JP2018075527A - Soil purification system - Google Patents

Soil purification system Download PDF

Info

Publication number
JP2018075527A
JP2018075527A JP2016219014A JP2016219014A JP2018075527A JP 2018075527 A JP2018075527 A JP 2018075527A JP 2016219014 A JP2016219014 A JP 2016219014A JP 2016219014 A JP2016219014 A JP 2016219014A JP 2018075527 A JP2018075527 A JP 2018075527A
Authority
JP
Japan
Prior art keywords
soil
water injection
injection layer
layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016219014A
Other languages
Japanese (ja)
Other versions
JP6914026B2 (en
Inventor
朋宏 中島
Tomohiro Nakajima
朋宏 中島
孝昭 清水
Takaaki Shimizu
孝昭 清水
悠 清塘
Haruka Kiyotomo
悠 清塘
大和 清水
Yamato Shimizu
大和 清水
信康 奥田
Nobuyasu Okuda
信康 奥田
靖英 古川
Yasuhide Furukawa
靖英 古川
祐二 山▲崎▼
Yuji Yamazaki
祐二 山▲崎▼
一洋 向井
Kazuhiro Mukai
一洋 向井
薫 稲葉
Kaoru Inaba
薫 稲葉
一生 小西
Kazuo Konishi
一生 小西
邦夫 東中
Kunio Higashinaka
邦夫 東中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016219014A priority Critical patent/JP6914026B2/en
Publication of JP2018075527A publication Critical patent/JP2018075527A/en
Application granted granted Critical
Publication of JP6914026B2 publication Critical patent/JP6914026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil purification system capable of impregnating injection liquid uniformly into soil.SOLUTION: A soil purification system 10 has a water injection layer 20 provided on the surface of soil G or in the soil G, and formed flatly of a material having higher water permeability than the soil G, an injection facility 30 for impregnating injection liquid into the soil G from the water injection layer 20 by injecting the injection liquid containing a material for decomposing a contaminant into the water injection layer 20, and a withdrawal wellhole 40 for pumping underground water containing the injection liquid from the soil G.SELECTED DRAWING: Figure 1

Description

本発明は、土壌浄化システムに関する。   The present invention relates to a soil purification system.

下記特許文献1には、揚水井戸から揚水した地下水に汚染物質を分解する微生物の栄養剤を添加して、この地下水を注水井戸から汚染土壌へ浸透させる汚染土壌の浄化処理方法が開示されている。   Patent Document 1 listed below discloses a method for purifying contaminated soil by adding a nutrient for a microorganism that decomposes pollutants to groundwater pumped from a pumping well and allowing the groundwater to penetrate from the water injection well into the contaminated soil. .

特開2015−160175号公報JP, 2015-160175, A

上記特許文献1の汚染土壌の浄化処理方法では、栄養剤を添加した地下水を注水井戸から汚染土壌へ浸透させるため、土壌の透水性が低い部分や、地下水位が低い部分まで均等に栄養剤(注入液)を浸透させることが難しい。   In the method for purifying contaminated soil of Patent Document 1 described above, groundwater added with nutrients is permeated into the contaminated soil from the water injection well. Infusion) is difficult.

本発明は上記事実を考慮して、注入液を土壌へ均等に浸透させることができる土壌浄化システムを提供することを目的とする。   In view of the above facts, an object of the present invention is to provide a soil remediation system capable of evenly infiltrating an injection solution into soil.

請求項1の土壌浄化システムは、土壌の表面又は土壌中に設けられ、前記土壌より透水性の高い材料で面状に形成された注水層と、前記注水層へ汚染物質を分解するための物質を含んだ注入液を注入して、前記注水層から前記土壌へ注入液を浸透させる注入設備と、前記土壌から前記注入液を含む地下水を揚水する揚水設備と、を有する。   The soil purification system of Claim 1 is provided in the surface of soil or in the soil, the water injection layer formed in the surface by the material whose water permeability is higher than the said soil, and the substance for decomposing | disassembling a pollutant into the said water injection layer And a pumping facility for pumping groundwater containing the injected solution from the soil.

請求項1の土壌浄化システムでは、土壌よりも透水性の高い注水層へ注入液を注入するため、注入液は土壌に浸透するより早く注水層へ浸透しやすい。この注水層は面状に形成されているため、注入液は注水層から揚水設備へ向かって、土壌内を面を構成して浸透する。このため、例えば棒状(線状)の注水井戸から土壌へ注入液を浸透させる場合と比較して、注入液を土壌へ均等に浸透させやすい。   In the soil purification system according to the first aspect, since the injection solution is injected into the water injection layer having higher water permeability than the soil, the injection solution is likely to penetrate into the water injection layer earlier than the soil infiltration into the soil. Since this water injection layer is formed in a planar shape, the injected liquid permeates through the soil from the water injection layer toward the pumping equipment. For this reason, compared with the case where an injection liquid is made to osmose | permeate into soil from a rod-shaped (linear) water injection well, for example, it is easy to infiltrate an injection liquid into soil equally.

請求項2の土壌浄化システムは、前記注水層は前記土壌の表面に設けられ、前記揚水設備は揚水井戸である。   In the soil purification system according to claim 2, the water injection layer is provided on a surface of the soil, and the pumping equipment is a pumping well.

請求項2の土壌浄化システムでは、注水層が土壌の表面に設けられているため、注入液は重力により土壌へ浸透する。このため、注入液を浸透させるための注水井戸が不要となる。また、揚水設備が揚水井戸とされているため、土壌の深い位置から揚水できる。このため、重力による注入液の浸透を促進できる。   In the soil purification system according to the second aspect, since the water injection layer is provided on the surface of the soil, the injected liquid penetrates into the soil by gravity. This eliminates the need for a water injection well for infiltrating the injection solution. Moreover, since the pumping facility is a pumping well, it is possible to pump water from a deep location in the soil. For this reason, penetration of the injected liquid by gravity can be promoted.

請求項3の土壌浄化システムは、前記注水層の外周部に止水壁が設けられている。   In the soil purification system according to claim 3, a water blocking wall is provided on an outer peripheral portion of the water injection layer.

請求項3の土壌浄化システムでは、注水層の外周部に止水壁が設けられているため、注水層へ注入された注入液が注水層の外側へ流れ出にくい。このため、注入液を浸透させる必要が無い部分に注入液が流れることを抑制でき、土壌浄化効率が高い。   In the soil purification system according to the third aspect, since the water blocking wall is provided on the outer peripheral portion of the water injection layer, the injected liquid injected into the water injection layer is unlikely to flow out of the water injection layer. For this reason, it can suppress that an injection liquid flows into the part which does not need to infiltrate an injection liquid, and soil purification efficiency is high.

