になったときの改質用触媒54の下流側端面の温度、即ち、反応平衡温度TBは許容触媒温度TXを越えてしまい、O/Cモル比が2.6よりも少し小さくなると、改質用触媒54における反応が平衡状態になったときの改質用触媒54の下流側端面の温度は許容触媒温度TXを越えてしまう。従って、例えば、改質用触媒54における反応が平衡状態であるときに部分酸化改質反応を生じさせる場合、O/Cモル比を0.5よりも大きくすることもできるが、O/Cモル比を大きくし得る範囲は限られている。 On the other hand, as can be seen from FIG. 4, when the O 2 / C molar ratio is slightly larger than 0.5 even when the air temperature TA is 25 ° C., the reaction in the reforming catalyst 54 is in an equilibrium state. When the temperature of the downstream end face of the reforming catalyst 54, that is, the reaction equilibrium temperature TB exceeds the allowable catalyst temperature TX and the O 2 / C molar ratio is slightly smaller than 2.6, the reforming catalyst 54 The temperature of the downstream end face of the reforming catalyst 54 when the reaction reaches an equilibrium state exceeds the allowable catalyst temperature TX. Thus, for example, it may give rise to partial oxidation reforming reaction when the reaction in the reforming catalyst 54 is in equilibrium, although the O 2 / C molar ratio may be greater than 0.5, O 2 / The range in which the C molar ratio can be increased is limited.

一方、図7からわかるように、空気温TAが高くなると、改質用触媒54における反応が平衡状態になっているときに、O/Cモル比を0.5にしたとしても、改質用触媒54における反応が平衡状態になったときの改質用触媒54の下流側端面の温度は、許容触媒温度TXよりも高くなり、従って、改質用触媒54が熱劣化することになる。従って、空気温TAが高くなったときには、改質用触媒54における反応が平衡状態になっているときに、O/Cモル比を0.5とすることができない。そこで、本発明の実施例では、改質用触媒54における反応が平衡状態になったときには、空気温TAが25℃程度の低い温度とされ、空気温TAを25℃程度の低い温度に維持した状態で、O/Cモル比が0.5とされる。 On the other hand, as can be seen from FIG. 7, when the air temperature TA increases, the reforming catalyst 54 is in an equilibrium state, and even if the O 2 / C molar ratio is 0.5, the reforming is performed. The temperature of the downstream end face of the reforming catalyst 54 when the reaction in the reforming catalyst 54 reaches an equilibrium state becomes higher than the allowable catalyst temperature TX, and thus the reforming catalyst 54 is thermally deteriorated. Therefore, when the air temperature TA becomes high, the O 2 / C molar ratio cannot be made 0.5 when the reaction in the reforming catalyst 54 is in an equilibrium state. Therefore, in the embodiment of the present invention, when the reaction in the reforming catalyst 54 reaches an equilibrium state, the air temperature TA is set to a low temperature of about 25 ° C., and the air temperature TA is maintained at a low temperature of about 25 ° C. In the state, the O 2 / C molar ratio is set to 0.5.

以上説明したように、本発明の実施例では、熱、水素生成装置50の運転が開始されると、リーン空燃比のもとでバーナー燃焼が開始され、このリーン空燃比のもとでのバーナー燃焼は、改質用触媒54による改質作用が可能となるまで行われる。別の言い方をすると、本発明の実施例では、熱、水素生成装置50の始動後、改質用触媒54による改質作用が可能となるまでリーン空燃比のもとで熱、水素生成装置50の暖機運転が行われる。この場合、改質用触媒54の温度が700℃程度になると改質用触媒54による改質作用が可能となり、従って、本発明の実施例では、熱、水素生成装置50の始動後、改質用触媒54の温度が700℃になるまで、リーン空燃比のもとで熱、水素生成装置50の暖機運転が行われる。この間、熱、水素生成装置50において生成された熱はガス流出室55のガス流出口74から流出せしめられ、次いで、図1に示されるように、主流通路80、又はバイパス通路83を通り、次いで、第1通路86を介して排気管12内に供給される。次いで、改質用触媒による改質作用が可能になると、即ち、改質用触媒54の温度が700℃になると、通常は、空燃比がリーン空燃比からリッチ空燃比に切換えられ、部分酸化改質反応が行われる。部分酸化改質反応が行われると、改質用触媒44において熱および水素が生成される。これらの熱および水素はガス流出室55のガス流出口74から流出せしめられ、次いで、主流通路80、又はバイパス通路83を通り、次いで、第1通路86を介して排気管12内に供給される。   As described above, in the embodiment of the present invention, when the operation of the heat and hydrogen generator 50 is started, burner combustion is started under the lean air-fuel ratio, and the burner under this lean air-fuel ratio is started. Combustion is performed until the reforming action by the reforming catalyst 54 becomes possible. In other words, in the embodiment of the present invention, after the heat and hydrogen generator 50 is started, the heat and hydrogen generator 50 under a lean air-fuel ratio until the reforming action by the reforming catalyst 54 becomes possible. Is warmed up. In this case, when the temperature of the reforming catalyst 54 reaches about 700 ° C., the reforming action by the reforming catalyst 54 becomes possible. Therefore, in the embodiment of the present invention, after the heat and the hydrogen generator 50 are started, the reforming is performed. Until the temperature of the catalyst 54 reaches 700 ° C., the warm-up operation of the heat and hydrogen generator 50 is performed under the lean air-fuel ratio. During this time, heat and heat generated in the hydrogen generator 50 are discharged from the gas outlet 74 of the gas outlet chamber 55, and then pass through the main flow passage 80 or the bypass passage 83 as shown in FIG. The exhaust pipe 12 is supplied through the first passage 86. Next, when the reforming action by the reforming catalyst becomes possible, that is, when the temperature of the reforming catalyst 54 reaches 700 ° C., the air-fuel ratio is normally switched from the lean air-fuel ratio to the rich air-fuel ratio, and the partial oxidation reforming is performed. A quality reaction takes place. When the partial oxidation reforming reaction is performed, heat and hydrogen are generated in the reforming catalyst 44. These heat and hydrogen are discharged from the gas outlet 74 of the gas outlet chamber 55, and then supplied to the exhaust pipe 12 through the main flow passage 80 or the bypass passage 83 and then through the first passage 86. .

次に、機関排気通路内に配置された排気処理触媒13による排気ガスの浄化作用について説明する。なお、前述したように、図1に示される例では、この排気処理触媒13はNO吸蔵触媒からなり、このNO吸蔵触媒13は、白金Pt,パラジウムPd,ロジウムRhのような貴金属と、カリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、或いは、バリウムBa、カルシウムCaのようなアルカリ土類金属とを担持している。このNO吸蔵触媒13は、NO吸蔵触媒13に流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し、NO吸蔵触媒13に流入する排気ガスの空燃比がリッチにされるとNO吸蔵触媒13から吸蔵されたNOを放出するというNOの吸放出機能を有する。また、このNO吸蔵触媒13では、機関から排出されたHCが、NO吸蔵触媒13上に担持された貴金属によって酸化され、従って、このNO吸蔵触媒13は、HC浄化機能も有している。 Next, the exhaust gas purification action by the exhaust treatment catalyst 13 disposed in the engine exhaust passage will be described. As described above, in the example shown in FIG. 1, the exhaust treatment catalyst 13 is composed of a NO X storage catalyst. The NO X storage catalyst 13 is composed of a noble metal such as platinum Pt, palladium Pd, rhodium Rh, It carries an alkali metal such as potassium K, sodium Na and cesium Cs, or an alkaline earth metal such as barium Ba and calcium Ca. This the NO X storing catalyst 13, NO X when the air-fuel ratio of the inflowing exhaust gas lean in storing catalyst 13 occludes NO X contained in the exhaust gas, the air-fuel ratio of the exhaust gas flowing into the NO X storing catalyst 13 There have the absorption and release function of the NO X that emits NO X occluded when made rich from the NO X storing catalyst 13. Further, in the NO X storage catalyst 13, HC discharged from the engine is oxidized by the noble metal supported on the NO X storage catalyst 13, and therefore the NO X storage catalyst 13 also has an HC purification function. Yes.

ところでこのNO吸蔵触媒13へのNO吸蔵率、即ち、NO吸蔵触媒13によるNO浄化率およびNO吸蔵触媒13によるHC浄化率は、NO吸蔵触媒13、即ち、排気処理触媒13の温度が200℃程度にならないと十分に高くならず、従って、機関始動時において、NO吸蔵触媒13による高いNO浄化率および高いHC浄化率を得るには、NO吸蔵触媒13、即ち、排気処理触媒13の温度を200℃程度の目標暖機温度まで上昇させる必要がある。ところで、本発明の実施例では、機関が始動されると、機関から排出される排気ガスによって排気処理触媒13の暖機作用が開始される。しかしながら、排気ガスによって排気処理触媒13の温度を目標暖機温度まで上昇させるには長い時間を要する。そこで、本発明の実施例では、排気処理触媒13の温度を目標暖機温度まで、すみやかに上昇させるために、機関の始動と同時に、熱、水素生成装置50の運転が開始され、熱、水素生成装置50から排気処理触媒13に供給された熱および水素、又は熱によって排気処理触媒13の暖機作用を促進するようにしている。次に、図8Aおよび図8Bを参照しつつ、この熱、水素生成装置50による排気処理触媒13の暖機促進作用について説明する。 Meanwhile the NO X storage rate to the the NO X storing catalyst 13, i.e., HC purification rate by the NO X purification rate and the NO X storing catalyst 13 by the NO X storing catalyst 13, the NO X storing catalyst 13, i.e., the exhaust treatment catalyst 13 If the temperature does not turn about 200 ° C. not sufficiently high, therefore, at the time of engine starting, in order to obtain a high nO X purification rate and high HC purification rate by the nO X storing catalyst 13, the nO X storing catalyst 13, i.e. It is necessary to raise the temperature of the exhaust treatment catalyst 13 to a target warm-up temperature of about 200 ° C. By the way, in the embodiment of the present invention, when the engine is started, the warming-up action of the exhaust treatment catalyst 13 is started by the exhaust gas discharged from the engine. However, it takes a long time to raise the temperature of the exhaust treatment catalyst 13 to the target warm-up temperature by the exhaust gas. Therefore, in the embodiment of the present invention, in order to quickly increase the temperature of the exhaust treatment catalyst 13 to the target warm-up temperature, the operation of the heat and hydrogen generator 50 is started simultaneously with the start of the engine, and the heat, hydrogen, The warm-up action of the exhaust treatment catalyst 13 is promoted by heat and hydrogen supplied to the exhaust treatment catalyst 13 from the generation device 50 or heat. Next, with reference to FIG. 8A and FIG. 8B, the heat and warming promotion action of the exhaust treatment catalyst 13 by the hydrogen generator 50 will be described.

図8Aおよび図8Bは、排気処理触媒13が、白金Pt,パラジウムPd,ロジウムRhのような貴金属を担持している場合において、熱、水素生成装置50により排気処理触媒13の暖機を行なったときの排気処理触媒13の温度TDの変化を示している。なお、図8Aおよび図8Bにおいて、横軸は時間経過を示している。これら図8Aおよび図8Bでは、説明をわかり易くするために、機関から排出された排気ガスによる排気処理触媒13の暖機作用については無視している。また、図8Bにおいて、TKは貴金属が活性化する温度を示しており、図8Bに示す例では、この貴金属が活性化する温度TKは110℃とされている。なお、以下、この貴金属が活性化する温度TKを、排気処理触媒13の活性化温度TKと称する。   8A and 8B show that the exhaust treatment catalyst 13 is warmed up by the heat and hydrogen generator 50 when the exhaust treatment catalyst 13 carries a noble metal such as platinum Pt, palladium Pd, and rhodium Rh. The change of the temperature TD of the exhaust treatment catalyst 13 is shown. In FIGS. 8A and 8B, the horizontal axis indicates the passage of time. In FIG. 8A and FIG. 8B, the warm-up action of the exhaust treatment catalyst 13 by the exhaust gas discharged from the engine is ignored for easy understanding. In FIG. 8B, TK indicates a temperature at which the noble metal is activated. In the example shown in FIG. 8B, the temperature TK at which the noble metal is activated is 110 ° C. Hereinafter, the temperature TK at which the noble metal is activated is referred to as the activation temperature TK of the exhaust treatment catalyst 13.

さて、図3からわかるように、完全酸化反応と、部分酸化改質反応とを比較すると、完全酸化反応の方が部分酸化改質反応に比べて、はるかに発熱量が大きく、従って、使用燃料量が同一である場合には、排気処理触媒13に供給される熱量は、熱、水素生成装置50において完全酸化反応が行われているときの方が、熱、水素生成装置50において部分酸化改質反応が行われてときに比べて、はるかに大きい。図8Aには、使用燃料量が同一の場合において、O/Cモル比=2.6でもって完全酸化反応が行われたときの生成熱により排気処理触媒13が暖機された場合の排気処理触媒13の温度変化が実線Aで示されており、O/Cモル比=0.5でもって部分酸化改質反応が行われたときの生成熱のみにより排気処理触媒13が暖機された場合の排気処理触媒13の温度変化が破線aで示されている。実線Aと破線aとを比較するとわかるように、熱、水素生成装置50において生成された熱のみにより排気処理触媒13が暖機された場合の排気処理触媒13の温度TDの上昇速度は、完全酸化反応の方が部分酸化改質反応に比べて、高いことがわかる。 Now, as can be seen from FIG. 3, when the complete oxidation reaction and the partial oxidation reforming reaction are compared, the complete oxidation reaction has a much larger calorific value than the partial oxidation reforming reaction, and therefore, the fuel used. When the amounts are the same, the amount of heat supplied to the exhaust treatment catalyst 13 is equal to that when the complete oxidation reaction is performed in the heat and hydrogen generator 50. Much greater than when quality reactions are taking place. FIG. 8A shows the exhaust when the exhaust treatment catalyst 13 is warmed up by the generated heat when the complete oxidation reaction is performed with the O 2 / C molar ratio = 2.6 in the case where the amount of fuel used is the same. The temperature change of the treatment catalyst 13 is indicated by a solid line A, and the exhaust treatment catalyst 13 is warmed up only by the heat generated when the partial oxidation reforming reaction is performed with an O 2 / C molar ratio = 0.5. The temperature change of the exhaust treatment catalyst 13 is shown by a broken line a. As can be seen by comparing the solid line A and the broken line a, the rate of increase in the temperature TD of the exhaust treatment catalyst 13 when the exhaust treatment catalyst 13 is warmed up only by heat and heat generated in the hydrogen generator 50 is completely It can be seen that the oxidation reaction is higher than the partial oxidation reforming reaction.