本発明に係る土壌浄化システムによると、注入液を土壌へ均等に浸透させることができる。   According to the soil purification system which concerns on this invention, an injection liquid can be made to osmose | permeate equally to soil.

本発明の第1実施形態に係る土壌浄化システムを示す立断面図である。It is an elevation sectional view showing the soil purification system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る土壌浄化システムにおける注水層の構成を示す部分拡大立断面図である。It is a partial expanded vertical sectional view which shows the structure of the water injection layer in the soil purification system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る土壌浄化システムにおいて土壌の表面が傾斜している例を示す部分拡大立断面図である。It is a partial expanded sectional view which shows the example in which the surface of the soil inclines in the soil purification system which concerns on 1st Embodiment of this invention. (A)は本発明の第1実施形態に係る土壌浄化システムを用いて土壌を浄化する手順を示した立断面図であって汚染土壌の上部に土壌浄化システムを構築した状態を示し、(B)は揚水井戸から地下水を揚水した状態を示し、(C)は浄化装置から注水層へ注入液を注入した状態を示し、(D)は浄化装置から注水層へ注入液を注入し続け、地盤に注入液が浸透している状態を示し、(E)は注入液の注入を停止し、注入液が重力で土壌へ浸透している状態を示し、(F)は土壌へ注入液が浸透した後の状態を示している。(A) is an elevational sectional view showing a procedure for purifying the soil using the soil purification system according to the first embodiment of the present invention, and shows a state in which the soil purification system is constructed above the contaminated soil. ) Shows the state where the groundwater is pumped from the pumping well, (C) shows the state where the injection solution is injected into the water injection layer from the purification device, and (D) continues to inject the injection solution from the purification device into the water injection layer. (E) shows the state where the injection solution is stopped, the injection solution is infiltrated into the soil by gravity, and (F) shows the state where the injection solution has penetrated into the soil. The later state is shown. 本発明の第2実施形態に係る土壌浄化システムを示す立断面図である。It is an elevation sectional view showing the soil purification system concerning a 2nd embodiment of the present invention. (A)は本発明の第3実施形態に係る土壌浄化システムにおいて注水井戸及び揚水井戸と注水層との位置関係を示す平面図であり、(B)は立断面図である。(A) is a top view which shows the positional relationship of a water injection well, a pumping well, and a water injection layer in the soil purification system which concerns on 3rd Embodiment of this invention, (B) is an elevational sectional view. (A)は本発明の第3実施形態に係る土壌浄化システムにおいて注水層を形成する方法を示した立断面図であり地盤に竪穴を削孔した状態を示し、(B)は竪穴から地盤に切り欠きを形成した状態を示し、(C)は切り欠きを開削して面状の流路を形成した状態を示し、(D)は流路に硅砂を充填して面状の注水層を形成した状態を示している。(A) is an elevational sectional view showing a method for forming a water injection layer in the soil purification system according to the third embodiment of the present invention, and shows a state in which a hole has been drilled in the ground, and (B) is from the hole to the ground. (C) shows a state where a cutout is cut to form a planar channel, and (D) shows a planar water injection layer filled with dredged sand. Shows the state. (A)は本発明の第3実施形態に係る土壌浄化システムにおいて地盤に複数の竪穴を削孔し、それぞれの竪穴から形成した注水層を繋げた状態を示す立断面図であり、(B)は平面図である。(A) is an elevational sectional view showing a state in which a plurality of pits are drilled in the ground in the soil purification system according to the third embodiment of the present invention, and a water injection layer formed from each pit is connected, (B) Is a plan view. 本発明の第4実施形態に係る土壌浄化システムを示す斜視図である。It is a perspective view which shows the soil purification system which concerns on 4th Embodiment of this invention.

[第1実施形態]
(土壌浄化システム)
図1に示すように、第1実施形態に係る土壌浄化システム10は、土壌Gの表面に設けられた注水層20と、注水層20へ注入液を注入して、注水層20から土壌Gへ注入液を浸透させる注入設備30と、土壌Gから注入液を含む地下水を揚水する揚水設備としての揚水井戸40と、を備えている。
[First Embodiment]
(Soil purification system)
As shown in FIG. 1, the soil purification system 10 according to the first embodiment injects an injection solution into the water injection layer 20 provided on the surface of the soil G and the water injection layer 20, and then passes from the water injection layer 20 to the soil G. An injection facility 30 for infiltrating the injection solution and a pumping well 40 as a pumping facility for pumping up groundwater containing the injection solution from the soil G are provided.

(注入設備)
注入設備30は、注水層20へ注入するための注入液を生成する浄化装置32と、浄化装置32で生成された注入液を注水層20へ注入する注入パイプ34と、土壌Gへ浸透する前の注入液の一部を回収する回収パイプ36と、を備えている。注入液は、土壌Gに含まれる汚染物質Eを分解するための物質(分解物質)を含んだ液体である。
(Injection equipment)
The injection facility 30 includes a purification device 32 that generates an injection solution to be injected into the water injection layer 20, an injection pipe 34 that injects the injection solution generated by the purification device 32 into the water injection layer 20, and before infiltrating into the soil G. And a recovery pipe 36 for recovering a part of the injected liquid. The injection liquid is a liquid containing a substance (decomposing substance) for decomposing the pollutant E contained in the soil G.

浄化装置32は、揚水井戸40から汲み上げられた地下水を浄化し、浄化された地下水に分解物質を添加する。分解物質としては、汚染物質Eを生物分解する「分解微生物」、汚染物質Eを化学分解する「化学分解剤」、分解微生物の生物分解を活性化させる「活性剤」等を用いることができる。   The purification device 32 purifies the groundwater pumped up from the pumping well 40 and adds a decomposition substance to the purified groundwater. As the decomposing substance, a “decomposing microorganism” that biodegrades the pollutant E, a “chemical decomposing agent” that chemically decomposes the pollutant E, an “active agent” that activates biodegradation of the decomposing microorganism, and the like can be used.

さらに浄化装置32では注入液を加温して、これらの分解物質の働きを促進させている。   Further, the purifier 32 warms the injected liquid to promote the action of these decomposed substances.

注入パイプ34及び回収パイプ36は、注水層20の内部に敷設された有孔管であり、浄化装置32から注入パイプ34へ図示しないポンプを用いて注入液を配水し、また、回収パイプ36から浄化装置32へ、図示しないポンプを用いて注入液を回収する。   The injection pipe 34 and the recovery pipe 36 are perforated pipes laid inside the water injection layer 20. The injection liquid is distributed from the purification device 32 to the injection pipe 34 using a pump (not shown). The injection solution is recovered into the purifier 32 using a pump (not shown).

なお回収パイプ36は、注水層20に注入された注入液を回収し、注入液の温度が土壌Gへ浸透する前に所定の温度よりも低くなった場合に再度加温するために用いられるが、必ずしも設ける必要はない。   The recovery pipe 36 is used for recovering the injected liquid injected into the water injection layer 20 and reheating it when the temperature of the injected liquid becomes lower than a predetermined temperature before penetrating into the soil G. It is not always necessary to provide it.

注入パイプ34への配水量、回収パイプ36からの回収量は、浄化装置32に設けられた図示しない制御部によって制御される。また制御部は、図示しない計量センサーからの信号を受信し、揚水井戸40からの地下水の揚水量も制御する。   The amount of water distributed to the injection pipe 34 and the amount recovered from the recovery pipe 36 are controlled by a control unit (not shown) provided in the purification device 32. The control unit also receives a signal from a metering sensor (not shown) and controls the amount of groundwater pumped from the pumping well 40.

(注水層)
注水層20は、土壌Gよりも透水性の高い材料で形成され、土壌Gの地表面において、浄化対象とされた汚染物質Eを覆う範囲に面状に敷設されている。注水層20の周囲には非透水性の材料で形成された止水壁50が設けられ、注水層20へ注入された注入液が注水層20の外側へ流れ出にくくなっている。
(Water injection layer)
The water injection layer 20 is formed of a material having higher water permeability than the soil G, and is laid in a planar shape on the ground surface of the soil G in a range covering the pollutant E to be purified. A water blocking wall 50 formed of a non-permeable material is provided around the water injection layer 20, and the injected liquid injected into the water injection layer 20 is difficult to flow out of the water injection layer 20.

図2に示すように注水層20は3層構成とされており、上層22は砕石、中層24は砂利、下層26は硅砂でそれぞれ形成されている。これらの粒径は砕石、砂利、硅砂の順に小さくなるため、透水係数は上層22、中層24、下層26の順に大きい。   As shown in FIG. 2, the water injection layer 20 has a three-layer structure. The upper layer 22 is formed of crushed stone, the middle layer 24 is formed of gravel, and the lower layer 26 is formed of dredged sand. Since these particle sizes decrease in the order of crushed stone, gravel, and cinnabar, the water permeability coefficient increases in the order of the upper layer 22, the middle layer 24, and the lower layer 26.

注入パイプ34は上層22の内部に埋設されており、上層22に注入された注入液は上層22の内部で横方向に向かって速やかに浸透し、重力によって中層24へ徐々に浸透し、さらに下層26へ浸透する。   The injection pipe 34 is embedded in the upper layer 22, and the injection liquid injected into the upper layer 22 quickly permeates in the lateral direction inside the upper layer 22, gradually permeates into the middle layer 24 due to gravity, and further into the lower layer 26.

なお、注水層20の構成はこれに限らず、2層以下の構成や4層以上の構成としてもよい。また、注水層20を形成する材質としては、ポーラスコンクリート、連続気泡のウレタンフォーム、繊維状又は網目状のポリエチレンをマット状に成型した成型品や、これらの表面に不織布を貼り付けた複合材料などを用いることができる。不織布を貼り付けることにより、不純物(バイオフィルムなど)をろ過できる。注水層20を形成する材質としてウレタンフォームやポリエチレンなどの樹脂材料を用いる場合は、上層における樹脂材料の密度を、中層や下層に比べて小さくする。   In addition, the structure of the water injection layer 20 is not restricted to this, It is good also as a structure of 2 layers or less, or a structure of 4 layers or more. In addition, as a material for forming the water injection layer 20, porous concrete, open-cell urethane foam, a molded product obtained by molding a fibrous or mesh-like polyethylene into a mat shape, a composite material in which a nonwoven fabric is pasted on the surface thereof, or the like Can be used. Impurities (such as biofilms) can be filtered by attaching a nonwoven fabric. When a resin material such as urethane foam or polyethylene is used as a material for forming the water injection layer 20, the density of the resin material in the upper layer is made smaller than that in the middle layer or the lower layer.

また、本実施形態において土壌Gの地表面は略水平面とされ、注水層20も略水平に敷設されているが、本発明の実施形態はこれに限らない。例えば図3に示すように地表面に勾配がある場合、この勾配に沿った注水層28を形成してもよい。このような注水層28においては、注入された注入液は勾配に沿って流れるので、水平に敷設された注水層20(図1参照)と比較して、注入液が注水層28内に浸透しやすい。このため、注入パイプ34のピッチを大きくすることができる。注入パイプ34のピッチを大きくすることで、施工手間を減らすことができる。   In the present embodiment, the ground surface of the soil G is a substantially horizontal surface, and the water injection layer 20 is also laid substantially horizontally, but the embodiment of the present invention is not limited to this. For example, as shown in FIG. 3, when the ground surface has a gradient, the water injection layer 28 along the gradient may be formed. In such a water injection layer 28, the injected injection solution flows along a gradient, so that the injection solution penetrates into the water injection layer 28 compared to the water injection layer 20 (see FIG. 1) laid horizontally. Cheap. For this reason, the pitch of the injection pipe 34 can be increased. The construction labor can be reduced by increasing the pitch of the injection pipes 34.

なお、土壌Gの地表面の勾配は、造成して設けてもよいし、予め備わっているものを利用してもよい。   In addition, the gradient of the ground surface of the soil G may be created and provided, or a pre-provided one may be used.

また、本実施形態においては注入パイプ34から注水層20へ注入液を注入しているが、本発明の実施形態はこれに限らない。例えば注水層20の上部にスプリンクラーを設置したり手持ちのホースを用いる等して、注水層20へ注入液を散布してもよい。   Moreover, in this embodiment, although injection liquid is inject | poured into the water injection layer 20 from the injection pipe 34, embodiment of this invention is not restricted to this. For example, the injection solution may be sprayed onto the water injection layer 20 by installing a sprinkler on the top of the water injection layer 20 or using a hand-held hose.