一方、排気処理触媒13の暖機時に、排気処理触媒13に水素が供給され、貴金属上において水素の酸化反応が行われると、水素の酸化反応熱によって、排気処理触媒13の温度TDは急速に上昇する。図8Aの破線bは、同一の使用燃料量のもとで、O/Cモル比=0.5でもって部分酸化改質反応が行われたときの生成水素のみにより排気処理触媒13が暖機された場合の排気処理触媒13の温度変化を示しており、図8Aの実線Bは、同一の使用燃料量のもとで、O/Cモル比=0.5でもって部分酸化改質反応が行われたときの生成熱および生成水素により排気処理触媒13が暖機された場合の排気処理触媒13の温度変化を示している。図8Aにおいて実線Aと実線Bとを比較するとわかるように、水素による排気処理触媒13の暖機作用も行われている場合には、排気処理触媒13の温度TDの上昇速度は、部分酸化改質反応の方が完全酸化反応に比べて、はるかに高いことがわかる。 On the other hand, when the exhaust treatment catalyst 13 is warmed up, when hydrogen is supplied to the exhaust treatment catalyst 13 and an oxidation reaction of hydrogen is performed on the noble metal, the temperature TD of the exhaust treatment catalyst 13 is rapidly increased due to the oxidation reaction heat of hydrogen. To rise. The broken line b in FIG. 8A shows that the exhaust treatment catalyst 13 is warmed only by the generated hydrogen when the partial oxidation reforming reaction is performed with the O 2 / C molar ratio = 0.5 under the same amount of fuel used. FIG. 8A shows the change in temperature of the exhaust treatment catalyst 13 when it is operated, and the solid line B in FIG. 8A shows the partial oxidation reforming with the O 2 / C molar ratio = 0.5 under the same amount of fuel used. A temperature change of the exhaust treatment catalyst 13 when the exhaust treatment catalyst 13 is warmed up by generated heat and produced hydrogen when the reaction is performed is shown. As can be seen by comparing the solid line A and the solid line B in FIG. 8A, when the warming-up action of the exhaust treatment catalyst 13 by hydrogen is also performed, the rate of increase in the temperature TD of the exhaust treatment catalyst 13 is the partial oxidation modification. It can be seen that the quality reaction is much higher than the complete oxidation reaction.

即ち、熱、水素生成装置50において生成された燃焼ガス熱の一部は、この燃焼ガスが通路切換装置51内を流れる間に外部に逃げ、しかも、この燃焼ガス熱は、熱伝達によって排気処理触媒13に供給されるにすぎないので、実際に排気処理触媒13の加熱のために用いられる熱量はそれほど多くはない。これに対し、熱、水素生成装置50において生成された水素は、排気処理触媒13に到達するまで消費されず、排気処理触媒13自体が水素の酸化反応熱によって直接加熱されるために、水素の酸化反応熱によって、排気処理触媒13は急速に昇温せしめられることになる。   That is, a part of heat and combustion gas heat generated in the hydrogen generator 50 escapes to the outside while the combustion gas flows in the passage switching device 51, and the combustion gas heat is exhausted by heat transfer. Since it is only supplied to the catalyst 13, the amount of heat actually used for heating the exhaust treatment catalyst 13 is not so much. On the other hand, the heat and hydrogen generated in the hydrogen generator 50 are not consumed until reaching the exhaust treatment catalyst 13, and the exhaust treatment catalyst 13 itself is directly heated by the oxidation reaction heat of hydrogen. The temperature of the exhaust treatment catalyst 13 is rapidly raised by the oxidation reaction heat.

ところで、排気処理触媒13の温度TDが、図8Bに示される排気処理触媒13の活性化温度TKよりも低いときには、排気処理触媒13に水素が供給されたとしても、貴金属上において水素の酸化反応は行われず、従って、このときには水素の酸化反応による酸化反応熱は発生しない。従って、排気処理触媒13の温度TDが、排気処理触媒13の活性化温度TKよりも低いときには、図8Aからわかるように、熱、水素生成装置50において完全酸化反応が行われているときの方が、熱、水素生成装置50において部分酸化改質反応が行われてときに比べて、排気処理触媒13の昇温速度が、はるかに大きくなる。   By the way, when the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK of the exhaust treatment catalyst 13 shown in FIG. 8B, even if hydrogen is supplied to the exhaust treatment catalyst 13, the oxidation reaction of hydrogen on the noble metal Therefore, at this time, no heat of oxidation reaction is generated by the oxidation reaction of hydrogen. Therefore, when the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK of the exhaust treatment catalyst 13, as shown in FIG. 8A, the direction when the complete oxidation reaction is performed in the heat and hydrogen generator 50. However, the temperature increase rate of the exhaust treatment catalyst 13 is much higher than when the partial oxidation reforming reaction is performed in the heat and hydrogen generator 50.

これに対し、排気処理触媒13の温度TDが、排気処理触媒13の活性化温度TKよりも高いときに、熱、水素生成装置50において部分酸化改質反応が行われ、それにより排気処理触媒13に水素が供給されると、水素の酸化反応熱によって、排気処理触媒13は急速に昇温せしめられる。従って、排気処理触媒13を、できるだけ早く昇温させるためには、排気処理触媒13の温度TDが、排気処理触媒13の活性化温度TKよりも低いときには、図8Bにおいて実線Aで示されるように、熱、水素生成装置50において完全酸化反応を行うことにより熱のみを排気処理触媒13に供給し、排気処理触媒13の温度TDが、排気処理触媒13の活性化温度TKよりも高くなったときには、図8Bにおいて実線Bで示されるように、熱、水素生成装置50において部分酸化改質反応を行うことにより熱および水素を排気処理触媒13に供給することが好ましいことがわかる。   On the other hand, when the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK of the exhaust treatment catalyst 13, a partial oxidation reforming reaction is performed in the heat and hydrogen generator 50, thereby the exhaust treatment catalyst 13. When hydrogen is supplied to the exhaust gas, the temperature of the exhaust treatment catalyst 13 is rapidly raised by the heat of oxidation reaction of hydrogen. Therefore, in order to raise the temperature of the exhaust treatment catalyst 13 as soon as possible, when the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK of the exhaust treatment catalyst 13, as shown by a solid line A in FIG. When only the heat is supplied to the exhaust treatment catalyst 13 by performing a complete oxidation reaction in the heat and hydrogen generator 50, and the temperature TD of the exhaust treatment catalyst 13 becomes higher than the activation temperature TK of the exhaust treatment catalyst 13. 8B, it is understood that heat and hydrogen are preferably supplied to the exhaust treatment catalyst 13 by performing a partial oxidation reforming reaction in the heat and hydrogen generator 50, as indicated by a solid line B in FIG.

しかしながら、実際には、常に、図8Bに示されるように、排気処理触媒13の温度TDが活性化温度TKになったときに、熱、水素生成装置50における反応を、完全酸化反応から部分酸化改質反応に切換えるのは困難である。そこで、本発明の実施例では、熱、水素生成装置50の始動後、改質用触媒54による改質作用が可能となったときに、排気処理触媒13の温度TDが、図8Bに示される排気処理触媒13の活性化温度TKよりも高いときには、基本的には、熱、水素生成装置50における反応を、ただちに、完全酸化反応から部分酸化改質反応に切換え、熱、水素生成装置50の始動後、改質用触媒54による改質作用が可能となったときに、排気処理触媒13の温度TDが活性化温度TKよりも低いときには、排気処理触媒13の温度TDが活性化温度TKよりも高くなるまで、熱、水素生成装置50において完全酸化反応を続行させ、排気処理触媒13の温度TDが活性化温度TKよりも高くなったときに、基本的には、熱、水素生成装置50における反応を、完全酸化反応から部分酸化改質反応に切換えるようにしている。このようにすることによって、排気処理触媒13の暖機を最も早めることができる。   However, in practice, as shown in FIG. 8B, when the temperature TD of the exhaust treatment catalyst 13 reaches the activation temperature TK, the reaction in the heat and the hydrogen generator 50 is always changed from the complete oxidation reaction to the partial oxidation. It is difficult to switch to the reforming reaction. Therefore, in the embodiment of the present invention, the temperature TD of the exhaust treatment catalyst 13 is shown in FIG. 8B when the reforming action by the reforming catalyst 54 becomes possible after the heat and hydrogen generator 50 is started. When the temperature is higher than the activation temperature TK of the exhaust treatment catalyst 13, basically, the reaction in the heat and hydrogen generator 50 is immediately switched from the complete oxidation reaction to the partial oxidation reforming reaction. After the start-up, when the reforming action by the reforming catalyst 54 becomes possible, if the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK, the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK. When the temperature TD of the exhaust treatment catalyst 13 becomes higher than the activation temperature TK, basically, the heat and hydrogen generation device 50 is continued. In The reaction, and to switch to the partial oxidation reforming reaction from complete oxidation reaction. By doing so, warming up of the exhaust treatment catalyst 13 can be accelerated most.

なお、図8Aおよび図8Bに示される関係が生じるのは、排気処理触媒13としてNO吸蔵触媒を用いた場合に限らず、排気処理触媒13として、白金Pt,パラジウムPd,ロジウムRhのような貴金属を担持している触媒、例えば、酸化触媒を用いた場合にも、図8Aおよび図8Bに示される関係が同様に生じる。従って、排気処理触媒13として酸化触媒を用いている場合にも、本発明を適用することができる。 Note that the relationship shown in FIGS. 8A and 8B occurs not only when the NO X storage catalyst is used as the exhaust treatment catalyst 13, but as the exhaust treatment catalyst 13, such as platinum Pt, palladium Pd, and rhodium Rh. The relationship shown in FIGS. 8A and 8B similarly occurs when a catalyst supporting a noble metal, for example, an oxidation catalyst is used. Therefore, the present invention can be applied even when an oxidation catalyst is used as the exhaust treatment catalyst 13.

次に、図9を参照しつつ、図2に示される熱、水素生成装置50による熱、水素生成方法の概要について説明する。なお、この図9は、熱、水素生成装置50の暖機運転が完了して改質用触媒54による改質作用が可能になったときに、排気処理触媒13の温度TDが予め設定された活性化温度TK以上である場合を示している。また、この図9には、グロープラグ68の作動状態、バーナー57からの供給空気量、バーナー57からの供給燃料量、反応せしめられる空気と燃料のO/Cモル比、バーナー57から供給される空気の供給空気温、改質用触媒54の下流側端面の温度TCおよび排気処理触媒13の温度TDが示されている。なお、図9等に示される改質用触媒54の下流側端面の温度TCに対する各目標温度および改質用触媒54の温度に対する各目標温度は、理論値であり、本発明による実施例では、前述したように、例えば、実際の平衡反応温度TBは、目標温度である830℃よりも若干低くなる。これらの各目標温度は、熱、水素生成装置50の構造等によって変化し、従って、実際には、実験を行って、熱、水素生成装置50の構造に応じた最適の各目標温度を予め定める必要がある。 Next, the outline of the heat shown in FIG. 2, the heat generated by the hydrogen generator 50, and the hydrogen generation method will be described with reference to FIG. In FIG. 9, the temperature TD of the exhaust treatment catalyst 13 is set in advance when the warming-up operation of the heat and hydrogen generator 50 is completed and the reforming action by the reforming catalyst 54 becomes possible. The case where it is more than the activation temperature TK is shown. Further, in FIG. 9, the operating state of the glow plug 68, the amount of air supplied from the burner 57, the amount of fuel supplied from the burner 57, the O 2 / C molar ratio of the reacted air and fuel, supplied from the burner 57. The air supply air temperature, the temperature TC of the downstream end face of the reforming catalyst 54, and the temperature TD of the exhaust treatment catalyst 13 are shown. Note that each target temperature with respect to the temperature TC of the downstream end face of the reforming catalyst 54 and each target temperature with respect to the temperature of the reforming catalyst 54 shown in FIG. 9 and the like are theoretical values, and in the embodiment according to the present invention, As described above, for example, the actual equilibrium reaction temperature TB is slightly lower than the target temperature of 830 ° C. Each of these target temperatures varies depending on heat, the structure of the hydrogen generator 50, etc. Therefore, in practice, an optimum target temperature corresponding to the structure of the heat, the hydrogen generator 50 is determined in advance. There is a need.

機関が始動されると、熱、水素生成装置50が同時に始動される。熱、水素生成装置50が始動されると、グロープラグ68がオンとされ、次いで、空気が高温空気流通路62を介してバーナー燃焼室53内に供給される。この場合、図9において、破線で示されるように、空気が高温空気流通路62を介してバーナー燃焼室53内に供給された後、グロープラグ68をオンにすることもできる。次いで、バーナー57から燃料が噴射される。バーナー57から噴射された燃料がグロープラグ68により着火されると、燃料量が増量されると共に、反応せしめられる空気と燃料のO/Cモル比が4.0から3.0に減少され、バーナー燃焼室53内においてバーナー燃焼が開始される。燃料の供給が開始されてから燃料が着火されるまでの期間は、HCの発生量を極力抑えるために、空燃比がリーン空燃比とされている。 When the engine is started, the heat and hydrogen generator 50 is started simultaneously. When the heat and hydrogen generator 50 is started, the glow plug 68 is turned on, and then air is supplied into the burner combustion chamber 53 via the hot air flow passage 62. In this case, as shown by a broken line in FIG. 9, after the air is supplied into the burner combustion chamber 53 via the high-temperature air flow passage 62, the glow plug 68 can be turned on. Next, fuel is injected from the burner 57. When the fuel injected from the burner 57 is ignited by the glow plug 68, the amount of fuel is increased and the O 2 / C molar ratio of air to fuel to be reacted is reduced from 4.0 to 3.0, Burner combustion is started in the burner combustion chamber 53. In the period from the start of fuel supply until the fuel is ignited, the air-fuel ratio is set to the lean air-fuel ratio in order to suppress the amount of HC generated as much as possible.

次いで、バーナー燃焼、即ち、リーン空燃比による完全酸化反応が続行され、それにより、改質用触媒54の温度が徐々に上昇せしめられる。一方、バーナー燃焼が開始されると、改質用触媒54を通ってガス流出室55内に流出するガスの温度が次第に上昇する。従って、このガスにより熱交換部62aにおいて加熱される空気の温度も次第に上昇し、その結果、高温空気流通路62からバーナー燃焼室53内に供給される空気の温度が次第に上昇する。それにより、改質用触媒54の暖機が促進されることになる。このようにリーン空燃比のもとで行われる改質用触媒54の暖機を、本発明の実施例では、図9に示されるように1次暖機、又は、熱、水素生成装置50の暖機と称している。なお、図9に示される例では、この1次暖機運転の間に、供給空気量と燃料量が増量されている。   Next, burner combustion, that is, a complete oxidation reaction with a lean air-fuel ratio is continued, whereby the temperature of the reforming catalyst 54 is gradually raised. On the other hand, when the burner combustion is started, the temperature of the gas flowing out into the gas outflow chamber 55 through the reforming catalyst 54 gradually increases. Therefore, the temperature of the air heated in the heat exchanging portion 62a by this gas also gradually increases, and as a result, the temperature of the air supplied from the high temperature air flow passage 62 into the burner combustion chamber 53 gradually increases. As a result, warm-up of the reforming catalyst 54 is promoted. As described above, in the embodiment of the present invention, the warming-up of the reforming catalyst 54 performed under the lean air-fuel ratio is performed as shown in FIG. This is called warm-up. In the example shown in FIG. 9, the supply air amount and the fuel amount are increased during the primary warm-up operation.

この1次暖機運転、即ち、熱、水素生成装置50の暖機運転は、改質用触媒54において燃料の改質が可能になるまで続行される。図9に示される例では、改質用触媒54の下流側端面の温度TCが700℃になると、改質用触媒54において燃料の改質が可能になったと判断され、従って、図9に示される例では、1次暖機運転、即ち、熱、水素生成装置50の暖機運転は、改質用触媒54の下流側端面の温度TCが700℃になるまで続行される。なお、図9に示される例では、水素生成装置50の運転が開始されてから改質用触媒54の1次暖機が完了するまで、即ち、水素生成装置50の運転が開始されてから熱、水素生成装置50の暖機が完了するまで、図9に示されるように、反応せしめられる空気と燃料のO/Cモル比が3.0から4.0とされ、リーン空燃比による完全酸化反応が行われている。無論、このときには、改質用触媒54の温度は許容触媒温度TXよりもかなり低いので、反応せしめられる空気と燃料のO/Cモル比を、例えば、2.0から3.0のような理論空燃比に近いO/Cモル比とすることもできる。 This primary warm-up operation, that is, the warm-up operation of the heat and hydrogen generator 50 is continued until the reforming of the fuel in the reforming catalyst 54 becomes possible. In the example shown in FIG. 9, when the temperature TC at the downstream end face of the reforming catalyst 54 reaches 700 ° C., it is determined that the reforming catalyst 54 can reform the fuel. In this example, the primary warm-up operation, that is, the warm-up operation of the heat and hydrogen generator 50 is continued until the temperature TC of the downstream end face of the reforming catalyst 54 reaches 700 ° C. In the example shown in FIG. 9, the operation until the primary warm-up of the reforming catalyst 54 is completed after the operation of the hydrogen generator 50 is started, that is, after the operation of the hydrogen generator 50 is started. Until the warming-up of the hydrogen generator 50 is completed, as shown in FIG. 9, the O 2 / C molar ratio of the air to be reacted and the fuel is changed from 3.0 to 4.0. An oxidation reaction is taking place. Of course, since the temperature of the reforming catalyst 54 is considerably lower than the allowable catalyst temperature TX at this time, the O 2 / C molar ratio of air and fuel to be reacted is set to, for example, 2.0 to 3.0. An O 2 / C molar ratio close to the theoretical air-fuel ratio can also be set.

一方、図9に示されるように、機関が始動されると、排気処理触媒13の温度TDは、ただちに少し上昇する。次いで、図9に示される例では、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が行われている間、排気処理触媒13の温度TDは少しずつ上昇し、排気処理触媒13の温度TDは、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が行われている間に、予め設定された活性化温度TKを越える。このように排気処理触媒13の温度TDが予め設定された活性化温度TKを越えたとしても、熱、水素生成装置50ではリーン空燃比による完全酸化反応が続行される。次いで、排気処理触媒13の温度TDは更に少しずつ上昇し、図9に示される例では、改質用触媒54の下流側端面の温度TCが700℃になったときには、排気処理触媒13の温度TDは予め設定された活性化温度TK以上になっている。   On the other hand, as shown in FIG. 9, when the engine is started, the temperature TD of the exhaust treatment catalyst 13 immediately rises slightly. Next, in the example shown in FIG. 9, the temperature TD of the exhaust treatment catalyst 13 gradually increases during the primary warm-up operation, that is, the warm-up operation of the heat and hydrogen generator 50, and the exhaust treatment is performed. The temperature TD of the catalyst 13 exceeds the preset activation temperature TK during the primary warm-up operation, that is, the heat and hydrogen generation device 50 warm-up operation. Thus, even if the temperature TD of the exhaust treatment catalyst 13 exceeds the preset activation temperature TK, the heat and hydrogen generator 50 continues the complete oxidation reaction with the lean air-fuel ratio. Next, the temperature TD of the exhaust treatment catalyst 13 further increases little by little. In the example shown in FIG. 9, when the temperature TC of the downstream end face of the reforming catalyst 54 reaches 700 ° C., the temperature of the exhaust treatment catalyst 13 is increased. TD is equal to or higher than a preset activation temperature TK.

次いで、改質用触媒54の下流側端面の温度TCが700℃になると、改質用触媒54において燃料の改質が可能になったと判断される。このとき、排気処理触媒13の温度TDは予め設定された活性化温度TK以上となっているので、水素を生成するための部分酸化改質反応が開始される。本発明の実施例では、このとき、図9に示されるように、まず初めに2次暖機運転が行われ、2次暖機運転が完了すると通常運転が行われる。この2次暖機運転は、水素を生成しながら改質用触媒54の温度を更に上昇させるために行われる。2次暖機運転が開始されると、熱、水素生成装置50において生成された熱および水素か排気処理触媒13に供給され、この結果、図9に示されるように、排気処理触媒13の温度TDは急速に上昇する。   Next, when the temperature TC at the downstream end face of the reforming catalyst 54 reaches 700 ° C., it is determined that the reforming catalyst 54 can reform the fuel. At this time, since the temperature TD of the exhaust treatment catalyst 13 is equal to or higher than a preset activation temperature TK, a partial oxidation reforming reaction for generating hydrogen is started. In the embodiment of the present invention, as shown in FIG. 9, the secondary warm-up operation is first performed, and the normal operation is performed when the secondary warm-up operation is completed. This secondary warm-up operation is performed to further raise the temperature of the reforming catalyst 54 while generating hydrogen. When the secondary warm-up operation is started, the heat, the heat generated in the hydrogen generator 50 and hydrogen are supplied to the exhaust treatment catalyst 13, and as a result, as shown in FIG. TD rises rapidly.

一方、この2次暖機運転は、改質用触媒54の下流側端面の温度TCが、反応平衡温度TBに達するまで続行され、改質用触媒54の下流側端面の温度TCが、反応平衡温度TBに達すると通常運転に移行する。なお、2次暖機運転が開始されるときには、排気処理触媒13の温度TDを目標暖機温度まで上昇させるのに必要な熱、水素生成装置50の出力熱量(kW)の要求値が算出される。この場合、この出力熱量(kW)の要求値は、基本的には、排気処理触媒13の目標暖機温度と現在の排気ガス温との温度差と、機関から排出される排気ガス量との積に基づいて算出される。熱、水素生成装置50の出力熱量(kW)の要求値が算出されると、この出力熱量(kW)の要求出力熱量を発生させるのに必要な目標供給燃料量が算出され、図9に示されるように、2次暖機運転から通常運転に移行するときに、バーナー57からの供給燃料量がこの目標供給燃料量まで増大される。   On the other hand, the secondary warm-up operation is continued until the temperature TC of the downstream end face of the reforming catalyst 54 reaches the reaction equilibrium temperature TB, and the temperature TC of the downstream end face of the reforming catalyst 54 is changed to the reaction equilibrium. When the temperature TB is reached, normal operation is started. When the secondary warm-up operation is started, the required value for the heat required to raise the temperature TD of the exhaust treatment catalyst 13 to the target warm-up temperature and the output heat amount (kW) of the hydrogen generator 50 are calculated. The In this case, the required value of the output heat quantity (kW) is basically the difference between the target warm-up temperature of the exhaust treatment catalyst 13 and the current exhaust gas temperature, and the exhaust gas quantity exhausted from the engine. Calculated based on the product. When the required value of the heat and the output calorie (kW) of the hydrogen generator 50 is calculated, the target fuel supply amount required to generate the required output calorie of this output calorie (kW) is calculated, as shown in FIG. As described above, when shifting from the secondary warm-up operation to the normal operation, the amount of fuel supplied from the burner 57 is increased to this target fuel supply amount.

なお、排気処理触媒13がNO吸蔵触媒からなる場合には、上述の排気処理触媒13の目標暖機温度は、前述したように、例えば200℃とされる。従って、図9に示される例では、排気処理触媒13の温度TDを200℃まで上昇させるのに必要な熱、水素生成装置50の出力熱量(kW)が要求値とされる。一方、図10Aには、この2次暖機運転が行われる熱、水素生成装置1の運転領域GGが、実線GL,GU,GSで囲まれたハッチング領域で示されている。なお、図10Aにおいて、縦軸は反応せしめられる空気と燃料のO/Cモル比を示しており、横軸は改質用触媒54の下流側端面の温度TCを示している。 In the case where the exhaust treatment catalyst 13 is comprised of the NO X storage catalyst, the target warm-up temperature of the exhaust treatment catalyst 13 described above, are as described above, for example, 200 ° C.. Therefore, in the example shown in FIG. 9, the heat required to raise the temperature TD of the exhaust treatment catalyst 13 to 200 ° C. and the output heat amount (kW) of the hydrogen generator 50 are set as required values. On the other hand, in FIG. 10A, the heat in which the secondary warm-up operation is performed and the operation region GG of the hydrogen generator 1 are indicated by hatching regions surrounded by solid lines GL, GU, and GS. In FIG. 10A, the vertical axis indicates the O 2 / C molar ratio of air and fuel to be reacted, and the horizontal axis indicates the temperature TC of the downstream end face of the reforming catalyst 54.

図5を参照しつつ説明したように、反応せしめられる空気と燃料のO/Cモル比が0.5よりも小さくなるとコーキングを起こす。図10Aにおける実線GLは、コーキングの発生に対するO/Cモル比の境界を示しており、この境界GLよりもO/Cモル比が小さい領域ではコーキングを起こす。なお、改質用触媒54の温度が低くなると、O/Cモル比が大きくなっても、即ち、空燃比のリッチの度合いが低下しても、炭素Cが酸化されることなく改質用触媒の基体の細孔内に付積するようになり、コーキングを起こす。従って、図10Aに示されるように、コーキングを起こすO/Cモル比の境界GLは、改質用触媒54の温度が低くなるほど高くなる。従って、コーキングの発生を回避するために、部分酸化改質反応は、即ち、熱、水素生成装置50の2次暖機運転および通常運転は、このO/Cモル比の境界GL上、又は境界GLの上側で行われる。 As described with reference to FIG. 5, coking occurs when the O 2 / C molar ratio of air and fuel to be reacted is smaller than 0.5. A solid line GL in FIG. 10A indicates a boundary of the O 2 / C molar ratio with respect to the occurrence of coking, and coking occurs in a region where the O 2 / C molar ratio is smaller than the boundary GL. When the temperature of the reforming catalyst 54 is lowered, even if the O 2 / C molar ratio increases, that is, even if the degree of richness in the air-fuel ratio decreases, the reforming without carbon C being oxidized. It becomes deposited in the pores of the catalyst substrate and causes coking. Accordingly, as shown in FIG. 10A, the O 2 / C molar ratio boundary GL causing coking increases as the temperature of the reforming catalyst 54 decreases. Therefore, in order to avoid the occurrence of coking, the partial oxidation reforming reaction, that is, the heat, the secondary warm-up operation and the normal operation of the hydrogen generator 50 are performed on the O 2 / C molar ratio boundary GL, or It is performed on the upper side of the boundary GL.

一方、図10Aにおいて、実線GUは、熱、水素生成装置50の2次暖機運転時において、改質用触媒54の温度が許容触媒温度TXを越えないようにするためのO/Cモル比の上限ガード値を示しており、実線GSは、熱、水素生成装置50の2次暖機運転時において、改質用触媒54の温度が許容触媒温度TXを越えないようにするための改質用触媒54の下流側端面の温度TCの上限ガード値を示している。2次暖機運転が開始された後、O/Cモル比が0.5とされ、改質用触媒54の下流側端面の温度TCが、O/Cモル比=0.5のときの反応平衡温度TBに達すると、通常運転に移行し、改質用触媒54の下流側端面の温度TCを反応平衡温度TBに維持した状態で水素が生成し続けられる。 On the other hand, in FIG. 10A, a solid line GU indicates O 2 / C mol for preventing the temperature of the reforming catalyst 54 from exceeding the allowable catalyst temperature TX during the secondary warm-up operation of the heat and hydrogen generator 50. The upper limit guard value of the ratio is shown, and the solid line GS is a modified value for preventing the temperature of the reforming catalyst 54 from exceeding the allowable catalyst temperature TX during the secondary warm-up operation of the heat and hydrogen generator 50. The upper limit guard value of the temperature TC of the downstream end face of the quality catalyst 54 is shown. After the secondary warm-up operation is started, the O 2 / C molar ratio is set to 0.5, and the temperature TC of the downstream end face of the reforming catalyst 54 is O 2 / C molar ratio = 0.5 When the reaction equilibrium temperature TB is reached, normal operation is started, and hydrogen continues to be produced while maintaining the temperature TC of the downstream end face of the reforming catalyst 54 at the reaction equilibrium temperature TB.

図10Bは、通常運転に移行するまでの2次暖機運転制御の一例を示している。図10Bに示される例では、矢印で示されるように、改質用触媒54の下流側端面の温度が700℃になると、改質用触媒54の2次暖機を促進するために、O/Cモル比=0.56でもって部分酸化改質反応が開始され、次いで、改質用触媒54の下流側端面の温度TCが830℃になるまで、O/Cモル比=0.56でもって部分酸化改質反応が続行される。次いで、改質用触媒54の下流側端面の温度が830℃になると、O/Cモル比は、O/Cモル比=0.5となるまで減少せしめられる。次いで、O/Cモル比=0.5になると、改質用触媒54における改質反応が平衡状態となる。次いで、O/Cモル比は0.5に維持され、通常運転に移行する。 FIG. 10B shows an example of secondary warm-up operation control until transition to normal operation. In the example shown in FIG. 10B, as indicated by the arrow, when the temperature of the downstream end face of the reforming catalyst 54 reaches 700 ° C., O 2 is used to promote secondary warm-up of the reforming catalyst 54. The partial oxidation reforming reaction is started with a / C molar ratio = 0.56, and then the O 2 / C molar ratio = 0.56 until the temperature TC of the downstream end face of the reforming catalyst 54 reaches 830 ° C. Thus, the partial oxidation reforming reaction is continued. Next, when the temperature on the downstream end face of the reforming catalyst 54 reaches 830 ° C., the O 2 / C molar ratio is decreased until the O 2 / C molar ratio = 0.5. Next, when the O 2 / C molar ratio is 0.5, the reforming reaction in the reforming catalyst 54 is in an equilibrium state. Then, the O 2 / C molar ratio is maintained at 0.5, and the normal operation is started.

さて、このように、改質用触媒54における改質反応が平衡状態となったときに、燃料と反応せしめられる空気の温度TAが高いと、図7を参照しつつ説明したように、反応平衡温度TBが高くなる。その結果、改質用触媒54の温度が、許容触媒温度TXよりも高くなるために、改質用触媒54が熱劣化を生ずることになる。そこで、本発明の実施例では、O/Cモル比が0.5に維持されて改質用触媒54における改質反応が平衡状態となったときには、高温空気流通路62からバーナー燃焼室53内への高温の空気の供給を停止し、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給される。このとき、改質用触媒54の下流側端面の温度TCは830℃に維持され、従って、改質用触媒54の温度は、許容触媒温度TX以下に維持される。従って、改質用触媒54の熱劣化を回避しつつ、部分酸化改質反応により水素を生成することができる。 As described above with reference to FIG. 7, if the temperature TA of the air reacted with the fuel is high when the reforming reaction in the reforming catalyst 54 is in an equilibrium state, as described with reference to FIG. The temperature TB increases. As a result, since the temperature of the reforming catalyst 54 becomes higher than the allowable catalyst temperature TX, the reforming catalyst 54 undergoes thermal deterioration. Therefore, in the embodiment of the present invention, when the O 2 / C molar ratio is maintained at 0.5 and the reforming reaction in the reforming catalyst 54 is in an equilibrium state, the burner combustion chamber 53 is connected from the high-temperature air flow passage 62. The supply of high-temperature air to the inside is stopped, and low-temperature air is supplied from the low-temperature air flow passage 63 into the burner combustion chamber 53. At this time, the temperature TC of the downstream end face of the reforming catalyst 54 is maintained at 830 ° C. Therefore, the temperature of the reforming catalyst 54 is maintained below the allowable catalyst temperature TX. Therefore, hydrogen can be generated by the partial oxidation reforming reaction while avoiding thermal degradation of the reforming catalyst 54.