(揚水井戸)
図1に示すように、揚水井戸40は先端部にストレーナ42を備えた鋼管であり、内部に図示しないポンプを備えている。ストレーナ42は浄化対象とする汚染物質Eよりも深い位置に配置されており、これにより揚水井戸40は汚染物質Eよりも深い位置から地下水を揚水できる。
(Pumping well)
As shown in FIG. 1, the pumping well 40 is a steel pipe having a strainer 42 at the tip, and has a pump (not shown) inside. The strainer 42 is disposed at a position deeper than the pollutant E to be purified, whereby the pumping well 40 can pump groundwater from a position deeper than the pollutant E.

(作用及び効果)
第1実施形態に係る土壌浄化システム10の作用及び効果を、土壌Gの浄化方法と共に説明する。第1実施形態に係る土壌浄化システム10を用いて土壌Gを浄化するには、まず図4(A)に示すように、汚染物質Eを被覆するように土壌Gの地表面に注水層20を形成し、注入設備30及び揚水井戸40を構築する。
(Function and effect)
The effect | action and effect of the soil purification system 10 which concern on 1st Embodiment are demonstrated with the purification method of the soil G. FIG. In order to purify the soil G using the soil purification system 10 according to the first embodiment, first, as shown in FIG. 4 (A), the water injection layer 20 is formed on the ground surface of the soil G so as to cover the pollutant E. Form and build the injection facility 30 and the pumping well 40.

次に図4(B)に示すように、揚水井戸40から地下水を揚水し、土壌Gにおいて汚染物質Eがある部分の地下水位H1を低くする。   Next, as shown in FIG. 4B, groundwater is pumped from the pumping well 40, and the groundwater level H <b> 1 in the soil G where the pollutant E is present is lowered.

次に図4(C)に示すように、注入設備30から注水層20へ注入液を注入する。注水層20は土壌Gよりも透水性の高い材料で形成されているため、注入液は土壌Gよりも注水層20の内部に浸透しやすく、横方向に拡散される。これにより注入液は、汚染物質Eを上から覆うように面状に拡散する。   Next, as shown in FIG. 4C, the injection solution is injected from the injection facility 30 into the water injection layer 20. Since the water injection layer 20 is formed of a material having higher water permeability than the soil G, the injected liquid is more likely to penetrate into the water injection layer 20 than the soil G and is diffused in the lateral direction. Thereby, the injection solution diffuses in a planar shape so as to cover the contaminant E from above.

また、注水層20は上層22の透水係数が高く、下層26の透水係数が低い。このため、上層22で注入液を面状に拡散し、下層26で注入液に含まれるバイオフィルムなどを濾し取ることができる。   In addition, the water injection layer 20 has a high permeability coefficient of the upper layer 22 and a low permeability coefficient of the lower layer 26. For this reason, the injection solution can be diffused in a planar shape in the upper layer 22, and the biofilm contained in the injection solution can be filtered out in the lower layer 26.

次に図4(D)に示すように、注入設備30から注水層20へ注入液の注入を継続することで、注入液は土壌Gの内部へ浸透する。このとき、注入液は重力により土壌Gの上方から下方へ浸透するので、動力を用いずに注入液を土壌Gへ浸透させることができる。   Next, as shown in FIG. 4D, the injection solution penetrates into the soil G by continuing the injection of the injection solution from the injection facility 30 to the water injection layer 20. At this time, since the injected solution penetrates from above to below the soil G due to gravity, the injected solution can penetrate into the soil G without using power.

また、注入液は注水層20の内部で面状に拡散して土壌Gへ均等に浸透する。このため、注入液は土壌Gにおいて汚染物質Eを含む部分の全体を通過することができる。   Further, the injected liquid diffuses in a planar shape inside the water injection layer 20 and penetrates into the soil G evenly. For this reason, the injection liquid can pass through the entire part including the contaminant E in the soil G.

さらに、注水層20の周囲には非透水性の材料で形成された止水壁50が設けられており、注入液が注水層20の外側(横方向の外側)へ流れ出にくくなっている。このため、注入液を浸透させる必要の無い部分に注入液が拡散することを抑制できる。   Furthermore, a water blocking wall 50 made of a non-permeable material is provided around the water injection layer 20 so that the injected liquid does not easily flow out of the water injection layer 20 (outside in the lateral direction). For this reason, it can suppress that an injection liquid diffuses in the part which does not need to make an injection liquid osmose | permeate.

なお、止水壁50は必ずしも設ける必要はない。止水壁50を設けなくても、注入液を面状に拡散することができる。あるいは、止水壁を注水層20の内部に格子状に配置して、細分化された注水層20を形成してもよい。このようにすれば、汚染物質Eが不規則に分布している場合、細分化された注水層の一部分に注入液を注入することで、効率的に浄化できる。   The water blocking wall 50 is not necessarily provided. Even if the water blocking wall 50 is not provided, the injected liquid can be diffused in a planar shape. Alternatively, the water blocking wall 20 may be arranged in a lattice shape inside the water injection layer 20 to form the subdivided water injection layer 20. In this way, when the pollutant E is irregularly distributed, it can be efficiently purified by injecting the injection liquid into a part of the subdivided water injection layer.

次に図4(E)に示すように、注入設備30から注水層20への注入液の注入を停止し、注入液を重力によって汚染物質Eが含まれた土壌Gへ浸透させる。   Next, as shown in FIG. 4 (E), the injection of the injection solution from the injection facility 30 to the water injection layer 20 is stopped, and the injection solution is permeated into the soil G containing the contaminant E by gravity.

次に図4(F)に示すように、注入液が汚染物質Eが含まれた部分を通過して、地下水における分解物質の濃度が所定値より低くなった時点で、揚水井戸40から地下水を揚水する。分解物質の濃度は、揚水井戸から採取した地下水、あるいは別途設けた観測井戸から採取した地下水などを用いて測定される。   Next, as shown in FIG. 4 (F), when the injected solution passes through the part containing the pollutant E and the concentration of the decomposition material in the groundwater becomes lower than a predetermined value, the groundwater is discharged from the pumping well 40. Pump up the water. The concentration of decomposed substances is measured using groundwater collected from a pumping well or groundwater collected from a separate observation well.

なお、揚水井戸40から地下水を揚水する判断基準は分解物質の濃度に限らず、例えば地下水又は土壌Gの温度としてもよい。地下水又は土壌Gの温度が所定値より低くなった時点で地下水を揚水し、揚水した地下水を浄化し、分解物質を添加して注入液を生成し、加温した注入液を土壌Gへ浸透させる。地下水の温度は揚水井戸内部に設置された熱電対、土壌Gの温度は土壌Gに埋設した熱電対により測定できる。   Note that the criterion for pumping groundwater from the pumping well 40 is not limited to the concentration of the decomposition substance, and may be the temperature of the groundwater or the soil G, for example. When the temperature of the groundwater or soil G becomes lower than the predetermined value, the groundwater is pumped up, the pumped-up groundwater is purified, a decomposition substance is added to generate an injection solution, and the heated injection solution is infiltrated into the soil G. . The temperature of the groundwater can be measured by a thermocouple installed inside the pumping well, and the temperature of the soil G can be measured by a thermocouple embedded in the soil G.

また、揚水井戸40から地下水を揚水する判断基準として、分解物質の濃度及び地下水(又は土壌G)の温度の双方を用いてもよい。この場合、濃度と温度のいずれかが所定値以下になった時点で地下水を揚水する。なお、揚水開始の指標とされる濃度及び温度の「所定値」とは、その値を下回ると分解物質の活性が低下する閾値である。   Moreover, you may use both the density | concentration of a decomposition substance and the temperature of groundwater (or soil G) as a judgment reference | standard which pumps up groundwater from the pumping well 40. FIG. In this case, the groundwater is pumped when either the concentration or temperature falls below a predetermined value. Note that the “predetermined value” of the concentration and temperature, which are used as an index for starting pumping, is a threshold at which the activity of the degradation substance decreases when the value falls below that value.

[第2実施形態]
(被覆層)
図5に示すように、第2実施形態に係る土壌浄化システム12では、注水層20の上部に被覆層52が設けられている。被覆層52はコンクリートパネルで形成されており、注水層20の上部に敷き並べられて形成される。コンクリートパネルは土壌Gと比較して透水性が低いため、注水層20へ注入された注入液に雨水が混合しにくい。このため、分解物質の濃度が低くなったり、注入液の温度が低くなったりすることを抑制できる。また、注入液が揮発することを抑制できる。このため、注入液における分解物質の濃度や注入液の温度を適切な値に維持することができる。
[Second Embodiment]
(Coating layer)
As shown in FIG. 5, in the soil purification system 12 according to the second embodiment, a coating layer 52 is provided on the upper part of the water injection layer 20. The covering layer 52 is formed of a concrete panel and is formed by laying on the upper part of the water injection layer 20. Since the concrete panel has low water permeability as compared with the soil G, it is difficult for rainwater to be mixed with the injected liquid injected into the water injection layer 20. For this reason, it can suppress that the density | concentration of a decomposition | disassembly substance becomes low or the temperature of an injection liquid becomes low. Moreover, it can suppress that an injection liquid volatilizes. For this reason, the density | concentration of the decomposition substance in an injection liquid and the temperature of an injection liquid can be maintained at an appropriate value.

なお、被覆層52を形成する材料としては、コンクリートパネルの他、ゴムや塩ビ製のシート、アスファルトルーフィングなどを用いることができる。これらの材料も土壌Gと比較して透水性が低いため、注入液に雨水が混合することを抑制できる。   In addition, as a material for forming the covering layer 52, a sheet made of rubber or PVC, asphalt roofing, or the like can be used in addition to a concrete panel. Since these materials also have low water permeability compared to the soil G, it is possible to prevent the rainwater from being mixed into the injection liquid.

また、本実施形態においては注入液に雨水が混合することを抑制するために被覆層52を設けているが、本発明の実施形態はこれに限らない。例えば被覆層52は、注入液が外気温から影響を受けにくくするために設けてもよい。この場合、例えば被覆層52を発泡スチロール等の断熱材で形成することで、加温された注入液が冬季の外気によって冷却されることを抑制する。   Moreover, in this embodiment, in order to suppress that rainwater mixes with an injection liquid, the coating layer 52 is provided, However, Embodiment of this invention is not restricted to this. For example, the coating layer 52 may be provided in order to make the injection liquid less susceptible to the outside air temperature. In this case, for example, the coating layer 52 is formed of a heat insulating material such as styrene foam, thereby suppressing the heated injection liquid from being cooled by outside air in winter.

なお、発泡スチロールは独立気泡の発泡体であるため止水性も備えている。このため、発泡スチロールは注入液に雨水が混合することを抑制するために用いることもできる。このように、被覆層52は複数の目的のために設けてもよい。例えば、コンクリートは熱容量が大きいため、上述したコンクリートパネルは、注入液に雨水が混合することを抑制する目的のほか、昼間に日射熱を蓄え夜間に放熱させることで、夜間の加温エネルギーを低減させる目的に用いることができる。   In addition, since polystyrene foam is a foam of a closed cell, it also has a water-stopping property. For this reason, a polystyrene foam can also be used in order to suppress that rainwater mixes with an injection liquid. Thus, the covering layer 52 may be provided for a plurality of purposes. For example, because concrete has a large heat capacity, the concrete panel mentioned above has the purpose of suppressing the mixing of rainwater with the injected liquid, and also reduces the heating energy at night by storing solar heat during the day and dissipating it at night. Can be used for the purpose.

[第3実施形態]
図6(B)に示すように、第3実施形態における土壌Gは、粘土層G1に挟まれた位置に汚染層G2が形成されている。粘土層G1は透水性が低く、注入液を上から浸透させることが難しい。
[Third Embodiment]
As shown in FIG. 6B, in the soil G in the third embodiment, a contaminated layer G2 is formed at a position sandwiched between clay layers G1. The clay layer G1 has low water permeability, and it is difficult to infiltrate the injection solution from above.

そこで第3実施形態に係る土壌浄化システム14では、面状に形成された注水層60を土壌Gの内部で汚染層G2の上方に形成している。注水層60は砕石、砂利、硅砂等によって形成され、粘土層G1、汚染層G2よりも透水係数が高い。   Therefore, in the soil purification system 14 according to the third embodiment, the water injection layer 60 formed in a planar shape is formed inside the soil G and above the contaminated layer G2. The water injection layer 60 is formed of crushed stone, gravel, dredged sand, etc., and has a higher water permeability coefficient than the clay layer G1 and the contaminated layer G2.

土壌浄化システム14における注入設備70は、第1実施形態における注入パイプ34(図1参照)に代えて、注水層60へ注入液を注入するための注水井戸74を備えている。注水井戸74の先端は汚染層G2に達しており、注水層60に接する部分に図示しない吐出口を備えている。注入設備70の浄化装置72は、第1実施形態における浄化装置32と同様の構成とされている。   The injection facility 70 in the soil purification system 14 includes a water injection well 74 for injecting the injection liquid into the water injection layer 60 instead of the injection pipe 34 (see FIG. 1) in the first embodiment. The tip of the water injection well 74 reaches the contaminated layer G2, and a discharge port (not shown) is provided at a portion in contact with the water injection layer 60. The purification device 72 of the injection facility 70 has the same configuration as the purification device 32 in the first embodiment.