なお、図10Aおよび10Bに示される運転領域GG内において2次暖機運転が行われているときには、改質用触媒54における改質反応が平衡状態とはなっていないので、空気温TAが高くても、図7に示されるように、改質用触媒54の温度が上昇するわけではない。しかしながら、この2次暖機運転は改質用触媒54の温度が高い状態で行われているので、何らかの原因で、改質用触媒54の温度が許容触媒温度TXよりも高くなってしまう危険性がある。そこで、本発明の実施例では、改質用触媒54の温度が許容触媒温度TXよりも高くなることがないように、2次暖機運転が開始されると同時に、高温空気流通路62からバーナー燃焼室53内への高温の空気の供給を停止し、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給される。即ち、図9に示されるように、供給空気温が低下せしめられる。その後、通常運転が完了するまで、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給され続ける。   When the secondary warm-up operation is performed in the operation region GG shown in FIGS. 10A and 10B, the reforming reaction in the reforming catalyst 54 is not in an equilibrium state, so the air temperature TA is high. However, as shown in FIG. 7, the temperature of the reforming catalyst 54 does not increase. However, since the secondary warm-up operation is performed in a state where the temperature of the reforming catalyst 54 is high, there is a risk that the temperature of the reforming catalyst 54 becomes higher than the allowable catalyst temperature TX for some reason. There is. Therefore, in the embodiment of the present invention, the secondary warm-up operation is started simultaneously with the burner from the high-temperature air flow passage 62 so that the temperature of the reforming catalyst 54 does not become higher than the allowable catalyst temperature TX. The supply of high-temperature air into the combustion chamber 53 is stopped, and low-temperature air is supplied into the burner combustion chamber 53 from the low-temperature air flow passage 63. That is, as shown in FIG. 9, the supply air temperature is lowered. Thereafter, the low temperature air continues to be supplied from the low temperature air flow passage 63 into the burner combustion chamber 53 until the normal operation is completed.

前述したように、燃料と反応せしめられる空気の温度TAが25℃のときには、O/Cモル比=0.5のときの平衡反応温度TBは830℃となる。従って、一般的に言うと、燃料と反応せしめられる空気の温度がTA℃ときには、O/Cモル比=0.5のときの平衡反応温度TBは(TA+805℃)となる。従って、本発明の実施例では、燃料と反応せしめられる空気の温度がTAの場合、2次暖機運転が開始されたときには、改質用触媒4の下流側端面の温度TCが(TA+805℃)になるまで、O/Cモル比=0.56でもって部分酸化改質反応が続行され、次いで、改質用触媒54の下流側端面の温度TCが(TA+805℃)になると、O/Cモル比は、O/Cモル比=0.5となるまで減少せしめられる。次いで、O/Cモル比=0.5になると、O/Cモル比は0.5に維持される。 As described above, when the temperature TA of the air reacted with the fuel is 25 ° C., the equilibrium reaction temperature TB when the O 2 / C molar ratio = 0.5 is 830 ° C. Therefore, generally speaking, when the temperature of the air reacted with the fuel is TA ° C., the equilibrium reaction temperature TB when the O 2 / C molar ratio = 0.5 is (TA + 805 ° C.). Therefore, in the embodiment of the present invention, when the temperature of the air reacted with the fuel is TA, when the secondary warm-up operation is started, the temperature TC of the downstream end face of the reforming catalyst 4 is (TA + 805 ° C.). in until, O 2 / C molar ratio = with 0.56 partial oxidation reforming reaction continues, then, when the temperature TC of the downstream end face of the reforming catalyst 54 is (TA + 805 ℃), O 2 / The C molar ratio is decreased until O 2 / C molar ratio = 0.5. Then, when the O 2 / C molar ratio = 0.5, the O 2 / C molar ratio is maintained at 0.5.

なお、上述の燃料と反応せしめられる空気の温度TAとは、図4に示されるような平衡反応温度TBを算出するときに用いられる空気の温度であり、バーナー燃焼室53内におけるバーナー燃焼の反応熱の影響を受けていない空気の温度である。例えば、空気供給口61から供給される空気、或いは、空気室60内の空気は、バーナー燃焼の反応熱の影響を受け、バーナー燃焼の反応熱エネルギを吸収して温度上昇をしている。従って、これら空気の温度は、既に反応の過程にある空気の温度を示しており、従って、平衡反応温度TBを算出するときの空気の温度ではない。   The temperature TA of the air reacted with the fuel described above is the temperature of the air used when calculating the equilibrium reaction temperature TB as shown in FIG. 4, and the burner combustion reaction in the burner combustion chamber 53. It is the temperature of air that is not affected by heat. For example, the air supplied from the air supply port 61 or the air in the air chamber 60 is affected by the reaction heat of the burner combustion, and absorbs the reaction heat energy of the burner combustion to increase the temperature. Therefore, these air temperatures indicate the temperature of air that is already in the process of reaction, and thus are not the temperature of air when calculating the equilibrium reaction temperature TB.

ところで、平衡反応温度TBを算出する必要があるのは、部分酸化改質反応が行われているとき、即ち、低温空気流通路63から低温の空気がバーナー燃焼室53内に供給されているときである。そこで、本発明の実施例では、バーナー燃焼室53内におけるバーナー燃焼の反応熱の影響を受けていない空気の温度を検出するために、図2に示されるように、温度センサ73を、断熱材56の外部に位置する低温空気流通路63に配置し、この温度センサ73により検出された温度を、平衡反応温度TBを算出するときの空気の温度TAとして用いている。   Incidentally, it is necessary to calculate the equilibrium reaction temperature TB when the partial oxidation reforming reaction is performed, that is, when low-temperature air is supplied from the low-temperature air flow passage 63 into the burner combustion chamber 53. It is. Therefore, in the embodiment of the present invention, in order to detect the temperature of the air that is not influenced by the reaction heat of the burner combustion in the burner combustion chamber 53, as shown in FIG. The temperature detected by the temperature sensor 73 is used as the air temperature TA when calculating the equilibrium reaction temperature TB.

一方、停止指令が発せられると、図9に示されるように、燃料の供給が停止される。このとき、空気の供給を停止すると、熱、水素生成装置50内に残存している燃料によって改質用触媒54がコーキングを起こす危険性がある。そこで、本発明の実施例では、熱、水素生成装置50内に残存している燃料を燃焼除去するために、図9に示されるように、停止指令が発せられてから暫くの間、空気が供給し続けられる。   On the other hand, when a stop command is issued, the fuel supply is stopped as shown in FIG. At this time, if the supply of air is stopped, there is a risk that the reforming catalyst 54 may coke due to heat and fuel remaining in the hydrogen generator 50. Therefore, in the embodiment of the present invention, in order to burn and remove the heat and the fuel remaining in the hydrogen generator 50, as shown in FIG. 9, the air is sent for a while after the stop command is issued. Continue to supply.

このように、本発明の実施例では、改質用触媒54の温度が許容触媒温度TXよりも高くなることがないように、2次暖機運転の開始と同時に、高温空気流通路62からバーナー燃焼室53内への高温の空気の供給が停止され、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給される。別の言い方をすると、このとき、バーナー燃焼室53内に空気を送り込む空気流通経路が、高温の空気を送り込む高温空気流通経路から、低温の空気を送り込む低温空気流通経路に切り替えられる。このようにバーナー燃焼室53内に空気を送り込む空気流通経路を、高温空気流通経路と、低温空気流通経路との間で切り替えることができるように、本発明の実施例では、高温空気弁65と低温空気弁66からなる切換え装置が設けられている。この場合、本発明の実施例では、エアクリーナ67から高温空気流通路62を介して空気供給口61に至る空気流通経路が高温空気流通経路に該当しており、エアクリーナ67から低温空気流通路63を介して空気供給口61に至る空気流通経路が低温空気流通経路に該当している。   Thus, in the embodiment of the present invention, at the same time as the start of the secondary warm-up operation, the burner from the high-temperature air flow passage 62 is prevented so that the temperature of the reforming catalyst 54 does not become higher than the allowable catalyst temperature TX. The supply of high-temperature air into the combustion chamber 53 is stopped, and low-temperature air is supplied into the burner combustion chamber 53 from the low-temperature air flow passage 63. In other words, at this time, the air flow path for sending air into the burner combustion chamber 53 is switched from the high-temperature air flow path for sending high-temperature air to the low-temperature air flow path for sending low-temperature air. In this embodiment of the present invention, the air flow path for sending air into the burner combustion chamber 53 can be switched between the high-temperature air flow path and the low-temperature air flow path. A switching device comprising a low temperature air valve 66 is provided. In this case, in the embodiment of the present invention, the air flow path from the air cleaner 67 to the air supply port 61 via the high temperature air flow path 62 corresponds to the high temperature air flow path. The air flow path leading to the air supply port 61 via the low temperature air flow path corresponds to the low temperature air flow path.

次に、図11を参照しつつ、熱、水素生成装置50の暖機運転が完了して改質用触媒54による改質作用が可能になったときに、排気処理触媒13の温度TDが予め設定された活性化温度TK未満である場合について説明する。なお、この図11には図9と同様に、グロープラグ68の作動状態、バーナー57からの供給空気量、バーナー57からの供給燃料量、反応せしめられる空気と燃料のO2/Cモル比、バーナー57から供給される空気の供給空気温、改質用触媒54の下流側端面の温度TCおよび排気処理触媒13の温度TDが示されている。   Next, referring to FIG. 11, when the warming-up operation of the heat and hydrogen generator 50 is completed and the reforming action by the reforming catalyst 54 becomes possible, the temperature TD of the exhaust treatment catalyst 13 is set in advance. A case where the temperature is lower than the set activation temperature TK will be described. In FIG. 11, as in FIG. 9, the operating state of the glow plug 68, the amount of air supplied from the burner 57, the amount of fuel supplied from the burner 57, the O 2 / C molar ratio of air to fuel reacted, the burner The supply air temperature of the air supplied from 57, the temperature TC of the downstream end face of the reforming catalyst 54, and the temperature TD of the exhaust treatment catalyst 13 are shown.

図11を参照すると、図11に示される場合でも、機関が始動されると、熱、水素生成装置50が同時に始動される。機関が始動されると、排気処理触媒13の温度TDは、ただちに少し上昇する。次いで、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が行われている間、即ち、熱、水素生成装置50においてリーン空燃比による完全酸化反応が続行されている間、排気処理触媒13の温度TDは少しずつ上昇する。しかしながら、図11に示される例では、図9に示される場合と異なって、改質用触媒54による改質作用が可能になったときに、即ち、改質用触媒54の下流側端面の温度TCが700℃になったときに、排気処理触媒13の温度TDは、依然として、予め設定された活性化温度TK未満維持されている。   Referring to FIG. 11, even in the case shown in FIG. 11, when the engine is started, the heat and hydrogen generator 50 are started simultaneously. When the engine is started, the temperature TD of the exhaust treatment catalyst 13 immediately increases slightly. Next, while the primary warm-up operation, that is, the heat and warm-up operation of the hydrogen generator 50 is performed, that is, while the complete oxidation reaction by the lean air-fuel ratio is continued in the heat and hydrogen generator 50, The temperature TD of the exhaust treatment catalyst 13 increases little by little. However, in the example shown in FIG. 11, unlike the case shown in FIG. 9, when the reforming action by the reforming catalyst 54 becomes possible, that is, the temperature of the downstream end face of the reforming catalyst 54. When TC reaches 700 ° C., the temperature TD of the exhaust treatment catalyst 13 is still maintained below the preset activation temperature TK.

なお、図11において、熱、水素生成装置50が始動されてから、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が終了するまでの間におけるグロープラグ68の作動状態、バーナー57からの供給空気量の変化、バーナー57からの供給燃料量の変化、O2/Cモル比の変化、バーナー57からの供給空気温の変化、および改質用触媒54の下流側端面の温度TCの変化は、図9に示される場合と同一である。従って、熱、水素生成装置50が始動されてから、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が終了するまでの間における、図11に示されるグロープラグ68の作動状態、バーナー57からの供給空気量の変化、バーナー57からの供給燃料量の変化、O2/Cモル比の変化、バーナー57からの供給空気温の変化、および改質用触媒54の下流側端面の温度TCの変化については説明を省略する。   In FIG. 11, the operation state of the glow plug 68 from the start of the heat and hydrogen generator 50 to the end of the primary warm-up operation, that is, the heat and warm-up operation of the hydrogen generator 50, Change in supply air amount from burner 57, change in fuel supply amount from burner 57, change in O2 / C molar ratio, change in supply air temperature from burner 57, and temperature of downstream end face of reforming catalyst 54 The change in TC is the same as that shown in FIG. Accordingly, the operation of the glow plug 68 shown in FIG. 11 during the period from the start of the heat and hydrogen generator 50 to the end of the primary warm-up operation, that is, the warm-up operation of the heat and hydrogen generator 50 is completed. State, change in supply air amount from burner 57, change in fuel supply amount from burner 57, change in O2 / C molar ratio, change in supply air temperature from burner 57, and downstream end face of reforming catalyst 54 Description of the change in temperature TC is omitted.

さて、図11に示されるように、改質用触媒54による改質作用が可能になったときに、即ち、改質用触媒54の下流側端面の温度TCが700℃になったときに、排気処理触媒13の温度TDが、予め設定された活性化温度TK未満のときには、リーン空燃比による完全酸化反応が続行される。従って、このときには、熱、水素生成装置50から排気処理触媒13に熱のみが供給され、それによって、排気処理触媒13の温度TDが少しずつ上昇せしめられる。このリーン空燃比による完全酸化反応は、排気処理触媒13の温度TDが予め設定された活性化温度TKに到達するまで続行される。なお、本発明の実施例では、改質用触媒54の下流側端面の温度TCが700℃に到達してから排気処理触媒13の温度TDが予め設定された活性化温度TKに到達するまでの間においてリーン空燃比による完全酸化反応が行われているときの運転モードを、図11に示されるように熱生成モードと称している。   As shown in FIG. 11, when the reforming action by the reforming catalyst 54 becomes possible, that is, when the temperature TC of the downstream end face of the reforming catalyst 54 becomes 700 ° C., When the temperature TD of the exhaust treatment catalyst 13 is lower than the preset activation temperature TK, the complete oxidation reaction with the lean air-fuel ratio is continued. Accordingly, at this time, only heat is supplied from the heat and hydrogen generator 50 to the exhaust treatment catalyst 13, thereby increasing the temperature TD of the exhaust treatment catalyst 13 little by little. This complete oxidation reaction by the lean air-fuel ratio is continued until the temperature TD of the exhaust treatment catalyst 13 reaches a preset activation temperature TK. In the embodiment of the present invention, the temperature from the downstream end face TC of the reforming catalyst 54 reaches 700 ° C. until the temperature TD of the exhaust treatment catalyst 13 reaches the preset activation temperature TK. The operation mode when the complete oxidation reaction with the lean air-fuel ratio is performed is referred to as a heat generation mode as shown in FIG.

図11に示されるように、運転モードが熱生成モードであるときには、O2/Cモル比=2.6のリーン空燃比でもって完全酸化反応が行われる。なお、図11に示される場合でも、運転モードが熱生成モードとされたときに、排気処理触媒13の温度TDを目標暖機温度まで上昇させるのに必要な熱、水素生成装置50の出力熱量(kW)の要求値が算出され、次いで、この出力熱量(kW)の要求出力熱量を発生させるのに必要な目標供給燃料量が算出される。図11に示される例では図11に示されるように、運転モードが熱生成モードにされたときに、バーナー57からの供給燃料量がこの目標供給燃料量まで増大される。   As shown in FIG. 11, when the operation mode is the heat generation mode, the complete oxidation reaction is performed with a lean air-fuel ratio of O2 / C molar ratio = 2.6. Even in the case shown in FIG. 11, when the operation mode is set to the heat generation mode, the heat necessary for raising the temperature TD of the exhaust treatment catalyst 13 to the target warm-up temperature, the output heat amount of the hydrogen generator 50. A required value of (kW) is calculated, and then a target supply fuel amount necessary to generate the required output heat amount of this output heat amount (kW) is calculated. In the example shown in FIG. 11, as shown in FIG. 11, when the operation mode is set to the heat generation mode, the amount of fuel supplied from the burner 57 is increased to this target supply fuel amount.