また揚水井戸80は、先端が汚染層G2に達しており、先端に形成された図示しないストレーナから、汚染層G2の地下水を揚水できる。   Moreover, the pumping well 80 has the tip reaching the contaminated layer G2, and can pump the groundwater of the contaminated layer G2 from a strainer (not shown) formed at the tip.

これにより、浄化装置32で生成された注入液は、注水井戸74から注水層60に注入され、注水層60内を横方向に浸透する。そして注水層60から汚染層G2へ浸透して、汚染物質Eを浄化する。その後、地下水と共に揚水井戸80から揚水される。   Thereby, the injection liquid produced | generated with the purification apparatus 32 is inject | poured into the water injection layer 60 from the water injection well 74, and osmose | permeates the inside of the water injection layer 60 to a horizontal direction. Then, it penetrates from the water injection layer 60 into the contaminated layer G2 to purify the pollutant E. Thereafter, the water is pumped from the pumping well 80 together with the groundwater.

図6(A)には、注水井戸74、揚水井戸80、注水層60の配置を示した平面図が示されている。注水層60は、複数の注水井戸74、揚水井戸80に跨って面状に形成されている。   FIG. 6A shows a plan view showing the arrangement of the water injection well 74, the pumping well 80, and the water injection layer 60. The water injection layer 60 is formed in a planar shape across the plurality of water injection wells 74 and the pumping wells 80.

このような注水層60を形成するには、まず、図7(A)に示すように、土壌Gの地表面から、粘土層G1に挟まれた汚染層G2に到達する竪穴90を削孔する。   In order to form such a water injection layer 60, first, as shown in FIG. 7A, a hole 90 reaching the contaminated layer G2 sandwiched between the clay layers G1 is drilled from the ground surface of the soil G. .

次に、図7(B)に示すように、中空の吐出管92を竪穴90に挿入し、吐出管92の管壁に形成された吐出口92Aから竪穴90の穴壁に向かって高圧の水流を当てて、汚染層G2に切り欠きGEを形成する。   Next, as shown in FIG. 7B, a hollow discharge pipe 92 is inserted into the pit hole 90, and a high-pressure water flow is directed from the discharge port 92 </ b> A formed in the pipe wall of the discharge pipe 92 toward the hole wall of the pit hole 90. To form a notch GE in the contaminated layer G2.

さらに、図7(C)に示すように、切り欠きGEを開削して横方向へ伸展させる。切り欠きGEを開削するためには、吐出口92Aから切り欠きGEにフラクチャリング流体(割裂液)を圧送する。フラクチャリング流体は、土壌や岩体を水圧で掘削する際に用いられる化学物質が添加された水のことであり、本実施形態においては、自己分解性を有する粘性流体とされている。また、汚染物質Eの浄化を促進させるため、汚染物質Eの分解物質を含有している。なお、自己分解性とは、時間の経過とともに粘性が下がる性質のことであり、この性質によりフラクチャリング流体は土壌Gに滞ることなく揚水井戸80から回収される。   Further, as shown in FIG. 7C, the notch GE is cut and extended in the lateral direction. In order to open the notch GE, a fracturing fluid (split fluid) is pumped from the discharge port 92A to the notch GE. The fracturing fluid is water to which a chemical substance used when excavating soil or rock body with water pressure is added. In the present embodiment, the fracturing fluid is a viscous fluid having self-decomposability. Further, in order to promote the purification of the pollutant E, it contains a decomposed substance of the pollutant E. The self-decomposing property is a property that the viscosity decreases with the passage of time, and the fracturing fluid is recovered from the pumping well 80 without stagnation in the soil G due to this property.

フラクチャリング流体を切り欠きGEに圧送することで、フラクチャリング流体が汚染層G2を形成する粒子の粒子間結合力が弱い部分を切り開きながら汚染層G2へ流れ込み、面状の流路GWが形成される。   By feeding the fracturing fluid into the cutout GE, the fracturing fluid flows into the contamination layer G2 while opening the portion where the interparticle bonding force of the particles forming the contamination layer G2 is weak, and a planar channel GW is formed. The

さらに図7(D)に示すように、汚染層G2を形成する粒子よりも粒径が大きい硅砂や砂利が混ぜられたフラクチャリング流体を吐出口92Aから流路GWへ吐出して、この硅砂や砂利を流路GWに充填する。これにより、竪穴90を取り囲む注水層60Aが形成される。   Further, as shown in FIG. 7D, a fracturing fluid mixed with dredged sand or gravel having a particle diameter larger than the particles forming the contaminated layer G2 is discharged from the discharge port 92A to the flow path GW, and this dredged sand or Fill the flow path GW with gravel. Thereby, the water injection layer 60 </ b> A surrounding the pothole 90 is formed.

図8(B)に示すように、注水層60Aは、竪穴90の周囲に面状に形成される。竪穴90を所定の間隔を空けて複数削孔し、それぞれの竪穴90に対して上述した図7(B)〜(D)の工程により注水層60Aを形成する。これにより図8(A)に示すように、注水層60Aが繋げられ、図6(A)、(B)に示す注水層60が形成される。   As shown in FIG. 8B, the water injection layer 60 </ b> A is formed in a planar shape around the pothole 90. A plurality of holes 90 are drilled at predetermined intervals, and the water injection layer 60 </ b> A is formed for each hole 90 by the above-described steps of FIGS. 7 (B) to (D). Thereby, as shown to FIG. 8 (A), 60A of water injection layers are connected, and the water injection layer 60 shown to FIG. 6 (A), (B) is formed.

なお、注水層60を形成した後の竪穴90は、ケーシングを挿入して注水井戸74または揚水井戸80として使用することができる。   The pothole 90 after forming the water injection layer 60 can be used as the water injection well 74 or the pumping well 80 by inserting a casing.

第3実施形態に係る土壌浄化システム14では、汚染物質Eが土壌Gの内部で面状に拡がっている場合において、汚染物質Eの直上に注水層60を形成できる。このため汚染物質Eを効果的に浄化することができる。   In the soil purification system 14 according to the third embodiment, when the pollutant E spreads in a planar shape inside the soil G, the water injection layer 60 can be formed immediately above the pollutant E. For this reason, the pollutant E can be effectively purified.