一方、運転モードが熱生成モードにされたときには、図11からわかるように、改質用触媒54における改質反応が平衡状態とはなっていないので、空気温TAが高くても、図7に示されるように、改質用触媒54の温度が上昇するわけではない。しかしながら、この熱生成モード時には、改質用触媒54の温度が高い状態でリーン空燃比による完全酸化反応が行われているので、何らかの原因で、改質用触媒54の温度が許容触媒温度TXよりも高くなってしまう危険性がある。そこで、本発明の実施例では、改質用触媒54の温度が許容触媒温度TXよりも高くなることがないように、運転モードが熱生成モードとされるのと同時に、高温空気流通路62からバーナー燃焼室53内への高温の空気の供給を停止し、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給される。即ち、図11に示されるように、供給空気温が低下せしめられる。その後、低温空気流通路63からバーナー燃焼室53内に低温の空気が供給され続ける。   On the other hand, when the operation mode is changed to the heat generation mode, as can be seen from FIG. 11, the reforming reaction in the reforming catalyst 54 is not in an equilibrium state. As shown, the temperature of the reforming catalyst 54 does not increase. However, in this heat generation mode, the complete oxidation reaction is performed with the lean air-fuel ratio while the temperature of the reforming catalyst 54 is high. For some reason, the temperature of the reforming catalyst 54 is higher than the allowable catalyst temperature TX. There is a risk of becoming higher. Therefore, in the embodiment of the present invention, the operation mode is changed to the heat generation mode so that the temperature of the reforming catalyst 54 does not become higher than the allowable catalyst temperature TX. The supply of high-temperature air into the burner combustion chamber 53 is stopped, and low-temperature air is supplied into the burner combustion chamber 53 from the low-temperature air flow passage 63. That is, as shown in FIG. 11, the supply air temperature is lowered. Thereafter, low-temperature air continues to be supplied from the low-temperature air flow passage 63 into the burner combustion chamber 53.

一方、運転モードが熱生成モードにされているときに、排気処理触媒13の温度TDが予め設定された活性化温度TKに到達すると、O2/Cモル比が2.6から0.5に変更され、通常運転が開始される。このとき、O2/Cモル比=0.5でもって部分酸化改質反応が行われ、熱、水素生成装置50において生成された熱および水素が排気処理触媒13に供給される。その結果、図11に示されるように、排気処理触媒13の温度TDは目標暖機温度まで急速に上昇せしめられる。次いで、停止指令が発せられると、図11に示されるように、燃料の供給が停止され、次いで、暫くして。空気の供給が停止される。   On the other hand, when the operation mode is the heat generation mode and the temperature TD of the exhaust treatment catalyst 13 reaches the preset activation temperature TK, the O2 / C molar ratio is changed from 2.6 to 0.5. And normal operation is started. At this time, the partial oxidation reforming reaction is performed with an O 2 / C molar ratio = 0.5, and heat, heat generated in the hydrogen generator 50 and hydrogen are supplied to the exhaust treatment catalyst 13. As a result, as shown in FIG. 11, the temperature TD of the exhaust treatment catalyst 13 is rapidly raised to the target warm-up temperature. Next, when a stop command is issued, the fuel supply is stopped as shown in FIG. 11, and then after a while. Air supply is stopped.

さて、前述したように、熱、水素生成装置50では、燃料の供給が開始されてから燃料が着火されるまでの期間は、HCの発生量を極力抑えるために、空燃比がリーン空燃比とされている。しかしながら実際には、このとき、多量のHCが発生する。また、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が行われている間も、多量のHCが発生する。この場合、これらのHCが排気管12内に供給されると、HCが排気処理触媒13上の貴金属に付着して貴金属の表面を覆い、その結果、排気処理触媒13の活性化温度が高くなってしまうという問題を生ずる。また、HCが排気管12内に供給されると、パティキュレートフィルタ14上に担持されたNO選択還元触媒の性能が低下せしめられるという問題を生ずる。即ち、NO選択還元触媒にHCが流入してNO選択還元触媒上の酸点がHCによって覆われると、尿素供給弁17からの供給尿疎水から生成されたアンモニアがNO選択還元触媒上の酸点に到達できなくなる。その結果、アンモニアによるNOの選択還元反応が良好に行われなくなり、NO選択還元触媒の性能が低下することになる。なお、このようにHC被毒によってNO選択還元触媒の性能が低下することは、広く知られている。 As described above, in the heat and hydrogen generator 50, the air-fuel ratio is set to the lean air-fuel ratio in order to suppress the generation amount of HC as much as possible during the period from the start of the fuel supply until the fuel is ignited. Has been. However, in practice, a large amount of HC is generated at this time. Also, a large amount of HC is generated during the primary warm-up operation, that is, during the heat-up operation of the heat and hydrogen generator 50. In this case, when these HCs are supplied into the exhaust pipe 12, the HCs adhere to the noble metal on the exhaust treatment catalyst 13 to cover the surface of the noble metal, and as a result, the activation temperature of the exhaust treatment catalyst 13 becomes high. Cause the problem of Further, when HC is supplied into the exhaust pipe 12, there arises a problem that the performance of the NO X selective reduction catalyst supported on the particulate filter 14 is deteriorated. That is, when the acid sites on the NO X selective reducing catalyst to the HC flow into the NO X selective reducing catalyst is covered by the HC, urea feed valve ammonia produced from the feed urine hydrophobic from 17 on the NO X selective reducing catalyst The acid point cannot be reached. As a result, the selective reduction reaction of NO X by ammonia is not performed well, and the performance of the NO X selective reduction catalyst is lowered. In addition, it is widely known that the performance of the NO X selective reduction catalyst is reduced by HC poisoning in this way.

そこで、排気処理触媒13の活性化温度が高くなるのを阻止し、更に、NO選択還元触媒のHC被毒の発生を阻止するために、本発明の実施例では、熱、水素生成装置50の運転が開始されたときに、バイパス弁84を閉弁すると共に主流通路弁81を開弁して、熱、水素生成装置50から排出される燃焼ガスをHC吸着装置82に導き、燃焼ガス中に含まれるHCをHC吸着装置82に吸着、又は堆積させるようにしている。このように燃焼ガス中に含まれるHCをHC吸着装置82に吸着、又は堆積させることによって、排気管12内にはHCを含まない燃焼ガスが供給され、その結果、排気処理触媒13の活性化温度が高くなるのを阻止することができ、更にHC被毒によるNO選択還元触媒の性能低下を阻止することができる。 Therefore, in order to prevent the activation temperature of the exhaust treatment catalyst 13 from becoming high, and further to prevent the occurrence of HC poisoning of the NO X selective reduction catalyst, in the embodiment of the present invention, the heat and hydrogen generator 50 When the operation of is started, the bypass valve 84 is closed and the main flow passage valve 81 is opened, and the combustion gas discharged from the heat and hydrogen generator 50 is led to the HC adsorption device 82, so that the combustion gas The HC contained in the HC is adsorbed or deposited on the HC adsorption device 82. In this way, the HC contained in the combustion gas is adsorbed or deposited on the HC adsorption device 82, whereby the combustion gas not containing HC is supplied into the exhaust pipe 12, and as a result, the exhaust treatment catalyst 13 is activated. It is possible to prevent the temperature from becoming high, and furthermore, it is possible to prevent a decrease in the performance of the NO X selective reduction catalyst due to HC poisoning.

図12は、熱、水素生成装置50の暖機運転中においてHC吸着装置82に吸着、又は堆積したHCの堆積量の変化を示している。図12に示されるように、HC吸着装置82に吸着され、又は堆積したHCの一部は、吸着され、又は堆積している間に燃焼せしめられるので、HC堆積量は上下しながら、次第に増大いていく。本発明の実施例では、HC堆積量が増大したときに、多量の酸素を含んだ燃焼ガスをHC吸着装置82に供給し、それによって、HC吸着装置82に吸着され、又は堆積しているHCを燃焼させるようにしている。なお、このときHC堆積量が多いと燃焼時の発熱量が多くなり、HC吸着装置82のHC吸着剤が熱劣化を生ずる危険性がある。   FIG. 12 shows a change in the amount of HC adsorbed or deposited on the HC adsorption device 82 during the warm-up operation of the heat and hydrogen generator 50. As shown in FIG. 12, a part of the HC adsorbed or deposited on the HC adsorbing device 82 is adsorbed or burned while it is being deposited, so that the amount of HC deposition increases gradually while increasing or decreasing. I will go. In the embodiment of the present invention, when the amount of HC deposition increases, the combustion gas containing a large amount of oxygen is supplied to the HC adsorption device 82, and thereby the HC adsorbed or deposited on the HC adsorption device 82. Is trying to burn. At this time, if the amount of accumulated HC is large, the amount of heat generated during combustion increases, and there is a risk that the HC adsorbent of the HC adsorption device 82 is thermally deteriorated.

従って、本発明の実施例では、HC吸着装置82に吸着されているHCを燃焼させてもHC吸着装置82のHC吸着剤が熱劣化を生ずることのないHC堆積量の上限値が、許容HC堆積量として予め求められており、HC堆積量が、この許容HC堆積量を越えると、多量の酸素を含んだ燃焼ガスをHC吸着装置82に供給して、HC吸着装置82に吸着され、又は堆積しているHCを燃焼せしめるようにしている。この許容HC堆積量が図12においてMAXで示されており、従って、図12に示されるように、本発明の実施例では、HC堆積量が、この許容HC堆積量MAXを越えると、堆積したHCを燃焼させるための堆積HC燃焼制御が開始される。なお、本発明の実施例では、熱、水素生成装置50において、リーン空燃比による完全酸化反応を行わせることによって、多量の酸素を含んだ燃焼ガスを生成することができる。従って、本発明の実施例では、HC堆積量が、許容HC堆積量MAXを越えたときには、熱、水素生成装置50において、リーン空燃比による完全酸化反応を行わせることによって、HC吸着装置82に吸着されているHCが燃焼せしめられる。   Therefore, in the embodiment of the present invention, the upper limit value of the HC deposition amount that does not cause thermal degradation of the HC adsorbent of the HC adsorption device 82 even if the HC adsorbed on the HC adsorption device 82 is burned is set to the allowable HC. When the amount of HC deposition exceeds the allowable amount of HC deposition, the combustion gas containing a large amount of oxygen is supplied to the HC adsorption device 82 and is adsorbed by the HC adsorption device 82, or The accumulated HC is burned. This allowable HC deposition amount is indicated by MAX in FIG. 12. Therefore, as shown in FIG. 12, in the embodiment of the present invention, when the HC deposition amount exceeds this allowable HC deposition amount MAX, deposition was performed. Accumulated HC combustion control for burning HC is started. In the embodiment of the present invention, a combustion gas containing a large amount of oxygen can be generated by causing the heat and hydrogen generator 50 to perform a complete oxidation reaction with a lean air-fuel ratio. Therefore, in the embodiment of the present invention, when the HC deposition amount exceeds the allowable HC deposition amount MAX, the HC adsorption device 82 is caused to perform a complete oxidation reaction by the lean air-fuel ratio in the heat and hydrogen generator 50. The adsorbed HC is burned.

HCの燃焼が開始されると、図12に示されるように、HC堆積量が急速に減少せしめられ、HC堆積量が、ほとんど零とみなされる最小値MIN以下になると、堆積HC燃焼制御が停止される。即ち、このとき、HC吸着装置82に吸着されているHCを燃焼せしめるためのリーン空燃比による完全酸化反応が停止される。   When the combustion of HC is started, as shown in FIG. 12, the amount of HC deposition is rapidly reduced, and when the amount of HC deposition is less than or equal to the minimum value MIN considered to be almost zero, the accumulation HC combustion control is stopped. Is done. That is, at this time, the complete oxidation reaction by the lean air-fuel ratio for burning the HC adsorbed by the HC adsorption device 82 is stopped.

このように、本発明の実施例では、機関排気通路内に配置された排気処理触媒13と、排気処理触媒13を暖機するために排気処理触媒13に熱のみ、又は熱および水素を供給可能な熱、水素生成装置50とを具備しており、熱、水素生成装置50が、燃料および空気の燃焼ガスが送り込まれる改質用触媒54を備えており、熱、水素生成装置50では、部分酸化反応を行うことにより水素を含む燃焼ガス、又はリーン空燃比のもとで完全酸化反応装置を行うことにより水素を含まない燃焼ガスが生成される。更に、熱、水素生成装置30から排気処理触媒13に供給される燃焼ガス中の炭化水素を吸着可能な炭化水素吸着装置82具備しており、該炭化水素吸着装置82に吸着され、又は堆積した炭化水素を燃焼させるときには、熱、水素生成装置50において、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスを炭化水素吸着装置50に供給する。   Thus, in the embodiment of the present invention, only the heat or heat and hydrogen can be supplied to the exhaust treatment catalyst 13 to warm up the exhaust treatment catalyst 13 disposed in the engine exhaust passage. The heat and hydrogen generator 50 includes a reforming catalyst 54 into which fuel and air combustion gas is fed. In the heat and hydrogen generator 50, A combustion gas containing hydrogen is generated by performing an oxidation reaction, or a combustion gas not containing hydrogen is generated by performing a complete oxidation reaction apparatus under a lean air-fuel ratio. Further, a hydrocarbon adsorbing device 82 capable of adsorbing hydrocarbons in the combustion gas supplied from the heat and hydrogen generating device 30 to the exhaust treatment catalyst 13 is provided, and adsorbed or deposited on the hydrocarbon adsorbing device 82. When the hydrocarbon is combusted, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied to the hydrocarbon adsorption device 50 in the heat and hydrogen generation device 50.

このように、本発明の実施例では、熱、水素生成装置50の暖機運転中において、HC堆積量が許容HC堆積量MAXを越えたときには、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に送り込まれ、それによって、HC吸着装置82の再生作用が行われる。従って、本発明の実施例では、HC吸着装置82の再生のための特別の配管等を必要とすることなく、熱、水素生成装置50において、リーン空燃比による完全酸化反応を行わせるだけで、HC吸着装置82の再生を行うことができる。   As described above, in the embodiment of the present invention, when the HC deposition amount exceeds the allowable HC deposition amount MAX during the warm-up operation of the heat and hydrogen generator 50, the complete oxidation reaction under the lean air-fuel ratio is performed. The generated combustion gas is sent to the HC adsorption device 82, whereby the regeneration action of the HC adsorption device 82 is performed. Therefore, in the embodiment of the present invention, the heat and hydrogen generating device 50 can be used to perform a complete oxidation reaction with a lean air-fuel ratio without requiring special piping or the like for regeneration of the HC adsorption device 82. The HC adsorption device 82 can be regenerated.

一方、本発明の実施例では、熱、水素生成装置50の暖機運転中において、HC堆積量が許容HC堆積量MAXを越えたとしても、排気処理触媒13が活性化していないとき、即ち、排気処理触媒13の温度TDが、予め設定された活性化温度TKよりも低いときには、HC吸着装置82の再生よりも排気処理触媒13の暖機を優先するようにしている。従って、このときには、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスは、HC吸着装置82を経ることなくバイパス通路83を通って排気管12内に供給され、それにより排気処理触媒13が急速に暖機される。次いで、排気処理触媒13の暖機が完了すると、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスはHC吸着装置82に供給され、HC吸着装置82の再生作用が行われる。   On the other hand, in the embodiment of the present invention, during the warm-up operation of the heat and hydrogen generator 50, even if the HC deposition amount exceeds the allowable HC deposition amount MAX, the exhaust treatment catalyst 13 is not activated, that is, When the temperature TD of the exhaust treatment catalyst 13 is lower than a preset activation temperature TK, warming up of the exhaust treatment catalyst 13 is prioritized over regeneration of the HC adsorption device 82. Therefore, at this time, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied into the exhaust pipe 12 through the bypass passage 83 without passing through the HC adsorbing device 82, and thereby the exhaust treatment. The catalyst 13 is quickly warmed up. Next, when the warming-up of the exhaust treatment catalyst 13 is completed, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied to the HC adsorption device 82, and the regeneration operation of the HC adsorption device 82 is performed.