なお、第3実施形態に係る土壌浄化システム14は、汚染物質Eが面状に拡がっている場合の他、土壌Gの深い部分に拡がっている場合などにも適用することができる。このような場合においても、汚染物質Eの直上に注水層60を形成すれば浄化効率が高い。   Note that the soil purification system 14 according to the third embodiment can be applied not only when the pollutant E spreads in a planar shape but also when it spreads in a deep part of the soil G. Even in such a case, if the water injection layer 60 is formed immediately above the contaminant E, the purification efficiency is high.

[第4実施形態]
図9に示すように、第4実施形態に係る土壌浄化システム16においては、注水層110が土壌Gの地表面から下方向に向かって壁状に形成されている。壁状の注水層110を正面視すると、注水層110は土壌Gの汚染物質Eと重なるように配置されている。
[Fourth Embodiment]
As shown in FIG. 9, in the soil purification system 16 according to the fourth embodiment, the water injection layer 110 is formed in a wall shape downward from the ground surface of the soil G. When the wall-shaped water injection layer 110 is viewed from the front, the water injection layer 110 is disposed so as to overlap the pollutant E of the soil G.

注入設備100は、浄化装置102と、浄化装置102で生成された注入液を注水層110へ注入する注入パイプ104と、を備えている。注入パイプ104は注水層110へ注入液を速やかに浸透させるため、注水層110の内部に上下方向に沿って敷設されている。さらに、汚染物質Eを挟んで注水層110と反対側には、揚水井戸120が設けられている。   The injection facility 100 includes a purification device 102 and an injection pipe 104 that injects the injection solution generated by the purification device 102 into the water injection layer 110. The injection pipe 104 is laid along the vertical direction inside the water injection layer 110 in order to quickly infiltrate the injection solution into the water injection layer 110. Furthermore, a pumping well 120 is provided on the opposite side of the water injection layer 110 with the pollutant E interposed therebetween.

第4実施形態に係る土壌浄化システム16では、注水層110へ注入された注入液は、注水層110の内部で面状に拡散して土壌Gへ均等に浸透する。このため、注入液は土壌Gにおいて汚染物質Eを含む部分の全体を通過することができる。   In the soil purification system 16 according to the fourth embodiment, the injected solution injected into the water injection layer 110 diffuses into the surface of the water injection layer 110 and penetrates the soil G evenly. For this reason, the injection liquid can pass through the entire part including the contaminant E in the soil G.

なお、第1、第2実施形態においては、図1、図5に示すように汚染物質Eの上部の地表面に注水層20を形成し、第3実施形態においては、図6(A)、(B)に示すように注水井戸74の頂部が地表面に露出している。つまり第1〜第3実施形態においては、汚染物質Eの上部の地表面において、注水層20の設置工事や注水井戸74の掘削工事を行う必要がある。   In the first and second embodiments, the water injection layer 20 is formed on the ground surface above the pollutant E as shown in FIGS. 1 and 5, and in the third embodiment, the water injection layer 20 in FIG. As shown in (B), the top of the water injection well 74 is exposed on the ground surface. That is, in the first to third embodiments, it is necessary to perform installation work of the water injection layer 20 and excavation work of the water injection well 74 on the ground surface above the pollutant E.

これに対し、第4実施形態においては汚染物質Eの上部の地表面で工事を行う必要がない。このため、汚染物質Eの上部に建物がある場合、その建物を供用しながら土壌Gを浄化することができる。   On the other hand, in the fourth embodiment, it is not necessary to perform construction on the ground surface above the pollutant E. For this reason, when there is a building above the pollutant E, the soil G can be purified while the building is in service.

なお、土壌浄化システム16では、注入パイプ104を注水層110の内部に上下方向に沿って敷設しているが、本発明の実施形態はこれに限らない。例えば注入パイプは注水層110の上部に横方向に埋設してもよいし、注入パイプを用いずに注水層11へ注入液を注いでもよい。このようにしても、注入液は重力により注水層110の内部へ浸透する。   In addition, in the soil purification system 16, although the injection pipe 104 is laid along the up-down direction inside the water injection layer 110, embodiment of this invention is not restricted to this. For example, the injection pipe may be embedded in the lateral direction above the water injection layer 110, or the injection liquid may be poured into the water injection layer 11 without using the injection pipe. Even in this case, the injected liquid penetrates into the water injection layer 110 by gravity.

また、地下水は揚水井戸120によって揚水しているが、本発明の実施形態はこれに限らない。例えば地表面を溝状に掘削し、砕石を充填した暗渠を形成し、この暗渠から地下水を揚水してもよい。揚水井戸120に代えて暗渠を形成すれば、揚水設備の構築が容易になる。   Moreover, although groundwater is pumped by the pumping well 120, embodiment of this invention is not restricted to this. For example, the ground surface may be excavated in a groove shape to form a culvert filled with crushed stone, and groundwater may be pumped from the culvert. If a culvert is formed instead of the pumping well 120, the construction of the pumping facility becomes easy.

20、28、60、110 注水層
30、70、100 注入設備
40、80、120 揚水井戸(揚水設備)
50 止水壁
G 土壌
20, 28, 60, 110 Water injection layer 30, 70, 100 Injection facility 40, 80, 120 Pumping well (pumping facility)
50 Water blocking wall G Soil

Claims (3)

土壌の表面又は土壌中に設けられ、前記土壌より透水性の高い材料で面状に形成された注水層と、
前記注水層へ汚染物質を分解するための物質を含んだ注入液を注入して、前記注水層から前記土壌へ注入液を浸透させる注入設備と、
前記土壌から前記注入液を含む地下水を揚水する揚水設備と、を有する土壌浄化システム。
A water injection layer provided in the surface of the soil or in the soil and formed into a planar shape with a material having higher water permeability than the soil;
An injection facility for injecting an injection solution containing a substance for decomposing pollutants into the water injection layer, and infiltrating the injection solution from the water injection layer into the soil;
A soil purification system comprising: a pumping facility for pumping ground water containing the injected liquid from the soil.
前記注水層は前記土壌の表面に設けられ、前記揚水設備は揚水井戸である、請求項1に記載の土壌浄化システム。   The soil purification system according to claim 1, wherein the water injection layer is provided on a surface of the soil, and the pumping equipment is a pumping well. 前記注水層の外周部に止水壁が設けられている、請求項2に記載の土壌浄化システム。   The soil purification system of Claim 2 with which the water stop wall is provided in the outer peripheral part of the said water injection layer.
JP2016219014A 2016-11-09 2016-11-09 Soil purification system Active JP6914026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219014A JP6914026B2 (en) 2016-11-09 2016-11-09 Soil purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219014A JP6914026B2 (en) 2016-11-09 2016-11-09 Soil purification system