なお、本発明の実施例では、HC堆積量は、図13および図14の表に示される数値に基づいて算出される。なお、図13の表の各欄に示される数値は、熱、水素生成装置50に一秒当り0.1(g)の燃料を供給したときに発生する、一秒当りの発生HC量MG(mg/s)を示している。図13に示されるように、この発生HC量MGは、熱、水素生成装置50において反応せしめられる空気と燃料のO/Cモル比、および、熱、水素生成装置50の改質用触媒54の温度TBCの関数となる。なお、図13に示される例では、改質用触媒54の温度TBCは、改質用触媒54の上流側端面の温度TBと改質用触媒54の下流側端面の温度TCとの平均値とされている。図13からわかるように、発生HC量MGは、改質用触媒54の温度TBCが高くなるほど、O/Cモル比が大きくなるほど少なくなる。 In the embodiment of the present invention, the HC accumulation amount is calculated based on the numerical values shown in the tables of FIGS. Note that the numerical values shown in the respective columns of the table of FIG. 13 indicate the amount of HC generated per second MG (generated when 0.1 (g) of fuel per second is supplied to the heat and hydrogen generator 50 ( mg / s). As shown in FIG. 13, the generated HC amount MG includes the heat, the O 2 / C molar ratio of air and fuel reacted in the hydrogen generator 50, and the reforming catalyst 54 of the heat, hydrogen generator 50. Is a function of the temperature TBC. In the example shown in FIG. 13, the temperature TBC of the reforming catalyst 54 is an average value of the temperature TB of the upstream end face of the reforming catalyst 54 and the temperature TC of the downstream end face of the reforming catalyst 54. Has been. As can be seen from FIG. 13, the generated HC amount MG decreases as the temperature TBC of the reforming catalyst 54 increases and the O 2 / C molar ratio increases.

一方、図14の表の各欄に示される数値は、HC吸着装置82における一秒当りの燃焼HC量MB(mg/s)を示している。図14に示されるように、この燃焼HC量MGは、熱、水素生成装置50に供給される一秒当りの供給空気量(g/s)、および、熱、水素生成装置50からHC吸着装置82に供給される燃焼ガス温度の関数となる。この燃焼ガス温度としては、例えば、改質用触媒54の下流側端面の温度TCが用いられる。図14からわかるように、燃焼HC量MBは、燃焼ガス温度が高くなるほど、熱、水素生成装置50への供給空気量が多くなるほど多くなる。   On the other hand, the numerical values shown in each column of the table of FIG. 14 indicate the combustion HC amount MB (mg / s) per second in the HC adsorption device 82. As shown in FIG. 14, the combustion HC amount MG includes heat, supply air amount (g / s) per second supplied to the hydrogen generation device 50, and heat, hydrogen generation device 50 to HC adsorption device. It is a function of the combustion gas temperature supplied to 82. As the combustion gas temperature, for example, the temperature TC of the downstream end face of the reforming catalyst 54 is used. As can be seen from FIG. 14, the combustion HC amount MB increases as the combustion gas temperature increases and as the amount of heat and air supplied to the hydrogen generator 50 increases.

このように、HCは、一秒当りに発生HC量MGだけ発生し、一秒当りに燃焼HC量MBだけ燃焼せしめられるので、現在のHC堆積量をΣHCとすると、一秒後のHC堆積量は、ΣHC+MG−MBで表されることになる。本発明の実施例では、このようにして算出されたHC堆積量を用いて、HC堆積量が許容HC堆積量MAXを越えたか否かを判断している。   As described above, HC is generated by the amount of HC generated MG per second and burned by the amount of combustion HC MB per second. Therefore, assuming that the current HC accumulation amount is ΣHC, the HC accumulation amount after one second. Is represented by ΣHC + MG-MB. In the embodiment of the present invention, it is determined whether or not the HC deposition amount exceeds the allowable HC deposition amount MAX using the HC deposition amount calculated in this way.

次に、図15および図16を参照しつつ、HC堆積量を算出し、主流通路弁81およびバイパス弁84の開閉の制御し、HC吸着装置82に吸着され、又は堆積したHCの燃焼を制御するための堆積HC燃焼制御ルーチンについて説明する。なお、この堆積HC燃焼制御ルーチンは一定時間毎の割り込みによって実行される。一方、この堆積HC燃焼制御ルーチンでは、HC燃焼フラグが用いられており、このHC燃焼フラグがセットされると、熱、水素生成装置50においてリーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に供給される。このHC燃焼フラグに基づく熱、水素生成装置50の制御は、図17から図21に示される熱、水素生成制御ルーチンにおいて行われる。   Next, referring to FIG. 15 and FIG. 16, the amount of HC accumulation is calculated, the opening and closing of the main flow passage valve 81 and the bypass valve 84 are controlled, and the combustion of HC adsorbed or deposited on the HC adsorption device 82 is controlled. A deposition HC combustion control routine for this purpose will be described. This accumulated HC combustion control routine is executed by interruption every predetermined time. On the other hand, in this accumulated HC combustion control routine, an HC combustion flag is used. When this HC combustion flag is set, heat is generated by a complete oxidation reaction in the hydrogen generator 50 under a lean air-fuel ratio. The combusted gas is supplied to the HC adsorption device 82. Control of the heat and hydrogen generator 50 based on the HC combustion flag is performed in a heat and hydrogen generation control routine shown in FIGS.

図15を参照すると、まず初めに、ステップ100において、熱、水素生成装置50が運転中であるか否かが判別される。熱、水素生成装置50の運転が停止されているときにはステップ125に進んで、主流通路弁81の固着を避けるために主流通路弁81が開弁される。次いで、ステップ126では、バイパス弁84の固着を避けるためにバイパス弁84が開弁される。次いで、処理サイクルを完了する。一方、ステップ100において、熱、水素生成装置50が運転中であると判別されたときには、ステップ101に進んで、主流通路弁81が開弁しているか否かが判別される。主流通路弁81が開弁しているとき、即ち、HC吸着装置82に燃焼ガスが流入しているときにはステップ102に進み、ステップ102からステップ110において、HC吸着装置82へのHC堆積量が算出される。これに対し、主流通路弁81が閉弁しているとき、即ち、HC吸着装置82に燃焼ガスが流入していないときにはステップ111にジャンプする。このときには、HC堆積量の算出は行われない。   Referring to FIG. 15, first, at step 100, it is determined whether or not the heat and hydrogen generator 50 is in operation. When the operation of the heat and hydrogen generator 50 is stopped, the routine proceeds to step 125 where the main flow passage valve 81 is opened in order to avoid the main flow passage valve 81 from sticking. Next, at step 126, the bypass valve 84 is opened to avoid sticking of the bypass valve 84. The processing cycle is then completed. On the other hand, when it is determined in step 100 that the heat and hydrogen generator 50 is in operation, the routine proceeds to step 101 where it is determined whether or not the main flow passage valve 81 is open. When the main flow passage valve 81 is open, that is, when the combustion gas is flowing into the HC adsorbing device 82, the routine proceeds to step 102. From step 102 to step 110, the amount of HC accumulation on the HC adsorbing device 82 is calculated. Is done. On the other hand, when the main flow passage valve 81 is closed, that is, when the combustion gas is not flowing into the HC adsorption device 82, the routine jumps to step 111. At this time, the amount of HC accumulation is not calculated.

ステップ102では、図2に示される温度センサ71および温度センサ72の検出信号から改質用触媒54の温度TBCが算出される。次いで、ステップ103では、熱、水素生成装置50における現在のO/Cモル比(図9、図11を参照)が読み込まれる。次いで、ステップ104では、図13に示される表から、熱、水素生成装置50に一秒当り0.1(g)の燃料を供給したときに発生する発生HC量(mg/s)が算出される。次いで、ステップ105では、熱、水素生成装置50における現在の供給燃料量(図9、図11を参照)が読み込まれる。次いで、ステップ106では、現在の供給燃料量および割り込み時間Δtを用いて、割り込み時間Δt当りの発生HC量MG(mg)が算出される。 In step 102, the temperature TBC of the reforming catalyst 54 is calculated from the detection signals of the temperature sensor 71 and the temperature sensor 72 shown in FIG. Next, in step 103, heat, the current O 2 / C molar ratio in the hydrogen generator 50 (see FIGS. 9 and 11) is read. Next, in step 104, the amount of HC generated (mg / s) generated when 0.1 (g) of fuel per second is supplied to the heat and hydrogen generator 50 from the table shown in FIG. The Next, in step 105, heat and the current fuel supply amount (see FIGS. 9 and 11) in the hydrogen generator 50 are read. Next, at step 106, the generated HC amount MG (mg) per interrupt time Δt is calculated using the current fuel supply amount and the interrupt time Δt.

次いで、ステップ107では、例えば、温度センサ72の検出信号に基づいてHC吸着装置82に流入する燃焼ガスの温度が求められる。次いで、ステップ108では、熱、水素生成装置50における現在の供給空気量(図9、図11を参照)が読み込まれる。次いで、ステップ109では、図14に示される表から、一秒当りの燃焼HC量(mg/s)が算出され、次いで、割り込み時間Δtを用いて、割り込み時間Δt当りの燃焼HC量MB(mg)が算出される。次いで、ステップ110では、次式に基づいて、割り込み時間Δt当りのHC堆積量ΣHCが算出される。
HC堆積量ΣHC←ΣHC+MG−MB
次いで、ステップ111に進む。
Next, at step 107, for example, the temperature of the combustion gas flowing into the HC adsorption device 82 is obtained based on the detection signal of the temperature sensor 72. Next, in step 108, heat and the current supply air amount in the hydrogen generator 50 (see FIGS. 9 and 11) are read. Next, at step 109, the amount of combustion HC per second (mg / s) is calculated from the table shown in FIG. 14, and then the amount of combustion HC MB per interruption time Δt (mg) using the interruption time Δt. ) Is calculated. Next, at step 110, an HC accumulation amount ΣHC per interruption time Δt is calculated based on the following equation.
HC accumulation amount ΣHC ← ΣHC + MG-MB
Next, the process proceeds to step 111.

ステップ111では、HC燃焼フラグがセットされているか否かが判別される。HC燃焼フラグがセットされていないときにはステップ112に進んで、図13に示される表から、現在の発生HC量(mg/s)が零であるか否かが判別される。現在の発生HC量(mg/s)が零であるときには、ステップ117にジャンプして、熱、水素生成装置50において生成された熱を、排気処理触媒13の暖機のために有効に用いるため、主流通路弁81が閉弁され、次いで、ステップ118において、バイパス弁84が開弁される。次いで、処理サイクルを完了する。これに対し、ステップ112において、現在の発生HC量(mg/s)が零でないと判別されたときには、ステップ113に進んで、HC堆積量ΣHCが、許容HC堆積量MAXを越えたか否かが判別される。HC堆積量ΣHCが、許容HC堆積量MAXを越えていないときには、ステップ123に進んで、主流通路弁81が開弁され、次いで、ステップ124において、バイパス弁84が閉弁される。次いで、処理サイクルを完了する。このとき、燃焼ガス中に含まれるHCがHC吸着装置82に吸着され、又は堆積せしめられる。   In step 111, it is determined whether or not the HC combustion flag is set. When the HC combustion flag is not set, the routine proceeds to step 112, where it is determined from the table shown in FIG. 13 whether or not the current generated HC amount (mg / s) is zero. When the current generated HC amount (mg / s) is zero, the routine jumps to step 117 to effectively use the heat and heat generated in the hydrogen generator 50 for warming up the exhaust treatment catalyst 13. The main flow passage valve 81 is closed, and then in step 118, the bypass valve 84 is opened. The processing cycle is then completed. On the other hand, when it is determined in step 112 that the current generated HC amount (mg / s) is not zero, the routine proceeds to step 113, where it is determined whether or not the HC accumulation amount ΣHC exceeds the allowable HC accumulation amount MAX. Determined. When the HC accumulation amount ΣHC does not exceed the allowable HC accumulation amount MAX, the routine proceeds to step 123, where the main flow passage valve 81 is opened, and then, at step 124, the bypass valve 84 is closed. The processing cycle is then completed. At this time, HC contained in the combustion gas is adsorbed or deposited on the HC adsorption device 82.

一方、ステップ113において、HC堆積量ΣHCが、許容HC堆積量MAXを越えたと判別されたときには、ステップ114に進んで、排気処理触媒13の温度TDが活性化温度TKよりも高いか否かが判別される。排気処理触媒13の温度TDが活性化温度TKよりも高いときには、ステップ115に進んで、HC燃焼フラグがセットされる。次いで、処理サイクルを完了する。HC燃焼フラグがセットされると、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に供給される。HC燃焼フラグが一旦セットされると、次の処理サイクルでは、ステップ111からステップ119に進んで、主流通路弁81が開弁され、次いで、ステップ120において、バイパス弁84が閉弁される。次いで、ステップ121では、HC堆積量ΣHCが、最小値MINよりも小さくなったか否かが判別される。HC堆積量ΣHCが、最小値MINよりも大きいときには、処理サイクルを完了する。これに対し、ステップ121において、HC堆積量ΣHCが、最小値MINよりも小さくなったと判別されたときには、ステップ122に進んで、HC燃焼フラグがリセットされる。次いで、処理サイクルを完了する。   On the other hand, when it is determined at step 113 that the HC accumulation amount ΣHC has exceeded the allowable HC accumulation amount MAX, the routine proceeds to step 114 where it is determined whether or not the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK. Determined. When the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK, the routine proceeds to step 115, where the HC combustion flag is set. The processing cycle is then completed. When the HC combustion flag is set, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied to the HC adsorption device 82. Once the HC combustion flag is set, in the next processing cycle, the routine proceeds from step 111 to step 119, where the main flow passage valve 81 is opened, and then in step 120, the bypass valve 84 is closed. Next, at step 121, it is judged if the HC accumulation amount ΣHC has become smaller than the minimum value MIN. When the HC accumulation amount ΣHC is larger than the minimum value MIN, the processing cycle is completed. On the other hand, when it is determined at step 121 that the HC accumulation amount ΣHC has become smaller than the minimum value MIN, the routine proceeds to step 122 where the HC combustion flag is reset. The processing cycle is then completed.

一方、ステップ114において、排気処理触媒13の温度TDが活性化温度TKよりも低いと判別されたときには、ステップ116に進んで、待ちフラグがセットされる。この待ちフラグは、排気処理触媒13の温度TDが活性化温度TKよりも高くなるまでセットされ続ける。ステップ116において待ちフラグがセットされると、ステップ117に進んで、主流通路弁81が閉弁され、次いで、ステップ118において、バイパス弁84が開弁される。このように、HC堆積量ΣHCが、許容HC堆積量MAXを越えたと判別されても、排気処理触媒13の温度TDが活性化温度TKよりも低いときには、待ちフラグがセットされ、主流通路弁81が閉弁され、バイパス弁84が開弁される。   On the other hand, when it is determined at step 114 that the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK, the routine proceeds to step 116, where a waiting flag is set. This waiting flag continues to be set until the temperature TD of the exhaust treatment catalyst 13 becomes higher than the activation temperature TK. When the wait flag is set at step 116, the routine proceeds to step 117, where the main flow passage valve 81 is closed, and then at step 118, the bypass valve 84 is opened. Thus, even if it is determined that the HC accumulation amount ΣHC exceeds the allowable HC accumulation amount MAX, when the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK, a waiting flag is set and the main flow passage valve 81 is set. Is closed and the bypass valve 84 is opened.