Publications (2)

Publication Number Publication Date
JP2018075527A true JP2018075527A (en) 2018-05-17
JP6914026B2 JP6914026B2 (en) 2021-08-04

Family

ID=62148782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219014A Active JP6914026B2 (en) 2016-11-09 2016-11-09 Soil purification system

Country Status (1)

Country Link
JP (1) JP6914026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203439A (en) * 2020-04-02 2020-05-29 袁伟伟 Deep neutralization regeneration device for soil with over-standard pH value
CN115608765A (en) * 2022-10-09 2023-01-17 中国石油大学(北京) Foam fracturing repair method for low-permeability crude oil contaminated soil

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637462A (en) * 1985-06-04 1987-01-20 Grable Donovan B Liquid mud ring control of underground liquids
JP2006289300A (en) * 2005-04-13 2006-10-26 Asanuma Corp Purification method and apparatus of soil
JP2008194544A (en) * 2006-04-28 2008-08-28 Kajima Corp Groundwater neutralization method of heavy metal- containing acidic soil
JP2010029843A (en) * 2008-06-23 2010-02-12 Nittetsu Kankyo Engineering Kk Contaminated soil cleaning apparatus and contaminated soil cleaning method
JP2012121013A (en) * 2010-12-10 2012-06-28 Nippon Steel Engineering Co Ltd Method for remediation of polluted soil in situ
JP2013127189A (en) * 2011-12-19 2013-06-27 Takenaka Komuten Co Ltd Lattice ground improvement body, impervious wall, and construction method for the same
JP2014023992A (en) * 2012-07-25 2014-02-06 Ohbayashi Corp Method for treating contaminated ground in situ
JP2014136198A (en) * 2013-01-17 2014-07-28 Takenaka Komuten Co Ltd Earthquake-proof type contaminated soil enclosure structure
JP2014205087A (en) * 2013-04-10 2014-10-30 株式会社竹中工務店 Facility for purifying contaminated soil and method for purifying contaminated soil
KR20150089817A (en) * 2014-01-28 2015-08-05 안동대학교 산학협력단 Treating apparatus for selective recovery of metal-hydroxide from acid mine drainage
JP2015160175A (en) * 2014-02-27 2015-09-07 清水建設株式会社 Purification processing method of original position of contaminated soil and contaminated groundwater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637462A (en) * 1985-06-04 1987-01-20 Grable Donovan B Liquid mud ring control of underground liquids
JP2006289300A (en) * 2005-04-13 2006-10-26 Asanuma Corp Purification method and apparatus of soil
JP2008194544A (en) * 2006-04-28 2008-08-28 Kajima Corp Groundwater neutralization method of heavy metal- containing acidic soil
JP2010029843A (en) * 2008-06-23 2010-02-12 Nittetsu Kankyo Engineering Kk Contaminated soil cleaning apparatus and contaminated soil cleaning method
JP2012121013A (en) * 2010-12-10 2012-06-28 Nippon Steel Engineering Co Ltd Method for remediation of polluted soil in situ
JP2013127189A (en) * 2011-12-19 2013-06-27 Takenaka Komuten Co Ltd Lattice ground improvement body, impervious wall, and construction method for the same
JP2014023992A (en) * 2012-07-25 2014-02-06 Ohbayashi Corp Method for treating contaminated ground in situ
JP2014136198A (en) * 2013-01-17 2014-07-28 Takenaka Komuten Co Ltd Earthquake-proof type contaminated soil enclosure structure
JP2014205087A (en) * 2013-04-10 2014-10-30 株式会社竹中工務店 Facility for purifying contaminated soil and method for purifying contaminated soil
KR20150089817A (en) * 2014-01-28 2015-08-05 안동대학교 산학협력단 Treating apparatus for selective recovery of metal-hydroxide from acid mine drainage
JP2015160175A (en) * 2014-02-27 2015-09-07 清水建設株式会社 Purification processing method of original position of contaminated soil and contaminated groundwater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203439A (en) * 2020-04-02 2020-05-29 袁伟伟 Deep neutralization regeneration device for soil with over-standard pH value
CN115608765A (en) * 2022-10-09 2023-01-17 中国石油大学(北京) Foam fracturing repair method for low-permeability crude oil contaminated soil

Also Published As

Publication number Publication date
JP6914026B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
CN207793788U (en) Permeable pavement rainwater infiltration structure
US8337121B2 (en) Process for in-ground water collection
CN102923822B (en) Restoring device and restoring method for treating fluorine pollution of groundwater
CA2509740C (en) Multi-planar gas recovery bioreactor
TWI642830B (en) Site improvement method
US9981867B2 (en) System for enhanced aerobic activity and bio-mat control for onsite wastewater disposal systems
JP6914026B2 (en) Soil purification system
JP5628014B2 (en) Impermeable wall structure
JP5070694B2 (en) Containment method for contaminated soil and groundwater
JP2009133110A (en) Drainage system structure
JP2012255250A (en) Rainwater disposal facility
JP2014205112A (en) Original-position decontamination method by multi-point injection
KR101653806B1 (en) System for treating a riverbank filtration on situ by using an inclined injection pipe
JP2019018168A (en) Method for purifying ground
JP4721569B2 (en) Contaminated soil diffusion prevention method
JP2004322018A (en) Method and system for promoting stabilization of landfilling waste and seepage water capillary barrier layer
JP2003033759A (en) Contaminant spread prevention method using water retaining type underground wall
JPH10168984A (en) Execution method of subsurface infiltration facility of rain water
JPH10245861A (en) Method of purifying contaminated ground
JP3600482B2 (en) Equipment for preventing and purifying liquid leakage to the supporting ground of industrial facilities
CN115594311B (en) Management and control system and method for petroleum hydrocarbon organic pollution groundwater in-situ ultramicro bubble biological aeration coupling PRB permeable reaction wall
JP2005313105A (en) Disposal site having circulation system for improving semi-aerobic state
JP7051583B2 (en) How to purify contaminated weathered rocky ground
JP2003053317A (en) Underground water drainage structure of original position confinement construction method
CN116237352A (en) Method for repairing polluted site by adopting horizontal sectional pressure injection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6914026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250