次に、図17から図20に示される熱、水素生成制御ルーチンについて説明する。この熱、水素生成制御ルーチンは、図1に示される機関のスタータスイッチ43がオンにされたとき、或いは、機関の運転中において、排気処理触媒13の温度が、例えば、目標暖機温度よりも低下したときに実行される。なお、機関のスタータスイッチ43は、運転者により手動でオンにされる場合と、機関および電気モータを駆動源とするハイブリッド車両におけるように自動的にオンとされる場合とがある。   Next, the heat and hydrogen generation control routine shown in FIGS. 17 to 20 will be described. This heat and hydrogen generation control routine is performed when the starter switch 43 of the engine shown in FIG. 1 is turned on or during the operation of the engine, for example, when the temperature of the exhaust treatment catalyst 13 is higher than the target warm-up temperature. Run when dropped. The starter switch 43 of the engine may be turned on manually by a driver, or may be automatically turned on as in a hybrid vehicle that uses an engine and an electric motor as drive sources.

熱、水素生成制御ルーチンが実行されると、まず初めに、図17のステップ200において、温度センサ71の出力信号に基づいて、改質用触媒54の上流側端面の温度TDが、改質用触媒54の上流側端面上において酸化反応を行いうる温度、例えば、300℃以上であるか否かが判別される。改質用触媒54の上流側端面の温度TDが、300℃以下の場合には、ステップ201に進んで、グロープラグ68がオンとされる。次いで、ステップ202では、グロープラグ68がオンとされてから一定時間を経過したが否かが判別され、一定時間を経過したときにはステップ203に進む。   When the heat and hydrogen generation control routine is executed, first, in step 200 of FIG. 17, the temperature TD of the upstream end face of the reforming catalyst 54 is determined based on the output signal of the temperature sensor 71. It is determined whether or not the temperature at which the oxidation reaction can be performed on the upstream end face of the catalyst 54 is, for example, 300 ° C. or higher. When the temperature TD on the upstream end face of the reforming catalyst 54 is 300 ° C. or lower, the routine proceeds to step 201 where the glow plug 68 is turned on. Next, at step 202, it is determined whether or not a certain time has elapsed since the glow plug 68 was turned on. When the certain time has elapsed, the routine proceeds to step 203.

ステップ203では、空気ポンプ64が作動せしめられ、高温空気流通路62を介して
空気がバーナー燃焼室53に供給される。なお、熱、水素生成装置50の作動が停止されるときに、高温空気弁65が開弁されると共に低温空気弁66が閉弁されており、従って、熱、水素生成装置50が作動せしめられたときには、高温空気流通路62を介して空気がバーナー燃焼室53に供給される。次いで、ステップ204では、グロープラグ68の抵抗値から、グロープラグ68の温度TGが算出される。次いで、ステップ205では、グロープラグ68の温度TGが700℃を越えたか否かが判別される。グロープラグ68の温度TGが700℃を越えていないと判別されたときにはステップ203に戻る。これに対し、グロープラグ68の温度TGが700℃を越えたと判別されたときには、着火可能であると判断され、ステップ206に進む。
In step 203, the air pump 64 is operated, and air is supplied to the burner combustion chamber 53 via the high-temperature air flow passage 62. When the operation of the heat and hydrogen generation device 50 is stopped, the high temperature air valve 65 is opened and the low temperature air valve 66 is closed, so that the heat and hydrogen generation device 50 is operated. The air is supplied to the burner combustion chamber 53 via the high-temperature air flow passage 62. Next, at step 204, the temperature TG of the glow plug 68 is calculated from the resistance value of the glow plug 68. Next, at step 205, it is judged if the temperature TG of the glow plug 68 has exceeded 700.degree. When it is determined that the temperature TG of the glow plug 68 does not exceed 700 ° C., the process returns to step 203. On the other hand, when it is determined that the temperature TG of the glow plug 68 has exceeded 700 ° C., it is determined that ignition is possible, and the routine proceeds to step 206.

ステップ206では、バーナー57からバーナー燃焼室53に燃料が噴射され、次いで、ステップ207では、温度センサ71の出力信号に基づいて、改質用触媒54の上流側端面の温度TDが検出される。次いで、ステップ208では、温度センサ71の出力信号から、燃料が着火したか否かが判別される。燃料が着火すると、改質用触媒54の上流側端面の温度TDが瞬時に上昇し、従って、温度センサ71の出力信号から、燃料が着火したか否かを判別できることになる。ステップ208において、燃料が着火していないと判別されたときには、ステップ106に戻り、ステップ108において、燃料が着火したと判別されたときには、ステップ209に進んで、グロープラグ68がオフとされる。次いで、図18のステップ210に進む。なお、燃料が着火されると、改質用触媒54の上流側端面の温度TDは、ただちに、改質用触媒54の上流側端面上において酸化反応を行いうる温度、例えば、300℃以上となる。一方、ステップ200において、改質用触媒54の上流側端面の温度TDが300℃以上であると判別されたときにも、ステップ210に進む。   In step 206, fuel is injected from the burner 57 into the burner combustion chamber 53. Next, in step 207, the temperature TD of the upstream end face of the reforming catalyst 54 is detected based on the output signal of the temperature sensor 71. Next, at step 208, it is determined from the output signal of the temperature sensor 71 whether or not the fuel has ignited. When the fuel is ignited, the temperature TD of the upstream end face of the reforming catalyst 54 is instantaneously increased. Therefore, it can be determined from the output signal of the temperature sensor 71 whether or not the fuel has ignited. When it is determined at step 208 that the fuel has not ignited, the routine returns to step 106, and when it is determined at step 108 that the fuel has ignited, the routine proceeds to step 209, where the glow plug 68 is turned off. Next, the process proceeds to step 210 in FIG. When the fuel is ignited, the temperature TD at the upstream end face of the reforming catalyst 54 immediately becomes a temperature at which an oxidation reaction can be performed on the upstream end face of the reforming catalyst 54, for example, 300 ° C. or more. . On the other hand, when it is determined in step 200 that the temperature TD of the upstream end face of the reforming catalyst 54 is 300 ° C. or higher, the process proceeds to step 210.

ステップ210およびステップ211では、1次暖機運転が行われる。即ち、O/Cモル比が3.0となるように、ステップ210では空気ポンプ65の吐出量が制御され、ステップ211ではバーナー57からの供給燃料量が制御される。なお、本発明の実施例では、この1次暖機運転が行われているときには、図9および図11に示されるように、供給空気量および供給燃料量が段階的に増大される。次いで、ステップ212では、温度センサ72の出力信号に基づいて、改質用触媒54の下流側端面の温度TCが700℃を越えたか否かが判別される。改質用触媒4の下流側端面の温度TCが700℃を越えていないと判別されたときには、ステップ210に戻り、1次暖機運転、即ち、熱、水素生成装置50の暖機運転が継続して行われる。これに対し、改質用触媒54の下流側端面の温度TCが700℃を越えたと判別されたときにはステップ213に進む。 In step 210 and step 211, the primary warm-up operation is performed. That is, the discharge amount of the air pump 65 is controlled in step 210 so that the O 2 / C molar ratio is 3.0, and the fuel amount supplied from the burner 57 is controlled in step 211. In the embodiment of the present invention, when the primary warm-up operation is performed, the supply air amount and the supply fuel amount are increased stepwise as shown in FIGS. 9 and 11. Next, at step 212, based on the output signal of the temperature sensor 72, it is determined whether or not the temperature TC of the downstream end face of the reforming catalyst 54 has exceeded 700 ° C. When it is determined that the temperature TC of the downstream end face of the reforming catalyst 4 does not exceed 700 ° C., the process returns to step 210, and the primary warm-up operation, that is, the heat and hydrogen generator 50 warm-up operation continues. Done. On the other hand, when it is determined that the temperature TC of the downstream end face of the reforming catalyst 54 has exceeded 700 ° C., the routine proceeds to step 213.

ステップ213では、低温空気弁66が開弁され、ステップ214では、高温空気弁65が閉弁される。従って、このときには、空気は低温空気流通路63を介してバーナー燃焼室53に供給される。次いで、ステップ215では、排気処理触媒13の温度TDを目標暖機温度まで上昇させるのに必要な熱、水素生成装置50の出力熱量(kW)の要求値が算出される。次いで、ステップ216では、この出力熱量(kW)の要求出力熱量を発生させるのに必要な目標供給燃料量が算出される。次いで、ステップ217では、排気処理触媒13の活性化温度TKが決定される。この活性化温度TKは、例えば、110℃とされる。次いで、ステップ218では、排気処理触媒13の温度TDが、この活性化温度TKよりも高いか否かが判別される。   In step 213, the low temperature air valve 66 is opened, and in step 214, the high temperature air valve 65 is closed. Accordingly, at this time, air is supplied to the burner combustion chamber 53 via the low-temperature air flow passage 63. Next, at step 215, a required value for the heat required to raise the temperature TD of the exhaust treatment catalyst 13 to the target warm-up temperature and the output heat quantity (kW) of the hydrogen generator 50 is calculated. Next, at step 216, a target supply fuel amount necessary to generate the required output heat amount of the output heat amount (kW) is calculated. Next, at step 217, the activation temperature TK of the exhaust treatment catalyst 13 is determined. The activation temperature TK is set to 110 ° C., for example. Next, at step 218, it is determined whether or not the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK.

ステップ218において、排気処理触媒13の温度TDが活性化温度TKよりも高いと判別されたときには、ステップ219に進んで、図15および図16に示される堆積HC燃焼制御ルーチンにおいて制御されているHC燃焼フラグがセットされているか否かが判別される。HC燃焼フラグがセットされていないときには、ステップ221に進んで、図9に示されるように、2次暖機運転が開始される。即ち、ステップ221では、バーナー57からの供給燃料量をそのまま維持した状態で、O/Cモル比が0.56となるように空気ポンプ64の吐出量が減少せしめられる。このとき、部分酸化改質反応が開始され、熱および水素が排気処理触媒13に供給される。次いで、ステップ222では、改質用触媒54の下流側端面の温度TCが、温度センサ73により検出された空気温TAと805℃との和(TA+805℃)に到達したか否かが判別される。前述したように、この温度(TA+805℃)は、空気温がTA℃のときに、O/Cモル比=0.5でもって部分酸化改質反応が行われたときの反応平衡温度TBを示している。従って、ステップ222では、改質用触媒54の下流側端面の温度TCが、反応平衡温度(TA+805℃)に到達したか否かを判別していることになる。 When it is determined at step 218 that the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK, the routine proceeds to step 219, where the HC controlled in the accumulated HC combustion control routine shown in FIGS. It is determined whether or not a combustion flag is set. When the HC combustion flag is not set, the routine proceeds to step 221, and the secondary warm-up operation is started as shown in FIG. That is, in step 221, while maintaining the amount of fuel supplied from the burner 57, the discharge amount of the air pump 64 is reduced so that the O 2 / C molar ratio becomes 0.56. At this time, the partial oxidation reforming reaction is started, and heat and hydrogen are supplied to the exhaust treatment catalyst 13. Next, at step 222, it is determined whether or not the temperature TC of the downstream end face of the reforming catalyst 54 has reached the sum (TA + 805 ° C.) of the air temperature TA detected by the temperature sensor 73 and 805 ° C. . As described above, this temperature (TA + 805 ° C.) is the reaction equilibrium temperature TB when the partial oxidation reforming reaction is performed with an O 2 / C molar ratio = 0.5 when the air temperature is TA ° C. Show. Therefore, in step 222, it is determined whether or not the temperature TC of the downstream end face of the reforming catalyst 54 has reached the reaction equilibrium temperature (TA + 805 ° C.).

改質用触媒54の下流側端面の温度TCが、反応平衡温度(TA+805℃)に到達していないと判別されたときには、ステップ219に戻り、O/Cモル比が0.56となるように空気ポンプ64の吐出量が制御され続ける。これに対し、ステップ222において、改質用触媒54の下流側端面の温度TCが、反応平衡温度(TA+805℃)に到達したと判別されたときには、ステップ223に進み、空気ポンプ15の吐出量を一定に維持した状態で、燃料噴射量が、ステップ216において算出された供給燃料量まで徐々に増大される。その結果、O/Cモル比が徐々に減少する。次いで、ステップ224では、O/Cモル比が0.5になったか否かが判別される。O/Cモル比が0.5になっていないと判別されたときには、ステップ223に戻る。これに対し、ステップ224において、O/Cモル比が0.5になったと判別されたときには、2次暖機運転は完了したと判断される。2次暖機運転が完了したと判断されたときには、ステップ231に進んで、通常運転が行われる。 When it is determined that the temperature TC at the downstream end face of the reforming catalyst 54 has not reached the reaction equilibrium temperature (TA + 805 ° C.), the process returns to step 219 so that the O 2 / C molar ratio becomes 0.56. In addition, the discharge amount of the air pump 64 continues to be controlled. On the other hand, when it is determined at step 222 that the temperature TC of the downstream end face of the reforming catalyst 54 has reached the reaction equilibrium temperature (TA + 805 ° C.), the routine proceeds to step 223 where the discharge amount of the air pump 15 is reduced. While maintaining a constant value, the fuel injection amount is gradually increased to the amount of fuel supplied calculated in step 216. As a result, the O 2 / C molar ratio gradually decreases. Next, at step 224, it is judged if the O 2 / C molar ratio has become 0.5. When it is determined that the O 2 / C molar ratio is not 0.5, the process returns to step 223. In contrast, when it is determined in step 224 that the O 2 / C molar ratio has become 0.5, it is determined that the secondary warm-up operation has been completed. When it is determined that the secondary warm-up operation has been completed, the routine proceeds to step 231 where normal operation is performed.

一方、ステップ219において、HC燃焼フラグがセットされていると判別されたときには、ステップ220に進み、燃料噴射量が、ステップ216において算出された供給燃料量とされた状態で、O/Cモル比が2.6となるように、空気ポンプ64の吐出量が制御される。従って、このときには、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に供給される。次いで、ステップ219に戻る。従って、HC燃焼フラグがセットされ続けている間、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に供給され続け、HC吸着装置82に吸着され、又は堆積しているHCが急速に燃焼せしめられる。次いで、HC燃焼フラグがリセットされると、ステップ221に進む。 On the other hand, when it is determined at step 219 that the HC combustion flag is set, the routine proceeds to step 220 where the fuel injection amount is set to the supply fuel amount calculated at step 216 and the O 2 / C mole. The discharge amount of the air pump 64 is controlled so that the ratio is 2.6. Accordingly, at this time, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied to the HC adsorption device 82. Then, the process returns to step 219. Therefore, while the HC combustion flag continues to be set, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio continues to be supplied to the HC adsorption device 82 and is adsorbed or deposited on the HC adsorption device 82. Burning HC is burned quickly. Next, when the HC combustion flag is reset, the routine proceeds to step 221.

一方、ステップ218において、排気処理触媒13の温度TDが活性化温度TK未満であると判別されたときには、ステップ225に進んで、図11に示されるように、運転モードが熱生成モードとされる。即ち、ステップ225では、ステップ216において算出された供給燃料量でもってバーナー57から燃料が噴射され、O2/Cモル比が2.6となるように空気ポンプ64の吐出量が制御される。このとき、リーン空燃比のもとでの完全酸化反応が続行され、熱のみが排気処理触媒13に供給される。次いで、ステップ226では、排気処理触媒13の温度TDが活性化温度TKに到達したか否かが判別される。排気処理触媒13の温度TDが活性化温度TKに到達していないときには、ステップ225に戻る。   On the other hand, when it is determined in step 218 that the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK, the process proceeds to step 225 and the operation mode is set to the heat generation mode as shown in FIG. . That is, in step 225, fuel is injected from the burner 57 with the amount of fuel supplied calculated in step 216, and the discharge amount of the air pump 64 is controlled so that the O2 / C molar ratio is 2.6. At this time, the complete oxidation reaction under a lean air-fuel ratio is continued, and only heat is supplied to the exhaust treatment catalyst 13. Next, at step 226, it is determined whether or not the temperature TD of the exhaust treatment catalyst 13 has reached the activation temperature TK. When the temperature TD of the exhaust treatment catalyst 13 has not reached the activation temperature TK, the process returns to step 225.

これに対し、ステップ226において、排気処理触媒13の温度TDが活性化温度TKに到達したと判別されたときにはステップ227に進んで、図15および図16に示される堆積HC燃焼制御ルーチンにおいて制御されている待ちフラグがセットされているか否かが判別される。待ちフラグがセットされていないときには、ステップ228に進んで、バーナー57からの供給燃料量をそのまま維持した状態で、O/Cモル比が0.5となるように空気ポンプ64の吐出量が減少せしめられる。このとき、部分酸化改質反応が開始され、熱および水素が排気処理触媒13に供給される。次いで、ステップ231に進んで、通常運転が行われる。これに対し、ステップ227において、待ちフラグがセットされていると判別されたときには、ステップ229に進んで、HC燃焼フラグがセットされ、次いで、ステップ230において、待ちフラグがリセットされる。次いで、ステップ231に進んで、通常運転が行われる。 On the other hand, when it is determined at step 226 that the temperature TD of the exhaust treatment catalyst 13 has reached the activation temperature TK, the routine proceeds to step 227, where it is controlled in the accumulated HC combustion control routine shown in FIGS. It is determined whether the waiting flag is set. When the wait flag is not set, the routine proceeds to step 228, and the discharge amount of the air pump 64 is set so that the O 2 / C molar ratio becomes 0.5 while maintaining the amount of fuel supplied from the burner 57 as it is. It can be reduced. At this time, the partial oxidation reforming reaction is started, and heat and hydrogen are supplied to the exhaust treatment catalyst 13. Next, the routine proceeds to step 231 where normal operation is performed. On the other hand, when it is determined at step 227 that the wait flag is set, the routine proceeds to step 229, where the HC combustion flag is set, and then at step 230, the wait flag is reset. Next, the routine proceeds to step 231 where normal operation is performed.

ステップ231では、HC燃焼フラグがセットされているか否かが判別される。HC燃焼フラグがセットされていないときには、ステップ232に進み、供給燃料量を、ステップ216において算出された供給燃料量に固定にした状態で供給空気量を調整することにより、O/Cモル比=0.5でもって部分酸化改質反応が行われる。このときには熱および水素が生成され、熱および水素が排気処理触媒13に供給される。次いで、ステップ234に進む。一方、ステップ231において、HC燃焼フラグがセットされていると判別されたときには、ステップ233に進み、供給燃料量を、ステップ216において算出された供給燃料量に固定にした状態で供給空気量を調整することにより、O/Cモル比=2.6でもって完全酸化反応が行われる。このときには、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスがHC吸着装置82に供給され、HC吸着装置82に吸着され、又は堆積しているHCが急速に燃焼せしめられる。次いで、ステップ234に進む。 In step 231, it is determined whether or not the HC combustion flag is set. When the HC combustion flag is not set, the process proceeds to step 232, and the O 2 / C molar ratio is adjusted by adjusting the supply air amount in a state where the supply fuel amount is fixed to the supply fuel amount calculated in step 216. The partial oxidation reforming reaction is performed with = 0.5. At this time, heat and hydrogen are generated, and the heat and hydrogen are supplied to the exhaust treatment catalyst 13. Next, the process proceeds to step 234. On the other hand, when it is determined in step 231 that the HC combustion flag is set, the process proceeds to step 233, and the supply air amount is adjusted in a state where the supply fuel amount is fixed to the supply fuel amount calculated in step 216. By doing so, the complete oxidation reaction is carried out with an O 2 / C molar ratio = 2.6. At this time, the combustion gas generated by the complete oxidation reaction under the lean air-fuel ratio is supplied to the HC adsorbing device 82, and adsorbed by the HC adsorbing device 82 or accumulated HC is rapidly burned. Next, the process proceeds to step 234.

このように、HC燃焼フラグがセットされたときに、排気処理触媒13の温度TDが活性化温度TKよりも高いときには、2次暖機運転時、或いは、通常運転時に、リーン空燃比による完全酸化反応を行うことにより生成された燃焼ガスがHC吸着装置82に供給され、HC吸着装置82に吸着、又は、堆積しているHCが急速に燃焼せしめられる。これに対し、HC燃焼フラグがセットされたときに、排気処理触媒13の温度TDが活性化温度TKよりも低いときには、排気処理触媒13の温度TDが活性化温度TKよりも高くなった後、通常運転時に、リーン空燃比による完全酸化反応を行うことにより生成された燃焼ガスがHC吸着装置82に供給され、HC吸着装置82に吸着、又は、堆積しているHCが急速に燃焼せしめられる。   As described above, when the HC combustion flag is set and the temperature TD of the exhaust treatment catalyst 13 is higher than the activation temperature TK, complete oxidation by the lean air-fuel ratio is performed during the secondary warm-up operation or during the normal operation. The combustion gas generated by the reaction is supplied to the HC adsorption device 82, and the HC adsorbed or deposited on the HC adsorption device 82 is rapidly burned. On the other hand, when the temperature TD of the exhaust treatment catalyst 13 is lower than the activation temperature TK when the HC combustion flag is set, after the temperature TD of the exhaust treatment catalyst 13 becomes higher than the activation temperature TK, During normal operation, combustion gas generated by performing a complete oxidation reaction with a lean air-fuel ratio is supplied to the HC adsorption device 82, and the HC adsorbed or deposited on the HC adsorption device 82 is rapidly burned.

ステップ234では、熱、水素生成装置50の運転を停止すべきであるか否かが判別される。この場合、本発明の実施例では、通常運転が一定期間続行されたとき、又は、排気処理触媒13の温度TDが目標暖機温度に達したとき、又は、その他の理由により熱、水素生成装置50の運転を停止すべき指令が発せられたときに、熱、水素生成装置50の運転を停止すべきであると判別される。ステップ234において、熱、水素生成装置50の運転を停止すべきでないと判別されたときにはステップ231に戻る。これに対し、ステップ234において、熱、水素生成装置50の運転を停止すべきであると判別されたときには、ステップ235に進んで、バーナー57からの燃料噴射が停止される。   In step 234, it is determined whether or not the operation of the heat and hydrogen generator 50 should be stopped. In this case, in the embodiment of the present invention, when the normal operation is continued for a certain period, or when the temperature TD of the exhaust treatment catalyst 13 reaches the target warm-up temperature, or for other reasons, the heat and hydrogen generator When a command to stop the operation of 50 is issued, it is determined that the operation of the heat and hydrogen generator 50 should be stopped. If it is determined in step 234 that the operation of the heat and hydrogen generator 50 should not be stopped, the process returns to step 231. On the other hand, when it is determined in step 234 that the operation of the heat and hydrogen generator 50 should be stopped, the routine proceeds to step 235, where fuel injection from the burner 57 is stopped.

次いで、ステップ236では、残存する燃料を燃焼除去するために、空気ポンプ64から空気が供給され続ける。次いで、ステップ237では、一定時間経過したか否かが判別される。一定時間経過していないと判別されたときには、ステップ236に戻る。これに対し、ステップ237において、一定時間経過したと判別されたときには、ステップ238に進んで、空気ポンプ65の作動が停止され、バーナー燃焼室53内への空気の供給が停止される。次いで、ステップ239では、低温空気弁66が閉弁され、ステップ240では、高温空気弁65が開弁される。次いで、熱、水素生成装置50の作動が停止せしめられている間、低温空気弁66が閉弁され続け、高温空気弁65が開弁され続ける。   Next, in step 236, air continues to be supplied from the air pump 64 to burn off the remaining fuel. Next, in step 237, it is determined whether or not a certain time has elapsed. If it is determined that the fixed time has not elapsed, the process returns to step 236. On the other hand, when it is determined in step 237 that the predetermined time has elapsed, the process proceeds to step 238, where the operation of the air pump 65 is stopped and the supply of air into the burner combustion chamber 53 is stopped. Next, at step 239, the low temperature air valve 66 is closed, and at step 240, the high temperature air valve 65 is opened. Next, while the operation of the heat and hydrogen generator 50 is stopped, the low temperature air valve 66 is kept closed and the high temperature air valve 65 is kept opened.

次に、図21を参照しつつ触媒温度の上昇規制制御ルーチンについて説明する。このルーチンは一定時間毎の割り込みによって実行される。
図21を参照すると、まず初めに、ステップ300において、温度センサ72により検出されている改質用触媒54の下流側端面の温度TCが読み込まれる。次いで、ステップ301では、改質用触媒54の下流側端面の温度TCが許容触媒温度TXを越えたか否かが判別される。改質用触媒54の下流側端面の温度TCが許容触媒温度TXを越えていないと判別されたときには、処理サイクルを完了する。
Next, the catalyst temperature increase restriction control routine will be described with reference to FIG. This routine is executed by interruption every predetermined time.
Referring to FIG. 21, first, in step 300, the temperature TC of the downstream end face of the reforming catalyst 54 detected by the temperature sensor 72 is read. Next, at step 301, it is judged if the temperature TC of the downstream end face of the reforming catalyst 54 has exceeded the allowable catalyst temperature TX. When it is determined that the temperature TC at the downstream end face of the reforming catalyst 54 does not exceed the allowable catalyst temperature TX, the processing cycle is completed.

これに対し、ステップ301において、改質用触媒54の下流側端面の温度TCが許容触媒温度TXを越えたと判別されたときには、ステップ302に進んで、低温空気弁66が開弁され、次いで、ステップ303において、高温空気弁65が閉弁される。次いで、処理サイクルを完了する。即ち、熱、水素生成装置50の運転中において、改質用触媒54の下流側端面の温度TCが許容触媒温度TXを越えたときには、バーナー燃焼室53内に空気を送り込む空気流通経路が、高温の空気を送り込む高温空気流通経路から、低温の空気を送り込む低温空気流通経路に切り替えられ、バーナー燃焼室53内に供給されるバーナー燃焼用空気の温度が低下せしめられる。   On the other hand, when it is determined at step 301 that the temperature TC of the downstream end face of the reforming catalyst 54 has exceeded the allowable catalyst temperature TX, the routine proceeds to step 302 where the low temperature air valve 66 is opened, and then In step 303, the hot air valve 65 is closed. The processing cycle is then completed. That is, when the temperature TC of the downstream end face of the reforming catalyst 54 exceeds the allowable catalyst temperature TX during the operation of the heat and hydrogen generator 50, the air flow path for sending air into the burner combustion chamber 53 has a high temperature. Is switched from a high-temperature air flow path for feeding the air to a low-temperature air flow path for sending low-temperature air, and the temperature of the burner combustion air supplied into the burner combustion chamber 53 is lowered.

1 機関本体
12 排気管
13 排気処理触媒
14 パティキュレートフィルタ
50 熱、水素生成装置
51 通路切換装置
53 バーナー燃焼室
54 改質用触媒
57 バーナー
80 主流通路
81 主流通路弁
82 HC吸着装置
83 バイパス通路
84 バイパス弁
DESCRIPTION OF SYMBOLS 1 Engine main body 12 Exhaust pipe 13 Exhaust treatment catalyst 14 Particulate filter 50 Heat, hydrogen production | generation apparatus 51 Passage switching device 53 Burner combustion chamber 54 Reforming catalyst 57 Burner 80 Main flow passage 81 Main flow passage valve 82 HC adsorption device 83 Bypass passage 84 Bypass valve

Claims (1)

機関排気通路内に配置された排気処理触媒と、該排気処理触媒を暖機するために該排気処理触媒に熱のみ、又は熱および水素を供給可能な熱、水素生成装置とを具備しており、該熱、水素生成装置が、燃料および空気の燃焼ガスが送り込まれる改質用触媒を備えており、該熱、水素生成装置では、部分酸化反応を行うことにより水素を含む燃焼ガス、又はリーン空燃比のもとで完全酸化反応装置を行うことにより水素を含まない燃焼ガスが生成され、更に、該熱、水素生成装置から該排気処理触媒に供給される燃焼ガス中の炭化水素を吸着可能な炭化水素吸着装置を具備しており、該炭化水素吸着装置に吸着され、又は堆積した炭化水素を燃焼させるときには、該熱、水素生成装置において、リーン空燃比のもとでの完全酸化反応により生成された燃焼ガスを炭化水素吸着装置に供給するようにした内燃機関の排気浄化装置。   An exhaust treatment catalyst disposed in the engine exhaust passage, and a heat and hydrogen generator that can supply only heat or heat and hydrogen to the exhaust treatment catalyst in order to warm up the exhaust treatment catalyst. The heat and hydrogen generator includes a reforming catalyst into which a combustion gas of fuel and air is sent. In the heat and hydrogen generator, a combustion gas containing hydrogen or a lean gas is generated by performing a partial oxidation reaction. Combustion gas that does not contain hydrogen is generated by performing a complete oxidation reactor under an air-fuel ratio, and furthermore, hydrocarbons in the combustion gas supplied from the hydrogen generator to the exhaust treatment catalyst can be adsorbed. When the hydrocarbon adsorbed or deposited on the hydrocarbon adsorbing device is burned, the heat and hydrogen generating device are subjected to a complete oxidation reaction under a lean air-fuel ratio. Generation An exhaust purification system of an internal combustion engine which is adapted to supply combustion gases to the hydrocarbon adsorber.
JP2016218220A 2016-11-08 2016-11-08 Exhaust emission control device for internal combustion engine Pending JP2018076798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218220A JP2018076798A (en) 2016-11-08 2016-11-08 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218220A JP2018076798A (en) 2016-11-08 2016-11-08 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018076798A true JP2018076798A (en) 2018-05-17

Family

ID=62150053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218220A Pending JP2018076798A (en) 2016-11-08 2016-11-08 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018076798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020216153B3 (en) 2020-12-17 2022-02-03 Vitesco Technologies GmbH Method for cleaning a storage catalytic converter and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020216153B3 (en) 2020-12-17 2022-02-03 Vitesco Technologies GmbH Method for cleaning a storage catalytic converter and device therefor

Similar Documents

Publication Publication Date Title
JP3826770B2 (en) Fuel reforming system
JP2009540174A (en) Method of operation for a system comprising a reformer and a catalytic exhaust aftertreatment device
JP6597677B2 (en) Exhaust gas purification device for internal combustion engine
CN107572480B (en) Heat and hydrogen generating apparatus
CN107572479B (en) Heat and hydrogen generating apparatus
JP2018076798A (en) Exhaust emission control device for internal combustion engine
JP6624017B2 (en) Exhaust gas purification device for internal combustion engine
CN107965374B (en) Exhaust gas purification device for internal combustion engine
JP6551385B2 (en) Exhaust purification system for internal combustion engine
JP5845906B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2006144702A (en) Internal combustion engine and operation control device for internal combustion engine
JP2018155143A (en) Exhaust emission control device for internal combustion engine
JP2020118068A (en) Early activation system for exhaust gas purification catalyst and early activation method for exhaust gas purification catalyst